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Method: Discretization of Scales

• Following Fraser, Pramanik, and Keleti, we construct

solutions by repeatedly dissecting intervals, ala the

construction of the Cantor set.

• If X is the decreasing limit of sets X1, X2, . . . , which are

unions of intervals, we can discretize the problem so that we

only have to avoid a discrete version of the con�guration at

each dissection.
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Figure: Interval Dissection at Discrete Scales

• Discrete con�guration problem: If x1, . . . , xd ∈ Xn,

and f (x1, . . . , xd) = 0, then some xi and xj lie in a

common interval in Xn.

• Provided that the discrete con�guration problem is satis�ed

and the length of the intervals forming Xn tends to zero as

n → ∞, X avoids all con�gurations.

• For technical reasons, we consider a slightly di�erent

discrete con�guration problem where at each scale we

consider a partition of Xn into unions of intervals, and the

problem then becomes that if f (x1, . . . , xd) = 0, then some

xi and xj lie in a common part of the partition of Xn.

• For fractal avoidance, the discrete criterion is obtained if

whenever (x1, . . . , xd) ∈ Xd
n ∩ Y , then |xi − xj| = o(1)

for some indices i and j.

Our Research Problem:

How Large can Sets with a Fixed Irregularity Be?

• The irregularities commonly manifest as avoiding the zero set of a function.

• Largeness is quanti�ed by the Hausdor� dimension of the irregular set.

• Examples of such problems including �nding a large set X ⊂ R3 such that the angles formed by any three distinct points in X
are distinct.

• Con�guration Avoidance: Find X such that for distinct x1, . . . , xd ∈ X , f (x1, . . . , xd) ̸= 0.

• Our new method of �nding X more naturally considers a generalization of con�guration avoidance.

• Fractal Avoidance: Given Y ⊂ Rd, �nd X such that Xd ∩ Y ⊂ ∆, where ∆ = {x : xi = xj for some i, j}. Generalize

con�guration avoidance by setting Y = f−1(0).

Main Result:

Theorem.

If the zero set of a function f : Rnd → R is α dimensional, then we can �nd X ⊂ Rd with Hausdor� dimension (nd− α)/(n− 1)
such that f (x1, . . . , xd) ̸= 0 for distinct x1, . . . , xd ∈ X .

• Extends results of Pramanik and Fraser (2018) which give the result when f is smooth and nonsingular.

• If Y ⊂ R has dimension α, we can �nd a set X ⊂ R of dimension 1− α such that X +X , X −X , and X ·X avoids

elements of Y . We hope to extend this result to �nding X as a vector space over Q.

• Given a 1 dimensional set Y such that Y ∩ L is zero dimensional for each straight line L, and a projection π such that π(Y )
has non-empty interior, we can �nd a 1/2 dimensional subset X not containing the vertices of any isoceles triangles.

Figure: Our method can now �nd a full dimensional X avoiding Y formed by uncountably many lines that aren't too `bushy'.

Method: Random Selection

• The dimension of Y gives us very little structural

information about Y , so it behaves like a random

distribution of mass.

• To combat this, we choose random interval dissections to

form X at each discrete scale, pruning intersections with Y .

• If Y concentrates at a particular location, the random

choice of X can stay away from this location. On the other

hand, if Y is spread out rather uniformly, we can spread

out X uniformly while still avoiding the elements of Y .

Figure: Random choices of X avoid Y .

• Our method currently works when the dimension of Y is

quanti�ed as the box counting dimension.

• We are currently working on using hyperdyadic scaling to

extend the result where Y is quanti�ed by it's Hausdor�

dimension.

• The construction parallels a random construction of an

independant set in a hypergraph, similar to Turan's

theorem.

• We are also currently looking at using other techniques on

hypergraphs to improve the dimension of X when Y has

more structure.
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