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Evaluation and incentives: window-based taxation
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Gneiting and Raftery 2007, Gneiting 2011

A scoring rule s maps a prediction (distribution or point) and an observation yobs to R. Convention: lower
scores are better.

Example: absolute error
AE(ŷ , yobs) = |ŷ − yobs|.

.

The Bayes act is the optimal choice (in expectation) under a given score and the forecaster’s predictive
distribution F .

Under the absolute error:

ŷBayes = argminŷ∈REF |ŷ − Y | = med(F).

.
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Score-based forecast evaluation



Gneiting and Raftery 2007, Gneiting 2011

A scoring rule s maps a prediction (distribution or point) and an observation yobs to R. Convention: lower
scores are better.

Example: absolute percentage error

APE(ŷ , yobs) = |ŷ − yobs| / yobs.

.

The Bayes act is the optimal choice (in expectation) under a given score and the forecaster’s predictive
distribution F .

Under the absolute percentage error

ŷBayes = med(−1)(F).

.
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Score-based forecast evaluation



Gneiting and Raftery 2007, Gneiting 2011

A scoring rule s maps a prediction (distribution or point) and an observation yobs to R. Convention: lower
scores are better.

Example: absolute percentage error

APE(ŷ , yobs) = |ŷ − yobs| / yobs.

This should reflect the utility of the forecast ŷ .

The Bayes act is the optimal choice (in expectation) under a given score and the forecaster’s predictive
distribution F .

Under the absolute percentage error

ŷBayes = med(−1)(F).

This should be a useful quantity.
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Score-based forecast evaluation



Gneiting (2011)
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APE incentivizes lower forecasts than AE



Gneiting and Raftery 2007

Epidemiological forecasts should ideally be probabilistic.

A scoring rule is stricty proper if the Bayes act (relative to a class of distributions F ) is the forecaster’s
true belief F :

argminG∈FEF [s(G,Y )] = F .

Proper scores thus incentivize honest forecasting.
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Proper scoring rules for probabilistic forecasts



Proper scoring rules reward sharpness subject to calibration.

Calibration: consistency of forecasts and observations.
can be assessed e.g., using PIT histograms.

Sharpness: informativeness of forecasts.
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What makes a good forecast? Sharpness and calibration
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What makes a good forecast? Sharpness and calibration



Gneiting and Raftery 2007

logarithmic score:
logS(F , yobs) = log f(Y = yobs)
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the logarithmic score is local.
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Popular proper scoring rules: logarithmic score



Gneiting and Raftery 2007

Continuous ranked probability score:

CRPS(F , yobs) =

∫ ∞
−∞
{F(x)− I(yobs ≥ x)}2 dx

CRPS is distance sensitive and generalizes the absolute error.
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The weighted interval score (WIS, Bracher et al 2021) is a quantile-based approximation of the CRPS.
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Popular proper scoring rules: CRPS
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Popular proper scoring rules: CRPS



CRPS / WIS can be decomposed into dispersion, overprediction and underprediciton (Bracher et al 2021).

497.1

268.0

325.3

528.5

260.7

318.2

319.7

423.4

458.5

MedianEnsemble

MeanEnsemble

SZ

SU

RKI

RIVM

LMU

KIT

ILM

Epiforecasts

0.00 0.05 0.10 0.15 0.20
Relative WIS

0 200 400 600
Mean WIS / AE

National level

35.3

31.1

38.7

27.2

28.6

33.0

30.9

39.9

MedianEnsemble

MeanEnsemble

SZ

SU

RKI

RIVM

LMU

KIT

Epiforecasts

0.0 0.1 0.2 0.3
Relative WIS

0 20 40 60
Mean WIS / AE

States

77.2

51.3

57.9

89.8

45.2

51.9

54.7

63.4

81.3

MedianEnsemble

MeanEnsemble

SZ

SU

RIVM

LMU

KIT

ILM

Epiforecasts

0.00 0.05 0.10 0.15 0.20
Relative WIS

0 25 50 75 100 125
Mean WIS / AE

Decomposition of WIS
Underprediction
Spread
Overprediction

Age groups

MedianEnsemble

MeanEnsemble

SZ

SU

RKI

RIVM

LMU

KIT

ILM

Epiforecasts

0 0.25 0.5 0.75 1
Empirical coverage

MedianEnsemble

MeanEnsemble

SZ

SU

RKI

RIVM

LMU

KIT

Epiforecasts

0 0.25 0.5 0.75 1
Empirical coverage

MedianEnsemble

MeanEnsemble

SZ

SU

RIVM

LMU

KIT

ILM

Epiforecasts

0 0.25 0.5 0.75 1
Empirical coverage

Prediction 
interval

50%

95%

Check out Daniel Wolffram’s poster!

Other decompositions exist, e.g., miscalibration, discrimination, uncertainty (Gneiting et al 2023).
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Score decompositions



Hard to tell

Applicability:
CRPS requires at least an interval scale.
logS easy to use for bins, CRPS for quantiles and samples, Dawid-Sebastiani score for moments.

Purpose (Winkler 1996):
For inference, the logS is generally most powerful.
“Distance” can be relevant in decision making, favouring CRPS.

Robustness: logS can diverge to∞, CRPS is more forgiving (to a point where it may seem lenient).

Scale-invariance: logS is invariant to transformations of the target (up to a constant)

Where feasible, several metrics should be considered and complemented with visual inspection.
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How to choose a proper scoring rule?



Purely reporting average scores is usually not very informative.

Visual inspection of forecasts and observations is an important step.

Calibration of forecasts should be assessed separately (e.g., via PIT histograms).

Inclusion of baseline models elucidates whether models have non-trivial predictive ability.

It’s not totally clear what these should be...
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Some more practical aspects



Bracher (2019), Reich et al (2019)

“Multi-bin log score” for discrete target Y ∈ {1, . . . ,N}

MBlogS(F , yobs) = log

(
d∑

i=−d

ProbF (Y = yobs + i)

)
︸ ︷︷ ︸

log-probability assigned to observation ± d

,

with tolerance d .

Example: predicting flu peak week with d = 1:
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What happens when using an improper score?
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optimized for MBlogS
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What happens when using an improper score?



Bosse et al (2023)

CRPS changes when transforming forecasts and
observations.

CRPS for log(weekly counts) can be interpreted as

a “probabilistic relative error”.

an assessment how well the growth rate was
predicted.

a “variance-stabilized” score.
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On which scale to evaluate forecasts?
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On which scale to evaluate forecasts?



Cramer et al (2022)

Typically not all models provide forecasts for all targets.

Example: COVID mortality forecasts (Cramer et al 2022):

Heuristic solution: “pairwise tournament” approach leading to “relative WIS”.
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How to handle incongruent sets of forecasts?



Statistical evaluation may be at odds with perceived utility.

Example: shapes matter.

Could likely be accounted for by multivariate scoring.
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How to align evaluation with public health utility?
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Bracher, Ray, Gneiting, Reich (2021)

For a central (1− α) prediction interval [l, u]:

IS = (u − l)︸ ︷︷ ︸
spread

+
2

α
× (l − yobs)× I(yobs < l)︸ ︷︷ ︸

underprediction penalty

+
2

α
× (yobs − u)× I(yobs > u)︸ ︷︷ ︸

overprediction penalty
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Via a weighted sum of interval scores (WIS) at different levels we can approximate the CRPS.
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Proper scoring rules: the (weighted) interval score
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