{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "XhthOTRd1VMP" }, "source": [ "# Install Zoofs" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "ucgdfcwHx9sm", "outputId": "654ad478-779d-4eae-bace-ad77a8dfbe43" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: zoofs in /usr/local/lib/python3.7/dist-packages (0.1.3)\n", "Requirement already satisfied: plotly in /usr/local/lib/python3.7/dist-packages (from zoofs) (4.4.1)\n", "Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from zoofs) (1.4.1)\n", "Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from zoofs) (1.1.5)\n", "Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from zoofs) (1.19.5)\n", "Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas->zoofs) (2.8.2)\n", "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas->zoofs) (2018.9)\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas->zoofs) (1.15.0)\n", "Requirement already satisfied: retrying>=1.3.3 in /usr/local/lib/python3.7/dist-packages (from plotly->zoofs) (1.3.3)\n" ] } ], "source": [ "!pip install zoofs" ] }, { "cell_type": "markdown", "metadata": { "id": "K6VUxBdu1bsY" }, "source": [ "# Prepare data" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "id": "MpkGAS7ryJcM" }, "outputs": [], "source": [ "from sklearn.datasets import load_breast_cancer\n", "import pandas as pd\n", "data = load_breast_cancer()" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "id": "TvmrCKncyceR" }, "outputs": [], "source": [ "X_train=pd.DataFrame(data['data'],columns=data['feature_names'])\n", "y_train=pd.Series(data['target'])" ] }, { "cell_type": "markdown", "metadata": { "id": "BB7ECvCZ1koj" }, "source": [ "# Load an algo" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "id": "QD6fAoHg1au9" }, "outputs": [], "source": [ "from zoofs import HarrisHawkOptimization" ] }, { "cell_type": "markdown", "metadata": { "id": "r8CuTiNu1n_Y" }, "source": [ "# Prepare an objective function, and run the algo" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "k5Hcf_7Ox_vL", "outputId": "36a176ab-c76e-4200-b9be-bea54b76ec10" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\t\t Best value of metric across iteration \t Best value of metric across population \n", "Iteration 0 \t 0.000834507195418593 \t\t\t\t\t 0.000834507195418593 \n", "Iteration 1 \t 0.0006783272710830701 \t\t\t\t\t 0.0006783272710830701 \n", "Iteration 2 \t 0.0006783272710830701 \t\t\t\t\t 0.0006783272710830701 \n", "Iteration 3 \t 0.0007444757214734708 \t\t\t\t\t 0.0006783272710830701 \n", "Iteration 4 \t 0.000698228318389392 \t\t\t\t\t 0.0006783272710830701 \n", "Iteration 5 \t 0.0007875445320993873 \t\t\t\t\t 0.0006783272710830701 \n", "Iteration 6 \t 0.0006751479047728708 \t\t\t\t\t 0.0006751479047728708 \n", "Iteration 7 \t 0.0006751479047728708 \t\t\t\t\t 0.0006751479047728708 \n", "Iteration 8 \t 0.0006933743957114641 \t\t\t\t\t 0.0006751479047728708 \n", "Iteration 9 \t 0.0006933743957114641 \t\t\t\t\t 0.0006751479047728708 \n", "Iteration 10 \t 0.000685477824521282 \t\t\t\t\t 0.0006751479047728708 \n", "Iteration 11 \t 0.0006563435418546247 \t\t\t\t\t 0.0006563435418546247 \n", "Iteration 12 \t 0.0006933743957114641 \t\t\t\t\t 0.0006563435418546247 \n", "Iteration 13 \t 0.0006933743957114641 \t\t\t\t\t 0.0006563435418546247 \n", "Iteration 14 \t 0.0006965898526582949 \t\t\t\t\t 0.0006563435418546247 \n", "Iteration 15 \t 0.0006261969431135148 \t\t\t\t\t 0.0006261969431135148 \n", "Iteration 16 \t 0.0006261969431135148 \t\t\t\t\t 0.0006261969431135148 \n", "Iteration 17 \t 0.0006261969431135148 \t\t\t\t\t 0.0006261969431135148 \n", "Iteration 18 \t 0.0006261969431135148 \t\t\t\t\t 0.0006261969431135148 \n", "Iteration 19 \t 0.0006308051888594318 \t\t\t\t\t 0.0006261969431135148 \n" ] }, { "data": { "text/plain": [ "['mean radius',\n", " 'mean texture',\n", " 'mean perimeter',\n", " 'mean area',\n", " 'mean smoothness',\n", " 'mean concavity',\n", " 'mean concave points',\n", " 'mean symmetry',\n", " 'mean fractal dimension',\n", " 'radius error',\n", " 'area error',\n", " 'smoothness error',\n", " 'symmetry error',\n", " 'worst radius',\n", " 'worst perimeter',\n", " 'worst area',\n", " 'worst smoothness',\n", " 'worst compactness',\n", " 'worst concave points',\n", " 'worst symmetry']" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from sklearn.metrics import log_loss\n", "# define your own objective function, make sure the function receives four parameters,\n", "# fit your model and return the objective value ! \n", "def objective_function_topass(model,X_train, y_train, X_valid, y_valid): \n", " model.fit(X_train,y_train) \n", " P=log_loss(y_valid,model.predict_proba(X_valid))\n", " return P\n", " \n", "# import an algorithm ! \n", "from zoofs import HarrisHawkOptimization\n", "# create object of algorithm\n", "algo_object=HarrisHawkOptimization(objective_function_topass,n_iteration=20,\n", " population_size=20,minimize=True)\n", "import lightgbm as lgb\n", "lgb_model = lgb.LGBMClassifier() \n", "# fit the algorithm\n", "algo_object.fit(lgb_model,X_train, y_train, X_train, y_train,verbose=True)\n", "#plot your results" ] }, { "cell_type": "markdown", "metadata": { "id": "6z5R4X111w2m" }, "source": [ "# Plot objective history plot" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 542 }, "id": "uZjsGBWwzOMs", "outputId": "df171698-b2bd-44b0-8480-9424e13b091e" }, "outputs": [ { "data": { "text/html": [ "\n", "
\n", "\n", "