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Abstract

Chaos engineering is a way to introduce unexpected failures in order to discover a system’s failure modes. The chaos
engineering tools usually introduce faults that focus on the connections between the system’s components by disrupting
the expected operation of the network (by introducing latency, packet loss, all the way to complete network partitions) or
by disrupting the operation of the nodes hosting the components (by reducing the available CPU or memory resources).
Our work on chaos testing showed that this is not only insufficient, but that more “damage” can be achieved by focusing
first on how a system handles unexpected input–trivially structurally invalid messages; or structurally valid messages that
contain invalid values; or structurally valid messages with valid, yet damaging or malicious values. Once the system can
reliably handle invalid and malicious inputs, the infrastructure chaos engineering can be used to tease out further failure
scenarios.

1 Protocol chaos

Validation of inputs is acknowledged to be important, yet
it is very often not implemented as thoroughly as it should
be; not for the lack of understanding its importance, but
for the effort it requires. Consider a component that ac-
cepts a message to announce a greeting n number of times;
it exposes a REST endpoint at POST / g r e e t i n g and ex-
pects a message with the g r e e t i n g and count values.
The description of the service and the field names in the
input message provide intuition about the expected values:
the g r e e t i n g can be one of { " h e l l o " , " h i " , "
top ␣ o f ␣ the ␣ a f t e rnoon ␣ to ␣you , ␣ s i r ! "} and sim-
ilar; the value for count is an integer in the range of
(1; 5). The first level of validation is to check that the val-
ues posted indeed represent valid “types” (the g r e e t i n g
is text; the count is an integer). This is “included for
free” in strongly-typed languages if the input message uses
appropriate types for its members; and it is simple to do in
weakly-typed languages. The next level of validation should
focus on acceptable range of values. For the count prop-
erty, the validation code should verify that it is indeed in the
range of (say) (1; 5). The validation code for the g r e e t i n g
property can be more complex: it is difficult to precisely

define valid or invalid s t r i n g . The possible invalid ex-
amples include empty string, very long string, etc; though
it remains easy to find an invalid string that nevertheless
passes the validation code, and it is just as easy to find
valid string that fails. (Consider “Good morning, Llanfairp-
wllgwyngyllgogerychwyrndrobwllllantysiliogogogoch!”: it is
perfectly valid greeting in a small village in North Wales.)
If discovering the validation rules for g r e e t i n g is difficult,
it is even more difficult to exhaustively test those rules.

It is possible to implement a test that verifies that the
system under test processes the message as expected. How-
ever, this is a very broad requirement, so it is usually split

into multiple unit tests. But even with this split, the initial
problem of imagining and then coding the possible messages
still remains. In order to allow valid messages conforming to
some protocol to be generated, there needs to be a machine-
readable description of the protocol. This description needs
to include the elements and their types. The types should in-
clude primitives (integers, floats, strings, booleans); product
types (containers of primitives and other products); collec-
tions (arrays, and even maps); it is useful if the protocol
description includes sum types. The protocol tooling should
also be able to take the protocol descriptions and generate
source code for the target language and framework combi-
nation. Protocol Buffers [7] is an example of the protocol
definition language and rich tooling that satisfies these re-
quirements. The code in Listing 1 shows how to define a
message X with two fields in the Protocol Buffers syntax.
message X {

int32 count = 1 ;
string g r e e t i n g = 2 ;

}

Listing 1: Trivial protocol definition

Given this definition, the Protocol Buffers tooling can be
used to generate the source code for Scala, Swift, C++, and
many other languages. The generated code for each message
includes definition of the protocol; the definition is shown in
pseudo-code in Listing 2.
The message X contains two fields, both optional: count, of type 32 bit

signed integer
f i e l d {

name : " count"
number : 1
l a b e l : LABEL_OPTIONAL
type : TYPE_INT32
json_name : " count"

}
and greeting, of type UTF-8 string
f i e l d {

name : " g r e e t i n g "
number : 2
l a b e l : LABEL_OPTIONAL
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type : TYPE_STRING
json_name : " g r e e t i n g "

}

Listing 2: Trivial protocol definition

Using this definition, it is possible to devise a generator
that examines the types of the fields, and emits possible
values that conform to the field’s type: the range of values
for i n t 32 includes {0, 1, 64, 231 − 1,−231 + 1,−100,−1};
the range of values for s t r i n g includes empty, short al-
phanumeric, long alphanumeric, and even more values can
be found on The Big List of Naughty Strings [12]. Gener-
ators for other types follow similar pattern in the samples
they provide. It is useful to add heuristics to the generator,
making it consider the field name in addition to the field
type. This way, a generator for field u r l can generate
(malicious) URLs in addition to simply one of the naughty
strings. The range of values that the generator can emit for
each type is very large, the generator needs to take–in addi-
tion to the field definition–a random number generator and
emits a structure that can be used to combine with other
generators. See Listing 3 for an example in ScalaCheck.
object MessageGenerator {

Constructs a generator for a type of type A, with optionally
provided hints for the fields
def msg [A <: GeneratedMessage with Message [A ] ]

( implicit cmp : GeneratedMessageCompanion [A] ,
h int : Hint [A] = noHint ) : Gen [A] = . . .

The default hints that can be imported into scope where
msg is used
object h in t s {

implicit def de f au l t [A ] : Hint [A] = . . .
}

Hint for type A is able to provide specific generator for the given fd
tra it Hint [+A] {

def hint ( fd : F i e l dDe s c r i p t o r ) : Option [Gen [Any ] ]
}

}

Prepare the parameters and seed for the application of the generators
val parameters = Gen . Parameters

. d e f au l t

. w i thS ize (1999)
def seed = Seed ( System . cur rentTimeMi l l i s ( ) )
import MessageGenerator ._
import h in t s ._

Generate one “chaotic” instance of message X, using the
in-scope Hints[X]
val x = msg [X] ( parameters , seed )
p r i n t l n (x )

Listing 3: Generator

Several executions of the code above yielded usefully-
damaged instances of message X (shown in Listing 4); these
instances were indeed valid according to the protocol defini-
tion, but some of the values can be considered unusual.
X( count : −4959664 g r e e t i n g : " dlnz6hbbfeb6ofu . . . " )
X( count : 0 g r e e t i n g : " dlnz6hbbfeb6ofu . . . " )
X( count : −1 g r e e t i ng : " dlnz6hbbfeb6ofu . . . " )
X( count : 1 g r e e t i n g : " dlnz6hbbfeb6ofu . . . " )
. . .
X( count : 0 g r e e t i n g : " sqjsY8y3bvhg3az . . . " )

Listing 4: Generator examples

Even though this code is specific to ScalaCheck[9] in Scala,
there are similar property-based testing frameworks avail-
able for other languages (such as RapidCheck[8] for C++,
SwiftCheck[11] for Swift, and similar).

2 Security and integrity

It is important to consider the attack vectors on the protocol
(how easy is it to construct a malicious message) that causes
unexpected behaviour in the protocol implementations; it is
just as important to understand the resilience of the proto-
col’s wire format against transmission errors. This should
inform the design of security and integrity measures, which
can range from simple CRC checksums to cryptographic sig-
natures and encryption1.

2.1 Integrity

Message integrity mechanisms detect errors in the layers
that follow the construction of the message. These layers
include not only the network transport, but also the proto-
col codecs, networking libraries, etc. For example, Kafka[2]
defines maximum message size. The wire format plays an
important role in being able to detect failures in the mes-
sages’ integrity. The proportion of useful data to the pro-
tocol wire format control structures defines the probability
of a bit error damaging the message so that it cannot be
decoded. Take the message in Listing 5, which shows a mes-
sage in the Protocol Buffer language.
message X {

int32 count = 1 ;
string g r e e t i n g = 2 ;

}

Listing 5: Trivial protocol definition

A wire format of a message conforming to this proto-
col with count → 42 ; g r e e t i n g → "He l lo , ␣ wor ld
" is shown in Figure 1 and Figure 2.

Figure 1: JSON wire representation

The binary representation directly maps to the bytes that
make up the 4B i n t 32 value and the s t r i n g with
length 0 x0c . There are only 3B that appear on the wire
in addition to the useful information. The JSON representa-
tion contains 28B that are included on the wire in addition
to the useful information; moreover, the value 42 has to

1Doing nothing is dangerous, particularly for systems that are ex-
posed to other systems or even the Internet.
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Figure 2: Protocol Buffers binary wire representation

be translated from a textual representation to the i n t 32
value. Consider a situation of a bit error on the wire in 1
random byte. The probability of hitting the bytes that form
the wire format is 3/16 in the Protocol Buffers wire for-
mat; and 4/7 in the JSON wire format. The damage to the
message is therefore more likely to be detectable by parsing
errors in the less dense JSON representation (see Figure 3).

Figure 3: Bit error impact

The more dense the wire representation is, the more im-
portant it is to include bit error detection. A simple check-
sum using CRC32 [5] is sufficient for systems with low to
moderate message rates. A parallel (though CPU-bound)
implementation of algorithm 1, capable of brute-forcing
1 200 000messages/s per second on i7-7920HQ CPU took
1564.6 s (averaged over 10 runs) to find one instance of con-
flicting message2.

An example of such conflicting message of type X from
Listing 5 is shown in Table 1. The messages have the
same count property (set to 583145568), differ in the
g r e e t i n g property by 19 bits, yet share the same CRC32
value (1540204925). Consider a system that includes a com-
ponent that “reliably” introduces random bit errors and han-
dles 120 000messages/s. The interval between undetectable
damage to messages that rely on CRC32 to detect errors
will be only 4 h!

2Even though it is easy to find different messages that have the
same CRC32 value, it is difficult to find messages that share the same
CRC32 value, but differ only by a few bits and are valid wire format
representations.

Data: generator g of instances of X with sufficiently
large number of bits

Result: message x, its wire representation b and
damaged wire representation b′ such that b′

is valid according to the protocol format:
b ≠ b

′ ∧ deser(b) ≠
deser(b′) ∧ checksum(b) = checksum(b′)

while true do
x← g()
b← ser(x)
c← checksum(b)
repeat

b
′
← damage(b)

c
′
← checksum(b′)

if c = c′ ∧ deser(b) ≠ deser(b′) then
return x, b, b

′

end
until damaged-bits(b′) < threshold

end
Algorithm 1. Bit damage
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Table 1. Bit damage

In a system that processes large number of messages, or if
the possibility of encountering undetectable damaged mes-
sages is unacceptable (say in systems that deal with sensitive
personal or financial information) use cryptographic hashes
to verify the integrity of the messages. Unfortunately, this
comes with computational overhead which is summarized in
Table 2 (with CRC32 on 1KiB as the baseline).

Message size

Algorithm 100B 1KiB 10KiB 100KiB 1MiB

CRC32 3 1 7 606 9574
SHA-256a 9 26 118 11860 120595
SHA-256b 50 150 681 68787 699450
SHA-512b 94 156 475 48619 487513

Table 2. Integrity overhead
aIntel SHA[3] extensions
bPlain x86_64 implementation

The results show that using robust cryptographic digest
(SHA-256 or SHA-512) add significant overhead when com-
pared to the simple CRC32 checksum, though on CPUs with
the SHA extensions and matching implementation3 the cost

3For example, on x86_64 CPUs it will be necessary to verify that
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of the overhead is significantly lower.
JWT [4] provides value semantics for authorisation, but

also provides mechanisms to verify the integrity of the mes-
sages. JWT combines the message itself (called payload in
JWT) and claims that can be used for authorisation.

2.2 Malicious messages
A system can be attacked by sending it malicious input,
aiming to either make it unavailable, or to make it perform
operation that the attacker is not privileged to do.

The denial-of-service style attacks aim to completely
crash the nodes running the services; for example by caus-
ing out-of-memory or stack-overflow errors that the sys-
tem should not catch, or causing high CPU usage, or
by making the system under attack read too much data
from an I/O device. An example of a message that
causes stack-overflow exception in Protocol Buffers us-
ing "com . goo g l e . p r o t o bu f " % " pro tobu f−j a va "
% " 3 . 4 . 0 " and "com . t rueacco rd . s c a l a p b " %%
" comp i l e r p l u g i n " % " 0 . 6 . 6 " [10] is shown in List-

ing 6.
Construct a malicious message that starts with the valid serialized bytes b
and adds 20000 bytes with the value 99.
val b = Array [ Byte ] ( 8 , 1 , 18 , 3)
val mb = Array . f i l l (20000) ( 9 9 . toByte )
Array . copy (b , 0 , mb, 0 , b . l ength )

Decode an instance of X the input mb
X. va l i d a t e (mb)
↑
Exception in thread "main" java.lang.StackOverflowError
at . . . $StreamDecoder.readTag(. . . :2051)
at . . . $StreamDecoder.skipMessage(. . . :2158)
at . . . $StreamDecoder.skipField(. . . :2090)
. . .

Listing 6: Malicious message

Other wire formats are just as susceptible to this type
of attacks: sending too-deeply nested JSON causes the
same behaviour in eager JSON parsers, for example " org .
j s on4 s " %% " jack son " % " 3 . 5 . 1 " (viz Listing 7).

Construct malicious JSON document
val mj = """{"x " : """ ∗ 2000

Decode an instance of X from the input mj
JsonFormat . f romJsonStr ing [X] ( mj)
↑
Exception in thread "main" java.lang.StackOverflowError
at . . . JsonStreamContext.<init>(. . . :43)
at . . . JsonReadContext.<init>(. . . :58)
at . . . JsonReadContext.createChildObjectContext(. . . :128)
at . . . ReaderBasedJsonParser._nextAfterName(. . . :773)
at . . . ReaderBasedJsonParser.nextToken(. . . :636)
at . . . JValueDeserializer.deserialize(. . . :45)
. . .

Listing 7: Malicious message

The thread that throws the StackOver f l owError
arising from JsonFormat . f romJsonStr ing [X] ( mj )
and X. v a l i d a t e (mb) without handling it in a t r y
/ ca t ch block terminates. This attack can be miti-

gated and the impact of the too-deep recursion causing the

the compiler / runtime emits the SHA256RNDS2, SHA256MSG1,
SHA256MSG2 instructions

StackOver f l owError s on other parts of the system con-
tained by moving the decoding to a thread from a dedicated
pool4. A suitable language & framework makes this a fairly
easy task. An example of safe, though very inelegant (be-
cause of the use of Await.result) code in Scala is shown
in Listing 8. The decode function can be used as a direct
replacement in your code (though production implementa-
tion should pay extra attention to properly configure the
ExecutionContext with sufficient number of threads and
pinning behaviour). Non-blocking toolkits (such as Akka[1]
and Play[6] in Scala) use non-blocking style throughout,
which means that there is no need to block for the result of
the asynchronous operation; the code in Listing 8 and the
performance measurements represent the worst-case scenar-
ios.
The decoding function takes the bytes b to decode and schedules the
decoding in the ec. It returns the result of the decoding, but will
survive and bulk-head a StackOverflowError.
def decode (b : Array [ Byte ] )

( implicit ex : ExecutionContext ) : Try [X] = {
import s c a l a . concurrent . durat ion ._
val timeout = 100 . m i l l i s e c ond s
Try (Await . r e s u l t ( Future (X. parseFrom (b) ) , to ) )

}

Construct “good” payload
val b = Array [ Byte ] ( 8 , 1 , 12 , 3 , 65 , 66 , 67)
Construct malicious payload
val mb = Array [ Byte ] ( 8 , 1 , 12 , 3 , 65 , 66 , 67 ,

99 , . . . , 99)

With an implicit ExecutionContext in scope, applying decode to the
good payload b returns Success(X(...)) in roughly 17ms.
decode (b)

With an implicit ExecutionContext in scope, applying decode to the
good payload b returns Failure(TimeoutException) after the timeout
of 100ms elapses.
decode (mb)

Listing 8: Stack Overflow Mitigation

While the code to implement the mitigation against this
type of attack is straightforward, moving the decoding to
another thread adds significant dispatch overhead (roughly
17 times the raw) to the decoding (see Figure 4).

Figure 4: Mitigation overhead

0 20 40 60 80 100

10
2

10
3

10
4

10
5

Percentage of malicious messages

M
es
sa
ge

pa
rs
in
g
ti
m
e
[µ
s]

mitigated
raw

Another attack is one that sends messages to the system
4A side benefit of moving the decoding to a dedicated thread pool

provides bulk-heading of the decoding code from the rest of the appli-
cation code
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that are just under the maximum−s i z e limit. With suf-
ficient, though still fairly low number of messages, this will
cause the system to fail with out-of-memory error; and this
cannot be contained in a separate thread pool; a proof-of-
concept code is shown in Listing 9.
Construct a malicious message that specifies the greeting property to be
a string of 10485759 characters. The eager parser makes a copy of the
entire buffer, the streaming parser reads & allocates the memory by

chunks.
val b = Array [ Byte ] ( 8 , 1 , 18 , −1 , −1 , −1 , 4)
val mb = Array . f i l l (b . l ength + 10485759) ( 6 5 . toByte )
Array . copy (b , 0 , mb, 0 , b . l ength )

Simulate in flight processing, even though we count to 200,
the OOM happens around 165.
val i nF l i gh t : ArrayBuffer [X] = ArrayBuffer ( )
for (_ ← 0 to 200) {

val x = X. parseFrom (mb)
↑
Exception in thread "main" java.lang.OutOfMemoryError:¶
Java heap space
at . . . StringCoding.decode(. . . :215)
at . . . String.<init>(. . . :463)
at . . . ArrayDecoder.readString(. . . 773)
. . .
i nF l i gh t += x

}

Listing 9: Malicious message

It is particularly dangerous if the system is designed to
read messages from a journal in a transactional-like manner:
because the message causes a crash that cannot be handled,
the read operation is never confirmed; upon restart, the
system will read the malicious message again. While the
implementation of the protocol decoding code should be as
robust as possible, it is necessary to consider other mecha-
nisms to skip a message that causes fatal errors. A useful
testing approach is to provide a generator that can yield
malicious payloads for any message type; see Listing 10.
object MessageGenerator {

Constructs a malicious generator for a type of type A,
with optionally provided hints for the fields
def msgM[A <: GeneratedMessage with Message [A] ]

( implicit cmp : GeneratedMessageCompanion [A] ,
h int : Hint [A] = noHint ) : Gen [A] = . . .

}

Listing 10: Malicious Generator

2.3 Practical application

In the first application of the chaos approaches & tooling we
found three distinct classes of problems: the deserialization
code, the tracing and logging code, and the error recovery
and retry code. Once discovered, all were simple to fix, but
the consequence of missing the bugs would have resulted in
complete loss of service had similar messages reached our
system in production.

The mitigation for first class of issues focused on setting
strict message size limits, and wrapping the decoding code
in a separate thread pool, which provided the necessary iso-
lation. The next issue found was in the logging machin-
ery: too-deeply-nested messages resulted in the failures in
the structured logging code. Both issues cause the services
to react in the same way, the system as a whole didn’t

crash because it is using Akka supervision, instead indi-
vidual services or actors crashed consuming a given mes-
sage from Kafka either due to the deserializer or the logger,
the message processing wasn’t acknowledged. After restart
the services consumed the same last batch of acknowledged
messages creating an endless loop of restarts, meaning the
messages before the malicious one are reprocessed and no
messages after the culprit can be consumed.
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