{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Introduction\n", "\n", "Here I am going to look at \n", "\n", "- a)\n", "- b)\n", "- c)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [], "source": [ "import xarray as xr\n", "import numpy as np\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "\n", "array([[6.089512e-01, 5.921867e-01, 2.887199e-01, 9.124592e-02, 9.271311e-01,\n", " 1.852007e-01, 5.549645e-01, 6.716445e-01, 9.405254e-01, 4.138753e-01,\n", " 4.651151e-01, 9.805317e-01, 1.132029e-01, 8.954666e-01, 4.230709e-01,\n", " 7.235119e-01, 7.597193e-01, 6.979327e-01, 5.570699e-02, 9.337514e-02],\n", " [9.139808e-02, 8.131817e-01, 3.089330e-02, 5.717526e-01, 1.066662e-01,\n", " 5.657157e-01, 2.625941e-01, 9.896213e-01, 6.721665e-01, 5.564167e-01,\n", " 2.982966e-01, 1.308679e-01, 7.642018e-01, 5.684872e-01, 8.352758e-01,\n", " 3.317794e-01, 2.541880e-01, 4.921978e-03, 7.704251e-01, 3.362494e-01],\n", " [3.111530e-01, 5.371339e-01, 8.077625e-01, 3.862287e-01, 4.009356e-01,\n", " 7.556269e-01, 9.047113e-01, 2.531478e-01, 4.379836e-01, 7.610534e-01,\n", " 6.318273e-03, 8.214699e-01, 2.902651e-01, 7.712718e-01, 8.999661e-01,\n", " 4.464614e-01, 7.098822e-02, 1.800008e-01, 5.808595e-02, 6.221029e-01],\n", " [1.137917e-01, 9.279731e-01, 7.208999e-01, 7.674465e-01, 8.406247e-01,\n", " 8.498908e-01, 4.015754e-01, 6.817999e-01, 1.533586e-01, 9.221862e-01,\n", " 4.611826e-01, 5.863989e-01, 7.464779e-01, 1.398929e-01, 6.754868e-01,\n", " 2.731296e-02, 7.797667e-01, 1.670179e-01, 9.328458e-01, 3.503391e-01],\n", " [8.348758e-02, 7.487514e-01, 5.056826e-02, 9.780706e-01, 6.783454e-01,\n", " 6.472068e-01, 8.483019e-01, 3.792755e-01, 7.031391e-01, 4.176098e-01,\n", " 1.328022e-01, 7.313341e-01, 1.641179e-02, 9.542104e-01, 7.993335e-01,\n", " 8.518552e-01, 7.076589e-01, 7.445155e-01, 4.720021e-01, 5.093500e-01],\n", " [2.778791e-01, 9.808745e-02, 8.998674e-01, 2.798906e-01, 2.503440e-01,\n", " 3.451778e-01, 3.797488e-01, 6.584744e-01, 6.882464e-01, 6.176427e-01,\n", " 2.928799e-01, 7.657277e-02, 8.867912e-01, 8.939456e-01, 6.136981e-01,\n", " 4.207783e-01, 4.616000e-01, 7.854896e-01, 4.293707e-02, 9.572357e-01],\n", " [8.406274e-02, 1.504745e-01, 6.030014e-02, 6.721167e-01, 1.835887e-01,\n", " 2.012850e-01, 7.604827e-01, 8.764416e-01, 1.732119e-01, 9.787593e-01,\n", " 4.089368e-01, 7.592372e-01, 1.652323e-01, 3.969846e-01, 4.787644e-01,\n", " 5.058492e-01, 6.943746e-01, 2.988215e-02, 8.585814e-01, 3.036220e-01],\n", " [8.457635e-01, 2.561272e-01, 8.443130e-01, 4.350447e-01, 8.528330e-01,\n", " 1.783162e-01, 2.864370e-01, 3.807775e-01, 1.392894e-01, 4.269599e-01,\n", " 5.872172e-02, 7.361147e-02, 7.646812e-01, 5.440484e-01, 4.036109e-01,\n", " 7.461635e-01, 1.698425e-01, 1.519611e-01, 4.929727e-01, 6.600693e-01],\n", " [3.109070e-01, 3.286642e-01, 7.161659e-01, 7.897546e-01, 4.583196e-01,\n", " 1.163877e-01, 4.411938e-01, 3.903958e-01, 3.126172e-02, 4.600458e-02,\n", " 3.738154e-01, 6.498342e-01, 8.994535e-01, 4.974055e-01, 8.896595e-01,\n", " 8.878730e-01, 3.126902e-01, 3.511536e-01, 4.980407e-01, 3.351488e-02],\n", " [7.245638e-01, 3.379322e-01, 8.100103e-01, 3.593644e-02, 3.076934e-01,\n", " 4.975979e-01, 2.115820e-04, 8.443818e-01, 4.922226e-01, 3.827802e-01,\n", " 9.822423e-01, 4.598063e-01, 1.124241e-01, 2.174470e-01, 5.273616e-01,\n", " 7.051374e-01, 1.175613e-02, 8.015048e-01, 1.618827e-01, 3.250856e-01]])\n", "Dimensions without coordinates: x, y" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rand = np.random.rand(10,20)\n", "da = xr.DataArray(rand, dims=['x', 'y'])\n", "da" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWgAAAEKCAYAAAA/2c+EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAGcNJREFUeJzt3X20XVV57/HvLwmEkAQIhDdJKEhDJaIUeoggFOkFNaASUOoNXhVaBqkVEAW0iA50YGsvKL23WgY1Ki9aLiQg1gxHIDAQrFiDCe8kERLe5EAgJER5lSTnPPePvYObk33OWXNlr3MmWb/PGGtkv6xnzZm1z37OPHPNuaYiAjMzy8+I4a6AmZm15wRtZpYpJ2gzs0w5QZuZZcoJ2swsU07QZmaZcoI2M8uUE7SZWaacoM3MMjVquCvQavQOY2LsbuML7/+H50eXKmfHXV5Ijnlx2ValytowYUx6zLbp5Yx+8uX0IGDHt69Ljln5woRSZY1IL4qpuz6XHLNkzc7pBQGj12xIjundemSpstbtoOSYbcakn8B4aH1yDMD4qb3JMS8+MbZUWRvGpLcTX13dvToiyn3QTe//q7Gx5vmeQvvedf9rCyJi+uaUV0ZWCXrsbuM56vKPFN5/xdX7lirno6ffkhzz80N3K1XW6hn7J8c8f0D69Pt9PrswOQbgpBtWJsf8440fLlXWtt3pSenOcy5NjtnvytOTYwD+9Afpvwxe2WuHUmU9MSM9Kb19v98mx6w/alVyDMDhc15JjrnjtINLlbX6gHHJMfd85+wnShXWYs3zPfx6wZ6F9h25+/KJm1teGVklaDOzoRJAL+l/KQwlJ2gzq6UgWB/FujiGixO0mdWWW9BmZhkKgp7Mb7fsBG1mtdWLE7SZWXYC6HGCNjPLk1vQZmYZCmC9+6DNzPIThLs4zMyyFNCTd352gjazemrMJMybE7SZ1ZToIf3+MEPJCdrMaqlxkdAJ2swsO41x0E7QZmZZ6nUL2swsP25Bm5llKhA9ma/65wRtZrXlLg4zswwFYl2UW1NyqDhBm1ktNSaquIvDzCxLvkiY4LU1o3ns8imF91fJ2v967d7JMX/xi/TVrwHmzk//Adj3O2uSYx698N3JMQCXfD89Zt/L7i9VFqPSP7ADe9NX6N7u6NXJMQDnz5+bHHPyvL8vVdbl75+dHNMT6a29L558WnIMwI9mp//cvnhSuYnT+3655M/TZopQqXM6lLJK0GZmQ6nXLWgzs/w0LhLmnQLzrp2ZWUV8kdDMLGM9HgdtZpafN8NMwkprJ+lzkpZIelDSNZK2qbI8M7MUvTGi0DZcKitZ0h7AZ4CuiNgfGAnMrKo8M7MUjZsljSi0DZequzhGAWMkrQe2BZ6uuDwzs0ICsb6uU70j4ilJ3wR+C7wK3BwRN1dVnplZiohyk3+GUpVdHBOAGcDewFuAsZI+3ma/WZIWS1q84dWXq6qOmVkforfgNlyq/PVxNPBYRDwXEeuBG4BN5iNHxOyI6IqIrlFjxlZYHTOzPwoaLegi23Cpsg/6t8Ahkral0cVxFLC4wvLMzJLkPsyuyj7oOyVdD9wNbADuAdLvEGNmVoFA9b5hf0R8BfhKlWWYmZURwPrM78WRd/vezKwyoqfgVuho0nRJD0laIem8Nu/vKek2SfdIul/SsYMdM+9fH2ZmFQno2CxBSSOBS4H3At3AIknzImJpy25fBuZGxGWSpgLzgb0GOq5b0GZWWx1sQU8DVkTEoxGxDriWxjDjVgFs13y8PQUm7rkFbWa1FKFO3mdjD+DJlufdwLv67PNV4GZJZwJjaQxFHpBb0GZWS42LhCMLbcDEjRPqmtusPodr18yOPs9PAq6MiEnAscAPJQ2Yg92CNrOaSlqTcHVEdA3wfjcwueX5JDbtwjgVmA4QEb9q3t1zIrCqv4NmlaB33nUtn/7CDYX3//6XTihVzod2vi855qI5HylV1gUz5yTHXHXjcckxEx7u+8u6mJd3TR8HGvvsWaqsJ47fITlm78uWpxc0p9yP9TXzDkmO6RnbU6qsM777qeSYdx2fvrjqhGWvJMcAaH36ArAv7jOuVFnPz909PeiYUkW9QeMiYcfGQS8CpkjaG3iKxp07P9Znn9/SmLB3paT9gG2A5wY6aFYJ2sxsKHVqJmFEbJB0BrCAxq2VL4+IJZIuBBZHxDzgHOC7kj5H4/fDKRExYMvKCdrMaqnTMwkjYj6NoXOtr13Q8ngpcFjKMZ2gzay2vGismVmGImB9rxO0mVl2Gl0cTtBmZlkqep+N4eIEbWa11OFhdpVwgjazmnIXh5lZtoZzvcEinKDNrJYaozhGDnc1BuQEbWa1VPslr8zMcuYuDjOzDHkUh5lZxjyKw8wsQxFigxO0mVme3MVhZpYh90GbmWXMCdrMLEMeB21mljGPgzYzy1AEbPAN+4tbu3ws173v4ML7j9v5pVLlXHfEO5NjJv7wmVJlXXla+grdvaPT7w9w4Fn3JMcAfGBC+grn3/rV/yxV1n2zvp0cc+D6M5Njjjjh7uQYgOVnvC05Ztx7tipV1h8mpq/CfvvC/ZNj/vSfupNjAPTB55Nj/vkDS0uV9c2vn1QqrhPcxWFmliH3QZuZZSycoM3M8uSLhGZmGYpwH7SZWaZEj0dxmJnlKfc+6Ep/fUjaQdL1kn4jaZmkQ6ssz8ysqI334iiyDZeqW9D/CtwUESdK2hrYtuLyzMyKiUY/dM4qS9CStgOOAE4BiIh1wLqqyjMzS1XnURxvBZ4DrpB0AHAXcFZEvNy6k6RZwCyAbUaOr7A6ZmZ/FG+Ci4RV1m4UcBBwWUQcCLwMnNd3p4iYHRFdEdG19cgxFVbHzOyNIoptw6XKBN0NdEfEnc3n19NI2GZmWYhQoW24VJagI+IZ4ElJf9Z86Sig3N1UzMw6rNE6zjtBVz2K40zg6uYIjkeBv6m4PDOzwmo9kzAi7gW6qizDzKys3IfZ5X0J08ysIoHo7R1RaCtC0nRJD0laIWmTARHNfT4qaamkJZL+32DH9FRvM6utTjWgJY0ELgXeS2OAxCJJ8yJiacs+U4AvAodFxFpJuwx2XLegzayeOnuRcBqwIiIebU7KuxaY0Wef04BLI2ItQESsGuygTtBmVl9RcBvcHsCTLc+7m6+12hfYV9IvJS2UNH2wg7qLw8xqK2EI3URJi1uez46I2S3P2x2ob2ofBUwBjgQmAb+QtH9E/K6/Qp2gzayWAujtLZygV0fEQCPSuoHJLc8nAU+32WdhRKwHHpP0EI2Evai/g2aVoHvGbc3awyYV3n/Cr58tVc75C29Ojvn8lz9dqqzXdupNjnnpLemret9xbblJmncfNXnwnfoY/7U1pco64FenJMds92T6ZZwnjt8xOQbgC/91dXLM1uopVdasuz+eHKP70u9V89ideybHAJz4308OvlMfV0z781JlzX/wkuSYXa4oVdQbBdC5cdCLgCmS9gaeAmYCH+uzz38CJwFXSppIo8vj0YEO6j5oM6utTt2LIyI2AGcAC4BlwNyIWCLpQknHNXdbAKyRtBS4Dfh8RAzY2smqBW1mNqQ6OFElIuYD8/u8dkHL4wDObm6FOEGbWU0N7302inCCNrP6ynyqtxO0mdVTQBQfxTEsnKDNrMacoM3M8uQuDjOzTDlBm5llqLMTVSrhBG1mtZX7DfudoM2svjyKw8wsT3IL2swsQ8Xv9TxsnKDNrKbki4RmZtlyC9rMLFPpt2sfUk7QZlZPHgdtZpav3EdxDLqiiqSpbV47spLamJkNpc6t6l2JIktezZX0D2oYI+nbwD9XXTEzs7orkqDfRWO12v+msTDi08BhVVbKzGwoKIptw6VIH/R64FVgDLAN8FhEVHLtc+RL65jwy+7C++923e9KlfP1g49Ojvn5/f9Wqqz3Lv1IcsyI10Ynx3x+ys+SYwC+Mfuvk2N2+tDjpcrSvemrUu9439rkmB2uezU5BuCb+6WvjH7VI7eVKuukfe9KjtnnHemr2M995uDkGICVf9g+OWb5+fuVKmvaDW8rEXVuqbLeIMh+qneRFvQiGgn6YOBw4CRJ11daKzOzoZB5H3SRFvSpEbG4+fgZYIakT1RYJzOzIZH7KI5BE3RLcm597YfVVMfMbAi92RO0mdkWywnazCw/wz1Co4giFwk3i6SRku6R9NOqyzIzS9KrYtswGYoW9FnAMmC7ISjLzKywWregJU0CPgB8r8pyzMxK2QKG2W2O/wt8AUifoWBmVqU690FL+iCwKiIGnDIlaZakxZIWr+spNwPMzKyUGregDwOOk3QsjSni20n6j4j4eOtOETEbmA2w/ehdM/99ZmZbEmV+w/7KWtAR8cWImBQRewEzgZ/1Tc5mZtY/j4M2s/rK/G/2IUnQEXE7cPtQlGVmVsib4CKhW9BmVl+ZJ+jKZxKamWWrg6M4JE2X9JCkFZLOG2C/EyWFpK7BjukEbWa1JBqjOIpsgx5LGglcChwDTKVx3/x267mOBz4D3Fmkjk7QZlZPBZe7KthPPQ1YERGPRsQ64FpgRpv9vgZcDPyhyEGdoM2svjrXxbEH8GTL8+7ma6+TdCAwOSIK3zjOFwnNrL6KXyScKKl18ZLZzUl2G7W75d3rR5c0Avg/wCkp1csrQY8YAduOKbz7ebvNKVXM+T85Pjnm3JWHlirrk5MXJsdspZ7kmIuuSF/8FWCX6U8lx/Scu1Opsub+6JLkmBPGnpMc0/vYNskxAO/5xfLkmJOPO61UWS9flH5bg18dv0NyzDt+uSo5BuC+T78jOeamOd8sVdaJF3++VFwnJAyzWx0RA13U6wYmtzyfBDzd8nw8sD9wuySA3YB5ko5rt2rVRnklaDOzodS5YXaLgCmS9gaeojF7+mOvFxPxe2DixueSbgfOHSg5g/ugzayuonOjOCJiA3AGsIDG/e/nRsQSSRdKOq5sFd2CNrP66uBElYiYD8zv89oF/ex7ZJFjOkGbWW15qreZWa6coM3MMjTMN+MvwgnazGpJuIvDzCxbTtBmZrlygjYzy5QTtJlZhryiiplZxpygzczyVGQa93Bygjaz2nIXh5lZjjxRxcwsY07QZmb58UxCM7OMqTfvDO0EbWb15D5oM7N8uYvDzCxXTtDFbRg3iufePXHwHZvef9PnSpVz2rt/nhxzzVVHlSrr1lEDLQTc3uEfvjc55oq/+1ZyDMDZ55yeHLPyQyNLlXXpqr9Kjtn7/PRV0Y99cG1yDMA1/3t6csyh31tUqqwTJ6THnfrF9M9qxAceS44BiH3Slyv9zF/MKFXWun9/IT3o26WK2oRb0GZmuXKCNjPLUHiqt5lZljwO2swsZ5F3hnaCNrPacgvazCxHb4KJKuljaQqSNFnSbZKWSVoi6ayqyjIzK0O9xbbhUmULegNwTkTcLWk8cJekWyJiaYVlmpkVVttRHBGxEljZfPyipGXAHoATtJkNv8AXCQEk7QUcCNzZ5r1ZwCyArcdOGIrqmJkB+V8krKwPeiNJ44AfAZ+NiE3mdEbE7IjoioiuUWPGVl0dM7M/ioLbMKm0BS1pKxrJ+eqIuKHKsszMUtR6oookAd8HlkXEv1RVjplZKRHZ37C/yi6Ow4BPAP9D0r3N7dgKyzMzS1PXLo6IuIPGXxFmZlmqbReHmVnWAqhxF4eZWd462MUhabqkhyStkHRem/fPlrRU0v2SbpX0J4Md0wnazGpLUWwb9DjSSOBS4BhgKnCSpKl9drsH6IqIdwLXAxcPdlwnaDOrLfVGoa2AacCKiHg0ItYB1wJvWAMsIm6LiFeaTxcCkwY7qBO0mdVT0e6NYl0cewBPtjzvbr7Wn1OBGwc7qC8SmlktNSaqFL5IOFHS4pbnsyNidp/D9dX24JI+DnQB7xms0KwS9KgX1rPzz54uvP9Hz15Sqpxbp+2SHPPSZa+VKmu/f/xdcszNb9svOebBn74zOQbgjn/7TnLMXz5wQqmybnpg/+SYnT+5VXLMgpnlVvXuuuLu5JifPHhAqbKmTiv+c77RuO70cl44ZM/0IGDbH6evOr7v4nJ/kD/z3X1LxXVE8bvZrY6IrgHe7wYmtzyfBGzyIUs6GvgS8J6IGDSpZJWgzcyGUkILejCLgCmS9gaeAmYCH3tDWdKBwHeA6RGxqshB3QdtZvXUwT7oiNgAnAEsAJYBcyNiiaQLJR3X3O0bwDjguubM6nmDHdctaDOrqc7eiyMi5gPz+7x2Qcvjo1OP6QRtZvXlG/abmWUoarzklZlZ9tyCNjPLVN752QnazOpLvXn3cThBm1k9BSkTVYaFE7SZ1ZKITk5UqYQTtJnVlxO0mVmmnKDNzDLkPmgzs3x5FIeZWZbCXRxmZlkKnKDNzLKVdw+HE7SZ1ZfHQZuZ5coJ2swsQxHQk3cfhxO0mdWXW9DFvTZpJI9cvH3h/R9+4PBS5Uz88JjkmP2+kr4KM8AlP78mOebMT5yeHPPIKRuSY6DcCt1X7/eDUmUd84svJMesTV/gnDu+fnV6EHD8UTOTY66af3mpsv7uyr9PjnnHJx5Ojtlp9EvJMQCPnbl7cszD0wddpLqt3caX+251hBO0mVmGAujgmoRVcII2s5oKCPdBm5nlJ/BFQjOzbLkP2swsU5kn6BFVHlzSdEkPSVoh6bwqyzIzS9O8WVKRbZhU1oKWNBK4FHgv0A0skjQvIpZWVaaZWWEBZH670Spb0NOAFRHxaESsA64FZlRYnplZmrq2oIE9gCdbnncD76qwPDOzBPWe6q02r23yq0jSLGAWwKiJxWcRmpltloDIfBx0lV0c3cDklueTgE3mdEbE7IjoioiukduNrbA6ZmZ99EaxbZhUmaAXAVMk7S1pa2AmMK/C8szM0tS1DzoiNkg6A1gAjAQuj4glVZVnZpYkIvtRHJVOVImI+cD8KsswMyst84kqnkloZjUVRE/PcFdiQE7QZlZPvt2omVnGMh9m5wRtZrUUQLgFbWaWofAN+83MspX7RUJFRsNMJD0HPNHmrYnA6iGuTjs51COHOkAe9cihDpBHPXKoAwxdPf4kInbenANIuolGfYtYHRHTN6e8MrJK0P2RtDgiulyPPOqQSz1yqEMu9cihDjnVY0tR6Q37zcysPCdoM7NMvVkS9OzhrkBTDvXIoQ6QRz1yqAPkUY8c6gD51GOL8KbogzYzq6M3SwvazKx2skrQg60CLmm0pDnN9++UtFcFdZgs6TZJyyQtkXRWm32OlPR7Sfc2twsqqMfjkh5oHn9xm/cl6VvNc3G/pIMqqMOftfwf75X0gqTP9tmn4+dC0uWSVkl6sOW1HSXdIml5898J/cSe3NxnuaSTK6jHNyT9pnnOfyxph35iB/z8NrMOX5X0VMs5P7af2AG/Tx2ox5yWOjwu6d5+YjtyLmopIrLYaNwz+hHgrcDWwH3A1D77fBr49+bjmcCcCuqxO3BQ8/F44OE29TgS+GnF5+NxYOIA7x8L3EhjabFDgDuH4PN5hsb400rPBXAEcBDwYMtrFwPnNR+fB1zUJm5H4NHmvxOajyd0uB7vA0Y1H1/Urh5FPr/NrMNXgXMLfF4Dfp82tx593r8EuKDKc1HHLacWdJFVwGcAVzUfXw8cJand2oelRcTKiLi7+fhFYBmNBXBzMwP4QTQsBHaQtHuF5R0FPBIR7SYSdVRE/BfwfJ+XWz/7q4Dj24S+H7glIp6PiLXALUDpyQXt6hERN0fEhubThTSWcqtMP+eiiCLfp47Uo/kd/ChwTdnjW3s5Jeh2q4D3TYyv79P8kvwe2KmqCjW7UA4E7mzz9qGS7pN0o6S3V1B8ADdLuqu5sG5fRc5XJ82k/y9g1ecCYNeIWAmNX6LALm32Gepz8rc0/oppZ7DPb3Od0exmubyf7p6hPBd/CTwbEcv7eb/qc7HFyilBF1kFvNBK4Z0gaRzwI+CzEfFCn7fvpvGn/gHAt4H/rKAKh0XEQcAxwOmSjuhbxTYxVZ2LrYHjgOvavD0U56KooTwnXwI2AFf3s8tgn9/muAzYB/hzYCWN7oVNqtjmtaqGbJ3EwK3nKs/FFi2nBF1kFfDX95E0Ctiecn/+DUjSVjSS89URcUPf9yPihYh4qfl4PrCVpKJz+guJiKeb/64CfkzjT9ZWhVZN75BjgLsj4tk29az8XDQ9u7ELp/nvqjb7DMk5aV58/CDwv6LZydpXgc+vtIh4NiJ6IqIX+G4/xx6qczEK+DAwp799qjwXW7qcEnSRVcDnARuvzJ8I/Ky/L0hZzf607wPLIuJf+tlnt41935Km0TiPazpYh7GSxm98TOPC1IN9dpsHfLI5muMQ4PcbuwAq0G8Lqepz0aL1sz8Z+EmbfRYA75M0ofln//uar3WMpOnAPwDHRcQr/exT5PPbnDq0Xms4oZ9jF/k+dcLRwG8iorvdm1Wfiy3ecF+lbN1ojEx4mMbV5y81X7uQxpcBYBsaf2avAH4NvLWCOhxO40/B+4F7m9uxwKeATzX3OQNYQuPK+ELg3R2uw1ubx76vWc7Gc9FaBwGXNs/VA0BXRZ/JtjQS7vYtr1V6Lmj8MlgJrKfREjyVxrWGW4HlzX93bO7bBXyvJfZvmz8fK4C/qaAeK2j07W782dg4qugtwPyBPr8O1uGHzc/8fhpJd/e+dejv+9TJejRfv3Ljz0LLvpWcizpunkloZpapnLo4zMyshRO0mVmmnKDNzDLlBG1mliknaDOzTDlBm5llygnazCxTTtCWJUlfU8u9uCX9k6TPDGedzIaaJ6pYlpp3ErwhIg6SNILGDMJpEVHFNHKzLI0a7gqYtRMRj0taI+lAYFfgHidnqxsnaMvZ94BTgN2Ay4e3KmZDz10clq3mXdgeALYCpkREzzBXyWxIuQVt2YqIdZJuA37n5Gx15ARt2WpeHDwE+OvhrovZcPAwO8uSpKk07r18a/S/1p3ZFs190GZmmXIL2swsU07QZmaZcoI2M8uUE7SZWaacoM3MMuUEbWaWqf8PFZ0j237qMGkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "da.plot();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Some cool figure caption or other interpretational stuff. YEAH" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.7" } }, "nbformat": 4, "nbformat_minor": 2 }