
What It Takes to Create with Domain-Appropriate Tools
Reflections on Implementing the “Id” System

Joel Jakubovic
University of Kent, Canterbury, UK

jdj9@kent.ac.uk

ABSTRACT
There is a One-Size-Fits-All quality to languages, APIs and even
programming itself. Whether you’re making a mobile game or
a scientific simulation, you will be using a text-based language
with similar devices for structuring your code. This is a source
of artificial difficulty in creating, understanding, and modifying
software systems. No matter the domain, the author’s design needs
encoding into a form that does not resemble it.

This paper describes a vision where software can be built in
a programming environment that is closer to the domain of the
software itself. By doing so, users of the system can use familiar
abstractions and tools for adapting it. A step towards this vision is
presented: a Web version of a minimal OOP system, developed as
an executable version of the diagrams of its design, in a substrate
meant to facilitate this.The experience of creating such a substrate is
analysed, and I suggest deficiencies in programming environments
that stand in the way of making this practice commonplace, as well
as ways to fill in these gaps.

CCS CONCEPTS
• Software and its engineering→Domain specific languages;
Visual languages.

KEYWORDS
object-oriented, meta-circular, visual programming, context-specific,
adaptation

ACM Reference Format:
Joel Jakubovic. 2020. What It Takes to Create with Domain-Appropriate
Tools: Reflections on Implementing the “Id” System. In Companion Proceed-
ings of the 4th International Conference on the Art, Science, and Engineering of
Programming (<Programming’20> Companion), March 23–26, 2020, Porto, Por-
tugal. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3397537.
3397549

1 INTRODUCTION
As someone who can code, I have already passed the first and
most important hurdle for making full use of the potential of my
computer. However, even in this supposedly empowered state, I
am still far away from feeling the relationship between myself and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
<Programming’20> Companion, March 23–26, 2020, Porto, Portugal
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7507-8/20/03…$15.00
https://doi.org/10.1145/3397537.3397549

software as between artisan and material, free to shape it into any
form with effort proportional to complexity.

One would have thought that software-creation acts like hypo-
thetical super-intelligent Artificial Intelligence (AI). That is: even
though we start from a primitive base in the 50s (or even today),
there would surely be a recursive process of self-improvement,
building better software-creation tools with the existing ones, until
an “expressivity singularity” where software becomes a workable
material as described.

However, this didn’t happen. Or at least, it is happening glacially
slowly. The brute fact is that whenever you want to create software,
you go to a text editor and figure out how to translate your design
into that. The text editors, being software, were written with the
help of previous text editors, and so on. It’s undeniable that text
editors have improved, even if you think it peaked with Emacs. We
just don’t seem able to go beyond them where it matters, such as
visual domains ill-fitted to monospaced ASCII.

Amdahl’s Law generalises the following idea: even when you
spend hours of effort doubling the performance of a component
used 1% of the time, your reward is a system overall improved by a
mere 0.47%. Now, text coding is certainly ubiquitous, the 99% case
in programming. A small improvement to text editing, if adopted
by everyone, certainly does have a massive intermediate effect—but
this only matters to the extent that text was helping us in the
first place. If my goal is to draw or animate pictures, or create a
digital synth from a frequency spectrogram, then giving me the
ability to auto-indent my SVG markup is rather underwhelming as
a productivity increase, as it doesn’t target the core of the enterprise
that makes it so hard.

As a programmer, I often feel stuck in a box I know I can never
escape from: that box is the text editor, a fixed conduit through
which all fundamental changes to my program must pass. It’s not a
part of the system I am building, so I can’t even make use of features
of the thing I’m developing, to make its own development easier.

Surely the trick is to use coding to build something better than it.
And then use that, to build something even better. But there is an
enormous breadth and depth of philosophies here, along with all
sorts of concrete systems that failed to catch on. Even worse than
this, is that in my very language here I ammaking the same mistake
as the text editor—speaking in unqualified terms of “better” and
“worse” as if there really is a One-Size-Fits-All solution to software
creation!

Of course what we really want is the ability for people to create
in the way that they think is best1 in their particular context—to
equip them to feasibly create the tools that suit them for the thing

1To be clear: if someone wants to type out pictures in ASCII, let them—whether they
do it for a challenge, or even if they find that more natural for themselves. But equally,
if I want to do it another way, I should have that affordance.

https://doi.org/10.1145/3397537.3397549
https://doi.org/10.1145/3397537.3397549
https://doi.org/10.1145/3397537.3397549

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Joel Jakubovic

they want to make. And second-order tools that suit them for mak-
ing the first-order tools, and so on. It would do no good to replace
text-imperialism with anything-else-imperialism, which is one in-
terpretation of calls for alternatives.

This dream goes beyond the familiar sense of what constitutes a
“craft”, as far as a strong melding of tool and material. Parallels can
be drawn with industrialisation and a strong division of labour: the
community as a whole produces its higher-order tools, but currently
no single person can have the same autonomy. A (future) software
craft could be expected to give this power to individuals, instead of
the community alone. Whenever there are many small specialities
(e.g. languages, tools, or subject areas) each serving many clients,
the One-Size-Fits-All style is the best one can hope for. Adaptation
to individual preferences and idiosyncrasies is only feasible when
those individuals can do it themselves.

Whatwe need is some system that not only lets us create software
in a way that is “close to the problem domain” as decided by the
user-developer, but also can augment or change itself to adapt to
a different “way of creating”. Existing systems seem to only have
one of these properties without the other: Smalltalk and LISP try to
minimise arbitrary commitments of language semantics to this end,
but their being textual languages is a fairly tough commitment to
break out of. And it is not so hard to make a specific, hard-baked
visual or alternative programming tool—but it is hard to make it
re-programmable without having to go back to its textual source
code.

All these considerations attract me to the design of a particular
system called “Id”, as a potential way out of this mess [Piumarta
and Warth 2006]. True, it is a programmer’s artefact, but it is still
representative of what any normal person has to do, insofar as:

a) Wanting to create a piece of software (for whatever reason)
b) Having in mind a natural way to represent it as it’s being

built.
What follows in this paper is an account of how I went about

building Id, atop a preliminary “box” substrate. Section 2 gives an
overview of Id. Section 3 discusses the work involved in obtaining
said domain-appropriate substrate, and Section 4 continues with
an interpretation of the labour costs of doing this. In Section 5, we
return to the Id system and its role in supporting flexible software.
Section 6 addresses the question in the title,2 and concludes with
next steps for the project.

2 THE ID SYSTEM
When I first read the paper “Open, Reusable Object Models” [Piu-
marta and Warth 2006], I was hooked on its idea of a small but ex-
pressive starting system that could be self-improved into anything.
It describes a late-bound,3 Smalltalk-style4 objects and messaging
environment that the authors call “Id”.

An Id object is a block of state which can change as a result of
messages received by it. Messaging (analogous tomethod invocation
in mainstream OOP) works as follows:

2The original title was “What Does It Take to Create with Domain-Appropriate Tools?”,
but it has been changed for technical reasons.
3Fewer commitments; more things determined by runtime conditions.
4OOP with more emphasis on object instances and messaging, as in a distributed
system; less emphasis on class hierarchies implementing traditional data structures.

• A message is sent by first bind-ing its name to its implemen-
tation: specific code, which is then run in the context of the
receiver R.

• This “bind” step is accomplished by sending a further mes-
sage; this time, to the receiver’s vtable V (R). A vtable is
another object that maps “message name” to “implementa-
tion code”—it’s analogous to a “class” in mainstream OOP.

• This initial “bind” message triggers a similar “bind” to its
vtable V (V (R)), and so on: recursing up the vtable-chain,
and terminating at a base case.

• The higher levels of the vtable-chain mean that different
kinds of vtables can be supported,5 each implementing the
“bind” operation in its own way.

Inkeeping with its aims of minimality and self-describability, Id
as a whole is “bootstrapped” into existence by its initialisation code.
Each step of this code makes use of any parts of the system set up
by the previous steps.

The paper itself consists of mostly prose, several code listings,
and full C sources for a sample implementation at the end. It also
provides several diagrams. But to understand it, I repeatedly found
myself drawing extra diagrams.

For example, the first acts of the running system boil down
to initialising the three or so objects. This consists of allocating
memory, interpreting it as a C struct and then filling in fields in a
mundane manner. I had great difficulty following the specifics in my
head, but when I drew tables in the style of their diagrams I readily
saw what what going on. I personally would have preferred these
to have been in the paper in the first place, but I am not necessarily
representative of those who read it.6

At any rate, in order to solidify my understanding, there was no
better way than to run the thing and explore it. And yet, having
already “de-compiled” English text and C source code into object
diagrams, it is a shame to have to compile it all back to struct
member assignments. Worse, the reference system does not even
have text I/O when it is run, let alone some sort of GUI.7 Faced with
the necessity of adding some UI, it seemed a waste of effort to end
up with a system that must be continually polled for its current
state at a terminal prompt.

If I naturally think of this system as 2D tables, why can’t that be
how the running system looks? I do not have to keep polling my
eyes for what state my diagrams are in. But further than that—why
can’t the system be built out of tables in the first place? Shouldn’t
this be the main takeaway from the amount of time we spend
prototyping, explaining and designing software as diagrams on
paper? Why must the “natural representation” be restricted to the
finished product?

Thus was my natural representation decided. My first attempt to
make it a reality was a partial success: a webpage made of HTML
tables, evolved via JavaScript (JS).

2.1 Id as HTML Tables
To emphasise the tendency of Id objects to be visualised as key-
value mappings, I will refer to them as obj-dicts. Figure 1 shows the
5As well as different kinds of “kinds of vtables”, and so on.
6Besides that, the One-Size-Fits-All approach is perhaps unavoidable for static print
media.
7That is, the (un)intended user interface for Id ends up being a C debugger!

What It Takes to Create with Domain-Appropriate Tools <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

Figure 1: Part of Id/HTML: Obj-dicts are rendered as resiz-
able tables, which reference each other through numerical
IDs.

Id/HTML8 implementation [Jakubovic 2018], in which they take
the form of HTML tables.

Here, I was grateful for the browser’s management of graphical
layout, resizable text fields, and keeping the DOM tree synchronised
with what one sees. This last property enabled me to make the
decision to directly encode much of the system state in the DOM,
achieving basic liveness (“The thing on the screen is the actual
thing”) for the keys and values of obj-dicts.

I used a two-column <table> within a <div> for each obj-dict
(matching the diagrams) and gave the rows CSS class names match-
ing the keys (for easy lookup). Sending messages relied on the JS
console, but existing values in text boxes (such as method imple-
mentations) could be edited directly.

This choice of ordinary HTML as a substrate, however, proved
rather two-edged. The browser requires many features to do its job
of rendering complex web pages. And sadly, as its client, I could
only make use of those capabilities which the W3C had decided, at
the time of authorship, were worth the effort exposing in JavaScript.
For anything else, the browser is a black box, and this was very
frustrating in the following case.

2.1.1 The Radical Concept of Arrows that Stay on the Shapes. A
key aspect of the Id system is that there is an object graph. That
is, obj-dicts can have entries pointing to other obj-dicts, without
restriction to a tree structure. Drawing arrows to denote this is a
no-brainer (and easy on paper), so I wanted it in my substrate for
Id.
8This is read “Id over HTML”, to emphasise the specific substrate on which it sits.

Figure 2: Part of Id/SVG: Obj-dicts are moveable and resiz-
able nested boxes, referencing each other via real arrows.

Luckily, Scalable Vector Graphics (SVG) was at my disposal,
which could be persuaded to display <line>s over the <div>s. But
another key feature of my intended substrate was to be able to
rearrange and resize the boxes. So I would also need to detect
changes to the position and size of an element.

Bizarrely, there is no such facility provided for HTML elements.
This, despite the fact the browser needs this functionality hence it
must reside somewhere inside the black box.

Reluctantly, I stuck with my plan B: each object has a numerical
ID and pointers are just fields containing a number, followed using
a deref() function.

At this point it was starting to look like a mistake not to have
done the whole thing in SVG. I would gain full graphical freedom,
though also lose some benefits of the browser’s managing it on my
behalf. I already knew from experience the surprising complexity
of a DIY approach to layout, model-view updates, and interactivity.
But such an exercise would be an opportunity to carefully observe
this tedium, and crystallise some of my intuitions about why it is
so consistently frustrating.

2.2 Id as SVG Trees
In Id/SVG, shown in Figure 2, obj-dicts are encoded as nested SVG
<rect>s and other elements, reminiscent of Boxer [diSessa and
Abelson 1986]. This was a significant departure from the table rep-
resentation, and even though SVG supports (some) nested HTML
via <foreignObject>, I actually preferred the possibility of multi-
ple levels of nesting.

Still, this version was far more challenging and took much longer
to reach a satisfactory state. Yet it is precisely this drudgery that
brings me to a better understanding of this paper’s question: what

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Joel Jakubovic

has it taken? I shall discuss this in the form of broad patterns or
themes that stand out to me from my development experience,
hammered home by these Id implementations.

3 TYPICAL REQUIREMENTS OF COMMON
SOFTWARE

The “common case” of software present in our daily lives shares
certain properties, such as being graphical and interactive. Such
are expectations that “end-users” hold, consigned as they are to
merely consume what programmers give them. But if we want to
make “programming” more like “using”, such expectations on use
at least need to be acknowledged.

In this section, I will present these and other seemingly inevitable
demands of normal software, exemplified by Id/SVG. I will com-
ment on how our programming platforms measure up to the task,
including my chosen platform of JavaScript and Web technologies.

3.1 Retained-Mode Vector Graphics
Most software is designed for the subset of people who have a
colour display they can perceive. So right away it is going to re-
quire ways to draw coloured shapes. There are usually libraries for
this (though they aren’t always standard libraries), but some only
provide immediate mode: commands to instantaneously rasterise
pixels to a buffer. This is not enough for modern software, as we
often expect animation, or at least to see things change as we inter-
act. Most often we wish to see small changes to the same shapes,
rather than completely different shapes altogether; the reification
that this requires to persist between frames, is known as retained
mode.

On this requirement, SVG fits the bill very well. Although it is
not part of the JavaScript language per se, it is a standard and widely
supported technology of the Web platform. We can observe that
anyone with a browser in principle has access to a powerful vector
graphics editor—just one with no GUI.

The SVG tree has the nice properties of the DOM, such as updat-
ing the display when shape parameters are changed. This is well-
adapted to “I/O-bound” software like mine, where things change
only in response to user input. If I wanted animation, this would
boil down to a regular “advance simulation” signal, and would re-
quire setting up some rendering loop. Alternatively, there is the
W3C’s chosen ontology of CSS animations, but see Section 4.4.

3.2 Basic Assumptions about Physical Objects
In any software making use of vector graphics, there is usually
some level of “physics” expected by users. This need not be nearly
as exhaustive as the word “physics” might imply, as in e.g. physics
engines for games; I feel it is important to recognise it for what it
is instead of conceiving physics as an inherently complex thing to
be found only in specialised simulations. For example, pretty much
all mobile apps have what could be called “phone touch physics”
where menus and screens slide in and out.

All humans learn a basic set of expectations about the things
they see around them. Some of these, such as “things fall down”,
are not generally appropriate to software UIs—perhaps because the
screen has a role in our lives a more of a table work surface rather
than a vertical wall, even if it is vertical in real life. The level of

physics in software tends to not involve force, or mass, or very
much at all, merely position and space; we could call it “geometric
physics”.

One thing that all usable software must do, for example, is avoid
crushing many visually complex shapes, such as lines of text, into
the same (unreadable) region. Such concepts of “solid objects do
not intersect” or “only things at different layers may overlap” are
basic rules inherited from the real world of graphical presentation.

I feel the need to point this out, because by default the computer
does not know even the most obvious things about how space
works, so we must laboriously algorithmise this intuitive concept.
This is not only true in the case of 2-dimensional visual domains, but
even in the 1-dimensional case of memory allocation. The physics
of 1D memory are something like this:

• This number range 0000–FFFF is like a space (addresses =
points)

• Every point has at most one owner block (no overlap)
• These blocks are contiguous, finite ranges (1D boxes)

Far from being a niche topic in games and graphics, spatial par-
titioning algorithms and data structures have surprising relevance
to more ordinary software. Both memory allocation and graphical
layout are essential to today’s; shame that only one of those has
been recognised as such—and made part of the standard libraries
of programming languages.

3.2.1 Translationally Rigid Bodies. When you have both a screen
and a pointing device (e.g. touch or mouse), immediately it becomes
worth having ways to move things around in at least a minimally
realistic way. We can debate the appropriateness of Direct Manipu-
lation for various situations. But it does make a lot of sense in simple
cases, such moving around subdivisions of space (e.g. windows) or
elements of a graphical design.

In Id, the obvious candidate for this is the obj-dicts, plus all
nested boxes in Id/SVG. If I move the top-level rect, then I expect
its children to move with it. This is simply the translational physics
of rigid bodies: “this set of points all move together”. Of course,
proper rigid bodies might also rotate and have mass, but this is
usually undesirable for UI elements.

Translational rigidity can be expressed as the points X and Y
always having the same displacement from each other. Or, when
one point is moved, the rest also move by the same delta. This is a
problem of preserving the relationship over time, which was a
significant area of Id/SVG.

3.3 Maintaining Relationships over Time
The model of state-mutation present in most imperative languages
is what I call “dumb” state. The language provides an affordance to
change any part of the state to a new value, but nothing else.

What more could there be? Well, in every software system there
are certain rules, or “invariants” of internal consistency, such
as “translational rigidity” above. Often, changes to any part of the
system are permissible, but only if connected or dependent parts of
the state change in response.

The job of keeping track of who depends on whom can fall either
on the programmer, or the computer. If the programmer has to do
this, they can only go so far managing and simulating in their head.
As systems grow more complex, it is only natural to try and make

What It Takes to Create with Domain-Appropriate Tools <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

the computer more intelligent to do this work. What I am building
up to is that whenever we (or I) consider constraints, “reactive”
programming, or the “Observer” pattern as things you only wheel
out on special occasions, we only deceive ourselves into doing the
same work less explicitly. It seems that such “live state” should be
the expected common case for software development.

If a platform does not provide a means to causally link and unlink
bits of live state, then this must form part of the standard boilerplate.
Such was the case in Id/SVG: the polyfilled “Observable” class is the
most widely used. It wraps a current value and a list of subscribers,
notifying them when it changes.

Getting an object to follow the mouse pointer (e.g. when drag-
ging) is conceptually very simple: an “always equal” relation. In
Id/SVG founded on live-state, this can be expressed in much the
same way:

subscribe(object.position, pointer.position);

By default, an Observable A responds to a change from Observ-
able B by adopting B’s new value. So by subscribing the object’s
position to the pointer’s, pointer movements copy the new position
to the object.

3.4 Nut-Cracking with Sledgehammers
Speaking about vector graphics, physics, layout and constraint
maintenance might give the impression of high conceptual com-
plexity at the heart of even simple software. This is not quite true,
which makes it all the worse that there is yet still immense imple-
mentation complexity.

We are conditioned to only think of these in their most general
forms. But the “vector graphics” I use in Id/SVG are just rects,
lines, circles and text; a fraction of the full capability of SVG. The
“geometric physics” I use is dwarfed by fully general 2D or 3D
physics engines. The only layout algorithm I had the patience to
implement was a simple way to expand a list of boxes to fit in a
new child at the bottom. The affordance to place and size boxes
manually is a convenient substitute, when required infrequently.
Yet search for material on layout algorithms, and it can seem like
Fully General Linear Inequality Solvers like Cassowary [Borning
et al. 1997] are all there is.

The inevitable requirements I suggest here, do not necessitate
Fully General anything. In fact, such generality might make it
more cumbersome to express what I wanted in Id. As the old wis-
dom goes, there’s no point expressing a simple regex search as
an arbitrary Turing machine; my boxes don’t have a moment of
inertia or a mass and I don’t need a linear optimisation solver for
my space management—for the time being. Under the theme of
domain-appropriate tools, I think it is worth designing interfaces
for smaller-scale instances of these areas and exploring what they
are still capable of expressing.

4 PATTERNS AND POLYFILLING
The message of the previous section is that existing platforms are
often at the wrong level of abstraction for the requirements of
common software. I recognise that they are reasonably well-adapted
to batch mode file I/O tasks, but that they fail for the common case

is a problem. There is largely the same setup per project just to get
basic functionality:

• Here is how I shall describe shapes
• Here is how I make these shapes move together
• Here is how I maintain internal consistency as the user un-

predictably changes things
This burden either falls on the author, or on the wider community

to build and maintain higher-level frameworks, syntax extensions,
etc. In this paper, I refer to this process as “polyfilling”, with an
emphasis on the DIY, individual level.

It is true, we already have a term for bringing into existence
some software feature that isn’t already there: programming. The
difference is that polyfilling is about filling in boilerplate, i.e. func-
tionality that should have been there in the first place, but isn’t. This
injects some subjectivity and value judgement into the term. But
ultimately, all platforms are designed with certain features “out of
the box” and leave other features for us to implement “if needed”.

When the normal problem domain “requires batteries”, yet the
tools available say “batteries not included”, it is quite reasonable to
want the batteries to be part of the platform. Section 6.1 will expand
on this further, but here I will list the “batteries not included” I
found myself polyfilling in Id/SVG.

4.1 Wrapping and “User Data”
The classic example of polyfilling is finding that JavaScript arrays
do not support some familiar operation. For example, this used to
be the case with the map function. Yet JavaScript lets you directly
augment the Array class with the new operation, even though
Array is “part of the language”:

Array.prototype.map = function() { ... }

One can do this to all objects, even those of Web APIs. For exam-
ple, I use it to connect SVG nodes to the Id system: when a <rect>
is created, it is “annotated” with a userData pointer to the box that
it is part of. Then, when clicked, the box can be found immediately.

This could be described as the box “wrapping” the <rect>, but
risks implying that the <rect> merely needs to live inside, or be
referenced by, the box. In this case, the reverse association is also
needed (i.e. mutual pointers); clicks can only enter the system
through SVG in the first place. What is significant here is that
JavaScript lets us add such a link to an entity that we did not design.

This term, “user data”, often crops up in libraries with the same
idea: to associate arbitrary data with an API object. But in languages
that do not permit such unanticipated “annotation”, this has to be
explicitly designed in ahead of time. If it wasn’t, then it has to
be done in a roundabout way—for example, a separate userData
lookup table, indexed by the memory address of the API object.

4.2 Positioning and Sizing
The simple desire to move and resize boxes with the mouse mo-
tivated a lot of the concepts in Sections 3.2 and 3.3. This problem
could be considered a microcosm of Id/SVG: what’s a natural way I
conceive of this behaviour, and could I implement it that way?

It starts with a consideration of translational rigidity. In its most
primitive form, this is a relation between two points. Thus it is
natural to draw a line or “rod” between them. It seems that this

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Joel Jakubovic

rod transmits changes in one of its endpoints directly to the other
endpoint. Since they both feel the same deltas, the displacement
vector between them is preserved (Figure 3).

I like to see what I’m doing, so I wanted these rods to be visible
and thus somehow present in the SVG. For this, I have a Point class
that is used wherever manipulable points (SVG circles) are needed,
and a Rod class that draws a <line> and transmits endpoint deltas
across its length.

Resizing of boxes could be achieved through rods that stay hori-
zontal or vertical. In the language of “small differences” spoken by
the live-state infrastructure, this is expressed as a rod “transmitting
deltas” in the vertical and horizontal, “absorbing” the other com-
ponent into itself (Figure 4). Mirroring a DOM rect to these rods
is as simple as subscribing its width and height to horizontal and
vertical rods’ length Observables. This way, boxes can be resized
from whatever corner is convenient.

Unfortunately, with these rods came possibly the most frustrat-
ing technical challenges of the entire system. Initially I hoped to
move boxes as rigid bodies by temporarily making their border
rods rigid. However, the four border rods form a cyclic graph, as
rods are not directed. This, coupled with the unintended depth-first
semantics of Observable notification (a result of JavaScript func-
tion calls in a loop), led to duplicate deltas applied twice and other
nightmares. This is the tip of an entire research iceberg stretching
from Functional Reactive Programming to internet routing and
distributed algorithms.

I had to shelve this investigation in the interest of continuing
with the rest of the system, but I did manage to surmount this
through kludging and compromise. So I do not know whether these
problems are merely a consequence of some design decision I could
change to escape it, or if they are intrinsic to my (modest) UI goal.

4.3 Visible Coordinate Systems
Rigidity in a flat world of sibling shapes is somewhat straightfor-
ward. However, rigidity in the SVG world is more involved.

First of all, SVG shapes (e.g. <rect>) are strictly leaf nodes of
the DOM. So if I wish to nest boxes within boxes, the visible box
<rect> must be a mere accessory to the nestable element, in my
case a <g> (group). This means that instead of resizing the x, y,
width, height attributes of the <rect>, only its width and height
change, along with the transform attribute of its parent <g>. This
was not too bad; just subscribe this attribute, instead of the <rect>
position, to the top-left Point handle.

All child elements of a node transformwith it, so already SVG has
baked in a basic facility for translational rigidity. This is only avail-
able as a tree hierarchy,9 but it is still useful. However, it conflicts
with my early decision to have Point objects all share the global
co-ordinate system (this was to ensure that simple relations, such as
a point following the mouse pointer, are not infuriating to express).
Still, it was necessary in the case of certain elements—especially
those which must transcend the tree structure altogether, like ar-
rows between boxes—to bite this bullet, one way or another.

Again, I return to how we tend to work things out in the freedom
of paper. Co-ordinate systems, here merely positionally displaced,

9This highlights the mismatch between the tree-based DOM and any system that is
graph-structured.

have their origins here and there and have vectors between them.
The rods thus far let me visually express relations between global
Points; now was a question of expressing one global Point as a dis-
placement from another (the <g> transform). New rod Observables
p2_from_p1 and p1_from_p2 do the vector subtraction, which can
then be propagated as local co-ordinates to children. It is nice to
express the relation (as well as see it!) this way (Figure 4).

4.4 Context-Appropriate Ontologies
Each API has its own conventions, including a way of naming and
structuring expressions: an ontology [Basman 2018]. The One-Size-
Fits-All approach is exemplified in such interfaces.

In SVG, we express a rectangle by

<rect x="10" y="10" width="600" height="400">

The SVG specification defines to the user that a rect simply is a
top-left corner, a width, and a height—and that’s it. However, this
SVG-approved parametrisation of a rectangle is far from the only
one, and thus is, unsurprisingly, ill-fitted to some contexts.

I find it natural to resize boxes by dragging any of their four
corners, so I wanted this in Id/SVG. In this context, a “rectangle”
is seen as four points: top-left, top-right, bottom-left, bottom-right.
Obviously this is not a minimal description, since given e.g. the
top-left and bottom-right, the other two points can be inferred.
But one way or another, to be able to drag any of them, all four
points must be present at some level. This alternative ontology was
polyfilled in the form of a “rect controls” class that can be attached
manually to any SVG <rect>. The x and y are subscribed to the
top-left Point;10 width and height are subscribed to Rod lengths.

Another example is to be found in the DOM’s event listener
model. Conceptually, many “events” are in fact changes to the
state of some physical device. And both keyboard keys and mouse
buttons, for example, have two states—pressed, not pressed—which
ought to make them interchangeable to some extent. Indeed, this is
why there is such a thing as “key mapping”11 in PC games. But the
official ontology of the Web makes it nontrivial to do this.

To start with, the situation is modelled not as the changing of
some time-varying property, but instead as a sort of Cartesian
product of subroutines. Rather than, say, a piece of live-state for
the left mouse button (LMB), we get onmousedown and onmouseup.
Thankfully we do not have onAdown/onAup, onBdown/onBup, … all
the way to onZdown/onZup, but only onkeydown/onkeyup. Yet this
is just one of the many possible ways to slice this 3-dimensional12
space.

In Id/SVG I did not quite want to re-map keys, but I did often
want to have things follow the mouse when dragged. In order to do
this, I reified the mouse pointer and its position, letting me write
subscribe(point.position, pointer.position).The Point has
an is-considering-me? Observable wrapping onmouseover and
onmouseout, while a LMB_is_down Observable reifies the LMB
state. The aforementioned subscription is set up whenever is-
considering-me? and LMB_is_down become true, and torn down

10In the usual case where the <rect> is part of a box, the top-left instead controls the
parent <g>’s transform—but the idea is the same.
11For example, the player can re-assign the action “shoot” from its default mouse
button to a keyboard key, or another action from keyboard to mouse, as it suits them.
12Device (mouse, keyboard), sub-device (button, key), state (up, down)

What It Takes to Create with Domain-Appropriate Tools <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

Figure 3: Fully rigid rods transmit changes in one end to the other end.

Figure 4: The yellow rods on the box border are “half-rigid”: they transmit horizontal or vertical changes, but not both. The
green rod in the top-left absorbs all changes from an endpoint into itself, visualising the displacement vector of the child box
from its parent. The remaining red rods are fully rigid. A line of CSS can reveal this “scaffolding” which is normally hidden
for users.

otherwise. I tended to think of this in the form “subscribe to pointer
only when pointer is-considering-me and LMB is down”, but I could
live with this notation as a future polyfill in JavaScript.

The way these things are connected to the browser’s event lis-
teners could be called “device drivers”—an approach described in
[Hague 2010]. It amounts to translating information from theWeb’s
ontology into that of my substrate, as early as possible (Listing 1).

It takes some frustration and experience to get used to the idea
that you have a right to polyfill in alternative representations. Be-
fore I came to this conclusion, I used to twist my head around
translating my intention into the x,y,width,height parameters,
and un-translating when reading back the code I had produced.
Once you get used to having to adapt your mental imagery to a
single way of doing things (i.e. learning to code), it makes sense
to simply expect to see more of it—especially when you know you
are new, surrounded by veterans who see no problem, and so on.
Nowadays, I take the position that these are simply widespread
failings of our way of doing things, instead of our failure to adapt
to the way software is.

What would it look like to support multiple ontologies? Naïvely,
there are two answers: anticipate the possibilities ahead of time, or
support users adding their own. It is unclear if we can do better on
the latter than simply “support polyfilling”. As for the former, an-
ticipating the diversity of ways someone might look at the world is

svg.onmousedown = e =>

if (e.button === 0)

change(left_mouse_button_is_down, true);

svg.onmouseup = e =>

if (e.button === 0)

change(left_mouse_button_is_down, false);

svg.onmousemove = e => {

let client_pos = [e.clientX, e.clientY];

let r = svg.getBoundingClientRect();

let pos = vsub(client_pos, [r.left, r.top]);

change(pointer.position, pos);

};

Listing 1: “Device drivers” in the code translate the Web’s
ontology into a more structured form.

generally doomed to fail. But in the special case of fairly formalised
concepts such as geometrical shapes or mathematics, I could sug-
gest that simple under-specification is the root of the problem in
SVG. Instead of the specification explaining in English that “x and
y are the co-ordinates of the top left-hand corner…”, it might be

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Joel Jakubovic

better to make these relations machine-readable or embodied in the
API. For the rect this might look like:

• A rect is…
• a polygon (to be defined elsewhere)
• defined by 4 degrees of freedom x y width height (internal

representation)
• where there are 4 vertices, all points

– [x,y] called top-left
– [x+width,y] called top-right
– [x,y+height] called bot-left
– [x+width,y+height] called bot-right

The hope is that if we then specify enough information—say, the
bot-left and top-right—then the runtime has all it needs to derive
its internal 4 degrees of freedom.

In a crude sense, I have successfully anticipated the most obvious
ontologies of a rectangle here. However, I missed out the “centre
plus half-width and half-height” formulation, among others. Is this
a futile effort even for precise mathematical knowledge structures,
or could enough formalisation13 of Euclidean geometry in the Web
platform put an end to this sort of polyfilling?

There is, in fact, a part of the SVG specification [SVG 2011] that
comes frustratingly close to the above. It spells out how the <rect>
parameters “reduce” tomore primitive line-drawing steps, including
expressions for the four corners in terms of x,y,width,height. The
problem is, this reduction is still described in natural language for a
human implementor, missing the potential in such a formulation.14

It is worth admitting that there is is a significant shortcoming of
my polyfill here, and perhaps throughout. It has taken the form of
overriding the default ontology, replacing it with the one I preferred.
From my perspective, this is fine. But if another person were to
join in the development of Id/SVG, they would be stuck in the same
situation I was in, unless they fully agreed with my ontologies.

The desideratum of “ontology co-existence” is very much an
open research problem. [Basman 2018] gives a taste of the thorny
complications unaddressed by a “Semiotic Programming” solution
[Sharpe 2018], while [Kell 2017] points out how the idea of “linking”
is unconcerned with whatever language compiled to the object
code; language-agnosticism is one salient example of ontology co-
existence. This is especially clear if we agree with the latter author’s
view that “which language” ought to be an implementation detail,
that languages ought to be merely different views onto the same
thing.

These considerations did not occur to me because this project
is very idiosyncratic to my interests, at least in its initial stage. I
always worked on the assumption that I was the only developer.
However, a future Id system in a mature state should by no means
be bound to this fact. It is also worth considering myself in the
future as a different agent, with different ontology preferences. In
that case, the method here will need to be re-examined.

13A related question is whether type systems and other auto-reasoning formalisms
are trapped in a doomed quest for “closed-form” AI, representable as a LATEX formula.
14The point here is that a machine-readable description could easily remain human-
readable, but a natural-language description is not easily machine-readable.

4.5 Extensional Functions
Time and time again we come across the same pattern of partition-
ing system state: trees or graphs of dictonaries, a.k.a. Maps, a.k.a.
associative arrays. I am talking about the following pattern:

• Filesystem paths /path/to/some/file
• Python / Java modules com.example.pkg.subpkg
• JavaScript objects window.my_obj.component

The common case is an association of a textual name to an arbi-
trary value. I find it useful to see this as a mathematical “function”
defined extensionally by listing its input/output mappings—this
opposed to an intensional definition such as x 7→ 2x + 3, or a
computer program.

Extensional functions are perhaps the most basic form of Knowl-
edge Representation, and match natural language very well. “The
bicycle’s wheels’ spokes are silver” straightforwardly translates to
a function equation:

root(bicycle)(wheels)(spokes)(colour) = root(silver)

That is, whatever object is the output of silver in the top-level
root function, the output of colour (in the function on the left)
points to the same object. The ability to partition a system in this
way enables what [Basman et al. 2016] calls a “natural co-ordinate
system” for a piece of software, crucial for understanding and adapt-
ability by others.

It seems that this way of expressing the “parts” of a system
is an inevitable requirement of any programming substrate. Some
languages, such as C, do have static, compile-time associative arrays
(structs). In my experience this is usually not enough, and it’s
necessary to bring in a library or clutter the code with a home-
grown approximation to dynamic ones. Some parts of the Id authors’
C code were confusing until I realised they were just the guts
of a basic associative-array implementation; when I switched to
JavaScript, these lines vanished.

Perhaps another strength of JavaScript is its low concrete syntax
cost for instances or literals of associative arrays. Writing or reading

a = {

b1: { c1: z, c2: y },

b2: { c3: x, c4: w }

};

is more “What You See Is What You Get” than the imperative-
style

a = new Map();

a.set('b1', new Map());

a.get('b1').set('c1', z);

a.get('b1').set('c2', y);

a.set('b2', new Map());

a.get('b2').set('c3', x);

a.get('b2').set('c4', w);

The latter style is unfortunately still required in JavaScript for
extensional functions with non-string inputs.

My original flat, tabular representation in Id/HTML did support
a single level of such “extensional functions”, but no more. In other
words, the output of such a mapping could not be a further mapping
itself. This was problematic because vtables, conceptually, have two

What It Takes to Create with Domain-Appropriate Tools <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

levels of such nesting: the top-level fields, and the “methods dic-
tionary” which contains its own input-output pairs. To distinguish
between these, I actually stored method mappings with an ad-hoc
‘‘-” character (Figure 1).

By contrast, after switching to the fully nestable box substrate in
Id/SVG, I could directly express the model I was thinking in. Quite
simply, the vtable box has a methods box, and that’s where the
method boxes go (Figure 2). If I had stayed in HTML, there is a good
risk I would have had to polyfill in extensional functions—whether
through nested <table> elements, additional ‘‘-” characters, or
something else.

4.6 Persistence
This refers to exposing structured program state to the user. This
data can then be saved and used to restore the system at a later date,
but it can also be tweaked with corresponding changes reflected in
the system.

Persistence was absolutely necessary to continue Id/SVG devel-
opment, past a certain point.This is because, upon discovering a bug
and fixing it in the source code, the web page must be refreshed and
started anew. In the beginning, when verifying that box drawing
with the mouse is working correctly, this is not much of a problem:
upon refresh, the blank initial state is restored and I could draw
again. But as the substrate matured, and I began to implement parts
of the target system (Id)—the cycle of finding a bug, tearing down
the system, refreshing and losing work, and manually building it
up again, proved frustrating. Because the system could only be
patched externally and restarted, there needed to be some way to
persist changes which live in the DOM, rather than the source files.

Normally, this can be as simple as autosave to the filesystem. But
the Web platform is very wary of this,15 so the solution I turned
to was manually copying the markup in the browser’s inspector
(Figure 5).

This required a slight change towards an architecture where the
all the data required to reconstruct the system’s current state is con-
tained in the inspector HTML, as opposed to hidden JS properties.
Where previously “boxes” were created first as invisible JS objects
responsible for some SVG, now it was the other way round. When
a rect is clicked, the system must look at some SVG and interpret
it “on demand” as a box (although this helper object, once created,
can be cached in the SVG nodes).

Persistence seems to be a weaker cousin of externalisability,
defined in [Basman et al. 2016]. As it stands, the system does not
quite qualify as externalisable. When making changes to the HTML
in the element inspector, the system’s behaviour ought to adjust
to match, but this is not currently guaranteed. Depending on the
ability to listen for changes in node attributes or children, this may
remain the case.

5 THE ID SYSTEM AS A PART OF THE
SOLUTION

The Id system was designed with a goal of eliminating the “artifi-
cial” distinction between implementation language and end-user

15As anyone who learns WebGL can attest to, when they discover they must run a
local Web server to provide image files for textures (since any filesystem requests will
be rejected for security).

Figure 5: To save the state of the system, the SVG group cor-
responding to the root box is copied and pasted inside the
HTML file’s <svg> element.

language, by means of a mostly self-defining, or “meta-circular”
object model. This general way of working on a piece of software
“by means of itself” is easy to agree with, even if OOP is not to
everyone’s taste. It is an open question whether Id’s approach could
be applied to other programming styles.

The allure of meta-circularity here is not merely in being “cool”,
but that it paves the way to end-user empowerment. This is some-
what misleading because in Id, these “end-users” are actually pro-
grammers. However, its purpose is to free a programmer’s depen-
dence on some distant and busy16 language designer. It seems
plausible that this is a step on the way to enabling creation of a
piece of software which non-programmers do not depend on us for.

I emphasise that this is the allure of Id. However, there are some
significant practical issues that must be overcome or clarified first.

5.1 Minimal Descriptions
The Id paper was part of the STEPS project of Alan Kay’s VPRI.17
This project argued that the immense level of “accidental complex-
ity” present in software implementation could be reduced, and Kay
himself dreams of an end result analogous to a “Maxwell’s Equa-
tions” of software. That is: the behaviour of electromagnetic fields
can be represented in four short equations that fit “on a T-shirt”.

A self-hosted LISP interpreter fits on a page. Could we aim at a
similar “fundamental description of software” that fits on something
less than millions of lines of code?

This argument as stated suffers by glossing over an important
fact. Maxwell’s equations certainly do fit onto a T-shirt, but most
people will not be able to explain what they mean. What typically
amounts to years of study is compressed into those mathematical

16Not to mention unelected? “Take Back Control!” (Jokes aside, in this context it makes
a lot of sense.)
17Viewpoints Research Institute

<Programming’20> Companion, March 23–26, 2020, Porto, Portugal Joel Jakubovic

symbols, and the learning material involved most certainly does
not fit on a T-shirt. The obvious reductio ad absurdum is where
we encapsulate these equations under a single symbol,18 M. M
is defined as “Maxwell’s Equations are true”. Ta-da—this fits on a
coin, but good luck doing anything with it.

I say this not to dismiss the argument, but to highlight the ac-
tually hard part of getting a “concise description” of some system;
defining complexity away into a symbol helps us no more than
naming the solution to an equation “x”. There is a connection with
data compression: even if the data is successfully compressed into
a smaller file, the size of the compression program should be added
as well. What matters is to reduce the combined size of notation
and substrate.

Further, there is perhaps a risk of optimising for formal rather
than practical minimality (e.g. the Turing machine). Id’s “minimal-
ity” does not necessarily translate into “simplicity”. It suffers from
the same cognitive complexity, or need for study, as Maxwell’s Equa-
tions; I cannot stress enough the amount of effort I have put in to
wrap my head around the self-referential “vtable vtable” and the
task of self-implementation. An overall better system might be one
which is easier to pick up or understand, even if the number of
formal objects is not as minimal.

In the conclusion of [Piumarta and Warth 2006], the authors
note that “it is not necessarily a friendly model for hand-written
code”, suggesting its use as a compilation target. In a similar vein, it
could function as the kernel of a much more familiar system (on the
surface)—it is, after all, supposed to be a vehicle that other things sit
on, rather than the final user interface itself. In fact, this is precisely
the approach set out in the related paper [Piumarta 2006].

5.2 Self-Implementation
Said related “COLAs” paper expands on Id, giving it a “structural”
role complemented by a LISP-like programming language. Sec-
tion 6.1 sketches out the intended “bootstrapping” process, ending
with a self-sufficent, self-hosting version of the system.

However, this task again suffers from the same cognitive com-
plexity as any other self-referential circle. This is even more so for
me, having made the complexity of graphics and interaction some-
how still “part of the system”. Figuring out exactly how the authors’
bootstrapping process of their wholly language-based system maps
on to my task is, as far as I know, uncharted territory.

Finally, in [Basman 2018], there is a warning against “obsession
with completely homogenous systems” written in themselves. If
this approach is doomed then obviously I want to take a different
one, but the argument against it seems to hinge on what constitutes
“failure”. It considers Smalltalk and LISP as “unsuitable”, yet the
authors of Id clearly think the opposite. The disagreement probably
hinges on “unsuitable for what?” and it would be clearer if the
following two questions were answered:

1. Is there a difference in (final, intermediate) goals between
the two views?

2. Could systems like Id and COLAs plausibly succeed at their
own stated goals?

18In fact, this is almost achieved by the formalism of Geometric Calculus, which reduces
them to only one equation.

6 CONCLUSIONS AND FUTURE WORK
6.1 What Did It Take, and Why?
It takes a lot of work to create in a substrate that feels suited to
the domain. Much of this work involves filling in the machinery
necessary to an awful lot of software, rather than the ways one’s
domain differs from this common case.

In an ideal world, there would be no accidental complexity, no
boilerplate, no polyfilling. But this can’t be the same as saying there
would be no work to do—that sounds like a world where essential
complexity has also been removed.

Instead, we can note that software ecosystems typically centre
around a “core”, such as a language, with a surrounding “periph-
ery”, such as libraries not bundled with the core language. The core
(language syntax, semantics, standard libraries) acts as a common
platform uniting the community; the periphery consists of func-
tionality that is not “built-in” to this core, both realised as software
(e.g. libraries), and that which is as-of-yet unrealised or nonexistent.

There is a constant process of negotiation determining what
should be part of the shared core versus the responsibility of the
periphery. But at any given time, every community draws the line
somewhere.

To a first approximation, what is “built-in” encompasses the
features and concerns that are common to the entire community.
Features that are of minority or niche use belong outside; it is
one’s own responsibility to implement them, or to integrate with
an existing implementation.

Perhaps in an ideal world, someone could realise their vision
in software by focusing all their effort on what makes their idea
unique, or what is idiosyncratic to it. In other words, they would
only be responsible for that part of their idea which:

1. It would be unrealistic to expect the wider community to
have thought of already, and

2. It would be unfair to expect the wider community to build
on his or her behalf.

If the core Web platform (particularly JavaScript) is meant for
supporting “web apps”, and this is indeed how it is used, then it
seems it has not yet fully absorbed the functionality common to
this usage. At present, this is simply a surprise, or a puzzle, and it
might simply be a matter of time before it catches up.

Nevertheless, I wanted to explicitly highlight the obstacles one
is likely to meet when starting from this platform. They include
not only those specific to the Web, but also issues that occur far
more widely (e.g. monopoly ontologies). I showed how, in the short-
term, we can overcome these with solutions intended to be domain-
appropriate to their use (within the syntactic limits of JavaScript).

6.2 What Next?
Id/SVG more or less realises my desired substrate for implement-
ing Id. However, there is one major area I failed to make domain-
appropriate. Despite representing the “data” parts of the system as
I wanted, the computational parts of Id were just transplanted into
the text boxes as source code. I will reiterate that this is sometimes
suitable, but not always, and it would be worth exploring alter-
native ways to express some of it in the substrate I have. Having

What It Takes to Create with Domain-Appropriate Tools <Programming’20> Companion, March 23–26, 2020, Porto, Portugal

JavaScript code that the user can modify also seems to mess up the
browser’s debugger when stepping through it.

Still, in this mostly-suitable substrate for Id, I can continue with
my project of seeing whether the allure of [Piumarta 2006] can be
saved from the text-based “hidden world” limitation that pervades
it. The obvious next step is attempting “self-implementation”. This
is desirable is because I still have not escaped my text editor. Any
changes to my Id/SVG substrate (of nested box drawing) require
going back to the script files; I still cannot take advantage of the
system I have developed, to ease its own development. In the words
of [Piumarta 2006], I wish to make it so that the original JavaScript
files can be “jettisoned without remorse”.

In Section 3.1, I touched on how everyone with a browser has
access to a powerful vector graphics editor (SVG) locked behind
a completely inappropriate UI (the JS Console). It is similar for
3D graphics (WebGL), and sound and music (Web Audio). Simi-
lar observations are made about “native” OS apps in [Hague 2013].
Unfortunately for that domain, the interface that unlocks your oper-
ating system’s range of functionalities—batch-mode compilation—is
quite far from the affordances of the (interactive) JS Console.

I intend to use Id/SVG to “tame” SVG and other JavaScript APIs,
with some minimal on-demand visualisation in the large portion of
the screen next to the JS console. This is an attempt to generalise
the “rect controls”, which allow the obvious geometric properties of
a <rect> to be directly manipulated (Section 4.4). Giving Id access
to Web technologies in this way is essential for evolving it into a

fully-featured self-changeable software environment, which could
allow as much domain-specifc representation as its user wishes.

REFERENCES
Antranig Basman. 2018. Critique of ‘Semprola: A Semiotic Programming Language’.

In Conference Companion of the 2nd International Conference on Art, Science, and
Engineering of Programming (Nice, France) (Programming’18 Companion). 214–217.
https://doi.org/10.1145/3191697.3214331

Antranig Basman, Luke Church, Clemens Klokmose, and Colin Clark. 2016. Software
and How it Lives On — Embedding Live Programs in the World Around Them. http:
//www.klokmose.net/clemens/wp-content/uploads/2016/10/ppig-2016.pdf

Alan Borning, KimMarriott, Peter Stuckey, and Yi Xiao. 1997. Solving Linear Arithmetic
Constraints for User Interface Applications. (1997), 87–96. https://constraints.cs.
washington.edu/solvers/uist97.html

Andrea diSessa and Harold Abelson. 1986. Boxer: a reconstructible computa-
tional medium. http://worrydream.com/refs/diSessa%20-%20Boxer%20-%20A%
20Reconstructible%20Computational%20Medium.pdf

James Hague. 2010. Living Inside Your Own Black Box. https://prog21.dadgum.com/66.
html

James Hague. 2013. Dynamic Everything Else. https://prog21.dadgum.com/182.html
Joel Jakubovic. 2018. Hacking together OROM/DOM+Ctrl+Shift+J. https:

//programmingmadecomplicated.wordpress.com/2018/01/18/3-hacking-together-
orom-domctrlshiftj/

Stephen Kell. 2017. Some Were Meant for C: The Endurance of an Unmanageable Lan-
guage. https://www.cs.kent.ac.uk/people/staff/srk21/research/papers/kell17some-
preprint.pdf

Ian Piumarta. 2006. Accessible Language-Based Environments of Recursive Theories.
http://www.vpri.org/pdf/rn2006001a_colaswp.pdf

Ian Piumarta and Alessandro Warth. 2006. Open, Reusable Object Models. http:
//www.vpri.org/pdf/tr2006003a_objmod.pdf

Oli Sharpe. 2018. Semprola: a semiotic programming language. https://www.shift-
society.org/salon/papers/2018/revised/semprola.pdf

Working Group SVG. 2011. SVG 1.1 Specification: 9.2 The “rect” Element. https:
//www.w3.org/TR/SVG11/shapes.html#RectElement

https://doi.org/10.1145/3191697.3214331
http://www.klokmose.net/clemens/wp-content/uploads/2016/10/ppig-2016.pdf
http://www.klokmose.net/clemens/wp-content/uploads/2016/10/ppig-2016.pdf
https://constraints.cs.washington.edu/solvers/uist97.html
https://constraints.cs.washington.edu/solvers/uist97.html
http://worrydream.com/refs/diSessa%20-%20Boxer%20-%20A%20Reconstructible%20Computational%20Medium.pdf
http://worrydream.com/refs/diSessa%20-%20Boxer%20-%20A%20Reconstructible%20Computational%20Medium.pdf
https://prog21.dadgum.com/66.html
https://prog21.dadgum.com/66.html
https://prog21.dadgum.com/182.html
https://programmingmadecomplicated.wordpress.com/2018/01/18/3-hacking-together-orom-domctrlshiftj/
https://programmingmadecomplicated.wordpress.com/2018/01/18/3-hacking-together-orom-domctrlshiftj/
https://programmingmadecomplicated.wordpress.com/2018/01/18/3-hacking-together-orom-domctrlshiftj/
https://www.cs.kent.ac.uk/people/staff/srk21/research/papers/kell17some-preprint.pdf
https://www.cs.kent.ac.uk/people/staff/srk21/research/papers/kell17some-preprint.pdf
http://www.vpri.org/pdf/rn2006001a_colaswp.pdf
http://www.vpri.org/pdf/tr2006003a_objmod.pdf
http://www.vpri.org/pdf/tr2006003a_objmod.pdf
https://www.shift-society.org/salon/papers/2018/revised/semprola.pdf
https://www.shift-society.org/salon/papers/2018/revised/semprola.pdf
https://www.w3.org/TR/SVG11/shapes.html#RectElement
https://www.w3.org/TR/SVG11/shapes.html#RectElement

	Abstract
	1 Introduction
	2 The Id system
	2.1 Id as HTML tables
	2.2 Id as SVG trees

	3 Typical Requirements Of Common Software
	3.1 Retained-Mode Vector Graphics
	3.2 Basic Assumptions About Physical Objects
	3.3 Maintaining Relationships Over Time
	3.4 Nut-Cracking With Sledgehammers

	4 Patterns and Polyfilling
	4.1 Wrapping and ``user data''
	4.2 Positioning and Sizing
	4.3 Visible Coordinate Systems
	4.4 Context-appropriate ontologies
	4.5 Extensional Functions
	4.6 Persistence

	5 The Id system as a part of the solution
	5.1 Minimal descriptions
	5.2 Self-implementation

	6 Conclusions and future work
	6.1 What did it take, and why?
	6.2 What next?

	References

