
Unreal Engine 4 C++
Cheat Sheet XL
(C) J. Böhmer, March 2018

Licensed under CC BY-NC-SA 4.0
Version 1.1

1 Reflection System

1.1 UFUNCTION()

BlueprintAuthorityOnly This function will not execute
from Blueprint code if running
on something without network
authority

BlueprintCosmetic This function is cosmetic-only
and will not run on dedicated
servers

Blueprint-
ImplementableEvent

This function is designed to be
overriden by a blueprint. Dont
provide a body for this function
in C++.

BlueprintNativeEvent This function is designed to
be overriden by a blueprint,
but also has a native im-
plementation. Provide
a body named [Function-
Name] Implementation

BlueprintPure This function has no side effects
on the object. Useful for ”Get”
functions. Implies Blueprint-
Callable

BlueprintCallable This function can be called from
Blueprints and/or C++.

Category Specifies the category of the
function within the Editor. Sup-
ports sub-categories separated
by ”|”

Exec This function is callable from the
Console CLI.

AdvancedDisplay
(Meta)

List parameter names seperated
by commas. Every parameter in
this list will appear as advanced
pins in Blueprint Editor.

DevelopmentOnly
(Meta)

Functions marked like this, will
only run in Development builds
and not in shipping builds. This
is useful for things like Debug
Output

BlueprintProtected
(Meta)

This function can only be called
on the owning object in a
Blueprint not on any other in-
stances.

UFUNCTION(Exec)

void ConsoleCommand(float param);

UFUNCTION(BlueprintPure)

static FRotator MakeRotator(flat f);

UFUNCTION(BlueprintImplementableEvent)

void ImportantEvent(int param);

UFUNCTION(meta=(DevelopmentOnly))

float NotSoImportantDebugFunc();

1.2 UENUM()

BlueprintType Enums marked with this at-
tribute, can be used from
within Blueprints.

Bitflags (Meta) Enums marked with this at-
tribute, can be used as Bit-
Mask in UPROPERTYs.

DisplayName (UMETA) Use this inside of an Enum, to
override the name displayed in-
side the Editor. See usage be-
low:

//Note that enums must be declared before any class

UENUM(BlueprintType)

enum class ETestEnum {

FirstEntry UMETA(DisplayName="OtherName"),

//...

}

UENUM(meta=(Bitflags))

enum class EMyEnum {

FirstBit,

SecondBit

}

1.3 UPARAM()

ref By default, when you pass an reference to
a Blueprint callable function, it will appear
as an output node in the Editor. Use this
attribute, to mark it as an input.

DisplayName Use this name to override the name un-
der which the parameter appears in the
Blueprint Editor

UFUNCTION(BlueprintCallable)

void MyFunc(UPARAM(ref) TArray<int>* IntArray);

UFUNCTION(BlueprintCallable)

void OtherFunc(UPARAM(DisplayName="Name" float f);

1.4 UCLASS()

Abstract An class that is marked as abstract can
not be placed or instanced during runtime.
This is especially useful for classes, that
does not provide functionality on their own
and must be inherited and modified for
meaningful usage.

Blueprintable Classes marked with this attribute can be
used as a base class for creating Blueprints.
On Default this is deactivated. The at-
tribute is inherited by child classes, use
NotBlueprintable on childs to disable this.

BlueprintType Classes with this attribute can be used as
variable type in Blueprints.

Placeable Classes marked as Placable, can be cre-
ated and placed in a level, UI Scene or
Blueprint via the Editor. The flag is inher-
ited by all child classes, use NotPlacable
on child to disable this.

UCLASS(Blueprintable)

class MyClass : public UObject {

//Class code ...

}

1



1.5 UPROPERTY()

BlueprintAssignable Multicast Delegates only. Exposes
property for assigning in Blueprints

BlueprintCallable Multicast Delegates only. Property
property for calling in Blueprints

BlueprintReadOnly This property can be read by
blueprints, but not modified

BlueprintReadWrite This property can be read or written
from a blueprint

Category Specifies the category of the prop-
erty within the Editor. Supports
sub-categories separated by ”|”

EditAnywhere Indicates that this property can
be edited via property windows,
archetypes and instances within the
Editor

EditDefaultsOnly Indicates that this property can be
edited by property windows, but
only on archetypes. This operator is
incompatible with the Visible* spec-
ifiers

EditFixedSize Indicates that elements of an array
can be modified in Editor, but its
size cannot be changed

EditInstanceOnly Indicates that this property can be
edited by property windows, but
only on instances, not on archetypes

Transient Property is transient: shouldn’t be
saved, zero-filled at load time

VisibleAnywhere Indicates that this property is visi-
ble in property windows, but cannot
be edited at all

VisibleDefaultsOnly Indicates that this property is only
visible in property windows for
archetypes, and cannot be edited

VisibleInstanceOnly Indicates that this property is only
visible in property windows for in-
stances, not for archetypes, and can-
not be edited

AdvancedDisplay Moves the property into the Ad-
vanced dropdown in the Details
panel within the Editor

NoClear Hides the clear and browse button
in the editor for this property.

EditCondition
(Meta)

The property can only be edited in
Editor if the specified bool Property
is true. Use ! to invert logic (so
you can only edit property if bool is
false).

BitMask (mMeta) Change the value of this property in
the Editor using a BitMask, which
means you can select the value of
each single bits. Use BitMask to
specify a Enum, which entries will
be used to name each bit.

ClampMax /
ClampMin (Meta)

Use this on float or int property, to
specify a maximum/minimum, that
can be entered for this property in
the Editor

MakeEditWidget
(Meta)

Use this on a Transform or Rotator
property, and the property value can
be changed using a widget inside the
editor viewport.

UPROPERTY(EditAnywhere, Category="Category|Sub")

bool BoolProperty;

UPROPERTY(BlueprintReadOnly, AdvancedDisplay)

TSubclassOf<UStaticMesh> AdvancedMeshClass;

UPROPERTY(meta=(EditCondition="BoolProperty"))

uint16 ConditionalInt;

UPROPERTY(meta=(BitMask, BitMaskEnum="EMyEnum"))

int32 BitFlags;

UPROPERTY(meta=(ClampMin="3", ClampMax="4"))

float myFloat;

1.6 USTRUCT()

BlueprintType Structs with this attribute can be
used as type inside Blueprints. Make
and Break nodes get automatically
generated.

USTRUCT(BlueprintType)

struct MyStruct {

// ...

}

1.7 Delegates

Delegates allow to call variable functions via a type-safe way.
There are 3 big types of delegates:

• Single-cast Delegates, which can have a single function
target, declared with DECLARE_DELEGATE_

• Multi-cast Delegates, which can have multiple function
targets, declared with DECLARE_MULTICAST_DELEGATE_

• Dynamic Multicasts, which can be serial-
ized, and functions can be found by name,
declared with DECLARE_DYNAMIC_DELEGATE_ or
DECLARE_DYNAMIC_MULTICAST_DELEGATE_

All Delegate macros have the syntax:
_DELEGATE_<Num>Params(Name,Param1Type,Param2Type,...)

or for functions with return value:
DECLARE_DELEGATE_RetVal(RetValType, Name)

Code example:

DECLARE_MULTICAST_DELEGATE(VoidDelegate)

DECLARE_DELEGATE_OneParam(IntParamDelegate, int32)

DECLARE_DELEGATE_TwoParams(MyDelegate, int32, AActor*)

DECLARE_DELEGATE_RetVal_OneParam(int, Delegate2, uint8)

void MyFunc;

void MyFunc2(int32);

VoidDelegate Del1;

//Somewhere in func body

Del1.Add(this, FName("MyFunc")); //Add MyFunc

Del1.Broadcast(); //Call all bound functions

IntParamDelegate Del2;

Del2.Add(this, FName("MyFunc2)); //Bind MyFunc2

Del2.ExecuteIfBound(10); //Call MyFunc2

2 Useful Console commands

• Show Collision: Show collision components in game.

• ToggleDebugCamera: Switch to a separate camera,
which you can move in world freely and shows some addi-
tional debug infos.

2



• HighResShot [number]: Makes a screen shot with [num-
ber] times your normal screen resolution. Instead of [num-
ber] you can provide a resolution the screenshot should
have.

• [CVar] ?: Add a ? after a CVar name and a description
about the CVar will be shown.

• DumpConsoleCommands: Prints a list of all available
console commands and CVars.

• slomo [float]: Slow down or speed up the game. slomo
1.0 is default. slomo 1.5 is faster than normal, slomo 0.5 is
slower.

• open [mapname]: Load and opens the map with the given
name.

• help: Opens a page in browser which, lists all console com-
mands and variables with a description. Searching and filter
for specific commands is possible.

3 Classes and Functions

3.1 Base Gameplay Classes

• UObject: The base class, all classes, that should be used
within C++ must extend. The name of child classes should
start with U (e.g. UMyNewClass).

• AActor: Actor is the base class for all objects, that can
be placed in a level. An Actor can has various Components.
Child classes should start with A (e.g AMyNewActor).

• APawn: The base class, for all actors, that should be
controled by players or AI.

• ACharacter: Characters are Pawn, which has a mesh
collision and movement logic. They represent physical
characters in the game world and can use CharacterMove-
mentComponent for walking, flying, jumping and swiming
logic.

• UActorComponent: The base class for all actor compo-
nents. Components defines some reusable behavior, that
can be added to different actors.

• USceneComponent: An Actor Component, which has a
transform (position and rotation) and support for attache-
ments.

• UPrimitiveComponent: A SceneComponent which can
show some kind of geometry, usable for rendering and/or
collision. Examples for this type are StaticMeshComponent,
SkeletalMeshComponent, or the ShapeComponents.

3.2 Datastructures and Helpers

• TArray: The mostly used container in UE4. The objects
in it have a well-defined order, and functions are provided to
create, get, modify or sort the elements. Similar to C++’s
std::vector. You can iterate over the element like this:

TArray<AActor> ActorArray;

//Add MyActor 3 times

ActorArray.Init(MyActor, 3);

ActorArray.Add(AnotherActor);

//Retrieve the first Actor from array

auto FirstActor = ActorArray[0]

//Iterate over all Actor in Array

for (AActor* Actor : ActorArray) {

Actor->SomeFunc();

}

• TMap: A container, where every element has a key (of
any type), via which you identify every element. Similar to
std::map

TMap<int32, FString> StringMap;

StringMap.Add(4, TEXT("Foo"));

StringMap.Add(-1, TEXT("Bar"));

//Iterate over all Pairs

for (auto& pair : StringMap)

{

pair.Key; //Gets the key of the pair

*pair.Value; //Gets the value of pair

}

• TSet: A (fast) container to store unique elements without
order. Similar to C++’s std::Set

TSet<int32> mySet;

mySet.Add(3); //mySet = [3]

mySet.Add(5); //mySet = [3,5]

mySet.Add(3); //mySet = [3,5]

//Only one 3 can be added to mySet

• TSubclassOf: When you define a UProperty with the type
TSubclassOf<UMyObject>, the editor allows you only to
select classes, which are derived from UMyObject.

UPROPERTY(EditAnywhere)

TSubclassOf<AActor> ActorType;

• FName: FNames provide a fast possibility to reference to
things via a name. FNames are case-insensitive and can
not be manipulated (they are immutable).

• FText: FText represents a string that can be displayed to
user. It has a built in system for localization (so FTexts
can be translated) and are immutable.

• FString: FString is the only class that allows manipula-
tion. FStrings can be searched modified and compared, but
this makes FStrings less performant than FText or FName.

3.3 Useful Functions and snippets

• UE LOG(): This functions allows to print message to the
UE Log or the Output Log in the Editor. You can set a
category (you can use LogTemp for temporal usage) and
verbosity (like Error, Warning or Display). If you want
to output a variable, you can use printf syntax. Usage
Example:

//Print Test to console

UE_LOG(LogTemp, Warning, TEXT("Test"));

//Print the value of int n and a string

UE_LOG(LogTemp, Display, TEXT("n=%d"), n);

UE_LOG(LogTemp, Error, TEXT("%s"), MyString);

• AddOnScreenDebugMessage(): If you want to print a
debug message directly to the screen you can use AddOn-
ScreenDebugMessage() from GEngine. You can specify a
key, displaying time and display color. A message overrides
an older message with the same key. Usage example:

3



GEngine->AddOnScreenDebugMessage(-1, 5.f,

FColor::Red, TEXT("5 second Message"));

//Use FString, if you want to print vars

GEngine->AddOnScreenDebugMessage(-1, 5.f,

FColor::Red,

FString::Printf(TEXT("x: %f, y: %f"), x, y));

• NewObject(): NewObject() creates a new UObject with
the specific type. Objects created using NewObject() are
not visible to the Editor, if you need that, use CreateDe-
faultSubObject() instead. Usage example:

auto RT = NewObject<UTextureRenderTarget2D>();

• CreateDefaultSubobject(): This function creates a new
named UObject with the specific type in the context of the
current actor. Created objects are visible to the Editor,
but this function can only be used in constructor. Usage
example:

auto Mesh = CreateDefaultSubobject

<UStaticMeshComponent>(FName("Mesh"));

• LoadObject(): This function loads an objects from a
specific asset. Usage example:

auto Mesh = LoadObject<UStaticMesh>(nullptr,

TEXT("StaticMesh’/Asset/Path/Mesh.Mesh’");

• Cast(): Casts an object to the given type. Returns nullptr
if the object is not castable to this type. The object that
should be casted, must be based on UObject, to work prop-
erly. Usage example:

AActor* Actor = Cast<AActor>(Other);

if(Actor != nullptr) {

/* do something */ }

• Console Variables: To define a variable that can be
changed via editor (CVar), you can use TAutoConsole-
Variable in any C++ file:

static TAutoConsoleVariable<int32> CVarMyVar(

TEXT("r.MyVar"),

2,//Default value

TEXT("CVar Description\n")

TEXT(" 1: Infos about possible values \n"),

ECVF_Scalability | ECVF_RenderThreadSafe);

The last parameter are some flags, that defines the behavior
of the CVar. When you add ECVF Cheat flag, the CVar
can be only changed in cheat mode. If you want to access
the CVar’s value in C++, then use this:

// only needed if you are not in the same cpp file

extern TAutoConsoleVariable<int32> CVarMyVar;

// Retrieve the MyVar value via Game Thread

int32 MyVar = CVarMyVar.GetValueOnGameThread();

3.4 Assertions

Assertions can be used to ensure that specific conditions are
fulfilled, before continue in the program flow. If the checks are
not successful, the execution is halted. Assertions will only work
when the DO_CHECK macro is set (and not zero) during compiling.
There are different types of assertions:

• check(): If the expression inside check() is false, the execu-
tion will be halted. The expression is only evaluated, when
DO_CHECK is set. If you need that the expression is always
evaluated, then use verify().

check(OneProperty == 1);

verify(ImportantCall() != nullptr);

• checkf(): Behaves like check(), but additional debug info
is printed. verifyf() works analogous.

• checkNoEntry(): You can mark code path that should
never be executed with this assertion. If it is still be called,
the execution is halted.

switch(Property) {

case EEnum:Val1:

return 1;

default:

checkNoEntry();

}

• unimplemented(): Use this assertions, on functions that
are yet unimplemented or must be overridden to work prop-
erly.

void Function() {

//This func must be overriden to work

unimplemented();

}

3.5 Draw Debug Functions

To use the following functions you need to include
DrawDebugHelpers.h.

• DrawDebugPoint(): Draw a point in the world at a given
location. You can choose Color and size of the point:

DrawDebugPoint(

GetWorld(),

MyLocation, //The location as FVector

20, //size of the point

FColor(255,0,0), //the color

false, //Not persistant

10.f //10s lifetime

);

• DrawDebugLine(): Draw a line between to points in the
world:

DrawDebugLine(

GetWorld(),

Start, //Start point

End, //End point

FColor(0,255,0), //Line Color

false, //Not persistant

-1, //Infinite lifetime

0,

10 //Line Thickness

);

4

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

	Reflection System
	UFUNCTION()
	UENUM()
	UPARAM()
	UCLASS()
	UPROPERTY()
	USTRUCT()
	Delegates

	Useful Console commands
	Classes and Functions
	Base Gameplay Classes
	Datastructures and Helpers
	Useful Functions and snippets
	Assertions
	Draw Debug Functions


