Method: Discretization of Scales

Following Fraser, Pramanik, and Keleti, we construct
solutions by repeatedly dissecting intervals, ala the
construction of the Cantor set.

[t X is the decreasing limit of sets X7, Xo, ..., which are
unions of intervals, we can discretize the problem so that we
only have to avoid a discrete version of the configuration at
cach dissection.
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Discrete configuration problem: If x1,..., x4 € X,
and f(x1,...,2q) =0, then some x; and x; lie in a

common interval in X,,.

Provided that the discrete configuration problem is satisfied
and the length of the intervals forming X,, tends to zero as
n — 00, X avoids all configurations.

For technical reasons, we consider a slightly different
discrete configuration problem where at each scale we
consider a partition of X, into unions of intervals, and the
problem then becomes that if f(xq,...,24) = 0, then some
z; and x; lie in a common part of the partition of X,,.

For fractal avoidance, the discrete criterion is obtained if
whenever (z1,...,74) € XINY then |z; — x| = o(1)
for some indices ¢ and 7.
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Our Research Problem:
How Large can Sets with a Fixed Irregularity Be?

The irregularities commonly manifest as avoiding the zero set of a function.

Largeness 1s quantified by the Hausdorff dimension of the irregular set.

Examples of such problems including finding a large set X C R? such that the angles formed by any three distinct points in X
are distinct.

Configuration Avoidance: Find X such that for distinct z1,...,2zq € X, f(z1,...,24) # 0.

Our new method of finding X more naturally considers a generalization of configuration avoidance.

Fractal Avoidance: Given Y C RY find X such that X?NY C A, where A = {x : z; = x; for some 4, j}. Generalize
configuration avoidance by setting Y = f~1(0).

Main Result:

Theorem.
If the zero set of a function f : R™ — R is o dimensional, then we can find X C R? with Hausdorff dimension (nd — o) /(n — 1)
such that f(x1,...,xq) # 0 for distinct x4, ..., 25 € X.

o Extends results of Pramanik and Fraser (2018) which give the result when f is smooth and nonsingular.
e [f Y C R has dimension «, we can find a set X C R of dimension 1 — « such that X + X, X — X and X - X avoids
elements of Y. We hope to extend this result to finding X as a vector space over Q.

o Given a 1 dimensional set Y such that Y N L is zero dimensional for each straight line L, and a projection 7 such that w(Y")
has non-empty interior, we can find a 1/2 dimensional subset X not containing the vertices of any isoceles triangles.
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Method: Random Selection

e The dimension of Y gives us very little structural

information about Y, so it behaves like a random
distribution of mass.

e To combat this, we choose random interval dissections to

form X at each discrete scale, pruning intersections with Y.

e [f Y concentrates at a particular location, the random

choice of X can stay away from this location. On the other
hand, if Y 1is spread out rather uniformly, we can spread
out X uniformly while still avoiding the elements of Y.
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Figure: Our method can now find a full dimensional X avoiding Y formed by uncountably many lines that aren't too "bushy’.

Our method currently works when the dimension of Y is
quantified as the box counting dimension.

We are currently working on using hyperdyadic scaling to
extend the result where Y is quantified by it’s Hausdorft
dimension.

The construction parallels a random construction of an
independant set in a hypergraph, similar to Turan’s
theorem.

We are also currently looking at using other techniques on
hypergraphs to improve the dimension of X when Y has
more structure.
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