
bLSM:∗ A General Purpose Log Structured Merge Tree

Russell Sears
Yahoo! Research
Santa Clara, CA

Raghu Ramakrishnan
Yahoo! Research
Santa Clara, CA

ABSTRACT
Data management workloads are increasingly write-intensive
and subject to strict latency SLAs. This presents a dilemma:
Update in place systems have unmatched latency but poor
write throughput. In contrast, existing log structured tech-
niques improve write throughput but sacrifice read perfor-
mance and exhibit unacceptable latency spikes.

We begin by presenting a new performance metric: read
fanout, and argue that, with read and write amplification,
it better characterizes real-world indexes than approaches
such as asymptotic analysis and price/performance.

We then present bLSM, a Log Structured Merge (LSM)
tree with the advantages of B-Trees and log structured ap-
proaches: (1) Unlike existing log structured trees, bLSM
has near-optimal read and scan performance, and (2) its
new “spring and gear” merge scheduler bounds write latency
without impacting throughput or allowing merges to block
writes for extended periods of time. It does this by ensuring
merges at each level of the tree make steady progress with-
out resorting to techniques that degrade read performance.

We use Bloom filters to improve index performance, and
find a number of subtleties arise. First, we ensure reads can
stop after finding one version of a record. Otherwise, fre-
quently written items would incur multiple B-Tree lookups.
Second, many applications check for existing values at in-
sert. Avoiding the seek performed by the check is crucial.

Categories and Subject Descriptors
H.3.2 [Information Storage]: File organization

General Terms
Algorithms, Performance

Keywords
Log Structured Merge tree, merge scheduling, read fanout,
read amplification, write amplification

∗Pronounced “Blossom”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD ’12, May 20–24, 2012, Scottsdale, Arizona, USA.
Copyright 2012 ACM 978-1-4503-1247-9/12/05 ...$10.00.

1. INTRODUCTION
Modern web services rely upon two types of storage for

small objects. The first, update-in-place, optimizes for ran-
dom reads and worst case write latencies. Such stores are
used by interactive, user facing portions of applications. The
second type is used for analytical workloads and emphasizes
write throughput and sequential reads over latency or ran-
dom access. This forces applications to be broken into “fast-
path” processing, and asynchronous analytical tasks.

This impacts end-users (e.g., it may take hours for ma-
chine learning models to react to users’ behavior), and forces
operators to manage redundant storage infrastructures.

Such limitations are increasingly unacceptable. Cloud
computing, mobile devices and social networking write data
at unprecedented rates, and demand that updates be syn-
chronously exposed to devices, users and other services. Un-
like traditional write-heavy workloads, these applications
have stringent latency SLAs.

These trends have two immediate implications at Yahoo!.
First, in 2010, typical low latency workloads were 80-90%
reads. Today the ratio is approaching 50%, and the shift
from reads to writes is expected to accelerate in 2012. These
trends are driven by applications that ingest event logs (such
as user clicks and mobile device sensor readings), and later
mine the data by issuing long scans, or targeted point queries.

Second, the need for performant index probes in write
optimized systems is increasing. bLSM is designed to be
used as backing storage for PNUTS, our geographically-
distributed key-value storage system [10], and Walnut, our
next-generation elastic cloud storage system [9].

Historically, limitations of log structured indexes have pre-
sented a trade off. Update-in-place storage provided su-
perior read performance and predictability for writes; log-
structured trees traded this for improved write throughput.
This is reflected in the infrastructures of companies such as
Yahoo!, Facebook [6] and Google, each of which employs
InnoDB and either HBase [1] or BigTable [8] in production.

This paper argues that, with appropriate tuning and our
merge scheduler improvements, LSM-trees are ready to sup-
plant B-Trees in essentially all interesting application sce-
narios. The two workloads we describe above, interactive
and analytical, are prime examples: they cover most appli-
cations, and, as importantly, are the workloads that most-
frequently push the performance envelope of existing sys-
tems. Inevitably, switching from B-Trees to LSM-Trees en-
tails a number of tradeoffs, and B-Trees still outperform log
structured approaches in a number of corner cases. These
are summarized in Table 1.

217

Operation Our bLSM-Tree B-Tree LevelDB

Point lookup (seeks) 1 §3.1.1 1 §2.2 O(log(n))
Read modify write (seeks) 1 §2.3 2 §2.2 O(log(n))

Apply delta to record (seeks) 0 §2.3 2 §2.2 0
Insert or overwrite (seeks) 0 §3.1.2 2 §2.2 0

Short (≤ 1 page) scans (seeks) 2 §3.3 1 §2.2 O(log(n))
Long (N page) scans (seeks) 2 §3.3 Up to N §2.2 O(log(n))

Uniform random insert latency Bounded §4.1-§4.3 Bounded §2.2 Unbounded
Worst-case insert latency Unbounded See §4.2.2 for a fix Bounded §2.2 Unbounded

Table 1: Summary of results. bLSM-Trees outperform B-Trees and LSM-Tees in most interesting scenarios.

1
2

3 4

5
1

2

34

5

A

BC

D E

A
E

D C

B
A

E

DC

B

Application
writes

C0:C1
merge

C1':C2
merge

% full

C0 C1 C1'

in progress
= [1-5]

out progress
= [A-E]

C2

in progress
= [A-E]

Application
reads

1

2 3 4

Bloom
Filters

Figure 1: bLSM-Tree architecture

Concretely, we target “workhorse” data management sys-
tems that are provisioned to minimize the price/performance
of storing and processing large sets of small records. Serv-
ing applications written atop such systems are dominated
by point queries, updates and occasional scans, while ana-
lytical processing consists of bulk writes and scans. Unlike
B-Trees and existing log structured systems, our approach
is appropriate for both classes of applications.

Section 2 provides an overview of log structured index
variants. We explain why partitioned, three level trees with
Bloom filters (Figure 1) are particularly compelling.

Section 3 discusses subtleties that arise with the base ap-
proach, and presents algorithmic tweaks that improve read,
scan and insert performance.

Section 4 describes our design in detail and presents the
missing piece: with careful scheduling of background merge
tasks we are able to automatically bound write latencies
without sacrificing throughput.

Beyond recommending and justifying a combination of
LSM-Tree related optimizations, the primary contribution
of this paper is a new class of merge schedulers called level
schedulers. We distinguish level schedulers from existing
partition schedulers and present a level scheduler we call
the spring and gear scheduler.

In Section 5 we confirm our LSM-Tree design matches or
outperforms B-Trees on a range of workloads. We compare
against LevelDB, a state-of-the-art LSM-Tree variant that
has been highly optimized for desktop workloads and makes
different tradeoffs than our approach. It is a multi-level tree
that does not make use of Bloom filters and uses a partition
scheduler to schedule merges. These differences allow us to
isolate and experimentally validate the effects of each of the
major decisions that went into our design.

2. BACKGROUND
Storage systems can be characterized in terms of whether

they use random I/O to update data, or write sequentially
and then use additional sequential I/O to asynchronously
maintain the resulting structure. Over time, the ratio of
the cost of hard disk random I/O to sequential I/O has in-
creased, decreasing the relative cost of the additional se-
quential I/O and widening the range of workloads that can
benefit from log-structured writes.

As object sizes increase, update-in-place techniques be-
gin to outperform log structured techniques. Increasing the
relative cost of random I/O increases the object size that de-
termines the “cross over” point where update-in-place tech-
niques outperform log structured ones. These trends make
log structured techniques more attractive over time.

Our discussion focuses on three classes of disk layouts:
update-in-place B-Trees, ordered log structured stores, and
unordered log structured stores. B-Tree read performance is
essentially optimal. For most applications they perform at
most one seek per read. Unfragmented B-Trees perform one
seek per scan. However, they use random writes to achieve
these properties. The goal of our work is to improve upon
B-Tree writes without sacrificing read or scan performance.

Ordered log structured indexes buffer updates in RAM,
sort them, and then write sorted runs to disk. Over time,
the runs are merged, bounding overheads incurred by reads
and scans. The cost of the merges depends on the indexed
data’s size and the amount of RAM used to buffer writes.

Unordered log structured indexes write data to disk im-
mediately, eliminating the need for a separate log. The cost
of compacting these stores is a function of the amount of
free space reserved on the underlying device, and is inde-
pendent of the amount of memory used as cache. Unordered
stores typically have higher sustained write throughput than
ordered stores (order of magnitude differences are not un-
common [22, 27, 28, 32]). These benefits come at a price:
unordered stores do not provide efficient scan operations.
Scans are required by a wide range of applications (and ex-
ported by PNUTS and Walnut), and are essential for effi-
cient relational query processing. Since we target such use
cases, we are unable to make use of unordered techniques.
However, such techniques complement ours, and a number
of implementations are available (Section 6). We now turn
to a discussion of the tradeoffs made by ordered approaches.

2.1 Terminology
A common theme of this work is the tradeoff between

asymptotic and constant factor performance improvements.
We use the following concepts to reason about such tradeoffs.

Read amplification [7] and write amplification [22] charac-

218

terize the cost of reads and writes versus optimal schemes.
We measure read amplification in terms of seeks, since at
least one random read is required to access an uncached piece
of data, and the seek cost generally dwarfs the transfer cost.
In contrast, writes can be performed using sequential I/O,
so we express write amplification in terms of bandwidth.
By convention, our computations assume worst-case access
patterns and optimal caching policies.

read amplification = worst case seeks per index probe

write amplification =
total seq. I/O for object

object size

Write amplification includes both the synchronous cost of
the write, and the cost of deferred merges or compactions.

Given a desired read amplification, we can compute the
read fanout (our term) of an index. The read fanout is the
ratio of the data size to the amount of RAM used by the
index. To simplify our calculations, we linearly approximate
read fanout by only counting the cost of storing the bottom-
most layer of the index pages in RAM. Main memory has
grown to the point where read amplifications of one (or even
zero) are common (Appendix A). Here, we focus on read
fanouts with a read amplification of one.

2.2 B-Trees
Assuming that keys fit in memory, B-Trees provide opti-

mal random reads; they perform a single disk seek each time
an uncached piece of data is requested. In order to perform
an update, B-Trees read the old version of the page, modify
it, and asynchronously write the modification to disk. This
works well if data fits in memory, but performs two disk seeks
when the data to be modified resides on disk. Update-in-
place hashtables behave similarly, except that they give up
the ability to perform scans in order to make more efficient
use of RAM.

Update in place techniques’ effective write amplifications
depend on the underlying disk. Modern hard disks transfer
100-200MB/sec, and have mean access times over 5ms. One
thousand byte key value pairs are fairly common; it takes the

disk 103

108
seconds = 10us to write such a tuple sequentially.

Performing two seeks takes a total of 10ms, giving us a write
amplification of approximately 1000.

Appendix A applies these calculations and a variant of the
five minute rule [15] to estimate the memory required for a
read amplification of one with various disk technologies.

2.3 LSM-Trees
This section begins by describing the base LSM-Tree al-

gorithm, which has unacceptably high read amplification,
cannot take advantage of write locality, and can stall appli-
cation writes for arbitrary periods of time. However, LSM-
Tree write amplification is much lower than that of a B-Tree,
and the disadvantages are avoidable.

Write skew can be addressed with tree partitioning, which
is compatible with the other optimizations. However, we
find that long write pauses are not adequately addressed by
existing proposals or by state-of-the-art implementations.

2.3.1 Base algorithm
LSM-Trees consist of a number of append-only B-Trees

and a smaller update-in-place tree that fits in memory. We
call the in-memory tree C0. Repeated scans and merges of

these trees are used to spill memory to disk, and to bound
the number of trees consulted by each read.

The trees are stored in key order on disk and the in-
memory tree supports efficient ordered scans. Therefore,
each merge can be performed in a single pass. In the ver-
sion of the algorithm we implement (Figure 1), the number
trees is constant. The on-disk trees are ordered by freshness;
the newest data is in C0. Newly merged trees replace the
higher-numbered of the two input trees. Tree merges are
always performed between Ci and Ci+1.

The merge threads attempt to ensure that the trees in-
crease in size exponentially, as this minimizes the amortized
cost of garbage collection. This can be proven in many dif-
ferent ways, and stems from a number of observations [25]:

1. Each update moves from tree Ci to Ci+1 at most once.
All merge costs are due to such movements.

2. The cost of moving an update is proportional to the
cost of scanning the overlapping data range in the large

tree. On average, this cost is Ri =
|Ci+1|
|Ci|

per byte of

data moved.

3. The size of the indexed data is roughly |C0|∗
∏N−1

i=0 Ri.

This defines a simple optimization problem in which we vary
the Ri in order to minimize the sum of costs (bullet 2) while
holding the index size constant (bullet 3). This optimization

tells us to set each Ri = N−1

√
|data|
|C0|

. It immediately follows

that the amortized cost of insertion is O(N−1
√
|data|).

Note that the analysis holds for best, average and worst-
case workloads. Although LSM-Tree write amplification is
much lower than B-Trees’ worst case, B-Trees naturally lever-
age skewed writes. Skew allows B-Trees to provide much
lower write amplifications than the base LSM-Tree algo-
rithm. Furthermore, LSM-Tree lookups and scans perform
N − 1 times as many seeks as a B-Tree lookup, since (in the
worst case), they examine each tree component.

2.3.2 Leveraging write skew
Although we describe a special case solution in Section 4.2,

partitioning is the best way to allow LSM-Trees to leverage
write skew [16]. Breaking the LSM-Tree into smaller trees
and merging the trees according to their update rates con-
centrates merge activity on frequently updated key ranges.

It also addresses one source of write pauses. If the dis-
tribution of the keys of incoming writes varies significantly
from the existing distribution, then large ranges of the larger
tree component may be disjoint from the smaller tree. With-
out partitioning, merge threads needlessly copy the disjoint
data, wasting I/O bandwidth and stalling merges of smaller
trees. During these stalls, the application cannot make for-
ward progress.

Partitioning can intersperse merges that will quickly con-
sume data from the small tree with merges that will slowly
consume the data, “spreading out” the pause over time. Sec-
tions 4.1 and 5 argue and show experimentally that, al-
though necessary in some scenarios, such techniques are in-
adequate protection against long merge pauses. This con-
clusion is in line with the reported behavior of systems with
partition-based merge schedulers, [1, 12, 19] and with pre-
vious work, [16] which finds that partitioned and baseline
LSM-Tree merges have similar latency properties.

219

With fractional cascading, lookups begin by
searching the index, then check short runs

of data pages at each level of the tree.
0 2 4 6 8 10 12 14 16

Data size (multiples of available RAM)

0

1

2

3

4

5

6

R
e
a
d

 a
m

p
lifi

ca
ti

o
n
 (

se
e
ks

)

Variable R with Bloom Filters (our approach)
R=2
R=3
R=4
R=5
R=6
R=7
R=8
R=9
R=10

0 2 4 6 8 10 12 14 16

Data size (multiples of available RAM)

0

2

4

6

8

10

12

R
e
a
d

 a
m

p
lifi

ca
ti

o
n
 (

b
a
n
d

w
id

th
) Variable R with Bloom Filters (our approach)

R=2
R=3
R=4
R=5
R=6
R=7
R=8
R=9
R=10

Figure 2: Fractional cascading reduces the cost of lookups from O(log(n)2) to O(log(n)), but mixes keys and
data, increasing read amplification. For our scenarios, Bloom filters’ maximum amplification is 1.03.

3. ALGORITHMIC IMPROVEMENTS
We now present bLSM, our new LSM-Tree variant, which

addresses the LSM-Tree limitations we describe above. The
first limitation of LSM-Trees, excessive read amplification,
is only partially addressed by Bloom filters, and is closely
related to two other issues: exhaustive lookups which need-
lessly retrieve multiple versions of a record, and seeks during
insert. The second issue, write pauses, requires scheduling
infrastructure that is missing from current implementations.

3.1 Reducing read amplification
Fractal cascading and Bloom filters both reduce read am-

plification. Fractal cascading reduces asymptotic costs; Bloom
filters instead improve performance by a constant factor.

The Bloom filter approach protects the C1...CN tree com-
ponents with Bloom filters. The amount of memory it re-
quires is a function of the number of items to be inserted, not
the items’ sizes. Allocating 10 bits per item leads to a 1%
false positive rate,1 and is a reasonable tradeoff in practice.
Such Bloom filters reduce the read amplification of LSM-
Tree point lookups from N to 1+ N

100
. Unfortunately, Bloom

Filters do not improve scan performance. Appendix A runs
through a“typical”application scenario; Bloom filters would
increase memory utilization by about 5% in that setting.

Unlike Bloom filters, fractional cascading [18] reduces the
asymptotic complexity of write-optimized LSM-Trees. In-
stead of varying R, these trees hold R constant and add
additional levels as needed, leading to a logarithmic number
of levels and logarithmic write amplification. Lookups and
scans access a logarithmic (instead of constant) number of
tree components. Such techniques are used in systems that
must maintain large number of materialized views, such as
the TokuDB MySQL storage engine [18].

Fractional cascading includes pointers in tree component
leaf pages that point into the leaves of the next largest tree.
Since R is constant, the cost of traversing one of these point-
ers is also constant. This eliminates the logarithmic factor
associated with performing multiple B-Tree traversals.

The problem with this scheme is that the cascade steps
of the search examine pages that likely reside on disk. In
effect, it eliminates a logarithmic in-memory overhead by
increasing read amplification by a logarithmic factor.

Figure 2 provides an overview of the lookup process, and

1Bloom filters can claim to contain an item that has not
been inserted, causing us to unnecessarily examine the disk.

plots read amplification vs. fanout for fractional cascading
and for three-level LSM-Trees with Bloom filters. No setting
of R allows fractional cascading to provide reads competitive
with Bloom filters—reducing read amplification to 1 requires
an R large enough to ensure that there is a single on-disk
tree component. Doing so leads to O(n) write amplifications.
Given this, we opt for Bloom filters.

3.1.1 Limiting read amplification for frequently up-
dated data

On their own, Bloom filters cannot ensure that read am-
plifications are close to 1, since copies of a record (or its
deltas) may exist in multiple trees. To get maximum read
performance, applications should avoid writing deltas, and
instead write base records for each update.

Our reads begin with the lowest numbered tree compo-
nent, continue with larger components in order and stop at
the first base record. Our reads are able to terminate early
because they distinguish between base records and deltas,
and because updates to the same tuple are placed in tree
levels consistent with their ordering. This guarantees that
reads encounter the most recent version first, and has no
negative impact on write throughput. Other systems non-
deterministically assign reads to on-disk components, and
use timestamps to infer write ordering. This breaks early
termination, and can lead to update anomalies [1].

3.1.2 Zero-seek “insert if not exists”
One might think that maintaining a Bloom filter on the

largest tree component is a waste; this Bloom filter is by far
the largest in the system, and (since C2 is the last tree to be
searched) it only accelerates lookups of non-existent data.
It turns out that such lookups are extremely common; they
are performed by operations such as “insert if not exists.”

In Section 5.2, we present performance results for bulk
loads of bLSM, InnoDB and LevelDB. Of the three, only
bLSM could efficiently load and check our modest 50GB
unordered data set for duplicates. “Insert if not exists” is a
widely used primitive; lack of efficient support for it renders
high-throughput writes useless in many environments.

3.2 Dealing with write pauses
Regardless of optimizations that improve read amplifica-

tion and leverage write skew, index implementations that
impose long, sporadic write outages on end users are not
particularly practical. Despite the lack of good solutions,

220

LSM-Trees are regularly put into production. We describe
workarounds that are used in practice here.

At the index level, the most obvious solution (other than
unplanned downtime) is to introduce extra C1 components
whenever C0 is full and the C1 merge has not yet com-
pleted [13]. Bloom filters reduce the impact of extra trees,
but this approach still severely impacts scan performance.
Systems such as HBase allow administrators to temporarily
disable compaction, effectively implementing this policy [1].
As we mentioned above, applications that do not require
performant scans would be better off with an unordered log
structured index.

Passing the problem off to the end user increases opera-
tions costs, and can lead to unbounded space amplification.
However, merges can be run during off-peak periods, increas-
ing throughput during peak hours. Similarly, applications
that index data according to insertion time end up writing
data in “almost sorted” order, and are easily handled by ex-
isting merge strategies, providing a stop-gap solution until
more general purposes systems become available.

Another solution takes partitioning to its logical extreme,
creating partitions so small that even worst case merges in-
troduce short pauses. This is the technique taken by Parti-
tioned Exponential Files [16] and LevelDB [12]. Our exper-
imental results show that this, on its own, is inadequate. In
particular, with uniform inserts and a “fair” partition sched-
uler, each partition would simultaneously evolve into the
same bad state described in Figure 4. At best, this would
lead to a throughput collapse (instead of a complete cessa-
tion of application writes).

Obviously, we find each of these approaches to be un-
acceptable. Section 4.1 presents our approach to merge
scheduling. After presenting a simple merge scheduler, we
describe an optimization and extensions designed to allow
our techniques to coexist with partitioning.

3.3 Two-seek scans
Scan operations do not benefit from Bloom filters and

must examine each tree component. This, and the impor-
tance of delta-based updates led us to bound the number of
on-disk tree components. bLSM currently has three compo-
nents and performs three seeks. Indeed, Section 5.6 presents
the sole experiment in which InnoDB outperforms bLSM: a
scan-heavy workload.

We can further improve short-scan performance in con-
junction with partitioning. One of the three on-disk compo-
nents only exists to support the ongoing merge. In a system
that made use of partitioning, only a small fraction of the
tree would be subject to merging at any given time. The
remainder of the tree would require two seeks per scan.

4. BLSM
As the previous sections explained, scans and reads are

crucial to real-world application performance. As we de-
cided which LSM-Tree variants and optimizations to use in
our design, our first priority was to outperform B-Trees in
practice. Our second concern was to do so while providing
asymptotically optimal LSM-Tree write throughput. The
previous section outlined the changes we made to the base
LSM-Tree algorithm in order to meet these requirements.

Figure 1 presents the architecture of our system. We use
a three-level LSM-Tree and protect the two on-disk levels
with Bloom filters. We have not yet implemented parti-

A-F

G-M

N-Q

R-ZD
e
ci

d
e
 w

h
ic

h
 k

e
y

p
a
rt

it
io

n
 t

o
 m

e
rg

e

RAM Disk

Figure 3: Partition schedulers leverage skew to im-
prove throughput. A greedy policy would merge
N− Q; which uses little I/O to free a lot of RAM.

Level 1 Level 1' Level 2Level 0

Decide which merge to run,
backpressure application

merge sorted merge sorted

Figure 4: Level schedulers (such as spring and gear)
decide which level to merge next. This tree is in
danger of unplanned downtime: Level 0 (RAM) and
1 are almost full, and the merge between level 1 and
2 has fallen behind.

tioning, and instead focused on providing predictable, low
latency writes. We avoid long write pauses by introducing
a new class of merge scheduler that we call a level scheduler
(Figure 4). Level schedulers are designed to complement
existing partition schedulers (Figure 3).

4.1 Gear scheduler
In this section we describe a gear scheduler that ensures

merge processes complete at the same time (Figure 5). This
scheduler is a subcomponent of the spring and gear scheduler
(Section 4.3). We begin with the gear scheduler because it is
conceptually simpler, and to make it clear how to generalize
spring and gear to multiple levels of tree components.

As Section 3.2 explained, we are unwilling to let extra
tree components accumulate, as doing so compromises scan
performance. Instead, once a tree component is full, we must
block upstream writes while downstream merges complete.

Downstream merges can take indefinitely long, and we are
unwilling to give up write availability, so our only option is
to synchronize merge completions with the processes that fill
each tree component. Each process computes two progress
indicators: inprogress and outprogress. In Figure 5, numbers
represent the outprogress of C0 and the inprogress of C1. Let-
ters represent the outprogress of C1 and the inprogress of C2.

We use a clock analogy to reason about the merge pro-
cesses in our system. Clock gears ensure each hand moves
at a consistent rate (so the minute and hour hand reach
12 at the same time, for example). Our merge processes
ensure that trees fill at the same time as more space be-
comes available downstream. As in a clock, multiple short

221

1
2

3 4

5
1

2

34

554
3

2

1 A

BC

D E

A
E

D C

B
A

E

DC

B

Figure 5: The gear scheduler tracks the progress of
the merges and ensures they complete at the same
time, preventing them from stalling the application.

upstream merges (sweeps of the minute hand) may occur
per downstream merge (sweep of the hour hand). Unlike
with a clock, the only important synchronization point is
the hand-off from smaller component to larger (the meeting
of the hands at 12).

We define inprogress as follows:

inprogressi =
bytes read by mergei
|C′i−1|+ |Ci|

Note that we ignore the cost of writing data to disk. An im-
portant, but subtle property of inprogress is that any merge
activity increases it, and that, within a single merge, the
cost (in bytes transferred) of increasing inprogress by a fixed
amount will never vary by more than a small constant factor.
We say that estimators with this property are smooth.

Runs of deletions or non-overlapping ranges of the input
trees can cause more intuitive estimates to become “stuck”
at the same value for long periods of time. For example,
early versions of our scheduler used estimates that focused
on I/O associated with the larger tree component (which
consists of the bulk of the work). This led to routine stalls.

The definition of outprogress is more complex:

outprogressi =
inprogressi + floor(|Ci|/|RAM |i)

ceil(R)

Returning to our clock analogy, the floor term is the com-
putation one uses to determine what hour is being displayed
by an analog clock.

Assuming an insert-only workload, each tree needs to be
merged R times before it fills up and becomes ready to be
merged with the downstream tree. The floor term uses
current tree sizes to estimate the number of such merges this

tree component has undergone. |Ci|
|RAM|i must be less than

R, or the previous merge completion would have triggered
a merge between Ci and Ci+1. This, combined with the
fact that inprogressi ranges from zero to one ensures that
outprogress ranges from zero to one, and that it is set to one
immediately before a new merge is triggered. Finally, within
a given merge with the upstream tree, outprogress inherits
its smoothness property from inprogress.

Across merges, workload shifts could cause the current
tree to shrink (for example, the application could delete
data), which could cause outprogress to decrease substan-
tially. This will cause the downstream mergers to shut down
until the current tree increases in size. If we had been able
to predict the workload shift ahead of time, we could have
throttled the application less aggressively. Since we cannot

predict future workload shifts, pausing downstream mergers
seems to be the best approach.

Section 5.2 presents a timeseries plot of the write through-
put of our index. The throughput varies by a bit under a fac-
tor of two due to errors in our inprogress and outprogress esti-
mates. In results not presented here, we experimented with
better estimators of inprogress and outprogress but found that
external factors such as I/O interference lead to more vari-
ance than inaccuracies in our model.

4.2 Snowshoveling
In this section, we describe snowshoveling, also called tour-

nament sort or replacement-selection sort, which significantly
improves throughput for sequential and some skewed work-
loads. For random workloads, snowshoveling increases the
effective size of C0 by a factor of four, doubling write through-
put. For adversarial workloads, it increases the size by a fac-
tor of two. In the best case, updates arrive in sorted order,
and it streams them directly to disk.

Unfortunately, snowshoveling can block application writes
for arbitrary periods of time. At the end of this section, we
explain how partitioning can be used to“fix up”the problems
snowshoveling creates.

The basic idea stems from the sorting algorithms used by
tape and punch card based database systems. It is impor-
tant to minimize the number of runs performed by merge
sort on such machines, as merging N runs requires N phys-
ical drives or multiple passes. Naive implementations fill
RAM, sort its contents, and write a RAM-sized run. Snow-
shoveling fills RAM, writes back the lowest valued item, and
then reads a value from the input. It proceeds by writing
out the lowest key that comes after the last value written.

If the data arrives in random order, this doubles the length
of runs, since, on average, each item has a 50% chance of
coming after the cursor. When the run starts, most incoming
data lands after the cursor; at the end, almost all lands
before it. Alternatively, if the input is already sorted, all
writes arrive after the cursor, and snowshoveling produces a
run containing the entire input. In the worst case, updates
are in reverse sorted order, and the run is the size of RAM.

4.2.1 Implications for LSM-Tree merges
Snowshoveling increases the amount of data that each C0 :

C1 merge consumes. Recall from Section 2.3 that LSM-Tree

write amplification is O(
√
|data|
|RAM|); snowshoveling effectively

increases |RAM |. In addition to generating longer sorted
runs, it eliminates the partitioning of C0 and C′0.

In the gear scheduler, each merge reads from a special tree
component C′i−1 instead of directly from Ci−1. Incoming
writes are delivered to Ci−1, which atomically replaces C′i−1

when it is ready to be merged with the downstream tree.
This is particularly inconvenient for C0, since it halves the
pool of RAM that can be used for writes; after all, at the
end of a C0 to C1 merge, the data stored in C′0 is useless
and discarded. Snowshoveling ensures that the entire pool
contains useful data at all times. This, combined with the
factor of two improvement it provides for random writes,
is the basis of our claim that snowshoveling increases the
effective size of C0 by a factor of four.

However, breaking the partitioning between old and new
updates risks stalling application writes. Partitioning the
write pool decoupled application writes from the rate at
which data from C′0 is consumed. Thus, as long as inprogress

222

1 2 3 4 512

345 A

BC D E A E D C BA
E

DCB

Figure 6: The spring and gear scheduler reduces the
coupling between application write rates and merge
rates. In our clock analogy, turning the key engages
a ratchet that winds a coil spring. Our implemen-
tation applies proportional backpressure to applica-
tion writes once memory is nearly full. As memory
begins to empty, it slows down merge processing.

was smooth, we could use it to determine when to apply
backpressure (or not).

With snowshoveling, we lose this luxury. Instead, appli-
cation writes must wait for the C0 : C1 merger to consume
data. In the worst case, the merge consumes the entirety of
C0 at the beginning (or end) of the merge, blocking writes
while the entirety of C1 is scanned and copied into C′1.

4.2.2 The need for partitioning
The stalls introduced by snowshoveling are due to mis-

matched distributions of keys in C0 and C1. In the worst
case, C0 and C1 do not overlap at all, and there is no need to
scan or copy C1. This is not a new observation; partitioned
exponential files were designed to leverage such skew, as were
BigTable [8], Cassandra [19], HBase [1], and LevelDB [12].
With skewed inserts, such systems have asymptotically bet-
ter write throughput than unpartitioned LSM-Trees.

Furthermore, they can reorder the work performed by the
C0 and C1 merger so that it consumes data from C0 at
a uniform rate. It is easy to see (and confirmed by the
experiments in Section 5) that no reordering of work within
the C0 : C1 merge will prevent that merge from blocking on
the C1 : C2 merge; the two problems are orthogonal.

4.3 Spring and gear scheduler
The gear scheduler suffers from a number of limitations.

First, we found that its behavior was quite brittle, as it
tightly couples the timing of insertions into C0 with the tim-
ing of the merge threads’ progress.

Second, as Section 4.2.2 explained, the gear scheduler in-
teracts poorly with snowshoveling; it requires a “percent
complete” estimate for merges between C0 and C1, which
forces us to partition RAM, halving the size of C0.

We modify the gear scheduler based on the observation
that snowshoveling (and more sophisticated partition-based
schemes) expose a more natural progress indicator: the frac-
tion of C0 currently in use. The spring and gear scheduler
attempts to keep the size of C0 between a low and high
water mark. It pauses downstream merges if C0 begins to
empty and applies backpressure to the application as C0

fills. This allows it to “absorb” load spikes while ensuring
that merges have enough data in C0 to perform optimiza-
tions such as snowshoveling and intelligent partition selec-
tion. The downstream merge processes behave as they did
in the gear scheduler, maintaining the decoupling of their
consumption rates from the application.

We believe this type of merge scheduler is a natural fit for

existing partitioned log structured trees. The main difficulty
in applying this approach is in tracking sizes of tree compo-
nents and estimating the costs of future merges. A simple
approach would take the sum of the sizes of each level of
Ci and apportion resources to each level accordingly. More
complex schemes would extend this by taking write skew
into account at each level of the merge.

4.4 Implementation details
This section describes our bLSM-Tree implementation.

We leave out details that apply to conventional indexes, and
instead focus on components specific to bLSM-Trees.

4.4.1 Merge threads
Merge is surprisingly difficult to implement. We document

some of the issues we encountered here.
We needed to batch tree iterator operations to amortize

page pins and mutex acquisitions in the merge threads. Upon
implementing batching, we applied it to application-facing
scans as well. This introduced the possibility that a tree
component would be deleted in the middle of an application
scan. To work around this problem, we add a logical times-
tamp to the root of each tree component, and increment it
each time a merge completes and zeros out the old tree.

Next, we implemented merge scheduling, which introduced
a new set of concurrency problems. It is prohibitively ex-
pensive to acquire a coarse-grained mutex for each merged
tuple or page. Therefore, each merge thread must take ac-
tion based upon stale statistics about the other threads.

It is possible for an upstream merger to throttle a down-
stream merger and vice versa. They must use the stale
statistics to do so without introducing deadlocks or idling
the disk. Also, the stale statistics must be “fresh enough” to
ensure that the progress estimates seen by the mergers are
smooth. Otherwise, application writes may stall.

More recently, we rewrote a number of buffer manager
subcomponents to avoid synchronization bottlenecks, allow-
ing the buffer manager to saturate disk when run in isolation.

Each of these changes significantly improved performance.
However, our experiments in Section 5.2 suggest that addi-
tional concurrency bottlenecks exist.

4.4.2 Buffer management and Recovery
The bLSM-Tree implementation is based upon Stasis, a

general-purpose transactional storage system [29]. We use
Stasis for two reasons. First, its region allocator allows us
to allocate chunks of disk that are guaranteed contiguous,
eliminating the possibility of disk fragmentation and other
overheads inherent in general-purpose filesystems.

Second, when we began this project, Stasis’ buffer man-
ager had already been carefully tuned for highly concur-
rent workloads and multi-socket machines. Furthermore,
we have a good understanding of its code base, and added
a number of features, such as support for a CLOCK evic-
tion policy (LRU was a concurrency bottleneck), and an im-
proved writeback policy that provides predictable latencies
and high-bandwidth sequential writes.

Stasis uses a write ahead log to manage bLSM’s meta-
data and space allocation; this log ensures a physically con-
sistent [30] version of the tree is available at crash. We do
not write the contents of our index and data pages to the
log; instead we simply force-write them to disk via the buffer

223

manager. Similarly, merge threads avoid reading pre-images
of pages they are about to overwrite.

We use a second, logical, log to provide durability for indi-
vidual writes. Below, when we say that we disable logging,
it is in reference to the logical log. The use of a logical log for
LSM-Tree recovery is fairly common [1, 12, 19, 31, 34], and
can be used to support ACID transactions [16], database
replication [31] and so on. bLSM also provides a degraded
durability mode that does not log updates at all. After a
crash, older (up to a well-defined point in time) updates are
available, but recent updates may be lost. These semantics
are useful for high-throughput replication [31], and are in-
creasingly supported by LSM-Tree implementations, includ-
ing LevelDB [12]. However, replaying the log at startup is
extremely expensive. Snowshoveling delays log truncation,
increasing the amount of data that must be replayed.

4.4.3 Bloom filters
We were concerned that we would incur significant Bloom

filter overheads. In practice, the computational, synchro-
nization and memory overheads of the Bloom filters are in-
significant, but recovery is non-trivial.

Our Bloom filter is based upon double hashing [17]. We
create one Bloom filter each time a merge process creates a
new tree component, and we delete the Bloom filter when we
delete the corresponding on-disk tree component. Since the
on-disk trees are append-only, there is never a need to delete
from the Bloom filter. Furthermore, we track the number of
keys in each tree component, and size the Bloom filter for a
false positive rate below 1%.

Bloom filter updates are monotonic; bits always change
from zero to one, and there is no need to atomically update
more than one bit at a time. Therefore, there is no reason
to attempt to insulate readers from concurrent updates.2

However, Bloom filters complicate recovery, and we cur-
rently do not persist them to disk. The Bloom filters are
small compared to the other data written by merges, so
we do not expect them to significantly impact throughput.
However, they are too large to allow us to block writers as
they are synchronously written to disk. We considered a
number of techniques, such as Bloom filter checkpoints and
logging, or existing techniques [4]. Ultimately, we decided
to overlap Bloom filter writeback with the next merge.

Stasis ensures each tree merge runs in its own atomic and
durable transaction. bLSM ensures the transactions are iso-
lated and consistent. Therefore, we can defer the commit
of the merge transaction until the Bloom filter is written
back, but run the next merge immediately and in parallel.
Since Stasis does not support concurrent, conflicting trans-
actions, we must ensure that the next merge modifies data
that is disjoint from the previous one. Running merges that
touch disjoint data within a single level requires partition-
ing. Therefore, we deferred implementation of this feature.

5. EXPERIMENTS
bLSM targets a broad class of applications. In this sec-

tion, we compare its performance characteristics with the
full range of primitives exported by B-Trees (we compare to
InnoDB) and another LSM-Tree variant (LevelDB).

2Though, when moving data from C0 to C1, we issue a mem-
ory barrier after updating the Bloom filter and before delet-
ing from C0. The memory barrier is “free,” as it is imple-
mented by releasing a mutex associated with C0.

op
s/

se
c

44000
48000
52000
56000
60000

elapsed time (s)
10 510 1010 1510 2010

la
te

nc
y

(m
s)

0
2
4
6
8

UPDATE
READ

Figure 9: bLSM shifting from 100% uniform writes
to Zipfian accesses (80% read, 20% blind write).

We begin with insert-heavy scenarios. This gives us an
idea of the bulk load performance of the systems, which is
crucial to analytical processing.

Second, we compare random lookup performance. As we
argued above, best-of-class random reads are a prerequisite
for most interactive applications.

Third, we evaluate throughput as we vary read:write ra-
tios. We distinguish between read-modify-write, where B-
Trees are within a small constant factor of optimal, and
blind writes, where LSM-Trees have an opportunity to sig-
nificantly improve performance. Read-modify-write is par-
ticularly important in practice, as it is used by a wide range
of applications and is therefore a crucial component of any
general purpose index implementation.

Finally, we turn our attention to scans. Short scans are
crucial for delta-based update schemes and a wide range of
applications rely upon range scan APIs.

We argue that performing well on these operations is suf-
ficient for present-day data management systems.

5.1 Experimental setup
Our experimental setup consists of a single socket machine

with 16GB of RAM and an Intel “Sandy Bridge” i7 processor
with 8 threads. We have set up two software RAID 0 arrays
with 512KB stripes. The first consists of two 10K RPM
SATA enterprise drives. The second consists of two OCZ
Vertex 2 SSDs. The filesystems are formatted using ext4.

We use YCSB, the Yahoo! Cloud Serving Benchmark tool,
to generate load [11]. YCSB generates synthetic workloads
with varying degrees of concurrency and statistical distribu-
tions. We configured it to generate databases that consist
of 50 gigabytes worth of 1000 byte values. We make use of
two request distributions: uniform and Zipfian. The Zipfian
distribution is run using YCSB’s default parameters. All
systems run in a different process than the YCSB workers.

We dedicate 10GB of RAM to buffer cache for InnoDB and
LevelDB. For bLSM, we divide memory into 8 GB for C0 and
2 GB for the buffer cache. LevelDB makes use of extremely
small C0 components, and is geared toward merging these
components as they reside in OS cache, or its own memory
pool. We disable LevelDB compression to make it easier to
reason about memory requirements. We use YCSB’s default
key length which is variable, and on the order of tens of
bytes. This yields a fanout of > 4096

50
, and motivated our

choice to dedicate most of RAM to C0.
We load the systems with 256 unthrottled YCSB threads,

and run the remainder of the experiments with 128 unthrot-
tled threads. With hard disks, this setup leads to latencies in

224

op
s/

se
c

5000
15000
25000
35000
45000

elapsed time (s)
10 510 1010 1510 2010 2510

la
te

nc
y

(m
s)

0
10
20
30
40

INSERT

op
s/

se
c

0
10000
20000
30000
40000
50000
60000
70000

elapsed time (s)
10 2010 4010 6010 8010 10010

la
te

nc
y

(m
s)

0
2000
4000
6000
8000

10000
12000

INSERT

Figure 7: bLSM (left) and LevelDB (right) performing random-order inserts. The systems load the same
data; bLSM’s throughput is more predictable and it finishes earlier.

0% 20% 40% 60% 80% 100%

Write %

0

500

1000

1500

2000

2500

3000

T
h
ro

u
g
h
p
u
t

(o
p
s

/
se

co
n
d
)

InnoDB (MySQL)
LevelDB (Read modify write)
bLSM (Read modify write)
LevelDB (Blind updates)
bLSM (Blind updates)

0% 20% 40% 60% 80% 100%

Write %

0

10000

20000

30000

40000

50000

T
h
ro

u
g
h
p
u
t

(o
p
s

/
se

co
n
d
)

Figure 8: Throughput vs. write/read ratio (uniform random access) for hard disks (left) and SSD (right).

the 100’s of milliseconds across all three systems. Throttling
the threads, as would be done in production, would reduce
the latencies. However, running the systems under contin-
uous overload reliably reproduces throughput collapses that
might otherwise be non-deterministic and difficult to charac-
terize. We disable write-ahead logging to the greatest extent
that is compatible with running the systems in production;
none of the systems sync their logs at commit.

LevelDB and bLSM are designed with compatibility with
external write ahead logs in mind. We expect future logs
to be stored on dedicated hardware that supports high-
throughput commits, such as filers with NVRAM, RAID
controllers with battery backups, enterprise SSDs with su-
percapacitors, and logging services.

5.2 Raw insert performance
The goal of this experiment is twofold. First, we deter-

mined the strongest set of semantics each system could pro-
vide without resorting to random reads. InnoDB provides
the weakest fast insert primitive: we had to pre-sort the
data to get reasonable throughput. LevelDB came in sec-
ond: random inserts have high throughput, but only if we
use blind-writes. Also, LevelDB introduced long pauses as
the load commenced. bLSM fared the best on this test. It
provided steady high-throughput inserts, and tested for the
pre-existence of each tuple as it was inserted.

We conclude that, although InnoDB and LevelDB are ca-
pable of servicing high throughput batch or asynchronous
writes, neither is appropriate for high-throughput, insert-
heavy, low-latency workloads.

Furthermore, bLSM matches or outperforms both systems
for the workloads they specialize in: it provides insert se-
mantics that are equivalent to the B-Tree (“insert if not ex-
ists”), and significantly higher throughput than LevelDB.

None of the systems we tested were able to run the disks at

full sequential bandwidth. bLSM came the closest to doing
so, and had higher throughput than InnoDB and LevelDB.
In principle, InnoDB’s load of pre-sorted data should have
let it run at near disk speeds; with write ahead logging over-
heads, we expect B-Trees to have write amplifications of 2-4
for sequential writes. It loaded the data at approximately
7,000 operations per second (7MB/sec) The underlying disks
are capable of 110-130 MB/second each.

We were surprised our approach outperformed InnoDB,
and suspect that tuning problems are to blame. Similarly,
we expected LevelDB’s multi-level trees to provide higher
write throughput than our two-level approach. We have
been told that significant improvements have been made to
LevelDB’s merge scheduler; we leave more detailed perfor-
mance comparisons between two-level and multi-level trees
to future work.

It is notoriously difficult to tune storage systems, and we
read little into the constant factor differences we see between
InnoDB’s sequential bandwidth (and random reads) and our
own. As we discuss our experiments, we focus on differences
that are fundamental to the underlying algorithms.

5.3 Random read performance
Historically, read amplification has been a major draw-

back of LSM-trees [14, 16]. Figure 8 shows that this is
no longer the case for random index probes. Again, we
see unexpected constant factor differences between InnoDB
and bLSM; bLSM is about 2x faster on hard disk, and 4x
faster on SSD. We confirmed that InnoDB and bLSM per-
form about one disk seek per read3, which is the underlying
metric we are interested in.

Upon further examination, we found that the drive write
queues are shorter under InnoDB than they are under bLSM.

3The actual number is a bit lower due to cache hits.

225

Furthermore, InnoDB uses 16KB pages4, while we opt for
4KB, and the version of MySQL we used hard codes a num-
ber of optimizations, such as prefetching, that are counter-
productive for this workload. These factors reduce the num-
ber of I/O operations per second (IOPS) the drives deliver.

We also confirmed that LevelDB performs multiple disk
seeks per read, as expected. This is reflected by its read
throughput numbers. We believe the random read perfor-
mance gap between bLSM and LevelDB is due to the under-
lying algorithm, though modified versions of LevelDB with
support for Bloom filters are now available.

5.4 Update costs
Figure 8 also allows us to compare update strategies. As

expected, with hard disks and SSDs, read-modify-writes are
strictly more expensive than reads. In contrast, on hard
disks, blind write operations are significantly faster than
reads in both systems. This reiterates the importance of
eliminating hard disk seeks whenever possible.

The SSD trends are perhaps the most interesting results
of this batch of experiments. SSDs provide many more IOPS
per MB/sec of sequential bandwidth, but they severely pe-
nalize random writes. Therefore, it is unclear whether LSM-
Tree writes will continue to outperform B-Tree writes as SSD
technology matures. At 100% writes, InnoDB’s throughput
was 20% its starting throughput. In contrast, bLSM main-
tained 41% of its original throughput for read-modify-write,
and 78% for blind writes. The hard drive trends are sim-
ilar to the SSD, except that the relative cost of writes is
much lower. This reduces the slopes of the read-modify-
write trendlines, and causes write throughputs to increase
rapidly as we approach 100% blind writes.

Again, we note that none of the systems are making par-
ticularly effective use of the disks. Here, we focus on prob-
lems with bLSM.

At 100% blind writes, bLSM hits a concurrency bottle-
neck. Hard disk throughput is 33,000 ops/second; 10% higher
than the throughput we achieve with the SSDs. Each hard
drive provides 110-130 MB/sec. Each SSD provides 285
(275) MB/sec sequential reads (writes). Therefore, we ex-
pect bLSM to provide at least 2-3x higher write throughput
on SSD, assuming we overcome the current implementation
bottlenecks.

5.5 Shifting workload distributions
Section 4.2.2 explains why shifts in workload distributions

can lead our merge scheduler to introduce arbitrarily long
pauses. We are confident that we can reproduce such is-
sues with adversarial workloads (such as reverse-order bulk
inserts). In this section, we measure the impact in a more
realistic scenario. Figure 9 is a timeseries plot of bLSM’s
throughput as it shifts from a 100% uniform write work-
load to an 80% read Zipfian workload. At the beginning
of the experiment, bLSM has been saturated with uniform
writes for an extended period of time; we switch to Zipfian
at t = 0. This corresponds to scenarios that switch from
bulk or analytical processing to serving workloads.

Initially, performance ramps up as internal index nodes
are brought into RAM.5 At the end of this phase, it set-

4See Appendix A for more information about page sizes.
5The cache warming period could be reduced by telling the
buffer manager to prefer index pages over pages that were
pinned by merge threads.

tles into high-throughput writes with occasional drops due
to merge hiccups, and quickly levels off. Such performance
characteristics are likely acceptable in practice. Also, even
with 128 unthrottled workers, bLSM maintains stable laten-
cies around 2ms. (This test was run atop the SSDs.)

5.6 Scans
Our final set of experiments compares the scan perfor-

mance of InnoDB and bLSM. To simulate B-Tree fragmen-
tation, we ran the scan experiment last, after the trees were
fragmented by the read-write tests. First, we measured short
scan performance. YCSB generates scans of length 1-4 uni-
formly at random in this test. We expect most scans to read
one page in InnoDB, and to touch all three tree components
with bLSM. The results bear this out. MySQL performs 608
short range scans per second, while bLSM only performs 385.

We note that this has important implications for delta-
based schemes: scans are approximately three times more
expensive than point lookups. Therefore, applications that
generate fewer than two deltas per read would be better off
using read-modify-write. If, as in Section 3.3, we can reduce
this to two seeks, then, even for read heavy workloads, the
overhead of using deltas instead of read-modify-write can be
reduced to the cost of inserting the delta. In such scenarios,
reads that encounter a delta could immediately insert the
merged tuple into C0.

Finally, we repeated the scan test using ranges that con-
tain 1 to 100 tuples. As expected, B-Tree fragmentation
erases InnoDB’s performance advantage; bLSM provides 165
scans per second vs. InnoDB’s 86.

6. RELATED WORK
A wide range of log structured indexes have been pro-

posed, implemented and deployed in commercial settings.
Algorithmically, our bLSM-tree is closest to Log Structured
Merge Trees [25], which make use of exponentially sized tree
components, do not leverage Bloom filters, and make use
of a different approach to merges than we describe above.
Partitioned exponential files introduce the idea of partition-
ing [16]. That work also includes an exhaustive survey and
performance study of related techniques. The primary limi-
tation of partitioned exponential files is that they rely upon
specifics of hard disk geometry for good random read perfor-
mance. When combined with partitioning, we believe that
the bLSM-Tree outperforms or matches their approach on
all workloads except for short range scans atop hard disks.

FD-Trees [20] are LSM-Trees that include a deamortiza-
tion scheme that is similar to our gear scheduler and is in-
compatible with snowshoveling. It backpressures based on
the number of pages left to merge; we note that this esti-
mate is smooth. FD-Trees optimize for SSDs, based on the
observation that writes with good locality have performance
similar to sequential writes.

BigTable is an LSM-Tree variant based upon major and
minor compactions. The idea is to write sorted runs out
to disk, and then to attempt to merge runs of similar size
using minor compactions. Occasionally, when there are too
many such runs, a major compaction scans and rewrites all
of the delta blocks associated with a given base block. This
technique is also used by HBase and Cassandra (pre 1.0). To
the best of our knowledge, this technique has two fundamen-
tal drawbacks. First, merging based on block size (and not
chronology) breaks one-seek lookups. The problem is that

226

some unsearched block could have a newer delta, so extra
base records and deltas must be fetched from disk. Fur-
thermore, without a more specific merge policy, it is very
difficult to reason about the amortized cost of inserts. To
the best of our knowledge, all current implementations of
this approach suffer from write pauses or degraded reads.

Cassandra version 1.0 adds a merger based upon exponen-
tial sizing and addresses the problem of write pauses [13].
If merges fall behind it writes additional (perhaps overlap-
ping) range partitions to C1, degrading scans but allowing
writes to continue to be serviced.

TokuDB [18] and LevelDB [12] both make use of parti-
tioned, exponentially sized levels and fractional cascading.
As we argued above, this improves write throughput at the
expense of reads and scans. Riak modified LevelDB to sup-
port Bloom filters and improved the merge scheduler [3].
These structures are related to cache oblivious lookup arrays
(COLA) and streaming B-trees [5], which include deamorti-
zation algorithms with goals similar to our merge schedulers,
except that they introduce extra work to each operation,
while we focus on rate-limiting asynchronous background
processes to keep the system in a favorable steady state.

The bLSM implementation is based upon Rose, a column-
compressed LSM-Tree for database replication tasks [31].
Rose does not employ Bloom filters and has a naive merge
scheduler with unbounded write latency. The compression
techniques lead to constant factor decreases in write ampli-
fication and do not impact reads. LevelDB makes use of a
general-purpose compression algorithm.

A number of flash-optimized indexes have been proposed
for use in embedded systems, including FlashDB [24], which
varies its layout based upon read-write ratios and hardware
parameters (as do TokuDB and many major-minor com-
paction systems), and MicroHash [35], which targets embed-
ded devices and has extremely high read fanout. In contrast
to these systems, we achieve lower read and write amplifica-
tions, but assume ample main memory is available.

We do not have space to cover unordered approaches in
sufficient detail; the LFS (Log File System) introduced many
of the techniques used by such systems. WAFL [27] is a
commercially-available hybrid filesystem that stores small
objects in an LFS-like format. BitCask [33], BDB-JE [26]
and Primebase [2] are contemporary examples in the key
value and database space. BDB-JE uses unordered storage
for data, but a B-Tree for the index, allowing it to perform
(potentially seek-intensive) scans. Primebase is a log struc-
tured MySQL storage engine. SILT is an unordered store
that uses 0.7 bytes per key to achieve a read amplification
of 1 [21].

A number of indexes target hybrid storage systems. LHAM
indexes provide historical queries over write-once-read-many
(WORM) storage [23], and multi-tier GTSSL log structured
indexes target hybrid disk-flash systems and adapt to vary-
ing read-write ratios [34].

7. CONCLUSION
bLSM-Trees provide a superset of standard B-Tree func-

tionality; they introduce a zero-seek “blind write” primi-
tive. Blind writes enable high-throughput writes and inserts
against existing data structures, which are crucial for ana-
lytical processing and emerging classes of applications.

Our experiments show that, with the exception of short
range scans (a primitive which is primarily useful for leverag-

ing blind writes), bLSM-Trees provide superior performance
across the entire B-Tree API. These results rely heavily upon
our use of a three-level bLSM-tree and Bloom filters.

However, our spring and gear scheduler is what ultimately
allows bLSM-Trees to act as drop-in B-Tree replacements.
Eliminating write throughput collapses greatly simplifies op-
erations tasks and allows bLSM-Trees to be deployed as the
primary backing store for interactive workloads.

These results come with two caveats. First, the rela-
tive performance of update-in-place and log-structured ap-
proaches is subject to changes in the underlying devices.
Second, we target applications that manage small pieces of
data. Fundamentally, log structured approaches work by
replacing random I/O with sequential I/O. As the size of
objects increase, the sequential costs dominate and update-
in-place techniques provide superior performance.

Furthermore, a number of technical issues remain. Our
system remains a partial solution; it cannot yet leverage
(or gracefully cope with) write skew. Also, transitioning to
logical logging has wide ranging impacts on recovery, lock
management, and other higher-level database mechanisms.

Well-known techniques address each of these remaining
concerns; we look forward to applying these techniques to
build unified transaction and analytical processing systems.

8. ACKNOWLEDGMENTS
We would like to thank Mark Callaghan, Brian Cooper,

the members of the PNUTS team, and our shepherd, Ryan
Johnson for their invaluable feedback.

bLSM is open source and available for download:

http://www.github.com/sears/bLSM/

9. REFERENCES
[1] http://hbase.apache.org/.

[2] https://launchpad.net/pbxt.

[3] http://wiki.basho.com/.
[4] M. Bender, M. Farach-Colton, R. Johnson, B. Kuszmaul,

D. Medjedovic, P. Montes, P. Shetty, R. Spillane, and
E. Zadok. Don’t thrash: How to cache your hash on flash.
In HotStorage, 2011.

[5] M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R.
Fogel, B. C. Kuszmaul, and J. Nelson. Cache-oblivious
streaming B-trees. In SPAA, 2007.

[6] D. Borthakur, J. Gray, J. Sarma, K. Muthukkaruppan,
N. Spiegelberg, H. Kuang, K. Ranganathan, D. Molkov,
A. Menon, S. Rash, et al. Apache Hadoop goes realtime at
FaceBook. In Sigmod, 2011.

[7] M. Callaghan. Read amplification factor. High Availability
MySQL, August 2011.

[8] F. Chang et al. Bigtable: A distributed storage system for
structured data. In OSDI, 2006.

[9] J. Chen, C. Douglas, M. Mutsuzaki, P. Quaid,
R. Ramakrishnan, S. Rao, and R. Sears. Walnut: A unified
cloud object store. In Sigmod, 2012.

[10] B. F. Cooper et al. PNUTS: Yahoo!’s hosted data serving
platform. Proc. VLDB Endow., 1(2), 2008.

[11] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems with
YCSB. SoCC ’10, 2010.

[12] J. Dean and S. Ghemawat. LevelDB. Google,
http://leveldb.googlecode.com.

[13] J. Ellis. The present and future of Apache Cassandra. In
HPTS, 2011.

[14] S. Ghemawat, H. Gobioff, and S. T. Leung. The Google file
system. In SOSP, 2003.

227

SSD Hard disk
SATA PCI-E Server Media

Capacity (GB) 512 5000 300 2000
Reads / second 50K 1M 500 250
Access Frequency GB of B-Tree index cache per drive

Minute 0.302 6.03 0.003 0.002
Five minute 1.51 30.2 0.015 0.008

Half hour 9.05 - 0.091 0.045
Hour - - 0.181 0.091
Day - - 4.35 2.17

Week - - - 15.2
Month - - - -

Full disk 12.5 122 7.32 48.8

Table 2: RAM required to cache B-Tree nodes to
address various storage devices. Hot data causes
devices to be seek bound, leading to unused capacity
and less cache. We assume 100 byte keys, 1000 byte
values and 4096 byte pages.

[15] J. Gray and G. Graefe. The five-minute rule ten years later,
and other computer storage rules of thumb. SIGMOD
Record, 26(4), 1997.

[16] C. Jermaine, E. Omiecinski, and W. G. Yee. The
partitioned exponential file for database storage
management. The VLDB Journal, 16(4), 2007.

[17] Kirsch and Mitzenmacher. Less hashing, same performance:
Building a better bloom filter. In ESA, 2006.

[18] B. C. Kuszmaul. How TokuDB fractal trees indexes work.
Technical report, TokuTek, 2010.

[19] A. Lakshman and P. Malik. Cassandra: a decentralized
structured storage system. SIGOPS Oper. Syst. Rev.,
44(2), April 2010.

[20] Y. Li, B. He, J. Y. 0001, Q. Luo, and K. Yi. Tree indexing
on solid state drives. PVLDB, 3(1):1195–1206, 2010.

[21] H. Lim, B. Fan, D. Andersen, and M. Kaminsky. Silt: a
memory-efficient, high-performance key-value store. In
SOSP, 2011.

[22] M. Moshayedi and P. Wilkison. Enterprise SSDs. ACM
Queue, 6, July 2008.

[23] P. Muth, P. O’Neil, A. Pick, and G. Weikum. The LHAM
Log-structured history data access method. In VLDB
Journal, 2000.

[24] S. Nath and A. Kansal. FlashDB: Dynamic self-tuning
database for NAND flash. In IPSN, 2007.

[25] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta Informatica,
33(4):351–385, 1996.

[26] Oracle. Berkeley DB Java Edition.
[27] C. Rev, D. Hitz, J. Lau, and M. Malcolm. File system

design for an NFS file server appliance, 1995.
[28] M. Rosenblum and J. K. Ousterhout. The design and

implementation of a log-structured file system. In SOSP,
1992.

[29] R. Sears and E. Brewer. Stasis: Flexible transactional
storage. In OSDI, 2006.

[30] R. Sears and E. Brewer. Segment-based recovery:
Write-ahead logging revisited. In VLDB, 2009.

[31] R. Sears, M. Callaghan, and E. Brewer. Rose: Compressed,
log-structured replication. VLDB, 2008.

[32] M. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang,
S. McMains, and V. Padmanabhan. File system logging
versus clustering: A performance comparison. In Usenix
Annual Technical Conference, 1995.

[33] J. Sheehy and D. Smith. Bitcask, a log-structured hash
table for fast key/value data. Technical report, Basho, 2010.

[34] R. Spillane, P. Shetty, E. Zadok, S. Archak, and S. Dixit.

An efficient multi-tier tablet server storage architecture. In
SoCC, 2011.

[35] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos,
and W. Najjar. MicroHash: An efficient index structure for
fash-based sensor devices. In FAST, 2005.

APPENDIX
A. PAGE SIZES ON MODERN HARDWARE

In this section we argue that modern database systems
make use of excessively large page sizes. Most systems make
use of a computation that balances the cost of reading a page
against the search progress made by each page traversal [15].

This approach is flawed for two reasons: (1) Index pages
generally fit in RAM and should be sized to reduce the size of
the tree’s upper levels. This is a function of key size, not the
hardware. (2) Systems (but not the original analysis [15])
often conflate optimal index page sizes with optimal data
page sizes. This simplifies implementations, but can severely
impact performance if it leads to oversized data pages.

A.1 Index nodes generally fit in RAM
Assuming index nodes are large enough to hold many keys,

we can ignore the upper levels of the tree and space wasted
due to index page boundaries. Therefore, we can fit approxi-
mately memory size

key size+pointer size
pointers to leaf pages in memory.

Each such pointer addresses approximately

max(page size, key size + value size)

bytes of data, giving us a read fanout of:

max(page size, key size + value size)

key size + pointer size
≈ page size

key size

“Typical” keys are under 100 bytes, and we use 4KB pages.
This yields a read fanout of 40. Prefix compression and
increased data page sizes significantly improve matters.

Table 2 applies these calculations to various hardware de-
vices, and reports the amount of RAM needed for a read
amplification of one. As data becomes hotter, the devices be-
come seek-bound instead of capacity-bound. This decreases
memory requirements until data becomes so hot that it is
more economical to store it in memory than on disk [15].

Our Bloom filters consume 1.25 bytes per key and store
entries for all keys, not just those in index nodes. Four
entries fit on a leaf, leading to a 4 ∗ 1.25 = 5% overhead.

A.2 Choosing page sizes when RAM is large
Since index nodes generally fit in RAM, we choose their

size independently of the underlying disk. Index pages 10x
the average size of keys ensure that upper levels of the tree
use a small (and ignorable) fraction of RAM.

Pages that store data are subject to different page size
tradeoffs than pages that store index nodes. bLSM uses a
simple append-only data page format that efficiently stores
records that span multiple pages and bounds the fraction of
space wasted by inconveniently sized records.

We set these pages to 4KB, which is the minimum SSD
transfer size. This minimizes transfer times and also im-
proves cache behavior for workloads with poor locality: It
reduces the number of cold records that are read and cached
alongside hot records, increasing the average heat of the
pages cached in RAM.

228

