
2021-2022 HDSI Capstone Project

Network Signal Anomaly Detection:
Predicting Network Degradation as

Perceived by Users
Laura Diao, Benjamin Sam, and Jenna Yang

Halicioğlu Data Science Institute

University of California, San Diego

March 10, 2022

Abstract

In order to detect issues in network transmission data, we built a
real-time-capable anomaly detection system. This system enables Inter-
net Service Providers (ISP’s) such as Viasat to properly monitor user
network performance and quality in a real time paradigm. We utilize
simulated network traffic data to train a model that predicts the packet
loss rate as well as the latency of an internet connection. The system then
uses these rolling predictions to determine moments of significant network
quality degradation within the simulated data. This approach had a less
than ideal performance on predicting actual values in packet loss rate and
latency, but still captured strong signals of when these measures would
significantly worsen.

1 Introduction
Network degradation occurs in many forms, and our project will focus on two
common factors: packet loss and latency. Packet loss occurs when one or more
data packets transmitted across a computer network fail to reach their destina-
tion. Latency can be defined as a measure of delay for data to transmit across
a network. For internet users, high rates of packet loss and significant latency
can manifest in jitter or lag, which are indicators of overall poor network perfor-
mance as perceived by the end user. Thus, when issues arise in these two factors,
it would be beneficial for internet service providers to know exactly when the
user is experiencing problems in real time. In real world scenarios, situations or

1



environments such as poor port quality, overloaded ports, network congestion
and more can impact overall network performance. In order to detect some of
these issues in network transmission data, we built an anomaly detection system
that predicts the estimated packet loss and latency of a connection and detects
whether there is a significant degradation of network quality for the duration of
the connection.

Timeline
1/17 Regression (Q1) model training data generating process established
1/19 Adding "Switch Timestamp" feature to DANE, Early Regression model
feature EDA
1/25 Adding "Switch Time set" DANE feature, Regression pipeline streamlin-
ing
2/2 Regression model selection, Anomaly classification data generating process
established
2/9 Classification Model Feature EDA, Model Tuning, Webpage planning and
implementation
2/13 Webpage skeleton implemented for checkpoint, Clean up repository
2/16 Oral presentation/Final deliverables planning
2/20 Oral Presentation dry run for checkpoint
2/23 Final deliverable product check in
3/2 Last minute changes
3/9 Project due date

2 Data
Using a tool called DANE, we could generate records of simulated network
traffic with varying rates of packet loss and latencies. This helped us create and
capture data of a wide variety of unique network conditions. We then built on
top of this dataset by transforming them in the process of feature engineering
based on investigations made about their distributions.

2.1 Data Generation with DANE
The simulated network data used for our models were generated with a network
emulation tool built by a previous capstone project team. DANE, which stands
for Data Automation and Network Emulation, is a dataset generation tool that
can emulate diverse ranges of network traffic representative of the real world.
The DANE tool allows us to custom configure network conditions such as latency
and packet loss and generate network traffic data associated with the configured
conditions. For any anomaly detection system, diversity in conditions is crucial
to adequately cover the variance of real world scenarios. With a feature to
create custom profiles of network traffic scenarios, DANE allows us to properly

2



emulate the diversity and variety of network conditions that occur in the real
world.

The data generated by DANE for our project includes various packet loss
and latency scenarios in which packets were dropped randomly from a uniform
distribution. For each scenario, a simulated “anomaly” is configured around
midpoint time by changing the loss and latency values. For example, the set
loss would drop from 20000 to 200, indicating a major shift in loss which would
be the simulated anomaly (we discuss our definition of an anomaly later in the
anomaly classifier section). Empirical loss values are also included from DANE
as a true value measure against the predicted values of our model. This data
was generated manually on our Windows computers.

2.2 Exploring the feature space

Figure 1: Correlations between a combination of temporal and throughput-
based features that were engineered for our model

3



In our exploration of the features, we found that the most effective features
that captured network behaviors could be categorized into two distinct cate-
gories: temporal-based and throughput-based. The temporal features used are
as follows:

• number_ms: The number of unique millisecond timestamps between sec-
onds.

• mean_tdelta: The mean of differences between sequential packet trans-
mission timestamps between seconds.

• max_tdelta: The maximum of differences between sequential packet trans-
mission time stamps between seconds.

• time_spread : The range between the earliest arriving packet and latest
packet timestamp within a second.

• longest_seq : The longest sequence of consecutive packet transmission time
stamps that have the same.

Many of these features were our best proxies for a measure determining the
rate at which packets came in, and as a result were useful to our models in
predicting latency. There is likely a moderately strong relationship between a
packet’s timing in being transmitted and its latency.

Figure 2: The median max_tdeltas for different latencies

The throughput features are as follows:

• total_pkts: Total number of packets.

• total_pkt_sizes: the sum of all byte sizes of each packet in a second,
comparable to total_bytes.

• 2-1Bytes: The number of packets received in one second from IP address
2 (sender) to address 1 (receiver).

4



• byte_ratio: The ratio of bytes being received divided by the number of
bytes being sent back from IP address 1.

• pkt_ratio: The ratio of packets being received divided by the number of
bytes being sent back from IP address 1.

• total_bytes: the sum of all bytes being sent or received within a second.

• 2-1Pkts: The number of bytes received in one second from IP address 2
(sender) to address 1 (receiver).

These features on throughput, on the other hand, helped us much more
in determining packet loss rates. Our investigations into how connections are
established helped us understand that the network throttles when a packet loss
event occurs, likely to reduce the burden on the connection path that the packets
are taking. Disregarding phenomena such as rate limiting, packets tend to be
sent as fast as possible through the network.

Figure 3: The median 2-1Pkts for different loss rates

5



3 Methods

3.1 Pipeline

Figure 4: The end-to-end pipeline for our project

We first allocate our raw data generated from DANE into train and test sets
for our model. Both sets are cleaned and transformed through the same cleaning
process. The features for the train set are aggregated over a 20 second window
and fed into our regression model for training. After training, we implement
performance tuning and grid search to further improve the baseline model.

In order to properly test our model with unseen data and emulate real-time
prediction, we transform our test data into 20 second rolling window aggrega-
tions that are inputted in intervals into the regression model for evaluation. The
rolling windows simulate a real-time anomaly detection system where a model
would work on a stream of data and would not be able to look ahead beyond
the past and present features.

Our regression model should output predictions on loss rate and latency in 20
second rolling window aggregations. These predictions act as the fundamental
metric driving the classification of what we would consider an anomaly. Our
anomaly detection mechanism compares changes in the predictions with a set
threshold that ultimately determines whether an anomaly is flagged or not. A
deeper explanation of the anomaly classifier is detailed later in the anomaly
classifier section. The pipeline was set up locally on our Windows computers as
well as in DSMLP.

6



3.2 Regression Model
Most of the models we implemented were tree-based regression models. A gen-
eral decision tree was able to manage highly correlated features. This tree based
model considers all possible outcomes of a decision and traces each path to a
conclusion. However, the lack of randomness in this model can lead to overfitting
when dealing with too many variables.

On the other hand, in a randomized decision tree, each tree in the ensemble
is built from a sample drawn with replacement from the training data. The
best split is found either from all input features or a random subset of size
max_features. Overall a randomized decision tree is good for reducing variance.
This is good for overfitting, but may lead to bias.

The model we landed on was the extra trees model. This model is similar
to the randomized decision tree, however instead of taking the best split of
features, a random subset of candidate features is used. For an extra trees
model, thresholds are drawn at random for each candidate feature and the best
of these randomly-generated thresholds is picked as the splitting rule. This
method can reduce more variance than a random forest, but can lead to even
more bias.

Predicting for loss using features related to throughput information was valu-
able to provide the model with the relevant information. Some of these features
include bytes to packet ratio, packet ratio, total bytes, and the bytes that were
able to travel from the sender to the receiver. The packet loss features used
were:

byte_ratio, pkt_ratio, time_spread, total_bytes, 2-1Pkts.

To predict for latency, features such as the number of unique millisecond
timestamps between seconds and the maximum and means of differences be-
tween sequential packet transmission time stamps between seconds provided
the model with useful information to train on. Interruptions in smooth trans-
mission of data can impact latency, so the addition of features like the longest
sequence of consecutive packet transmission time stamps allows the model to
train on packet travel patterns and when interruptions occur. The final latency
features used were:

total_pkts, total_pkt_sizes, 2-1Bytes, number_ms, mean_tdelta, max_tdelta,
time_spread, longest_seq.

As both of the models deal with features that are highly correlated, e.g. mea-
sure byte ratio/transmission and packet/temporal information, applying PCA
found a new set of variables, reducing the dataset dimensionality to four and
retains 99 percent of the variance of the original dataset, retaining its trends
and patterns. This smaller dimension has the benefit of speeding up the model
training process.

7



3.3 Anomaly Classifier

Figure 5: Detailed overview of anomaly detection system

Finally, we implemented and integrated the anomaly detection mechanism
for the system, which ingested the predictions from our regression model and
identified anomalies in 20 second windows. We narrowed our definition of an
anomaly to any significantly rapid increase in packet loss rate/latency over two
seconds. We then manually tuned for percent change thresholds that worked
well for detecting these events.

3.4 Results
Overall, the predictive model performance was moderately low. Using the metric
of Mean Absolute Percent Error, we determined that the model’s predictions on
average were off by about 40-70%. Using our other metric of predictions that
fell within a 15% margin, we saw that predictions that fell within our acceptable
error rates made up a measly 10-20% on all test set predictions.

Regardless of the model’s middling performance on prediction, we were still
able to produce a functional anomaly classification system on top of these predic-
tions. Shifting our focus from model performance on static predictions to shifts
in predictions, we utilized the prediction values in this real-time paradigm to de-
tect significant changes in the output based on percent change between seconds.
With a moderate amount of manual tweaking, we came up with two functional
thresholds for changes in predictions. For finding anomalies in latency, we de-
cided that a 6% shift in predictions over the span of two seconds gave a good
balance of low false positive rate and decent anomaly classification accuracy in
the resulting network configuration record. For packet loss rate, the percentage
shift was 15

8



Figure 6: Anomaly detection system applied to packet loss ratio

As seen in these resultant graphs above, we note that our classification power
is relatively decent despite the inaccuracies inherent in the prediction. In our
testing, there was a 1 in 6 failure rate in identifying an anomaly. Our test
set evaluated significant changes on a magnitude of about a tenfold increase in
packet loss, which a 15% manually set threshold was able to capture quite well.
Even so, in the one example where there is failure, we can see that there is a
false positive. Rarely did false positives come up, but often was the case that for
higher loss rates, the behavior is one where the speed ramps down dramatically
at the start.

9



Figure 7: Anomaly detection system applied to latency

Following loss is latency. In the graphs above, we note that our classification
power is comparatively but only moderately worse than packet loss rate despite
the inaccuracies inherent in the prediction. In our testing, there was a 1 in 6
failure rate in identifying an anomaly, which is surprisingly well in comparison to
our predictive power. Our test set evaluated significant changes on a magnitude
of about a five to six fold increase in latency, which a 6% manually set threshold
was able to capture quite well. There are 4 runs that have false positives, this
was due to the reduced predictive power of our latency regression model. Below
are the raw statistics on our test set performance:

4 Conclusions
In general, the performance of our regression model for predicting loss and la-
tency were not as accurate as we would have liked. Tuning our regression model
and attempting to improve its predictions was certainly one of the prominent
challenges of the project.

10



Nonetheless, our predictions in the larger scheme followed a similar trend to
the empirical loss values and static loss labels. With these trends and utilizing
the threshold mechanism for classification, we were able to achieve relatively
successful detection of anomalies, with about 80% of the test anomalies accu-
rately identified by our system. Since we are building an anomaly detection
system which is meant to find patterns of increasing loss over a period of time,
we consider the system to be a success in that regard. We found that the hur-
dle of inaccurate predictions did not have an immense impact on the broad
view of classifying anomalies, although the classification accuracy could still be
improved further.

4.1 Research Utility
While our predictions still need improvement, we were to explore the complexity
of predicting loss and latency and come up with some useful potential features
for such a model. Predicting loss and latency in real-time can have many ben-
efits in equipping network providers with more actionable information to drive
improvements in the network experiences of their customers. Predictions that
are real-time can be especially helpful in reducing delays between network degra-
dation and service provider response. More data and information on the nature
of these anomalies and what leads up to them allows for more thorough and cor-
rect responses to degradation from the service provider. An anomaly detection
system with loss and latency model could have valuable practical use in this
regard given that the model would be able to analyze throughput information
leading up to an anomaly. Furthermore, the anomaly identification mechanism
of our system, if extended to a monitoring or alerting system, can provide a
comprehensive medium for service providers to supervise network performance
in a more continuous and prompt manner.

4.2 Limitations
Our project does come with a few notable limitations. Firstly, due to the com-
plexities in capturing real network traffic data with empirical values, our project
hinged on solely the simulated data generated by DANE. While DANE is de-
signed as an emulator of networks, it is not fully indicative of the entire spec-
trum of problems that a network may encounter in the real world. If deployed
in production, our system would likely experience worse performance as it is
biased to the simulated data of DANE. For the purposes of our project, DANE
provided the most practical and viable approach to data generation. However
it is meaningful to note that this means our system is heavily biased towards
the simulated data which would need to be properly handled in a real world
environment.

Relying on DANE for our data generation process also presents resource
constraint issues that could affect the quality of the data generated for our
project. The data for our project was generated concurrently in multiple runs.

11



Especially in low packet scenarios that are demanding the upper limits of com-
putational power, running multiple DANE concurrently can result in inexact
data. This is because the system/CPU cannot provide enough resources at the
time to properly execute the DANE runs together, resulting in delays. These
delays manifest in the data through times that are slightly off or inaccurate.

Another limitation is the fact that we attempted to predict anomalous ac-
tivity using these predictions. While this approach is novel in itself, there was
a natural consequence of having more false positives in our anomaly detection
system due to the increased inaccuracy of the prediction. From an information
standpoint, using predictions instead of a defined feature such as those related
to throughput likely resulted in signal degradation and a decreased power in our
classification results.

5 Acknowledgements
We would like to extend a special thanks to the UCSD Halıcıoğlu Data Science
Institute, all the mentors at Viasat, and the creators of DANE for their direct
or indirect contributions and support throughout this project.

12


