public class Exercise26_6 { public static void main(String[] args) { new Exercise26_6(); } public Exercise26_6() { BinaryTree tree = new BinaryTree(); tree.insert("George"); tree.insert("Michael"); tree.insert("Tom"); tree.insert("Adam"); tree.insert("Jones"); tree.insert("Peter"); // tree.insert("John"); tree.insert("Daniel"); System.out.println(tree.getNumberOfLeaves()); } public class BinaryTree> extends AbstractTree { protected TreeNode root; protected int size = 0; /** Create a default binary tree */ public BinaryTree() { } /** Create a binary tree from an array of objects */ public BinaryTree(E[] objects) { for (int i = 0; i < objects.length; i++) insert(objects[i]); } /** Displays the leaf nodes */ public int getNumberOfLeaves() { return getNumberOfLeaves(root); } /** Returns the number of leaf nodes */ public int getNumberOfLeaves(TreeNode root) { if (root == null) return 0; else if (root.left == null && root.right == null) return 1; else return getNumberOfLeaves(root.left) + getNumberOfLeaves(root.right); } /** Returns true if the element is in the tree */ public boolean search(E e) { TreeNode current = root; // Start from the root while (current != null) { if (e.compareTo(current.element) < 0) { current = current.left; } else if (e.compareTo(current.element) > 0) { current = current.right; } else // element matches current.element return true; // Element is found } return false; } /** * Insert element o into the binary tree Return true if the element is * inserted successfully */ public boolean insert(E e) { if (root == null) root = createNewNode(e); // Create a new root else { // Locate the parent node TreeNode parent = null; TreeNode current = root; while (current != null) if (e.compareTo(current.element) < 0) { parent = current; current = current.left; } else if (e.compareTo(current.element) > 0) { parent = current; current = current.right; } else return false; // Duplicate node not inserted // Create the new node and attach it to the parent node if (e.compareTo(parent.element) < 0) parent.left = createNewNode(e); else parent.right = createNewNode(e); } size++; return true; // Element inserted } protected TreeNode createNewNode(E e) { return new TreeNode(e); } /** Inorder traversal from the root */ public void inorder() { inorder(root); } /** Inorder traversal from a subtree */ protected void inorder(TreeNode root) { if (root == null) return; inorder(root.left); System.out.print(root.element + " "); inorder(root.right); } /** Postorder traversal from the root */ public void postorder() { postorder(root); } /** Postorder traversal from a subtree */ protected void postorder(TreeNode root) { if (root == null) return; postorder(root.left); postorder(root.right); System.out.print(root.element + " "); } /** Preorder traversal from the root */ public void preorder() { preorder(root); } /** Preorder traversal from a subtree */ protected void preorder(TreeNode root) { if (root == null) return; System.out.print(root.element + " "); preorder(root.left); preorder(root.right); } /** Inner class tree node */ public class TreeNode> { E element; TreeNode left; TreeNode right; public TreeNode(E e) { element = e; } } /** Get the number of nodes in the tree */ public int getSize() { return size; } /** Returns the root of the tree */ public TreeNode getRoot() { return root; } /** Returns a path from the root leading to the specified element */ public java.util.ArrayList> path(E e) { java.util.ArrayList> list = new java.util.ArrayList>(); TreeNode current = root; // Start from the root while (current != null) { list.add(current); // Add the node to the list if (e.compareTo(current.element) < 0) { current = current.left; } else if (e.compareTo(current.element) > 0) { current = current.right; } else break; } return list; // Return an array of nodes } /** * Delete an element from the binary tree. Return true if the element is * deleted successfully Return false if the element is not in the tree */ public boolean delete(E e) { // Locate the node to be deleted and also locate its parent node TreeNode parent = null; TreeNode current = root; while (current != null) { if (e.compareTo(current.element) < 0) { parent = current; current = current.left; } else if (e.compareTo(current.element) > 0) { parent = current; current = current.right; } else break; // Element is in the tree pointed by current } if (current == null) return false; // Element is not in the tree // Case 1: current has no left children if (current.left == null) { // Connect the parent with the right child of the current node if (parent == null) { root = current.right; } else { if (e.compareTo(parent.element) < 0) parent.left = current.right; else parent.right = current.right; } } else { // Case 2: The current node has a left child // Locate the rightmost node in the left subtree of // the current node and also its parent TreeNode parentOfRightMost = current; TreeNode rightMost = current.left; while (rightMost.right != null) { parentOfRightMost = rightMost; rightMost = rightMost.right; // Keep going to the right } // Replace the element in current by the element in rightMost current.element = rightMost.element; // Eliminate rightmost node if (parentOfRightMost.right == rightMost) parentOfRightMost.right = rightMost.left; else // Special case: parentOfRightMost == current parentOfRightMost.left = rightMost.left; } size--; return true; // Element inserted } /** Obtain an iterator. Use inorder. */ public java.util.Iterator iterator() { return inorderIterator(); } /** Obtain an inorder iterator */ public java.util.Iterator inorderIterator() { return new InorderIterator(); } // Inner class InorderIterator class InorderIterator implements java.util.Iterator { // Store the elements in a list private java.util.ArrayList list = new java.util.ArrayList(); private int current = 0; // Point to the current element in list public InorderIterator() { inorder(); // Traverse binary tree and store elements in list } /** Inorder traversal from the root */ private void inorder() { inorder(root); } /** Inorder traversal from a subtree */ private void inorder(TreeNode root) { if (root == null) return; inorder(root.left); list.add(root.element); inorder(root.right); } /** Next element for traversing? */ public boolean hasNext() { if (current < list.size()) return true; return false; } /** Get the current element and move cursor to the next */ public Object next() { return list.get(current++); } /** Remove the current element and refresh the list */ public void remove() { delete(list.get(current)); // Delete the current element list.clear(); // Clear the list inorder(); // Rebuild the list } } /** Remove all elements from the tree */ public void clear() { root = null; size = 0; } } public interface Tree> { /** Return true if the element is in the tree */ public boolean search(E e); /** * Insert element o into the binary tree Return true if the element is * inserted successfully */ public boolean insert(E e); /** * Delete the specified element from the tree Return true if the element is * deleted successfully */ public boolean delete(E e); /** Inorder traversal from the root */ public void inorder(); /** Postorder traversal from the root */ public void postorder(); /** Preorder traversal from the root */ public void preorder(); /** Get the number of nodes in the tree */ public int getSize(); /** Return true if the tree is empty */ public boolean isEmpty(); /** Return an iterator to traverse elements in the tree */ public java.util.Iterator iterator(); } public abstract class AbstractTree> implements Tree { /** Inorder traversal from the root */ public void inorder() { } /** Postorder traversal from the root */ public void postorder() { } /** Preorder traversal from the root */ public void preorder() { } /** Return true if the tree is empty */ public boolean isEmpty() { return getSize() == 0; } /** Return an iterator to traverse elements in the tree */ public java.util.Iterator iterator() { return null; } } }