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Evaluation and incentives: window-based taxation

Gary Burt, https: //commons..wikinedia.org/wiki/File:Window_Tax. jpg. License: https://creativecommons.org/licenses/by- sa/3.0/deed.en
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Score-based forecast evaluation
Gneiting and Raftery 2007, Gneiting 2011

® A scoring rule s maps a prediction (distribution or point) and an observation y.ns to R. Convention: lower
scores are better.

Example: absolute error
AE(}A/7 YObs) = |}A’ — Yobs|-

@ The Bayes act is the optimal choice (in expectation) under a given score and the forecaster’s predictive
distribution F.

Under the absolute error:

VBayes = argmin, gEr|y — Y| = med(F).
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Score-based forecast evaluation
Gneiting and Raftery 2007, Gneiting 2011

® A scoring rule s maps a prediction (distribution or point) and an observation y,,s to R. Convention: lower
scores are better.
Example: absolute percentage error

APE(}/}-,yobs) = ‘}A/ 7y0bs‘ /.yObS'

@ The Bayes act is the optimal choice (in expectation) under a given score and the forecaster’s predictive
distribution F.

Under the absolute percentage error

yBayes = med(71)(F)
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Score-based forecast evaluation
Gneiting and Raftery 2007, Gneiting 2011

@ A scoring rule s maps a prediction (distribution or point) and an observation yons to R. Convention: lower
scores are better.
Example: absolute percentage error

APE(Y, Yobs) = |V — Yobs| / Yobs-
This should reflect the utility of the forecast .

® The Bayes act is the optimal choice (in expectation) under a given score and the forecaster’s predictive
distribution F.

Under the absolute percentage error
}A/Bayes - med(iﬂ(F)'

This should be a useful quantity.
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APE incentivizes lower forecasts than AE
Gneiting (2011)
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Proper scoring rules for probabilistic forecasts
Gneiting and Raftery 2007

@ Epidemiological forecasts should ideally be probabilistic.
® A scoring rule is stricty proper if the Bayes act (relative to a class of distributions F) is the forecaster’s

true belief F:
argmingc 7E£[s(G, Y)] = F.

® Proper scores thus incentivize honest forecasting.
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What makes a good forecast? Sharpness and calibration ﬂ(IT

6/15

® Proper scoring rules

® Calibration: consiste
® can be assessed

reward sharpness subject to calibration.

ncy of forecasts and observations.
e.g., using PIT histograms.

@ Sharpness: informativeness of forecasts.
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® Proper scoring rules

reward sharpness subject to calibration.

@ Calibration: consistency of forecasts and observations.
® can be assessed e.g., using PIT histograms.

@ Sharpness: informativeness of forecasts.
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What makes a good forecast? Sharpness and calibration

6/15

@ Proper scoring rules reward sharpness subject to calibration.

@ Calibration: consistency of forecasts and observations.
® can be assessed e.g., using PIT histograms.

@ Sharpness: informativeness of forecasts.
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What makes a good forecast? Sharpness and calibration ﬂ(IT

@ Proper scoring rules reward sharpness subject to calibration.

@ Calibration: consistency of forecasts and observations.
® can be assessed e.g., using PIT histograms.

@ Sharpness: informativeness of forecasts.
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Popular proper scoring rules: logarithmic score

Gneiting and Raftery 2007

715

® |ogarithmic score:
|098(F7 ,Vobs) = log f(Y = }/obs)
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@ the logarithmic score is local.
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Popular proper scoring rules: CRPS
Gneiting and Raftery 2007

® Continuous ranked probability score:
oo
CRPS(F, yops) — / (F(X) = I(aws = X)}2 dx
—00

@ CRPS is distance sensitive and generalizes the absolute error.
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® The weighted interval score (WIS, Bracher et al 2021) is a quantile-based approximation of the CRPS.
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Popular proper scoring rules: CRPS ﬂ(IT

Gneiting and Raftery 2007

® Continuous ranked probability score:

CRPS(F, yote) = / TR0 = Ty > )1 dx

@ CRPS is distance sensitive and generalizes the absolute error.
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® The weighted interval score (WIS, Bracher et al 2021) is a quantile-based approximation of the CRPS.
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Popular proper scoring rules: CRPS
Gneiting and Raftery 2007

® Continuous ranked probability score:
oo
CRPS(F, yops) — / (F(X) = I(aws = X)}2 dx
—00

@ CRPS is distance sensitive and generalizes the absolute error.
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® The weighted interval score (WIS, Bracher et al 2021) is a quantile-based approximation of the CRPS.
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Popular proper scoring rules: CRPS
Gneiting and Raftery 2007

® Continuous ranked probability score:
oo
CRPS(F, yops) — / (F(X) = I(aws = X)}2 dx
—00

@ CRPS is distance sensitive and generalizes the absolute error.
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® The weighted interval score (WIS, Bracher et al 2021) is a quantile-based approximation of the CRPS.
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Popular proper scoring rules: CRPS
Gneiting and Raftery 2007

® Continuous ranked probability score:

CRPS(F, yote) = / TR0 = Ty > )1 dx

@ CRPS is distance sensitive and generalizes the absolute error.
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® The weighted interval score (WIS, Bracher et al 2021) is a quantile-based approximation of the CRPS.
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Score decompositions
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@ CRPS /WIS can be decomposed into dispersion, overprediction and underprediciton (Bracher et al 2021).
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® Other decompositions exist, e.g., miscalibration, discrimination, uncertainty (Gneiting et al 2023).
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How to choose a proper scoring rule?

® Hard to tell ¥

a Applicability:

® CRPS requires at least an interval scale.

® |ogS easy to use for bins, CRPS for quantiles and samples, Dawid-Sebastiani score for moments.
@ Purpose (Winkler 1996):

® For inference, the logS is generally most powerful.
a “Distance” can be relevant in decision making, favouring CRPS.

Robustness: logS can diverge to co, CRPS is more forgiving (to a point where it may seem lenient).

Scale-invariance: logS is invariant to transformations of the target (up to a constant)

Where feasible, several metrics should be considered and complemented with visual inspection.
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Some more practical aspects

® Purely reporting average scores is usually not very informative.

@ Visual inspection of forecasts and observations is an important step.

a Calibration of forecasts should be assessed separately (e.g., via PIT histograms).

a |nclusion of baseline models elucidates whether models have non-trivial predictive ability.

® |t's not totally clear what these should be...
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What happens when using an improper score?
Bracher (2019), Reich et al (2019)

12/15

® “Multi-bin log score” for discrete target Y € {1,...,N}

MBIlogS(F, Yobs) = log <

with tolerance d.

d

i=—d

Z Probe(Y = Yoos + 1)

)

log-probability assigned to observation + d

@ Example: predicting flu peak week with d = 1:
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What happens when using an improper score?
Bracher (2019), Reich et al (2019)

® “Multi-bin log score” for discrete target Y € {1,...,N}

d
MBIogS(F, Yobs) = log <Z Probe(Y = Yoos + /)) ,

i=—d

log-probability assigned to observation + d

with tolerance d.
@ Example: predicting flu peak week with d = 1:
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On which scale to evaluate forecasts?

Bosse et al (2023)
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On which scale to evaluate forecasts?

Bosse et al (2023)

@ CRPS changes when transforming forecasts and
observations.

® CRPS for log(weekly counts) can be interpreted as

® 3 “probabilistic relative error”.

® an assessment how well the growth rate was
predicted.

® g “variance-stabilized” score.
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How to handle incongruent sets of forecasts?
Cramer et al (2022)

& Typically not all models provide forecasts for all targets.
@ Example: COVID mortality forecasts (Cramer et al 2022):
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@ Heuristic solution: “pairwise tournament” approach leading to “relative WIS”.
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How to align evaluation with public health utility? ﬂ(IT

@ Statistical evaluation may be at odds with perceived utility.
@ Example: shapes matter.
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@ Could likely be accounted for by multivariate scoring.
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Proper scoring rules: the (weighted) interval score ﬂ(IT
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Bracher, Ray, Gneiting, Reich (2021)
® For a central (1 — «) prediction interval [/, u]:

2 2
IS=(w—=1) + — X —Yobs) X I(Yobs < 1) + — X (Yobs — U) X 1(Jobs > u)
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® Via a weighted sum of interval scores (WIS) at different levels we can approximate the CRPS.
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