def train_classifier(training_set_list): for patient_tuple in training_set_list: # if patient_tuple is benign: # add attributes from patient_tuple to corresponding benign_sums_list attribute # increase the benign_count by 1 # else: # add attributes from patient_tuple to corresponding malignant_sums_list attribute # increase the malignant_count by 1 # create benign_averages_list by dividing each benign_sums_list by the benign_count # create malignant_averages_list by dividing each malignant_sums_list by the malignant_count # create classifier_list by dividing the sum of each attribute from benign_averages_list # and malignantAvg by 2 return classifier_list