Characterizations of *L^p* **Bounded Spectral Multipliers on the Sphere** and Related Manifolds

Main Research Question

What conditions are necessary and sufficient for dilates of a spectral multiplier operator on a manifold *M* to be bounded on $L^p(M)$?

Background

Let M be a compact Riemannian manifold, and let Δ be the Laplace-Beltrami operator on *M*. Then there is a discrete set $\Lambda \subset [0, \infty)$ such that every $f \in L^2(M)$ has an orthogonal decomposition $f = \sum_{\lambda \in \Lambda} f_{\lambda}$, where $\Delta f_{\lambda} = -\lambda^2 f_{\lambda}$.

Given any bounded function $m : \Lambda \to \mathbb{C}$, we define a spectral multiplier operator

$$m\left(\sqrt{-\Delta}\right)f = \sum_{\lambda \in \Lambda} m(t)$$

Our research question more precisely asks to find necessary and sufficient conditions on a function *m* so that

 $\sup_{R>0} \|m(R\sqrt{-\Delta})\|_{L^p(M)\to L^p(M)} < \infty.$

Theorem If $M \in \{S^d, \mathbb{RP}^d, \mathbb{CP}^{d/2}, \mathbb{HP}^{d/4}, \mathbb{OP}^2\}$ and 1 , and $m: (0,\infty) \to \mathbb{C}$ has compact support, then

$$\sup_{R>0} \|m(R\sqrt{-\Delta})\|_{L^p(M)\to L^p(M)} \sim \left(\int_0^\infty \langle t \rangle^{(d-1)(1-p/2)} |\widehat{m}(t)|^p dt\right)^{1/2}$$

Corollary If *M* is as above, then for 1compact support, then

$$\sup_{R>0} \|m(R\sqrt{-\Delta})\|_{L^p(M)\to L^p(M)} \sim \|F$$

where F_m is the radial Fourier multiplier on \mathbf{R}^d given by

$$F_m f(x) = \int m(|\xi|) \widehat{f}(\xi) e^{2\pi i \xi \cdot x}$$

This **Corollary** is the first general transference principle in the literature which gives bounds from \mathbb{R}^d to *M* for any compact manifold *M* and any exponent *p*.

 $(\lambda) f_\lambda$.

$$\left(\begin{smallmatrix} -1 \\ -1 \end{smallmatrix}
ight)$$
, if $m: (0,\infty)
ightarrow \mathbb{C}$ has

 ${}^{\mathsf{F}}m \parallel L^{p}(M) \to L^{p}(M)$

^x dξ.

Density Decompositions

We then employ a density decomposition argument. Let $X = \bigcup_{k=0}^{\infty}$, where $X_k \subset M \times [2^k, 2^{k+1}]$. Then we can write $X_k = \bigcup_{l=0}^{\infty} X_k(2^l)$, such that $X_k(2^l)$ satisfies the assumptions required to obtain quasi-orthogonality bounds, with $u = 2^l$, and $X_k(2^l)$ is clustered when $l \gg 1$, i.e. we can find balls $B_1, \ldots, B_N \in M \times [2^k, 2^{k+1}]$ such that $\sum_{\alpha} |B_{\alpha}| \leq 2^{-l}/R \# X_k$. Interpolating between the L^2 bounds above and simple L^1 bounds yields L^p estimates that are sufficient to establish the main **Theorem**.

What's Next?

- compactness assumption in the **Theorem**.
- Dualizing Argument to obtain further results.
- incidence geometry.

Jacob Denson UW Madison PhD Candidate **Advisor: Andreas Seeger** jcdenson@wisc.edu jdjake.github.io

Thus we see that the main **Theorem** is closely related to local smoothing phenomena for the wave equation

Quasi-Orthogonality for '1D Averages' of the Frequency Localized Wave Equation

Fix $R \ge 1$. For each $x \in M$, consider an L^1 normalized function $f_x \in C^{\infty}(M)$ localized in a 1/R neighborhood of x, and frequency localized at scale R. For each k, consider a set $X_k \subset M \times [2^k, 2^{k+1}]$ such that $\#(X_k \cap B_r) \leq (Ru)r$ for all balls B_r of radius $1/R \leq r \leq 2^k/R$. Then we prove that

 $\left\|\sum_{k}\sum_{(x,t)\in X_{k}}e^{2\pi i t\sqrt{-\Delta}}f_{x}\right\|_{L^{2}(M)} \lesssim R^{d}(\log u)u^{\frac{2}{d-1}}\left(\sum_{k}2^{k(d-1)}\#(X_{k})\right)^{1/2}.$

To prove this we use the Lax parametrix to write the wave equation as a Fourier integral operator, which reduces the problem to a geometric argument.

• Using atomic decompositions and Littlewood-Paley theory to remove the

• Extending the **Theorem** to other general manifolds, on, such as the class of Zoll Manifolds (manifolds with periodic geodesic flow).

• Improving range of p in the **Theorem** using more sophisticated

Reduction to the Wave Equation

Applying the Fourier inversion formula, we conclude that

 $m(R\sqrt{-\Delta}) = \int_{-\infty}^{\infty} R^{-1}\widehat{m}(R^{-1}t)e^{2\pi i t\sqrt{-\Delta}} dt$

