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Research Problem: Can Large Sets Avoid Patterns?

More specifically: If a set X ⊂ Rd has large fractal dimension, does it contain patterns? The
main focus of this project is on the construction of counterexamples: for a given function
f with domain (Rd)n, can we construct large sets X such that there are no distinct points
x1, . . . , xn ∈ X with f(x1, . . . , xn) = 0? We often study functions f which vanish on the
diagonal ∆ = {(x, . . . , x) : x ∈ Rd}, which makes it difficult to avoid zeroes if X is ‘thick’,
i.e. has large fractal dimension.

A set avoiding 3-term APs

A subset of the parabola
avoiding isosceles triangles

Example choices of f :

� If f(x1, x2, x3) = (x1 − x2) − (x2 − x3),
then sets avoiding zeroes of f do not con-
tain three term arithmetic progressions.

� If f(x1, x2, x3) = |x1 − x2|2 − |x2 − x3|2,
then sets in Rd avoiding zeroes of f do
not contain the vertices of any isosceles
triangle.

Mainly, this project constructs large Salem
sets avoiding zeroes of nonlinear functions.
Here are some results taken from (D., 2021):

Theorem 1. Suppose f : (Rd)n → Ri is a
submersion. Then we can construct a Salem

set X ⊂ Rd avoiding solutions to f with dim(X) = i/(n− 1/2).

Theorem 2. Let g : (Rd)n−1 → Rd be smooth, such that Dxkg = (∂gi/∂x
k
j ) is an invertible

matrix for each 1 ≤ k ≤ n− 1. If

f(x1, . . . , xn) = xn − g(x1, . . . , xn−1),

then we can construct a Salem set X ⊂ Rd avoiding solutions to f with dim(X) =
d/(n− 3/4), larger than that guaranteed by Theorem 1.

For instance, we can use these results to construct, for any smooth γ : [0, 1] → Rd, a Salem
set X ⊂ [0, 1] with dimension 4/9 such that γ(X) avoids vertices of isosceles triangles.

Salem Sets: Structure vs. Randomness

There are several fractal dimensions, and they differ subtly in the properties they measure:

� The Hausdorff dimension dimH(X) of a set X ⊂ Rd measures the ability to distribute
mass onto X in a way that does not concentrate too strongly around individual points.

� The Fourier dimension dimF(X) of a set X ⊂ Rd measures the ability to distribute
mass avoiding concentration ‘at a particular frequency’, as measured quantitatively
through the Fourier transform.

One always has dimF(X) ≤ dimH(X) for any set X ⊂ Rd, but the reverse is often not true
if the set is clustered ‘near particular frequencies’, like if X is a flat surface (clustered near
frequencies travelling tangent to the hyperplane), or a Cantor set (clustered near frequen-
cies of the form 3n), both sets with Fourier dimension zero. On the other hand, a curved
hypersurface in Rd has Fourier dimension equal to d− 1, also it’s Hausdorff dimension.

The Cantor Set correlates near
frequencies of the form 3n

We say a set X is Salem if dimF(X) =
dimH(X). Random sets are often almost su-
rely Salem, since pure randomness prevents
clustering at frequencies with high probabi-
lity. But it is suprisingly difficult to control
the Fourier dimension of sets when one intro-
duces structure to sets, which may introduce
subtle clustering near particular frequencies.
In particular, the relation between nonlinear
structure and Fourier dimension is especially

difficult to understand. For instance, even determining the Fourier dimension of the set
{x+ x2 : x ∈ C}, where C is the Cantor set, remains an open problem.

There are many constructions of sets with large Hausdorff dimension avoiding zeroes of
nonlinear functions f (e.g. Máthé, 2017 or Fraser and Pramanik, 2018), but most construc-
tions of large Salem sets avoiding functions f focus on linear functions f (e.g. Shmerkin,
2015 or Liang and Pramanik, 2020). Here we describe techniques to deal with the intro-
duction of nonlinear structure to a random set via probabilistic concentration inequalities,
and oscillatory integrals.

Constructing Salem Sets

We construct sets avoiding zeroes via a Cantor-type construction, i.e. iteratively defining
sets {Xk} by dissecting cubes (intervals if d = 1) at each stage into smaller cubes, and kee-
ping a union of smaller cubes chosen carefully so they have good Fourier analytic properties,
and avoid a discretized version of the pattern.
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If, at each stage of the construction, we choose a large
N > 0, subdivide each cube into smaller sidelength
1/N1/s cubes, and take N of these cubes from each of
the original intervals, then iteration for a fixed s should
yield a set with Hausdorff dimension s. Since the sub-
divided set ‘lives at a scale 1/N1/s’, the uncertainty
principle tells us to care about frequencies |ξ| ≲ N 1/s.
And indeed, obtaining a Salem set reduces to verifying

the following exponential sum square root cancellation bound can be obtained:

Lemma. For arbitrarily large N > 0, there exists an N element subset S of [0, 1]d such
that for any ξ ∈ Zd with |ξ| ≲ N 1/s∣∣∣∣∣ 1N ∑

x∈S

e2πiξ·x

∣∣∣∣∣ ⪅ N−1/2,

and for distinct y1, . . . , yn ∈ S, |f(y1, . . . , yn)| ≳ N−1/s (S contains no ‘near zeroes’).

Let us illustrate how the problem becomes harder as we increase s, i.e. we try and con-
struct larger Salem sets. To do this, pick 10N points {x1, . . . , x10N} uniformly at random
from [0, 1]d. There are roughly O(Nn) tuples (y1, . . . , yn), where each yi is taken from the
points xi. Each tuple has probability O(N−i/s) of forming a near zero of f , since the zero
set of f is a dn− i dimensional hypersurface in (Rn)d. Thus we expect there to be roughly
O(Nn−i/s) tuples formed from the points {xi} which give near zeroes.

� If s ≤ i/n, we expect no tuples will give near zeroes, so setting S = {x1, . . . , xN} will
satisfy the contraints of the Lemma with high probability. Easy!

� If s > i/n, we expect there to be tuples giving near zeroes. So we let S be the set of
points from the set {xi} which remain after pruning, i.e. after removing any point xi
which equals yn for some tuple (y1, . . . , yn) forming a near zero of f . If s ≤ i/(n− 1),
then we will prune at most O(Nn−i/s) ≪ 10N points, which means we can still gua-
rantee S contains N points. For s > i/(n − 1), we cannot guarantee S contains any
points, so i/(n− 1) is the limiting dimension we can expect.

For s ≤ i/n, the selection process above is completely random, and so the square root
cancellation property is almost automatic. But the pruning we must perform for s > i/n

is structured, i.e. it removes points clustered near zeroes of f , which may cause subtle
problems with the Fourier dimension / square root cancellation.

Dealing With Pruning

Random collections of points satisfy square root cancellation – it is the pruning which ma-
kes the required Lemma difficult to prove. In other words, it suffices to prove the following
‘pruning inequality’ ∣∣∣∣∣∣ 1N

∑
xk pruned

e2πiξ·xk

∣∣∣∣∣∣ ⪅ N−1/2.

For s ≤ i/(n− 1/2), we can guarantee O(Nn−i/s) = O(N 1/2) points have been pruned, so
the pruning inequality follows trivially from the triangle inequality. For s > i/(n − 1/2)
we work harder. Let us now make the assumption that f(x) = xn − g(x1, . . . , xn−1) as in
Theorem 2, and that i = n.

The left hand side of the pruning bound can be viewed as a very nonlinear function
Fξ(x) = Fξ(x1, . . . , x10N) of the initial uniformly random points chosen. The theory of pro-
babilistic concentration inequalities gives various tools guaranteeing that |Fξ(x)−E[Fξ(x)]|
is bounded with high probability provided the maximum ‘influence’ of each variable xi
on F is not too large. Since we remove the points corresponding to the last coordinate of
(y1, . . . , yn), these points have ‘a little too much influence’ relative to the other points, but
this can be dealt with because these variables are ‘linear’ in f (because of the extra struc-
ture assumed in Theorem 2), so we obtain |Fξ(x)−E[Fξ(x)]| ⪅ N−1/2 with high probability
for s ≤ d/(n− 1).

Finally, we can use some inclusion-exclusion bounds to reduce the study of E[Fξ(x)] to
an oscillatory integral and apply non-stationary phase. But the inclusion-exclusion bounds
obtained only work for s ≤ d/(n − 3/4) – one must understand the ‘exclusion’ in more
detail past this range, which is why Theorem 2 only obtains a Salem set of dimension
d/(n− 3/4) rather than dimension d/(n− 1).

What’s Next

Here are some problems to improve the results described in this poster:

� Can one improve the inclusion-exclusion bounds in the analysis of pruned sets to im-
prove the dimension d/(n− 3/4) in Theorem 2 to d/(n− 1), the best possible bound
we can expect purely via pruning random points.

� Is there a nontrivial concentration argument for general f as in Theorem 1?

� Can we consider ‘fractal domain’ avoidance problems: Given a Salem set S and a nice
function f : Sn → R, it is possible to construct a large Salem subset X ⊂ S avoiding
zeroes of f? In the simplest nontrivial example, S could be a curved hypersurface.

� Can we use modern ‘square root cancellation methods’, e.g. decoupling, to construct
more structured Salem sets?


