{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "from dateutil.parser import parse\n", "import datetime\n", "from pandas_datareader import data, wb" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "df = pd.read_csv('beatles.csv')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Unnamed: 0 int64\n", "Title object\n", "Released object\n", "Label object\n", "UK Chart Position float64\n", "US Chart Position float64\n", "BPI Certification object\n", "RIAA Certification object\n", "Count Songs int64\n", "Year int64\n", "dtype: object" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.dtypes" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "df = pd.read_csv('beatles.csv', converters={'Released': parse})" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "Unnamed: 0 int64\n", "Title object\n", "Released datetime64[ns]\n", "Label object\n", "UK Chart Position float64\n", "US Chart Position float64\n", "BPI Certification object\n", "RIAA Certification object\n", "Count Songs int64\n", "Year int64\n", "dtype: object" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.dtypes" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [], "source": [ "dates = ['10-10-2015', '9/8/2012', '2/2014', 'Sep 17, 2000', 'foo']\n", "ser = pd.Series(pd.to_datetime(dates, errors='coerce'))" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 2015-10-10\n", "1 2012-09-08\n", "2 2014-02-01\n", "3 2000-09-17\n", "4 NaT\n", "dtype: datetime64[ns]" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ser" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ser.dt" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 2015.0\n", "1 2012.0\n", "2 2014.0\n", "3 2000.0\n", "4 NaN\n", "dtype: float64" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ser.dt.year" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 10.0\n", "1 9.0\n", "2 2.0\n", "3 9.0\n", "4 NaN\n", "dtype: float64" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ser.dt.month" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "0 0.0\n", "1 0.0\n", "2 0.0\n", "3 0.0\n", "4 NaN\n", "dtype: float64" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ser.dt.hour" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Window Functions" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": false }, "outputs": [], "source": [ "idx = pd.date_range('1/1/2000', periods=500, freq='d')" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03', '2000-01-04',\n", " '2000-01-05', '2000-01-06', '2000-01-07', '2000-01-08',\n", " '2000-01-09', '2000-01-10',\n", " ...\n", " '2001-05-05', '2001-05-06', '2001-05-07', '2001-05-08',\n", " '2001-05-09', '2001-05-10', '2001-05-11', '2001-05-12',\n", " '2001-05-13', '2001-05-14'],\n", " dtype='datetime64[ns]', length=500, freq='D')" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "idx" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": false }, "outputs": [], "source": [ "ser = pd.Series(np.random.randn(len(idx)), index=idx)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "2000-01-01 -0.306307\n", "2000-01-02 -0.435708\n", "2000-01-03 -1.535846\n", "2000-01-04 0.409924\n", "2000-01-05 -0.666694\n", "2000-01-06 -0.480828\n", "2000-01-07 0.379973\n", "2000-01-08 -0.773511\n", "2000-01-09 0.396353\n", "2000-01-10 -0.294093\n", "2000-01-11 0.442196\n", "2000-01-12 -1.519349\n", "2000-01-13 -0.649513\n", "2000-01-14 -2.263706\n", "2000-01-15 -0.340966\n", "2000-01-16 0.435463\n", "2000-01-17 -1.666545\n", "2000-01-18 1.452651\n", "2000-01-19 -0.037077\n", "2000-01-20 0.538926\n", "2000-01-21 -0.042326\n", "2000-01-22 -0.227057\n", "2000-01-23 1.024661\n", "2000-01-24 -0.687116\n", "2000-01-25 1.405593\n", "2000-01-26 -0.144300\n", "2000-01-27 0.630102\n", "2000-01-28 0.064640\n", "2000-01-29 -0.376007\n", "2000-01-30 0.017697\n", " ... \n", "2001-04-15 -1.672253\n", "2001-04-16 -1.820955\n", "2001-04-17 0.589024\n", "2001-04-18 -0.212713\n", "2001-04-19 2.062938\n", "2001-04-20 -0.318086\n", "2001-04-21 -0.284368\n", "2001-04-22 0.135038\n", "2001-04-23 -0.435896\n", "2001-04-24 1.432767\n", "2001-04-25 -0.775905\n", "2001-04-26 0.086192\n", "2001-04-27 1.469889\n", "2001-04-28 -0.358339\n", "2001-04-29 1.509992\n", "2001-04-30 -0.467628\n", "2001-05-01 -0.810806\n", "2001-05-02 0.352891\n", "2001-05-03 -0.994101\n", "2001-05-04 0.586770\n", "2001-05-05 -0.028301\n", "2001-05-06 -0.308731\n", "2001-05-07 -2.092958\n", "2001-05-08 1.126250\n", "2001-05-09 -0.172683\n", "2001-05-10 -0.826971\n", "2001-05-11 0.324843\n", "2001-05-12 1.402411\n", "2001-05-13 0.371532\n", "2001-05-14 -1.213970\n", "Freq: D, dtype: float64" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ser" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": false }, "outputs": [], "source": [ "ser2 = ser + ser.shift(2)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "2000-01-01 NaN\n", "2000-01-02 NaN\n", "2000-01-03 -1.842153\n", "2000-01-04 -0.025784\n", "2000-01-05 -2.202540\n", "2000-01-06 -0.070904\n", "2000-01-07 -0.286721\n", "2000-01-08 -1.254338\n", "2000-01-09 0.776326\n", "2000-01-10 -1.067604\n", "2000-01-11 0.838549\n", "2000-01-12 -1.813442\n", "2000-01-13 -0.207317\n", "2000-01-14 -3.783055\n", "2000-01-15 -0.990478\n", "2000-01-16 -1.828243\n", "2000-01-17 -2.007510\n", "2000-01-18 1.888114\n", "2000-01-19 -1.703621\n", "2000-01-20 1.991577\n", "2000-01-21 -0.079402\n", "2000-01-22 0.311869\n", "2000-01-23 0.982335\n", "2000-01-24 -0.914173\n", "2000-01-25 2.430253\n", "2000-01-26 -0.831416\n", "2000-01-27 2.035695\n", "2000-01-28 -0.079660\n", "2000-01-29 0.254096\n", "2000-01-30 0.082337\n", " ... \n", "2001-04-15 -2.869890\n", "2001-04-16 -2.238086\n", "2001-04-17 -1.083230\n", "2001-04-18 -2.033668\n", "2001-04-19 2.651962\n", "2001-04-20 -0.530799\n", "2001-04-21 1.778571\n", "2001-04-22 -0.183047\n", "2001-04-23 -0.720264\n", "2001-04-24 1.567806\n", "2001-04-25 -1.211801\n", "2001-04-26 1.518959\n", "2001-04-27 0.693983\n", "2001-04-28 -0.272147\n", "2001-04-29 2.979880\n", "2001-04-30 -0.825967\n", "2001-05-01 0.699186\n", "2001-05-02 -0.114737\n", "2001-05-03 -1.804907\n", "2001-05-04 0.939660\n", "2001-05-05 -1.022402\n", "2001-05-06 0.278039\n", "2001-05-07 -2.121259\n", "2001-05-08 0.817519\n", "2001-05-09 -2.265641\n", "2001-05-10 0.299279\n", "2001-05-11 0.152159\n", "2001-05-12 0.575440\n", "2001-05-13 0.696375\n", "2001-05-14 0.188441\n", "Freq: D, dtype: float64" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ser2" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "2000-03-31 3.521232\n", "2000-06-30 0.306693\n", "2000-09-30 -6.283600\n", "2000-12-31 -0.992922\n", "2001-03-31 16.540240\n", "2001-06-30 -3.598359\n", "Freq: Q-DEC, dtype: float64" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ser.resample('Q').sum()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "1999-12-31 3.521232\n", "2000-03-31 0.306693\n", "2000-06-30 -6.283600\n", "2000-09-30 -0.992922\n", "2000-12-31 16.540240\n", "2001-03-31 -3.598359\n", "Freq: Q-DEC, dtype: float64" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ser.resample('Q', label='left').sum()" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "2000-01-31 -0.189758\n", "2000-02-29 0.078981\n", "2000-03-31 0.229460\n", "2000-04-30 0.042248\n", "2000-05-31 0.103755\n", "2000-06-30 -0.139238\n", "2000-07-31 -0.280710\n", "2000-08-31 0.077720\n", "2000-09-30 0.000302\n", "2000-10-31 0.169006\n", "2000-11-30 -0.021901\n", "2000-12-31 -0.179841\n", "2001-01-31 -0.010485\n", "2001-02-28 0.281741\n", "2001-03-31 0.289565\n", "2001-04-30 -0.043818\n", "2001-05-31 -0.163130\n", "Freq: M, dtype: float64" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "ser.resample('m').mean()" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": false }, "outputs": [], "source": [ "start = datetime.datetime(2010, 1, 1)\n", "end = datetime.datetime(2016, 12, 28)\n", "yahoo_df = data.DataReader('F', 'yahoo', start, end)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Date2016-12-21 00:00:002016-12-22 00:00:002016-12-23 00:00:002016-12-27 00:00:002016-12-28 00:00:00
Open12.7312.6312.4312.4312.37
High12.7712.6412.4612.5112.45
Low12.6412.4012.3612.3612.22
Close12.6412.4012.4612.3912.25
Volume18056600.0027556900.0015578200.0019403000.0026678100.00
Adj Close12.6412.4012.4612.3912.25
\n", "
" ], "text/plain": [ "Date 2016-12-21 2016-12-22 2016-12-23 2016-12-27 2016-12-28\n", "Open 12.73 12.63 12.43 12.43 12.37\n", "High 12.77 12.64 12.46 12.51 12.45\n", "Low 12.64 12.40 12.36 12.36 12.22\n", "Close 12.64 12.40 12.46 12.39 12.25\n", "Volume 18056600.00 27556900.00 15578200.00 19403000.00 26678100.00\n", "Adj Close 12.64 12.40 12.46 12.39 12.25" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yahoo_df.tail().T" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OpenHighLowCloseVolumeAdj Closemean50
Date
2010-01-0410.1710.2810.0510.28608558008.554412NaN
2010-01-0510.4511.2410.4010.962156202009.120268NaN
2010-01-0611.2111.4611.1311.372000706009.461446NaN
2010-01-0711.4611.6911.3211.661302017009.702767NaN
2010-01-0811.6711.7411.4611.691304630009.727731NaN
2010-01-1111.9012.1411.7812.1117062620010.077230NaN
2010-01-1211.9812.0311.7211.871629959009.877516NaN
2010-01-1311.9111.9311.4711.681545271009.719410NaN
2010-01-1411.6511.8611.5111.761165312009.785981NaN
2010-01-1511.7411.7611.5511.60961498009.652838NaN
2010-01-1911.5111.8311.4611.75659340009.777659NaN
2010-01-2011.6811.6911.5011.51716495009.577946NaN
2010-01-2111.5311.6211.0111.181214514009.303339NaN
2010-01-2211.0111.1210.4110.521615301008.754126NaN
2010-01-2510.7311.1010.6111.031216215009.178517NaN
2010-01-2611.1711.4611.0711.191082505009.311660NaN
2010-01-2711.5711.6211.2211.551050916009.611231NaN
2010-01-2811.9011.9511.2711.412033200009.494731NaN
2010-01-2911.6011.6110.7010.841597412009.020411NaN
2010-02-0111.1411.1810.9311.12827482009.253410NaN
2010-02-0211.2611.5211.1911.391197149009.478089NaN
2010-02-0311.4911.6611.4211.64901255009.686124NaN
2010-02-0411.4911.5311.0011.061297922009.203482NaN
2010-02-0510.9711.1110.4910.911815352009.078661NaN
2010-02-0811.0911.3210.8810.97920314009.128589NaN
2010-02-0911.1811.2211.0211.15832071009.278374NaN
2010-02-1011.1211.1410.9010.94733956009.103625NaN
2010-02-1111.0011.1910.8811.18651162009.303339NaN
2010-02-1210.9211.1810.8511.12694654009.253410NaN
2010-02-1611.2111.3811.1111.32625375009.419838NaN
........................
2016-11-1512.0612.1411.9512.043149850012.04000012.0164
2016-11-1612.0012.0511.9212.002519550012.00000012.0024
2016-11-1711.9011.9611.7811.873850250011.87000011.9852
2016-11-1811.8711.9011.7311.763066200011.76000011.9728
2016-11-2111.7711.9011.7711.791950860011.79000011.9546
2016-11-2211.7611.9111.7311.892427470011.89000011.9448
2016-11-2311.9012.0011.8511.902241400011.90000011.9400
2016-11-2511.9512.0611.9312.041143960012.04000011.9386
2016-11-2812.0212.0511.8911.922440720011.92000011.9348
2016-11-2911.9312.0011.8711.922369080011.92000011.9310
2016-11-3011.9712.1411.9211.964764620011.96000011.9302
2016-12-0112.2312.8012.1812.439514360012.43000011.9370
2016-12-0212.5812.5812.1512.243860160012.24000011.9382
2016-12-0512.3112.5012.2912.443611830012.44000011.9436
2016-12-0612.4012.5912.3712.562366810012.56000011.9546
2016-12-0712.5913.1512.5413.065844050013.06000011.9762
2016-12-0813.0713.1512.9713.034145180013.03000011.9950
2016-12-0913.0013.2012.9113.174523320013.17000012.0190
2016-12-1213.0813.1012.8112.823954470012.82000012.0340
2016-12-1312.8412.8812.7512.773881630012.77000012.0474
2016-12-1412.6512.7912.5012.534224350012.53000012.0540
2016-12-1512.5412.7212.5212.582367210012.58000012.0560
2016-12-1612.6612.7012.5612.632809920012.63000012.0608
2016-12-1912.5912.8012.5912.662278090012.66000012.0682
2016-12-2012.7012.8212.6812.781775290012.78000012.0814
2016-12-2112.7312.7712.6412.641805660012.64000012.0944
2016-12-2212.6312.6412.4012.402755690012.40000012.1032
2016-12-2312.4312.4612.3612.461557820012.46000012.1142
2016-12-2712.4312.5112.3612.391940300012.39000012.1238
2016-12-2812.3712.4512.2212.252667810012.25000012.1312
\n", "

1760 rows × 7 columns

\n", "
" ], "text/plain": [ " Open High Low Close Volume Adj Close mean50\n", "Date \n", "2010-01-04 10.17 10.28 10.05 10.28 60855800 8.554412 NaN\n", "2010-01-05 10.45 11.24 10.40 10.96 215620200 9.120268 NaN\n", "2010-01-06 11.21 11.46 11.13 11.37 200070600 9.461446 NaN\n", "2010-01-07 11.46 11.69 11.32 11.66 130201700 9.702767 NaN\n", "2010-01-08 11.67 11.74 11.46 11.69 130463000 9.727731 NaN\n", "2010-01-11 11.90 12.14 11.78 12.11 170626200 10.077230 NaN\n", "2010-01-12 11.98 12.03 11.72 11.87 162995900 9.877516 NaN\n", "2010-01-13 11.91 11.93 11.47 11.68 154527100 9.719410 NaN\n", "2010-01-14 11.65 11.86 11.51 11.76 116531200 9.785981 NaN\n", "2010-01-15 11.74 11.76 11.55 11.60 96149800 9.652838 NaN\n", "2010-01-19 11.51 11.83 11.46 11.75 65934000 9.777659 NaN\n", "2010-01-20 11.68 11.69 11.50 11.51 71649500 9.577946 NaN\n", "2010-01-21 11.53 11.62 11.01 11.18 121451400 9.303339 NaN\n", "2010-01-22 11.01 11.12 10.41 10.52 161530100 8.754126 NaN\n", "2010-01-25 10.73 11.10 10.61 11.03 121621500 9.178517 NaN\n", "2010-01-26 11.17 11.46 11.07 11.19 108250500 9.311660 NaN\n", "2010-01-27 11.57 11.62 11.22 11.55 105091600 9.611231 NaN\n", "2010-01-28 11.90 11.95 11.27 11.41 203320000 9.494731 NaN\n", "2010-01-29 11.60 11.61 10.70 10.84 159741200 9.020411 NaN\n", "2010-02-01 11.14 11.18 10.93 11.12 82748200 9.253410 NaN\n", "2010-02-02 11.26 11.52 11.19 11.39 119714900 9.478089 NaN\n", "2010-02-03 11.49 11.66 11.42 11.64 90125500 9.686124 NaN\n", "2010-02-04 11.49 11.53 11.00 11.06 129792200 9.203482 NaN\n", "2010-02-05 10.97 11.11 10.49 10.91 181535200 9.078661 NaN\n", "2010-02-08 11.09 11.32 10.88 10.97 92031400 9.128589 NaN\n", "2010-02-09 11.18 11.22 11.02 11.15 83207100 9.278374 NaN\n", "2010-02-10 11.12 11.14 10.90 10.94 73395600 9.103625 NaN\n", "2010-02-11 11.00 11.19 10.88 11.18 65116200 9.303339 NaN\n", "2010-02-12 10.92 11.18 10.85 11.12 69465400 9.253410 NaN\n", "2010-02-16 11.21 11.38 11.11 11.32 62537500 9.419838 NaN\n", "... ... ... ... ... ... ... ...\n", "2016-11-15 12.06 12.14 11.95 12.04 31498500 12.040000 12.0164\n", "2016-11-16 12.00 12.05 11.92 12.00 25195500 12.000000 12.0024\n", "2016-11-17 11.90 11.96 11.78 11.87 38502500 11.870000 11.9852\n", "2016-11-18 11.87 11.90 11.73 11.76 30662000 11.760000 11.9728\n", "2016-11-21 11.77 11.90 11.77 11.79 19508600 11.790000 11.9546\n", "2016-11-22 11.76 11.91 11.73 11.89 24274700 11.890000 11.9448\n", "2016-11-23 11.90 12.00 11.85 11.90 22414000 11.900000 11.9400\n", "2016-11-25 11.95 12.06 11.93 12.04 11439600 12.040000 11.9386\n", "2016-11-28 12.02 12.05 11.89 11.92 24407200 11.920000 11.9348\n", "2016-11-29 11.93 12.00 11.87 11.92 23690800 11.920000 11.9310\n", "2016-11-30 11.97 12.14 11.92 11.96 47646200 11.960000 11.9302\n", "2016-12-01 12.23 12.80 12.18 12.43 95143600 12.430000 11.9370\n", "2016-12-02 12.58 12.58 12.15 12.24 38601600 12.240000 11.9382\n", "2016-12-05 12.31 12.50 12.29 12.44 36118300 12.440000 11.9436\n", "2016-12-06 12.40 12.59 12.37 12.56 23668100 12.560000 11.9546\n", "2016-12-07 12.59 13.15 12.54 13.06 58440500 13.060000 11.9762\n", "2016-12-08 13.07 13.15 12.97 13.03 41451800 13.030000 11.9950\n", "2016-12-09 13.00 13.20 12.91 13.17 45233200 13.170000 12.0190\n", "2016-12-12 13.08 13.10 12.81 12.82 39544700 12.820000 12.0340\n", "2016-12-13 12.84 12.88 12.75 12.77 38816300 12.770000 12.0474\n", "2016-12-14 12.65 12.79 12.50 12.53 42243500 12.530000 12.0540\n", "2016-12-15 12.54 12.72 12.52 12.58 23672100 12.580000 12.0560\n", "2016-12-16 12.66 12.70 12.56 12.63 28099200 12.630000 12.0608\n", "2016-12-19 12.59 12.80 12.59 12.66 22780900 12.660000 12.0682\n", "2016-12-20 12.70 12.82 12.68 12.78 17752900 12.780000 12.0814\n", "2016-12-21 12.73 12.77 12.64 12.64 18056600 12.640000 12.0944\n", "2016-12-22 12.63 12.64 12.40 12.40 27556900 12.400000 12.1032\n", "2016-12-23 12.43 12.46 12.36 12.46 15578200 12.460000 12.1142\n", "2016-12-27 12.43 12.51 12.36 12.39 19403000 12.390000 12.1238\n", "2016-12-28 12.37 12.45 12.22 12.25 26678100 12.250000 12.1312\n", "\n", "[1760 rows x 7 columns]" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yahoo_df['mean50'] = yahoo_df['Close'].rolling(window=50, center=False).mean()\n", "yahoo_df\n" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
OpenHighLowCloseVolumeAdj Closemean50mean200
Date
2010-01-0410.1710.2810.0510.28608558008.554412NaNNaN
2010-01-0510.4511.2410.4010.962156202009.120268NaNNaN
2010-01-0611.2111.4611.1311.372000706009.461446NaNNaN
2010-01-0711.4611.6911.3211.661302017009.702767NaNNaN
2010-01-0811.6711.7411.4611.691304630009.727731NaNNaN
2010-01-1111.9012.1411.7812.1117062620010.077230NaNNaN
2010-01-1211.9812.0311.7211.871629959009.877516NaNNaN
2010-01-1311.9111.9311.4711.681545271009.719410NaNNaN
2010-01-1411.6511.8611.5111.761165312009.785981NaNNaN
2010-01-1511.7411.7611.5511.60961498009.652838NaNNaN
2010-01-1911.5111.8311.4611.75659340009.777659NaNNaN
2010-01-2011.6811.6911.5011.51716495009.577946NaNNaN
2010-01-2111.5311.6211.0111.181214514009.303339NaNNaN
2010-01-2211.0111.1210.4110.521615301008.754126NaNNaN
2010-01-2510.7311.1010.6111.031216215009.178517NaNNaN
2010-01-2611.1711.4611.0711.191082505009.311660NaNNaN
2010-01-2711.5711.6211.2211.551050916009.611231NaNNaN
2010-01-2811.9011.9511.2711.412033200009.494731NaNNaN
2010-01-2911.6011.6110.7010.841597412009.020411NaNNaN
2010-02-0111.1411.1810.9311.12827482009.253410NaNNaN
2010-02-0211.2611.5211.1911.391197149009.478089NaNNaN
2010-02-0311.4911.6611.4211.64901255009.686124NaNNaN
2010-02-0411.4911.5311.0011.061297922009.203482NaNNaN
2010-02-0510.9711.1110.4910.911815352009.078661NaNNaN
2010-02-0811.0911.3210.8810.97920314009.128589NaNNaN
2010-02-0911.1811.2211.0211.15832071009.278374NaNNaN
2010-02-1011.1211.1410.9010.94733956009.103625NaNNaN
2010-02-1111.0011.1910.8811.18651162009.303339NaNNaN
2010-02-1210.9211.1810.8511.12694654009.253410NaNNaN
2010-02-1611.2111.3811.1111.32625375009.419838NaNNaN
...........................
2016-11-1512.0612.1411.9512.043149850012.04000012.016412.70215
2016-11-1612.0012.0511.9212.002519550012.00000012.002412.70485
2016-11-1711.9011.9611.7811.873850250011.87000011.985212.70655
2016-11-1811.8711.9011.7311.763066200011.76000011.972812.70810
2016-11-2111.7711.9011.7711.791950860011.79000011.954612.70910
2016-11-2211.7611.9111.7311.892427470011.89000011.944812.71180
2016-11-2311.9012.0011.8511.902241400011.90000011.940012.71460
2016-11-2511.9512.0611.9312.041143960012.04000011.938612.71895
2016-11-2812.0212.0511.8911.922440720011.92000011.934812.72080
2016-11-2911.9312.0011.8711.922369080011.92000011.931012.72105
2016-11-3011.9712.1411.9211.964764620011.96000011.930212.71950
2016-12-0112.2312.8012.1812.439514360012.43000011.937012.72035
2016-12-0212.5812.5812.1512.243860160012.24000011.938212.72105
2016-12-0512.3112.5012.2912.443611830012.44000011.943612.72045
2016-12-0612.4012.5912.3712.562366810012.56000011.954612.72115
2016-12-0712.5913.1512.5413.065844050013.06000011.976212.72605
2016-12-0813.0713.1512.9713.034145180013.03000011.995012.72925
2016-12-0913.0013.2012.9113.174523320013.17000012.019012.73275
2016-12-1213.0813.1012.8112.823954470012.82000012.034012.73430
2016-12-1312.8412.8812.7512.773881630012.77000012.047412.73270
2016-12-1412.6512.7912.5012.534224350012.53000012.054012.72925
2016-12-1512.5412.7212.5212.582367210012.58000012.056012.72445
2016-12-1612.6612.7012.5612.632809920012.63000012.060812.71965
2016-12-1912.5912.8012.5912.662278090012.66000012.068212.71485
2016-12-2012.7012.8212.6812.781775290012.78000012.081412.71260
2016-12-2112.7312.7712.6412.641805660012.64000012.094412.70985
2016-12-2212.6312.6412.4012.402755690012.40000012.103212.70610
2016-12-2312.4312.4612.3612.461557820012.46000012.114212.70195
2016-12-2712.4312.5112.3612.391940300012.39000012.123812.69755
2016-12-2812.3712.4512.2212.252667810012.25000012.131212.69265
\n", "

1760 rows × 8 columns

\n", "
" ], "text/plain": [ " Open High Low Close Volume Adj Close mean50 \\\n", "Date \n", "2010-01-04 10.17 10.28 10.05 10.28 60855800 8.554412 NaN \n", "2010-01-05 10.45 11.24 10.40 10.96 215620200 9.120268 NaN \n", "2010-01-06 11.21 11.46 11.13 11.37 200070600 9.461446 NaN \n", "2010-01-07 11.46 11.69 11.32 11.66 130201700 9.702767 NaN \n", "2010-01-08 11.67 11.74 11.46 11.69 130463000 9.727731 NaN \n", "2010-01-11 11.90 12.14 11.78 12.11 170626200 10.077230 NaN \n", "2010-01-12 11.98 12.03 11.72 11.87 162995900 9.877516 NaN \n", "2010-01-13 11.91 11.93 11.47 11.68 154527100 9.719410 NaN \n", "2010-01-14 11.65 11.86 11.51 11.76 116531200 9.785981 NaN \n", "2010-01-15 11.74 11.76 11.55 11.60 96149800 9.652838 NaN \n", "2010-01-19 11.51 11.83 11.46 11.75 65934000 9.777659 NaN \n", "2010-01-20 11.68 11.69 11.50 11.51 71649500 9.577946 NaN \n", "2010-01-21 11.53 11.62 11.01 11.18 121451400 9.303339 NaN \n", "2010-01-22 11.01 11.12 10.41 10.52 161530100 8.754126 NaN \n", "2010-01-25 10.73 11.10 10.61 11.03 121621500 9.178517 NaN \n", "2010-01-26 11.17 11.46 11.07 11.19 108250500 9.311660 NaN \n", "2010-01-27 11.57 11.62 11.22 11.55 105091600 9.611231 NaN \n", "2010-01-28 11.90 11.95 11.27 11.41 203320000 9.494731 NaN \n", "2010-01-29 11.60 11.61 10.70 10.84 159741200 9.020411 NaN \n", "2010-02-01 11.14 11.18 10.93 11.12 82748200 9.253410 NaN \n", "2010-02-02 11.26 11.52 11.19 11.39 119714900 9.478089 NaN \n", "2010-02-03 11.49 11.66 11.42 11.64 90125500 9.686124 NaN \n", "2010-02-04 11.49 11.53 11.00 11.06 129792200 9.203482 NaN \n", "2010-02-05 10.97 11.11 10.49 10.91 181535200 9.078661 NaN \n", "2010-02-08 11.09 11.32 10.88 10.97 92031400 9.128589 NaN \n", "2010-02-09 11.18 11.22 11.02 11.15 83207100 9.278374 NaN \n", "2010-02-10 11.12 11.14 10.90 10.94 73395600 9.103625 NaN \n", "2010-02-11 11.00 11.19 10.88 11.18 65116200 9.303339 NaN \n", "2010-02-12 10.92 11.18 10.85 11.12 69465400 9.253410 NaN \n", "2010-02-16 11.21 11.38 11.11 11.32 62537500 9.419838 NaN \n", "... ... ... ... ... ... ... ... \n", "2016-11-15 12.06 12.14 11.95 12.04 31498500 12.040000 12.0164 \n", "2016-11-16 12.00 12.05 11.92 12.00 25195500 12.000000 12.0024 \n", "2016-11-17 11.90 11.96 11.78 11.87 38502500 11.870000 11.9852 \n", "2016-11-18 11.87 11.90 11.73 11.76 30662000 11.760000 11.9728 \n", "2016-11-21 11.77 11.90 11.77 11.79 19508600 11.790000 11.9546 \n", "2016-11-22 11.76 11.91 11.73 11.89 24274700 11.890000 11.9448 \n", "2016-11-23 11.90 12.00 11.85 11.90 22414000 11.900000 11.9400 \n", "2016-11-25 11.95 12.06 11.93 12.04 11439600 12.040000 11.9386 \n", "2016-11-28 12.02 12.05 11.89 11.92 24407200 11.920000 11.9348 \n", "2016-11-29 11.93 12.00 11.87 11.92 23690800 11.920000 11.9310 \n", "2016-11-30 11.97 12.14 11.92 11.96 47646200 11.960000 11.9302 \n", "2016-12-01 12.23 12.80 12.18 12.43 95143600 12.430000 11.9370 \n", "2016-12-02 12.58 12.58 12.15 12.24 38601600 12.240000 11.9382 \n", "2016-12-05 12.31 12.50 12.29 12.44 36118300 12.440000 11.9436 \n", "2016-12-06 12.40 12.59 12.37 12.56 23668100 12.560000 11.9546 \n", "2016-12-07 12.59 13.15 12.54 13.06 58440500 13.060000 11.9762 \n", "2016-12-08 13.07 13.15 12.97 13.03 41451800 13.030000 11.9950 \n", "2016-12-09 13.00 13.20 12.91 13.17 45233200 13.170000 12.0190 \n", "2016-12-12 13.08 13.10 12.81 12.82 39544700 12.820000 12.0340 \n", "2016-12-13 12.84 12.88 12.75 12.77 38816300 12.770000 12.0474 \n", "2016-12-14 12.65 12.79 12.50 12.53 42243500 12.530000 12.0540 \n", "2016-12-15 12.54 12.72 12.52 12.58 23672100 12.580000 12.0560 \n", "2016-12-16 12.66 12.70 12.56 12.63 28099200 12.630000 12.0608 \n", "2016-12-19 12.59 12.80 12.59 12.66 22780900 12.660000 12.0682 \n", "2016-12-20 12.70 12.82 12.68 12.78 17752900 12.780000 12.0814 \n", "2016-12-21 12.73 12.77 12.64 12.64 18056600 12.640000 12.0944 \n", "2016-12-22 12.63 12.64 12.40 12.40 27556900 12.400000 12.1032 \n", "2016-12-23 12.43 12.46 12.36 12.46 15578200 12.460000 12.1142 \n", "2016-12-27 12.43 12.51 12.36 12.39 19403000 12.390000 12.1238 \n", "2016-12-28 12.37 12.45 12.22 12.25 26678100 12.250000 12.1312 \n", "\n", " mean200 \n", "Date \n", "2010-01-04 NaN \n", "2010-01-05 NaN \n", "2010-01-06 NaN \n", "2010-01-07 NaN \n", "2010-01-08 NaN \n", "2010-01-11 NaN \n", "2010-01-12 NaN \n", "2010-01-13 NaN \n", "2010-01-14 NaN \n", "2010-01-15 NaN \n", "2010-01-19 NaN \n", "2010-01-20 NaN \n", "2010-01-21 NaN \n", "2010-01-22 NaN \n", "2010-01-25 NaN \n", "2010-01-26 NaN \n", "2010-01-27 NaN \n", "2010-01-28 NaN \n", "2010-01-29 NaN \n", "2010-02-01 NaN \n", "2010-02-02 NaN \n", "2010-02-03 NaN \n", "2010-02-04 NaN \n", "2010-02-05 NaN \n", "2010-02-08 NaN \n", "2010-02-09 NaN \n", "2010-02-10 NaN \n", "2010-02-11 NaN \n", "2010-02-12 NaN \n", "2010-02-16 NaN \n", "... ... \n", "2016-11-15 12.70215 \n", "2016-11-16 12.70485 \n", "2016-11-17 12.70655 \n", "2016-11-18 12.70810 \n", "2016-11-21 12.70910 \n", "2016-11-22 12.71180 \n", "2016-11-23 12.71460 \n", "2016-11-25 12.71895 \n", "2016-11-28 12.72080 \n", "2016-11-29 12.72105 \n", "2016-11-30 12.71950 \n", "2016-12-01 12.72035 \n", "2016-12-02 12.72105 \n", "2016-12-05 12.72045 \n", "2016-12-06 12.72115 \n", "2016-12-07 12.72605 \n", "2016-12-08 12.72925 \n", "2016-12-09 12.73275 \n", "2016-12-12 12.73430 \n", "2016-12-13 12.73270 \n", "2016-12-14 12.72925 \n", "2016-12-15 12.72445 \n", "2016-12-16 12.71965 \n", "2016-12-19 12.71485 \n", "2016-12-20 12.71260 \n", "2016-12-21 12.70985 \n", "2016-12-22 12.70610 \n", "2016-12-23 12.70195 \n", "2016-12-27 12.69755 \n", "2016-12-28 12.69265 \n", "\n", "[1760 rows x 8 columns]" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "yahoo_df['mean200'] = yahoo_df['Close'].rolling(window=200, center=False).mean()\n", "yahoo_df" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfMAAAFzCAYAAAAqv+CTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XlcVFX/wPHPHURZJAQxRUVR3HCrwNxSc+lRc7fS3ErN\nyrDVLe0p0xaf1BJsUysTK9E002yzx34uiWmaaGkJimGa26OIooAoMPf3B8w4w8zAbMww8H2/Xr1s\n7j333jMXuN/7PefccxVVVRFCCCGE59K4uwJCCCGEcIwEcyGEEMLDSTAXQgghPJwEcyGEEMLDSTAX\nQgghPJwEcyGEEMLDSTAXQgghPJwEcyGEEMLDSTAXQgghPJwEcyGEEMLDuSyYK4rSVVGUrxVFOa0o\nilZRlEF27KOPoii7FUW5oijKeUVR1imK0rAs6iuEEEJ4Cldm5v7Ab8CTgM0TwiuKEg58BfwfcBvQ\nGwgBvnRaDYUQQggPpLjjRSuKomiBIaqqfm2wrCrwH2AEUAM4BMxUVfWnovX3A6tUVa1msM0ACgN8\nNVVVC1z4FYQQQohyozz1mb8PdACGA22AL4BNiqJEFK1PArSKooxXFEWjKEog8BDwowRyIYQQlVm5\nyMwVRQkD0oAwVVXPGZT7EdijqupLRZ+7AWuBmoAXsBu4V1XVKy7+CkIIIUS5UV4y8zYUBuejiqJc\n1f0HdAMiABRFqQ18BMQD7YrWXUf6zIUQQlRyVdxdgSLVgXwgCtAWW5dV9O+TQKaqqi/oViiK8hDw\nj6Io7VVV3euSmgohhBDlTHkJ5gcozMxrq6r6s4UyfkDxvnFd4C8vLQxCCCGEy9kUBBVFmV30jLjh\nf4et3NZfUZTbFEW5vWhR46LPYaqqpgKrgE8VRRmqKEq4oijtFUWZqSjKvUXlvwPuVBRllqIoTRRF\niaKwyf04hTcDQgghRKVkT0b7B1AbqFP0Xxcrt2tHYdBNovA584XAfuCVovXjgE+Bt4AUYEPRNicB\nVFXdBowCBhdt9z1wjcIBcNft+B5CCCFEhWDTaHZFUWYDg1VVjSq7KgkhhBDCFvZk5k2LpmT9S1GU\nlUWPlQkhhBDCTWzNzPtQOPL8CBAKzAHqAq1VVc0uiwoKIYQQomQOTRpTNAvbCWCyqqrxZtbXBPoA\nfwO5dh9ICCGEqHx8gHDgv6qqXiypoEOPpqmqmqkoylGgiYUifYAER44hhBBCVHKjKXziyyKHgrmi\nKNUpnKHtUwtF/gZYuXIlkZGRjhzK402ePJm4uDh3V6NckHNxk5yLQnIebpJzUUjOAyQnJzNmzBgo\niqUlsSmYK4ryJvANhU3r9Sh8rCwfWG1hk1yAyMhIoqIq9wD4wMDASn8OdORc3CTnopCch5vkXBSS\n82Ck1G5qWzPz+hSm+jWBC8BOoGNpbflCCCGEKDs2BXNVVUeWVUWEEEIIYR+Z01wIIYTwcBLMXWTk\nSGnU0JFzcZOci0JyHm6Sc1FIzoNtHHrOvNSdF74MJSkpKUkGMgghKo2TJ0+Snp7u7moIDxASEkKD\nBg3Mrtu/fz/R0dEA0aqq7i9pP+XlFahCCFEhnDx5ksjISHJyctxdFeEB/Pz8SE5OthjQrSXB3E1U\nVeX66ev41Pdxd1WEEE6Unp5OTk6OzK8hSqV7jjw9PV2Cuac6FXuKv6b9xV0Zd+Ed5O3u6gghnEzm\n1xCuJAPg3OTK3isAFFwtcHNNhBBCeDoJ5u6iFP1bduMPhRBCVBISzN1EUQqjeVk+TSCEEKJykGDu\nLrozL7FcCCGEgySYu4s0swshhHASCebuJsFcCOGhDh8+zJgxY6hfvz4+Pj7Uq1ePMWPGcPjwYXdX\nrdKRYO4m0mcuhPBk69evJyoqim3btvHII4+wZMkSHn30UbZv305UVBQbN250dxUrFXnO3F2kmV0I\n4aHS0tJ4+OGHadKkCTt27CA4OFi/7tlnn6VLly489NBDHDx4kPDwcPdVtBKRzNxdJJgLITzUggUL\nuHbtGh9++KFRIAcIDg5m6dKlZGVlsWDBAgDmzJmDRqPhyJEjDB8+nMDAQEJCQnjuuee4fv26yf5X\nrlxJu3bt8PPzo2bNmowcOZJTp04ZlenevTtt27YlOTmZHj164O/vT/369XnzzTfL7ouXYxLM3UUp\nvYgQQpRH3377LeHh4XTu3Nns+m7duhEeHs63334L3OxWHD58ODdu3GDevHn079+fd955h4kTJxpt\nO3fuXMaOHUvz5s2Ji4tj8uTJbNmyhbvvvpsrV67oyymKQkZGBvfeey933HEHsbGxREZGMnPmTP77\n3/+W0Tcvv6SZ3d0kMxdCeJArV65w5swZhgwZUmK5tm3b8s0335Cdna1fFhERwfr16wGIiYkhICCA\nJUuWMG3aNFq3bs3JkyeZM2cO//nPf5gxY4Z+u/vuu4/bb7+dxYsXM3PmTP3ys2fP8tlnnzFq1CgA\nHnnkERo0aMDHH39Mnz59nPm1yz0J5m4iA+CEEAA5OZCSUrbHaNEC/Pycs6+rV68CEBAQUGI53Xpd\nNq0oCk8++aRRmaeffprFixfz/fff07p1a7788ktUVWXYsGFcvHhRX+7WW2+ladOmbNu2zSiY+/v7\n6wM5gLe3Nx06dCAtLc2xL+mBJJi7i/SZCyEoDOSFr6wuO0lJ4Kx3vuiCtC6oW2Iu6Ddp0sSoTJMm\nTdBoNJw4cQKAY8eOodVqTcpB4c1A1apVjZaFhYWZlAsKCuLQoUNWfJOKRYK5u8gMcEIICrPmpKSy\nP4az3HLLLYSGhnLw4MESyx08eJB69epRvXp1q/et1WrRaDT88MMPaDSmQ7qK78vLy8vsfipji6cE\nczfRNbNLMBeicvPzc17W7CoDBgxg2bJl7Nq1y+wguMTERP7++29iYmKMlqemptKwYUP9Z10mrnt8\nLSIiAlVVCQ8PN5udC8tkNLubVcY7SCGEZ5s+fTo+Pj5MnDiRjIwMo3UZGRk88cQT+Pv7M336dP1y\nVVV5//33jcq+8847KIpC3759gcKBbhqNhldeecXscYsfS9wkmbm7SJ+5EMJDNWnShE8++YQxY8bQ\npk0bJkyYQKNGjTh+/DjLly/n4sWLfP755yYTxhw/fpzBgwfTt29fdu/ezcqVK/X7AGjcuDGvv/46\n//73vzl+/DhDhgwhICCAtLQ0vvrqKyZOnMiUKVPc8I3LPwnm7iLBXAjhwR544AEiIyN54403WL58\nOenp6dSsWZOePXvywgsv0LJlS6PyiqKwZs0aZs2axQsvvECVKlV45pln9BPL6MyYMUP/jPmrr74K\nFA5069u3L4MGDTLZpzmWlldkEszdRYK5EMLDtWrVipUrV1pdvlatWqxdu7bUckOGDCn1OfZt27aZ\nXR4fH291fSoS6TN3k8p45yiEEKJsSDB3MxkAJ4QQwlESzN1FmtmFEEI4iQRzd5FJY4QQlcTs2bMp\nKCgwecOacB4J5m6in5tdK9FcCCGEYySYu4uMfxNCCOEk5TqYn/vsHH9N/8vd1ShbkpgLIYRwULkO\n5ikPp/DPW/+4uxplQwbACSGEcJJyHcwrNAnmQgghnESCuZvoB8DJc+ZCCCEcJMFcCCGE8HASzN1F\nmtmFEEI4iQRzd5FgLoSoBMLDw3nkkUfs3rb4m9KEeRLM3UTRFEVzCeZCCA/yySefoNFo2L9/v9n1\n3bt3p23btvrPGo3G7hdLyQuprCevQHUXXSyXGeCEEB6mpCBbfN2RI0fQaCRvLGsSzIUQQpQZb29v\nd1ehUpDbJXeRPnMhRCVgrs/84MGD3H333fj5+REWFsbcuXOJj49Ho9Fw8uRJk338/PPPdOjQAV9f\nXyIiIvjss89cVX2PIZm5u0gwF0J4sMzMTC5evGi0TFVV8vLyjJYVb3Y/c+YMPXr0wMvLixdffBE/\nPz+WLVtG1apVzTbfp6amMmzYMCZMmMC4ceNYvnw548ePp127dkRGRjr/i3koCeZuIpPGCCEAcvJy\nSElPKdNjtAhpgZ+3n9P2p6oqvXr1sri+devWFtfNmzePzMxM9u/frx8oN378eJo0aWK2/NGjR0lM\nTKRz584ADBs2jLCwMOLj41mwYIED36JikWDuLpKZCyGAlPQUoj+MLtNjJD2eRFRolNP2pygKixcv\npmnTpibrpkyZglartbjtf//7Xzp16mQ04r1GjRqMHj2a9957z6R8y5Yt9YEcICQkhObNm5OWlubg\nt6hYHArmiqK8AMwFFqmqOsU5VRJCiMqjRUgLkh5PKvNjONudd95JVJTpDUJQUJBJ87uhEydOGAVn\nHUuZeYMGDcwe49KlSzbUtuKzO5grinIn8Bjwu/OqU4lIZi6EAPy8/ZyaNVc0Xl5eZpdLF6Uxu0az\nK4pSHVgJPApcdmqNKgmZNEYIURk1bNiQY8eOmSxPTU11Q20qDnsfTXsf+EZV1a3OrEylIpPGCCEq\noT59+rB7924OHjyoX5aRkcGqVavcWCvPZ3Mzu6IoI4DbgXbOr04lIs3sQggP5UgT9/PPP8/KlSvp\n1asXzzzzDP7+/ixbtoyGDRty6dIlmcLVTjZl5oqi1AcWAWNUVc0rrbwQQoiKp7SAa7heURSjz/Xr\n12f79u20atWKN954g7fffpvx48czfvx4AHx8fCxua0sdKhtbM/NooBaQpNw8k15AN0VRngKqqWZu\n2SZPnkxgYKDRspEjRzJy5Eg7qlxBSGYuhPBAY8eOZezYsRbXb9u2zeizuUfI2rZty/bt242WPffc\nc/j4+BASElLituaOURGsXr2a1atXGy3LzMy0entbg/n/AW2KLVsBJAPzzAVygLi4OLOPMFRmMmmM\nEKKyun79OtWqVdN/vnjxIitXrqRr166VNuM2l+Du37+f6Gjr5iCwKZirqpoNHDZcpihKNnBRVdVk\nW/ZV6UlmLoSopDp16kT37t1p0aIF586dY/ny5Vy9epVZs2a5u2oeyxkzwEk4socEcyFEJdWvXz/W\nrVvHhx9+iKIoREdHEx8fz1133eXuqnksh4O5qqo9nVERIYQQlcPrr7/O66+/7u5qVCjyClR3kcxc\nCCGEk0gwdxPdDHAyAE4IIYSjJJi7iy4zt/xyISGEEMIqEszdRZrZhRBCOIkEcyGEEMLDSTB3E5k0\nRgghhLNIMHcXaWYXQgjhJBLM3UWCuRBCCCeRYO4uEsyFEB7ok08+QaPRsH//fndXRRiQYC6EEMIm\nlfVlKOWZBHM3kUljhBBCOIsEc3eRSWOEEBXUhQsXmDBhAnXq1MHX15fbb7+dTz/91KhMdHQ0Dzzw\ngNGyNm3aoNFo+OOPP/TL1qxZg0aj4ejRoy6pu6eSYO4u0mcuhKiAcnNz6d69OwkJCTz00EO89dZb\n1KhRg3HjxvHuu+/qy3Xt2pXExET958uXL3P48GG8vLyMlu/cuZNatWrRrFkzl34PTyPB3E3kOXMh\nREX0wQcfkJKSwooVK3jzzTd58skn2bJlC506deKll14iOzsbKAzm6enpHDlyBCgM2lWrVmXAgAFG\nwTwxMZGuXbu65bt4Eme8z1wIIYS9cnIgJaVsj9GiBfj5le0ximzatIk6deowYsQI/TIvLy+eeeYZ\nRo0axU8//US/fv3o2rUrqqqyY8cOmjdvTmJiIu3bt+df//oXb7zxBgCZmZn88ccfjB8/3iV192QS\nzN1FmtmFEFAYyKOjy/YYSUkQFVW2xyhy4sQJmjZtarI8MjISVVU5ceIEALfeeitNmjQhMTGRxx57\njMTERHr27EnXrl156qmn+Pvvv/nzzz9RVVUycytIMHcXCeZCCCjMmpOSyv4YLmJL12HXrl3ZsmUL\nubm5JCUlMWfOHFq3bk1QUBCJiYkcPnyY6tWrc8cdd5RhjSsGCebuIsFcCAGFzd8uyppdITw8nEOH\nDpksT05OBqBhw4b6ZV27dmXFihV8/vnnaLVaOnXqhKIo3HXXXezYsYPk5GQ6d+4sz7VbQQbAuYkM\ngBNCVET9+vXj3LlzrFmzRr+soKCAd999l4CAAO6++279cl2/+fz582nbti0BAQH65Vu2bCEpKUma\n2K0kmbm7SSwXQngYVVX5+OOP2bRpk8m6Z599lg8++IBx48axb98+wsPD+eKLL9i9ezdvv/02/v7+\n+rIRERHUqVOHo0eP8vTTT+uXd+vWjRkzZqAoigRzK0kwdxddm4gEcyGEh1EUhaVLl5pdN378eH76\n6SdmzpzJp59+ypUrV2jevDkrVqzgoYceMinftWtX1q1bR5cuXfTLoqOj8fPzQ6vV0qFDhzL7HhWJ\nBHN3kT5zIYQHGjt2LGPHji213LJly6zan2FzvE6VKlXIysqyuW6VmfSZu4n0mQshhHAWCebuIpm5\nEEIIJ5Fg7m4SzIUQQjhIgrm7SGYuhBDCSSSYu0tRMJc+cyGEEI6SYO5uEsuFEEI4SIK5u6jF/hVC\nCCHsJMHc3SSYCyGEcJAEczdTtRLNhRBCOEaCubtJLBdCCOEgCebuJsFcCCGEgySYu0tREJdH04QQ\nFVl4eDiPPPKIu6tR4UkwdzeJ5UIID5WWlsbEiROJiIjA19eXwMBAunTpwjvvvENubi5w8z0UomzJ\nW9PcTYK5EMIDff/99wwbNgwfHx8efvhhWrduzY0bN9i5cyfPP/88hw8ftviaVOF8EszdTYK5EMLD\n/P3334wYMYJGjRqxdetWbr31Vv26mJgYXnvtNb777js31rDykWZ2N5M+cyGEp5k/fz7Z2dl8/PHH\nRoFcp3Hjxjz99NMWtz9+/DjDhg2jZs2a+Pv706lTJ77//nuTcu+++y6tW7fG39+f4OBg7rzzTj7/\n/HOjMmfOnOGRRx6hTp06+Pj40Lp1a5YvX+74l/Qwkpm7i8wAJ4TwUN9++y2NGzemQ4cONm97/vx5\nOnXqRG5uLs8++yzBwcF88sknDBw4kPXr1zN48GAAPvroI5599lmGDx/Oc889R25uLgcPHmTPnj2M\nGDFCv68OHTrg5eXFM888Q0hICJs2beLRRx8lKyuLZ555xqnfuzyTYO5uWndXQAghrHf16lVOnz7N\nkCFD7Nr+jTfe4MKFC+zcuZNOnToB8Oijj9K2bVumTJmiD+bff/89rVu3NsnEDf373/9GVVV+++03\natSoAcDjjz/OqFGjmDNnDhMnTqRatWp21dPTSDB3M2lmF6JyyykoICUnp0yP0cLPDz8vL6fs68qV\nKwAEBATYtf2mTZto3769PpAD+Pv78/jjj/Pvf/+bw4cP07JlS2rUqMGpU6fYt28f7dq1M7uv9evX\n8+CDD1JQUMDFixf1y3v37s2aNWvYv3+/0XEqMgnm7iaxXIhKLSUnh+ikpDI9RlJ0NFF2Bt/ibrnl\nFqAwQ7fHiRMn6Nixo8nyyMhI/fqWLVsyY8YMtmzZQvv27WnSpAm9e/dm1KhRdO7cGYALFy5w+fJl\nPvzwQz744AOT/SmKwvnz5+2qoyeSYO4m+oxcgrkQlVoLPz+SoqPL/BjOEhAQQN26dTl06JDT9mlO\nixYtOHLkCN9++y0//PAD69evZ/HixcyePZvZs2ej1Rb2UY4ZM4axY8ea3Ufbtm3LtI7liQRzd5Ng\nLkSl5ufl5bSs2VUGDBjARx99xJ49e2weBNewYUOOHDlisjw5OVm/XsfX15dhw4YxbNgw8vPzGTp0\nKHPnzuWFF16gVq1aBAQEUFBQQM+ePR37QhWAPJrmZtJnLoTwNM8//zx+fn48+uijZpuy//rrL955\n5x2z2/br14+9e/eyZ88e/bLs7Gw+/PBDGjVqRMuWLQHIyMgw2q5KlSpERkai1WrJy8tDo9Fw//33\n8+WXX/Lnn3+aHCc9Pd2Rr+hxbMrMFUV5AogBwosW/Qm8qqrqD06uV+UhsVwI4WEaN27MqlWrGDFi\nBJGRkUYzwO3atYsvvvjC4nzsM2fOZPXq1fTt25dnnnmG4OBgVqxYwYkTJ1i/fr2+XO/evalTpw53\n3XUXtWvX5vDhw7z//vsMHDgQf39/AObNm8f27dvp0KEDjz32GC1btiQjI4OkpCS2bt1aqQK6rc3s\n/wAzgGNFn8cBGxVFuV1V1WRnVqzSkGAuhPBAAwcO5ODBg7z55pt8/fXXLF26lGrVqtG2bVvi4uJ4\n9NFHgcKBaIbzs996663s3r2bGTNm8N5775Gbm0vbtm359ttv6du3r77cE088QUJCAnFxcWRlZVG/\nfn2ee+45XnzxRaN97d27l1dffZUNGzawZMkSatasSatWrViwYIHrTkY5YFMwV1W1+Px8LymKEgN0\nBCSY20ImjRFCeLiIiIhS519PS0szWRYeHs6aNWtK3O7RRx/V3xCUJCQkhHfeecdis35lYfcAOEVR\nNMBwwA/Y7bQaVTLSZy6EEMJRNgdzRVFaUxi8fYCrwFBVVVOcXbFKQ2aAE0II4SB7RrOnALcBHYAl\nwKeKorRwaq0qE0nMhRBCOMjmzFxV1XxA1wmyX1GU9sCzFI5yN2vy5MkEBgYaLRs5ciQjR4609fAV\njjSzCyGEWL16NatXrzZalpmZafX2zpg0RgOUOJN9XFwcUVFRTjhUBSID4IQQQhQxl+Du37+faCtn\nB7T1OfO5wCYKH1ELAEYDdwO9bdmPMCDBXAghhINszcxrA58CoUAmcBDorarqVmdXzJITc0+Qfzmf\niDcjXHXIsiXBXAghhINsfc689If+ytjxl44DVJhgLn3mQgghHCVzs7ubxHIhhBAOkmDuLjIATggh\nhJNIMHczVSvRXAghhGMkmLubxHIhhBAOkmDubhLMhRCVXP369Xn88cfdXQ2PJsHc3SSYCyE8xKBB\ng/D39yc7O9timdGjR1OtWjUuXbpk9X4NX5Eq7CPB3E10j6TJo2lCCE8xZswYcnNz2bBhg9n1165d\n4+uvv6Zfv34EBQW5uHaVmwRzd5NYLoTwEIMGDaJ69eqsWrXK7PqvvvqKnJwcRo8e7eKaCQnm7ibB\nXAjhIXx8fLjvvvv4v//7P9LT003Wr1q1iurVqzNw4EAAsrKymDx5MmFhYfj4+BAZGcmiRYtKPc5L\nL72Et7e3yfJly5ah0Wg4c+aMfln9+vW577772Lp1K+3atcPPz4/bb7+dnTt3AvDFF1/Qpk0bfH19\nufPOOzl48KDJfpOTk7n//vupWbMmfn5+tG/fnu+//97q81IeSDB3NwnmQggPMnr0aPLz81m7dq3R\n8kuXLrF582buv/9+qlWrhqqq9O/fn3fffZcBAwYQFxdH06ZNmTJlCjNmzCjxGIqimO1HN7dcURRS\nUlJ4+OGHGTJkCPPmzePChQsMHDiQhIQEZsyYwdixY3nllVdITU1lxIgRRtsfOnSITp06cezYMV54\n4QXeeustfH19GTRoEN9++62dZ8n1nPHWNOEA6TMXonIryCkgJyWnTI/h18IPLz8vp+yrZ8+ehIaG\nsmrVKiZNmqRfvnbtWvLz8/VN7OvXrycxMZEFCxYwbdo0AGJiYrj//vuJjY3lySefpEGDBk6p05Ej\nR9i7d6/+DWNNmzalf//+PPHEExw9epTQ0FAAAgICeOqpp9i1axedO3cG4Omnn6ZJkybs2bMHL6/C\nczRp0iQ6duzIzJkzGTBggFPqWNYkmLuLzAAnhAByUnJIik4q02NEJ0UTEBXglH1pNBpGjBjBokWL\nOHHiBA0bNgQKm9hr165Nz549Adi0aRNVq1blySefNNp+ypQpbNiwgR9++MFpj6O1bdvW6FWhHTp0\nAKB37976QK5brqoqaWlpdO7cmfT0dHbs2MG8efO4fPmyvpyqqvTp04fXX3+dCxcuUKtWLafUsyxJ\nMHc3rbsrIIRwJ78WfkQnWffOakeO4UyjR48mLi6O1atXM3PmTE6fPs3OnTt57rnn9M3gJ06coH79\n+vj6+hptGxkZqV/vLMUz/MDAQKCwP93cct1jc6mpqQC88MILzJw502S/iqJw/vx5CeaidNLMLkTl\n5uXn5bSs2VWioqJo0aIFq1atYubMmfrR7aNGjdKXceTaZum584KCArPLdc3j1i7X1U2rLcymZsyY\nwT333GO2bKNGjUqsa3khwdzdJJYLITzQ6NGjefnllzl06BCrV6+madOmRk3d4eHh7Ny5k2vXrhll\n58nJyQD65nlzgoKCKCgoICcnBz+/m60Kf//9t1O/Q0RE4au0q1atqu8e8FQeO5pde12LWlABImEF\n+ApCiMpn9OjRqKrKyy+/zG+//caYMWOM1vfr148bN26wePFio+VxcXF4eXlx7733Wtx3REQEqqqy\nY8cO/bKsrCw+++wzp36HOnXq0KVLF5YsWcL58+dN1pt7/K688tjMfIfPDoLvDabt923dXRX7yAA4\nIYQHCw8Pp3PnzmzcuBFFUYya2AGGDh1Kt27dmDFjBseOHaNt27Zs2rSJ7777junTpxMWFmZx3/fe\ney/16tVj3Lhx+pHwy5cvJzQ01OgZc2dYsmQJ3bp1o3Xr1jz22GM0atSI//3vf+zatYv//e9/7Nu3\nz6nHKyseG8wBMjZluLsKDpM+cyGEpxo9ejS7d++mQ4cONG7c2Gidoih89913zJo1i7Vr1xIfH094\neDixsbE8++yzJmUN+8m9vb3ZuHEjTz75JLNmzSI0NJSpU6fi4+NjMgLelmfSzS1v1aoV+/btY86c\nOcTHx3Pp0iVuvfVW7rjjDl5++WW7zos7eHQwLy9yUnP484E/idoVhZe/jc9ySiwXQniomJgYYmJi\nLK739/cnNjaW2NjYEvdz8uRJk2VRUVHs3r3bZPmECRNK3dbLy8vsYLmIiAizyxs1asQnn3xSYh3L\nO4/tMy9Pziw+Q/bBbLIOZtm+sQRzIYQQDiqXmfn1s9fRVKsk9xkSzIUQQjioXAbz3XV343WLc6Ye\nLLeKgriqlWguhBDCMeU2/S24Yn5ygApHYrkQQggHldtgXmlIMBdCCOEgCebOZEdglkfThBBCOEqC\nubtJLBdCCOEgCebOZP7dAGbpM3IJ5kIIIRwkwdyZ7AnMEsyFEEI4SIK5m0mfuRBCCEdJMHcmG5rZ\n9SSWCyGEcJAEcyfIz8wv/B9pZhdCiFKdOHECjUbDp59+ql82Z84cNBrnhiRzx6moJJg7wbn4c7Zv\nJDPACSGFQGFcAAAgAElEQVQ83OLFi9FoNHTq1MnhfSmKYlMw3759O/fddx+hoaFUq1aN2rVrM2jQ\nIDZs2OBwXTyRBHNnkmZ2IUQlsmrVKho1asTevXtJS0tzaF+zZs0iJyfHqrJz5syhZ8+eHD58mCee\neIIPPviA559/nuzsbB544AE+//xzh+riicrl3OweS5rZhRCVxPHjx9m1axcbNmzg8ccfJyEhgVmz\nZtm9P41GQ9WqVUstt27dOl599VWGDx9OQkICXl433+MxdepUfvzxR/Ly8uyuh6eSzNzdJJgLITxQ\nQkICQUFB9O/fnwceeICEhASz5TIzMxk3bhw1atQgKCiI8ePHc/nyZZNy1vaZz5o1i5o1a/Lxxx8b\nBXKdf/3rX/Tr16/EfWzdupWuXbtSvXp1goKCGDJkCCkpKUZlsrKyeO6552jUqBE+Pj7Url2b3r17\n89tvvxmV27NnD3379qVGjRr4+/vTvXt3du3aVer3cDYJ5s5kRzO7PJomhPBEq1at4oEHHqBKlSqM\nHDmS1NRUkpKSTMoNGjSIhIQEHn74YebOncupU6cYO3YsimJ8wVQUxWRZcceOHePIkSMMHToUf39/\nu+r9f//3f/Tt25f09HReeeUVpk6dyq5du+jSpQsnT57Ul5s4cSIffPABw4YNY8mSJUyfPh1/f3+S\nk5P1ZbZu3crdd99NVlYWc+bM4Y033iAzM5OePXuyb98+u+pnL2lmdyZb4rJa7F8hhPAQSUlJpKSk\n8P777wPQpUsX6tWrR0JCAtHR0fpyGzduJDExkbfeeospU6YAEBMTQ/fu3e06ri6Qtm7d2u66T58+\nnZo1a/LLL78QGBgIwODBg7njjjuYPXs28fHxAHz//fc89thjLFiwQL/ttGnTjPYVExNDr169+O67\n7/TLJk6cSMuWLXnppZf44Ycf7K6nrSSYu5sEcyEqtYKCHHJyUkov6AA/vxZ4efk5bX8JCQnUqVPH\nKCg/+OCDJCQksHDhQn2GvWnTJry9vXniiSf05RRF4emnnyYxMdHm4165cgWAgIAAu+p97tw5fv/9\nd2bOnKkP5ABt2rThX//6F99//71+WY0aNdi7dy9nz54lNDTUZF+//fYbqampzJo1i4sXL+qXq6pK\nr169WLlypV11tJcEc2eS0exCWC3rjyx8G/ni5W/a71mZ5OSkkJQUXXpBB0RHJxEQEOWUfWm1Wtas\nWUOPHj2MRrC3b9+ehQsXsmXLFu655x6g8Dnv0NBQ/PyMbySaN29u17FvueUWAK5evWrX9idOnACg\nWbNmJusiIyPZvHkz165dw9fXlwULFjBu3DjCwsKIjo6mX79+PPzwwzRq1AiA1NRUAB5++GGzx9Jo\nNGRmZhrdNJQlCebOJK9AFcJq+9rso+bAmrT5uo27q+JWfn4tiI427Wt29jGcZevWrZw9e5bPP/+c\n1atXG61TFIWEhAR9MFdV1Ww/uL3XvRYtCr/HoUOH7NreluMOGzaMbt26sWHDBjZv3sxbb73F/Pnz\n2bBhA3369EGr1QKwcOFCbrvtNrP7qF69ul31tIcEc3fTursCQrhP1m9Z7q6C23l5+Tkta3aFlStX\nUrt2bRYvXmwSHL/88ks2bNjA0qVLqVatGuHh4Wzbto2cnByj7PzIkSN2Hbtp06Y0b96cjRs38vbb\nb5tk/KUJDw+3ePyUlBRCQkLw9fXVL6tduzZPPPEETzzxBOnp6dxxxx3MnTuXPn36EBERARQ2+ffs\n2dOu7+NMLhnNnpdRsZ75017Xcv3cddMVtjSzywA4IYSHyc3NZcOGDQwcOJChQ4dy3333Gf331FNP\nceXKFb7++msA+vXrR15eHkuWLNHvQ6vV8u6775Y6ct2SV155hfT0dCZMmEBBQYHJ+h9//NFoQJqh\nOnXqcPvtt/PJJ5/o+98B/vjjDzZv3kz//v31dTRcDxASEkLdunW5fr3w2h8dHU1ERARvvfUW2dnZ\nJsdKT0+36/vZyyWZ+am3T9Hhng6uOJRLJI9J5sK6C3RXuxuvkGZ2IUQFtnHjRq5evcqgQYPMru/Y\nsSO1atUiISGBYcOGMXDgQLp06cLMmTM5fvw4LVu2ZP369Xb3eQMMHz6cQ4cO8Z///IcDBw4wcuRI\nGjZsyMWLF/nhhx/YunUrq1atsrj9m2++Sb9+/ejYsSMTJkwgJyeH9957j6CgIGbPng0U9snXr1+f\nBx54gNtuu43q1avz448/sm/fPmJjY4HCLoVly5bRr18/WrVqxfjx46lXrx6nT59m27ZtBAYGsnHj\nRru/p61cEszVgooVsDI2ZzhvZxXr1AghKrBVq1bh5+en7xMvTlEU+vfvz6pVq7h06RJBQUF8/fXX\nPPfccyQkJKAoCoMHDyY2NpY77rjD7nq89tpr9OrVi3feeYelS5eSkZFBUFAQHTt25Ouvv9Zn2Lo6\nGerVqxc//PADs2fPZvbs2Xh7e9O9e3fmzZtHw4YNAfDz8+PJJ59k8+bNbNiwAa1WS5MmTViyZAmP\nP/64fl933303u3fv5rXXXuP999/n6tWrhIaG0qFDByZOnGj397OHa4J5vmMRy9IgigpBgrkQwkNY\nk2kuX76c5cuX6z/XqFGDFStWmJQr3kReUFBgdkY3S7p3717q8+oNGzY02xTfo0cPevToYXE7b29v\n5s2bx7x580qtR9u2bfniiy9KLVfWbOozVxTlBUVR9iqKckVRlP8pirJBURTTMf7FOBrMK/QgMQnm\nQgjBmTNnCAkJcXc1PJatA+C6Au8CHYB7AG9gs6IoviVt5HBm7inN9DY0Huj6yqXPXAhRmR0/fpyF\nCxeybt06i833onQ2NbOrqmo0e72iKOOA80A0sNPihvl21MzwuJ4SzOWtaULYRn7/K70dO3bw2muv\n0b17dxYuXOju6ngsRx9Nq0Hhn2OJI8K0+TfbyVPGp5D+tW1D9j0mmNujnHy1gmzTfiUhhChrY8eO\n5fLly3z11VfUqlXL3dXxWHYHc6VwRNoiYKeqqodLKmvYzH5uxTn+GPyHbQfzlDjjodO5no0/S2L1\nxAo3H4AQQlQWjoxmXwy0BO4qrWCl6TO3461pqtb93+3SlksA5F/KxzvY2821EUIIYSu7grmiKO8B\n/YCuqqqeLa38wr8XsmbQGgAuUvh2madWP8XIkSOtOp7HBHN7lKevVkGf/hNCiPJu9erVJnPdZ2Zm\nWr29zcG8KJAPBu5WVfVkaeUBpjacyuivRwOwXdkOQPeR3a0+psOPtrmKhzazl4s6CCFEJTZy5EiT\nBHf//v1G74cvia3PmS8GRgOjgGxFUWoX/edjy37MufLrFW7874bZdeU1My+4VmA0uM/jp3OVzFy4\nWLn6/RfCg9mamT9BYcjaXmz5eOBTi1tZ8fe6v/1+fMJ96Hi8o+nKcjoALtEvkaA+QY7tpDxcy3R1\nqMiT8wghRAVm63Pm9o1+tzJg5f6da37zcpqZA1z676WbHzz1rWm6wXjl+DwLIYSwzCWvQHWUxwQZ\nD580xmPOsxBCCCOuCeYOxoiKHGQyd1o/WrGs6KeW9ZSBhkIIYaMTJ06g0WhM/vPy8mLt2rUm5VNS\nUujbty8BAQHUrFmThx9+2OXvKLeFS96a5rBy2mcOgBc36+epA8ikmV24i/zKCRcbNWoU/foZzUxO\np06djD6fPn2arl27EhQUxLx587h69Spvvvkmf/zxB3v37qVKlfIXOl3zClQH/2IdCTLZf2bjE+GD\nl4/1r9azhaIoN7+fp1+YyvNNkxBCOEFUVBSjRo0qsczcuXO5du0av/32G/Xq1QPgzjvv5F//+hcr\nVqzg0UcfdUVVbeK2ZvYzy85Yv7kDwfzX1r+SGpNq9/alsXsGt/IU+HX3ItLMLoQoxZw5c9BoNKSm\npjJmzBhq1KjBrbfeyssvvwzAP//8w5AhQwgMDCQ0NJTY2Fij7W/cuMHs2bNp2rQpPj4+NGjQgBkz\nZnDjhvGjyfHx8fTq1YvatWvj4+NDq1atWLp0qUl9wsPDGTRoED///DMdOnTA19eXiIgIPvvsM4vf\nIScnh7w8y9NXr1+/ngEDBugDOUCvXr1o1qyZ2Sb58sBtwfzoY0et39zB5t+s37Ic2r5Eho9z2dnM\nXl6etZVmdiFEaQpfywEPPvggAPPnz6djx47MnTuXRYsW0bt3b+rXr8/8+fNp2rQp06dPZ+fOwpdq\nqqrKwIEDiY2NZfDgwbz33nsMHTqUuLg4RowYYXScpUuXEh4ezosvvkhsbCwNGjRg0qRJLFmyxKQ+\nqampDBs2jN69exMbG0twcDDjx48nOTnZpP6vvPIK1atXx8fHh/bt2/Pjjz8arT9z5gznz5+nXbt2\nJtu2b9+eAwcO2H/yylD5a/g3x87mX5e/M9zeJL1ARanixg53ycyFEDbq2LEjixcvBuCxxx4jPDyc\nadOmMX/+fKZOnQoUzmpWt25dli9fTpcuXUhISGDr1q3s2LHDqJ+6VatWxMTE8Msvv9CxY+FcIzt2\n7KBatWr6MpMmTeLee+8lNjaWmJgYo7ocPXqUxMREOnfuDMCwYcMICwsjPj6eBQsWAKDRaOjTpw9D\nhw6lXr16pKWlERsby7333ss333zDvffeC8DZs4UzlIeGhpp859DQUDIyMsjLy8Pbu3y9x8I1wdyG\nGGEu8NqdMXrKZChurp/+pkcycyFcLicnh5SUlDI9RosWLfDz83Pa/hRFYcKECfrPGo2Gdu3asXHj\nRsaPH69fHhgYSPPmzUlLSwNg3bp1REZG0qxZMy5evKgv16NHD1RVZdu2bfpgbhjIr1y5Ql5eHt26\ndWPz5s1cvXqVgIAA/fqWLVvqAzlASEiI0XEBwsLC2LRpk9H3GDNmDC1btmTq1Kn6YH7t2jWT4+v4\n+Pjoy1TKYG5TZmymaElBJj8zn1Nvn6LhSw1RNMWyW1dPzOJAZu5WupsJieVCuFxKSorV82/bKykp\niaioKKfus0GDBkafAwMD8fHxITg42GR5RkYGAKmpqaSkpJh9b7miKJw/f17/+eeff2b27Nn88ssv\n5OTkGJXLzMw0CubF6wIQFBTEpUuXTJYXLzN+/Hjmz5/PmTNnqFu3Lr6+vgBcv37dpHxubuHEZroy\n5YlbM3NVq5oEYHMDykoKdn+/+jenYk9Rs39NAqIDjNbp9uWqZnZbjmNU1t2ZedH5LQ+vYxWismnR\nogVJSUllfgxn8/IyfULI3DK4eb3TarW0adOGuLg4s9fLsLAwANLS0rjnnnuIjIwkLi6OsLAwqlat\nynfffceiRYvQao0vmqUdtyS6Y2ZkZFC3bl1987quud3Q2bNnCQ4OLndZObgomF87do28jDyTd2Wr\nBabB3GzgL6HPXHu9hEjoIc3skpmLSkt+5/Dz83N61lxeRUREcPDgQXr06FFiuW+++YYbN27wzTff\nGI0o37Jli9Pr9NdffwHoWwvq1q1LrVq12Ldvn0nZvXv3cvvttzu9Ds7gsulck0ebjio0G8TMBN4S\ng52uvLlvohvY5aqM095mdjdnxPrzW85veoQQnm348OGcOnWKjz76yGRdbm6uvjldl2kbZuCZmZms\nWLHC7mObm73t9OnTxMfHc9ttt1G7dm398vvvv59vv/2W06dP65dt2bKFo0ePMnz4cLvrUJZcNpr9\n+inT/gdzGbfZAXAljbLWrTIzGFwfJMt5n7k9o/W1+Voub79M8D3BpRcuhb6ZvZw8IieEqJgeeugh\n1q5dS0xMDNu2beOuu+6ioKCA5ORkvvjiCzZv3kxUVBS9e/fG29ubAQMGMHHiRK5evcqyZcuoXbs2\n586ds+vYzz//PH/99Re9evWibt26HD9+nA8//JCcnBzefvtto7L//ve/WbduHd27d+fZZ5/l6tWr\nvPXWW9x2222MGzfOCWfC+VwWzM0FZLMZqY0D4HT7MGmuN9xXOc847cnMT8WeIm1GGnf+eSf+Lf0d\nq4C22L9ClDG5cayYdM+gW1quKAobN24kLi6OTz/9lK+++go/Pz8aN27M5MmTadasGQDNmjXjyy+/\n5KWXXmL69OnUqVOHSZMmUbNmTaNR9Lp9lnZcgD59+rBkyRIWL17MpUuXqFGjBt27d+fFF180aTqv\nX78+P/30E1OmTOGFF16gatWqDBgwgLfeeqtc9peDu4O5M5vZzf0sdYl5eXzO3KCsPX3m108XtnQU\nZDk+B6v++HJ9FUKUYvbs2cyePdtkeXx8PPHx8SbLt23bZvTZy8uLadOmMW3atBKP079/f/r372+y\nvHhmbPj4WUnHffDBB/UT3VgjMjLS5FG28sxlfeZqvkrmrmJvCLOymb2kZmh9eXMZvZlm9qv7r3Lt\n72slV9ZOdt802JMR625enBCA9aP+ZTS7cBVXPzYqRAXnsmCuzdNy4C7jafCcmZmbLWOmmT0pOok9\njfaUXFkX09U9PzOf62fNjC0wQ9d85JRWB93Nkh27yjqURX5mvuN1EEIIYTeXZuYmy0oKwMXKba+y\nnaMxpvO567PKEvZV3kez6242fm37K7vr7rZuGyfO/urIQMF9bfdxsP9B51VGVA6SkQvhVG4N5vqs\n2iC7tDidawGcWWrmTWu6fZQ0wK6cj2bX3YhcP2ldVu6MY5o7vr03PVn7y/BFNkIIIUrlumCeV0Jm\nbrjKXP9xSX3mugBkrkx57pczHADnSMuBM76bA83sIH3twnYyml0I5yofzeyGq8wl8CXN8mZFn3m5\nb2a3Z0C6k5rZtflaru67CjhwnuSRNiGEcCuXBXNzz4Gba941F1BKCuYl9Zm7OmO0N9uwq55OGs2e\nl55nUBH79iGZubCZ/MoI4VQuC+Zmj6TLSA1jtbkEu6QZ4KwZzV7e2RPLLUySYPN+vAz2Y2+GLZm5\nEEK4leuCeQnTrRoNgDP31rQSgrmufN6FPJN1eyP3Wjx2mbD35sGRLnMn9j3avS9PuWkS5Y70nQvh\nHK5rZjeTSZp9wYedmXnyqGS0+cYpYn6Gi59/tncGOHsuaE5qZjdq0ZAMW7iKxHAhnKp8NLOXMgDO\nmswc8NxgZM+FzUmtDUbnVi6wQgjhkdzbzG7lADhrMnNL24J9/cvaPK3tc6a7oZnd4QBsMJLeXQPZ\nzq85r59rXlQScuMohFOVi2Z2o6DpSGbuxAvEjqo7SLozyaZtXNrnXBbN7G66wB4ecZhDAw655+Bu\ncu6zc+RfkWlwhRDO4brnzEuah73AzDLDbc1MOGO2vJOb2bMOuGZmM0cGATk6gMjw5+LOR8zyLpoO\nYCwr1/6+Rv7VsgmkN87fKL3MhRukPJzCsWePlUkdPEFJL0gSoiwcOXKE559/njvuuINbbrmFunXr\nMmDAAJKSzCdtZ86cYfjw4QQFBREYGMiQIUM4fvy42bIff/wxLVu2xNfXl2bNmvHee++V5Vcxq1xM\nGmO4zux0rlZm5hYDWzkczW5UVzc+mlYeMnNw7Y3EnkZ7+L3n707f74UvL7Cr9i5yjuaUWE73+5x3\nyXU3MEJUdsuWLePjjz/mzjvvJDY2lqlTp3L06FE6duzI1q1bjcpmZ2fTvXt3EhMTeemll3j11Vc5\ncOAA3bt359KlS0Zlly5dymOPPUabNm1477336Ny5M8888wxvvvmmK7+eC99nXsJ0rqUNwrK2z9zt\nA+DsjUfufAWqYauIO7Mkx1/LbhPdrHfOdOXXKwBcP3Mdv2Z+Tt9/hSIZuXCxUaNG8corr+Dnd/Nv\nc/z48bRo0YI5c+bQs2dP/fL333+fv/76i19//ZWoqCgA+vbtS+vWrVm4cCGvv/46ALm5ucyaNYuB\nAweyZs0aACZMmEBBQQGvvfYajz/+OIGBgS75fi59BWpxZvvMzTWzl5SZ2zka2+bBbWXIoaZyJ/aZ\nu7OZvULMIld0Q2I0EY8QFcycOXPQaDSkpqYyZswYatSowa233srLL78MwD///MOQIUMIDAwkNDSU\n2NhYo+1v3LjB7Nmzadq0KT4+PjRo0IAZM2Zw44ZxF1V8fDy9evWidu3a+Pj40KpVK5YuXWpSn/Dw\ncAYNGsTPP/9Mhw4d8PX1JSIigs8++8yo3B133GEUyAGCg4Pp1q0bycnJRsu//PJL7rzzTn0gB2je\nvDm9evVi7dq1+mXbtm0jIyODSZMmGW3/5JNPkpWVxXfffVfa6XQa141mN5d5mXnjma3N7Nrcm9Hf\nYkAwc23V3iiDNN6Vo9kr2qNp7m5VcQLd75+5qYuNypl7J0GRrD+yuHGh9H53j1cB7t0qK10X34MP\nPgjA/Pnz6dixI3PnzmXRokX07t2b+vXrM3/+fJo2bcr06dPZuXMnUHh9HzhwILGxsQwePJj33nuP\noUOHEhcXx4gRI4yOs3TpUsLDw3nxxReJjY2lQYMGTJo0iSVLlpjUJzU1lWHDhtG7d29iY2MJDg5m\n/PjxJkHanHPnzhESEqL/rKoqBw8epF27diZl27dvz19//UV2djYABw4cACA6OtqoXHR0NBqNRr/e\nFVzWzG6OMzLzghzDZ6usP7b2uhYvXy/rN7CCx49md2NArRCZue78lfZrVUKXwr42+6haryqdT3V2\nVq1EOZeTAykpZXuMFi3Az8k9Px07dmTx4sUAPPbYY4SHhzNt2jTmz5/P1KlTARg5ciR169Zl+fLl\ndOnShYSEBLZu3cqOHTvo1KmTfl+tWrUiJiaGX375hY4dOwKwY8cOqlWrpi8zadIk7r33XmJjY4mJ\niTGqy9GjR0lMTKRz58K/m2HDhhEWFkZ8fDwLFiyw+B0SExPZvXu3vlUBICMjg+vXrxMaGmpSXrfs\nzJkzNG3alLNnz+Ll5WV0MwDg7e1NzZo1OXPGzGu7y4hLgrlXoBdkmi53Rp95wdWbV0ZbAoJ63fnB\no8S+fZPCFv7fwKXtl9Bmazn/xXmaL2uOpoppQ4pTR7O7cWrN8tTtYS/dd7A6M7fgxmnJzCuTlBQo\nltg5XVISGLQYO0xRFCZMmKD/rNFoaNeuHRs3bmT8+PH65YGBgTRv3py0tDQA1q1bR2RkJM2aNePi\nxYv6cj169EBVVbZt26YP5oaB/MqVK+Tl5dGtWzc2b97M1atXCQgI0K9v2bKlPpADhISEGB3XnAsX\nLjBq1CgiIiKYPn26fvm1a9dMjq/j4+NjVObatWtUrVrV7P59fHz05VzBJcH8lva3wI9mVhTF4dIC\nSonBPMuKzNxcM3tJr1W1k703CJaC6O89bo64DpsaRvU21fWf9aPZnTkAzp1N3RWpmb2UPnObbvpE\nhdeiRWGwLetjOFuDBg2MPgcGBuLj40NwcLDJ8oyMDABSU1NJSUmhVq1aJvtTFIXz58/rP//888/M\nnj2bX375hZycHKNymZmZRsG8eF0AgoKCTEae6+Tk5NC/f3+ys7PZvHmzUV+6r68vANevm05klZub\na1TG19fXpK/fsKyunCu4JJhburiZZOYabG9mNwzmNgSEsugzt3uf7uwzd/OjabobmQrRzK77VSxl\nJEpFaIVwlDxnfpOfn3OzZlfx8jLtTzK3DG7+vLVaLW3atCEuLs5sEhMWFgZAWloa99xzD5GRkcTF\nxREWFkbVqlX57rvvWLRoEVqt8bW2tOMaysvLY+jQofzxxx9s3ryZyMhIo/XBwcFUq1aNs2fPmmyr\nW6Zrbg8NDaWgoID09HSjpva8vDwuXrxI3bp1zdarLLgmmFtodtS/NS3foHnS1hngbtjZTFwGj0LZ\nne2Xk2DuyoCqvaFF8Tb4eVegzLzUcvkSyETlFBERwcGDB+nRo0eJ5b755htu3LjBN998Q7169fTL\nt2zZ4tDxVVXloYceYuvWraxbt44uXbqYlFEUhTZt2rBv3z6TdXv27KFx48ZUr17YSnr77bejqir7\n9u2jb9+++nK//vorWq2W22+/3aH62sI1o9ktDQgqKPavl/kLotWPplkICGanki2DwGV4Y2Hbho4c\n1IFtcU9mnp+Vz45qOzi3/Jz+mBUiW9UW+9cC3Xe9+M1FDo8+XLZ1EqIcGT58OKdOneKjjz4yWZeb\nm6tvTtdl2oYZeGZmJitWrHDo+E899RRffPEFS5cuZfDgwRbLPfDAA/z666/s379fv+zIkSNs3bqV\n4cOH65f17NmToKAgkxH2S5Yswd/fn/79+ztUX1u4JjOvYl0zu+Jle2ZuXND6OpVF8LCpmd0whjpS\nF0eDueFjgTbWw94BcwWZhXdvFzddpPbY2oULK0JmbubFQWbLGZzz86vO0zKhZZnWq1xSi/0rKoWH\nHnqItWvXEhMTw7Zt27jrrrsoKCggOTmZL774gs2bNxMVFUXv3r3x9vZmwIABTJw4katXr7Js2TJq\n167NuXPn7Dr2okWLWLJkCZ07d8bHx4eEhASj9ffdd5++j3vSpEl89NFH9OvXj2nTplGlShXi4uII\nDQ1lypQp+m18fHx4/fXXeeqppxg+fDh9+vRhx44drFq1iv/85z/UqFHD/pNlI/c2sxd7NM1sM7vG\n+mBuU7ZdFo+Z2zkA7re7f6O72t22jXTj3xwdgW7Q3VBwxca+B2dciHWZeQXoM9d/h9J+t1w8250Q\nrmJpmmndckVR2LhxI3FxcXz66ad89dVX+Pn50bhxYyZPnkyzZs0AaNasGV9++SUvvfQS06dPp06d\nOkyaNImaNWsajaLX7bO04wL8/vvvKIrC7t272b17t0nZrl276gfSVa9enZ9++onJkyczd+5ctFot\nPXr0IDY2lpo1axptFxMTQ9WqVVm4cCHffPMNYWFhLFq0iKefftrKs+YcrnnO3EIzuy6I52UUzVGt\nMb2oa6pqHM/Mzfycr+y9gld1L3wbO2+0YZlMRFNkX9t91JlQhxbLCoelOntu9io1q5B/2fzLRwpy\nCjjQ7QCt1rTCN8LgfDkj/lrZNO0RdE9nlJaZV4QuBUdVwFOQcySn8DHcCm727NnMnj3bZHl8fDzx\n8fEmy7dt22b02cvLi2nTpjFt2rQSj9O/f3+zzdTjxo0z+mzp8bPix7VUP0vq1q2rn6K1NBMmTDC5\nyc6TTSAAACAASURBVHA1l/SZW3zuVgvZKdn8OfTPm+WK/ZErVZUyycyPPnaUPRF7rC5fKi/nPe5m\nKds+97FB85ITJo25mnSVU++cAsA72Jv8TPPBPOv3LLKSsjj9/mmr6mkLdz7b7mzWZubyaFrFtLfF\nXvY0duI1RQgbuCaYl/BoWm5a7s0FZgbAOSUzdwGNj6bEAXBnPjzDwX4HrduZLd/Dge+c1C6Jy1su\nA0U3TbY2ddt7bMNfh4oU13TTE0tmXroKegq01ypCE5PwRG4dza4WqEY1MJuZeyuW32de/B7B0t+R\nC957ofHRlJiZH514lIxNGTcXlHAxs+pib8V3Oj7nOHuaW5cpaKpqbO/LdfSCrDphH+WI/ucmmbkQ\nwsVsDuaKonRVFOVrRVFOK4qiVRRlUKnbWJoRq6BY368Gx5rZ3dhkW1pmbhNrbu6taGY/8coJrh21\nbjpBxbuEzNzSjYNB8ew/s606jskuKsDANx39vAmSmZeqInWvCFEe2JOZ+wO/AU9iZV5V4mh2gxrk\n/S/PJLvVeJfQzF58scGmrr5YePl66QfAZfw3g/8l/M/ufeVdymO7st2qss76npqqGpsHoRke+9fW\nv9p34Ip0Tde1bMhodiGEi9k8ml1V1R+AHwAUa4dUW2pm16omWV/qU6lGn81l5reOuBU0hc/oGu/Q\nwv8roM3XlumIacNm9oN9C/vGa4+ubde+/p71d6llnDY3u25/VZXSM0a1aOa2KorF2fpsVoGCudWZ\nuTSzV6ifuxDlgctHsyveBtG7wDRrzz5o3FyreJsG8/qT65udaMPoIlrsYrG//X52VNthY82t58xm\n9hvnXf/WrBKb2Q3sqLaDY88eK/wgfebGbJwBTkhzuxDO4vLR7GHTwvT/X7yZ3Rxzo9k1PhY2Mozl\nBhcJRVHIOpBlfYXtoMvMsw+X3Hd848INVFUt8SJWkG25HVYfcJ30PnPdvhQvpfQgVFTns/FnHTu2\nhZ+Tp7NnBrhKS06BEE7l8kljDAO7WqCWOvmJuczcUjAvKTMva7rM/NdWJfcd77p1F03fa1piGW2O\n5ahakF1AlYAqTg3mildhs7mljLH4z0g30529gdjo51SBnuSx+jlzycwrheTkZHdXQZRzzvwdcUkw\nf/XbV6lSdCjftb5c4xo96UmjgkYOZeYd0jqgqaphd/2iqfks9Zm7gMZHU2JGbShzdya+TXwLA7KZ\nepa0n4KsomBexFIWaFPA8Cr6z8qBWQ6/9cvBn9ON8zdQqih4B3vbWYEyYu0McJKZV+jMPCQkBD8/\nP8aMGePuqggP4OfnR0hICKtXr2b16tVG6zIzM63ej0uC+Zz75uD7VuE0oOGjwvl7zt+FK7SU+ry0\nuQFwumDu26jYVKyGo9kNL6gOPmeedTCLyz9dpv7T9S2WufjtRdt3bCGYl5SZ64N0KZl5/hXzs7mZ\nrUZRZm5xOlorHk2ziYPN7Ltq7wIFumu721mBsiGZuR0q4Klo0KABycnJpKenu7sqHi/nWA6HHzxM\nyJAQ0r9KJ+S+EMJfDC/z455dfpbT758mandU4ZM+RS5tv8RfU/8CoOn7TQnsGOjwsUJCQmjQoAEN\nGjTgvm73Ua1eNf26/fv3Ex0dbdV+bA7miqL4A024eYlvrCjKbUCGqqr/mNvG8GQYvkHN6c3shoHB\niVn6/k770eZoSwzmpfEO8SYvvXAO+hunb+Ad7F3YtF0UAJIfvtncUpBTQopctEp33opngec+OUdw\n32CbRkMoVRSz8+KbKL7azvOq/zk5MgCuPAYBK2eAOzL+iAsqI9xJd3EWjsmulk0++YSGhHKWs2i+\n1xD1ZVSZH/fgSwfxx5/bmt+Gd9DNFsD0f9LxKuo3btusLcFRwU475uWdl/mt62/ctu02groH2by9\nPQPg2gEHgCQKL6kLgf3AKxYP4mtwGIP+c6cPgDPMiJx4sddN0WhLtlucd8jNX4jL2y9z+t3TRhnv\n/z67+Vy6VZm5foHxx5RxKfxx3x9GTfWlNf8rXopVA+BM6mLv4DWthf/3cNbOACes+925dvwaaS+m\neewgyfzMfC5tv+TualQI+t8BF73HRvfUlcnso2U4m+i11MIJvq4dsW6ir+JsDuaqqv6kqqpGVVWv\nYv89YvEgBsHcaABcnmr5JSy68mYyc6PH2wzrZmkAnKM/gKJ9nXzjpMmqmoNqmiwzx2ydLU2MV9Jo\n9hKa2XW/8Fd2XWFPo5vTuKY+Y/zsvkk1ShkAd/MApXy2VkUdzW7lc+bCOsljkjn5n5MeO8Yg+aFk\nfu/xu7ur4dmKXSMNW3bL9LBF1+uyfBOmCQd/zV3yaJrGzyCYGwRv7TVt6X3mVRS0uTdPqH8bf5Om\n+RYrCl8LavhHXxZBwtw+w6aE0e16N5ova17itrYEc4tz0WMazK0ZGX7jbCnPrXtR+JtQWl9v8SDl\naDO7A/sol6ycAU7xVkp9oqHCs+Lnrp+3wUN/R67/cx0omrBKOIXFqcGdTONdGLNKuhaXGTu/ouuD\neZViwbyUc1V8ljdz2eMtnW4B4ECnA+QcyykqaFsdc0/klnoXZvYXSSnsCqhS0/axhKW1Spijv2Ex\nl5lbyAi9/Etum9I1s1/ecZnDow+jzbNwHgwaDNQClSu/XLGy1sXortGq6rEXanOsfs5cq7osw/Bk\nuhkVPaGlw1wdlWpFTbXXy3/9y72iS5KjwXxf9D4OjzxcajmlqoVm9rLkCZm5l49BMDH434KcApsz\naHPBXFPt5tc4FXeqqKBBASt+/r+E/8KRR0semKRoFDL+m0HBFYOoVrTvUn/JzMVHO87+vjb7yPg/\ng7evWdH/XNrFUPFS9Jn5+VXnuXGmWCavC74G5157Xcuh/oesr7ghS08deDir+8y1GP3sz687b7Fo\nhWXFj11/c23FI5MXNlzgRrrrZ07UKem6ZNiyKGyka4EsOr+OBvOs/Vmc/7z0vze3NLM7yDUzwBk0\nMZs0s9t6rsz8YevugOHmI2IlvY7UkktbShmsork57/rNgxf9U0qWbe6P3dqp7YtLm5F2c78GN0OW\nAmPBlQJyT+WaXQeAxviPJC8jz2i17hiG+7c2K8+7nGdyw+aU0ewG8rPySf+2HDwGpBvNXsINqr41\nwuBHf3jYYa6l2TfoxeOV8PPXT05kxQ3fn/f9SfIo903SUlIwL7gmb9ZxlD5DdtEAOH0ze/FWlXLc\noOaa95kb8G/jD0CV4CpWNbMXZ+4P2zAzv37yOtfPXedU7Cn9MmtfA3rjzA1+71vCgJWS6lrKL5m5\netvbr59/Kf/mjYAVI/gv/d8lfgn7xeL+FI1idDOSn1Fs1L7uGAbXpN97lT6wJ+9iHj8H/czZZWeN\nVzjxsUGAY88e44+Bfzj0tIEzWPWcua6XpNjNn+6JiUrDTGtPcfobcitPjTveaaBjbpCerqlWMnPH\n6YK5ywbAVXVjZl6e+8wNK+cX6cfd+XcTdE8QBdec38wOcOSRI+RdyjMpZ41L/y0hOzdTVV1QLbX5\nx8zNud39MRps6jMvlYLxq2iLZeb6C6+No4p1+8nccXMWI1Wr8s+Cf24e1wn1zztfeBx3XzSt6jPX\nrSr2l1dZJ5KxJphb/XvhxlNo7m9DmtmdQHd/XBRUXTUATt/MbkcLry2un7tOflZhEqKPheU6mBtQ\nNIWDrbz8vAqfp7b1D9DMuS0ezMsqQzvx+gmL60r7JTN3QfKqbl+bkVJFudmXZHgzZO/vnWJ8x1s8\nM9c/cuWEgHN522XOrThXtGPj+uun5TVDe11rcuOXe7Kw60BXd1tvNpzeX2/FW9N0xyyemZeXx68O\n3H2A5HFl31yt77op4XvrRrOX9ntXLh5vNHOzLsHccfprT75z+sytpW9mL+FNmPZ2kxraHbqbA3cd\ncHg/4IbMXHdEja/GpJk94M6AUndltu/ZS6HdwXY0WdQEgP9v77zj6yiuPf47t6lZzeqWLRe5yHJF\ncrcxAhJKGhBI6ARCgLyEJEAg5CUECCmkkQ4kgVBSgJBQHhAICRDjii0M7hUjy92ybFlW1y3z/pg7\nu7N7d/fuVbuWPN/PRx9Ju3v3zs7uzilzzpng4eDAaem9CIDzZnjjprRZfqX8XX0QTEZEBoUoeNRk\nmYu54ESFuZXCYUZqv10KXSQUwdLUpdj3y32G7e+M5lMHVgUegkeD6Nrf5di8vraGXVnm4npNj8vJ\nYpk3L23G4ScPxz+wr3CYTtZcnPFk4UnQdcoy7yfE2BN9t0Vhlf7G1jLvB13CvOx3Txl4yzyqzXjS\nPDwwRHoH/IWxC2dMeWGK4f/ia4otzzts2jAUX8f35Z7rrhRe9um8rm6vNHtxc+P0pOVgTehRQIds\nmRsGsjhjxvFlx21OaPRu2AbA9YHAicm3d5NvHH2RG5+3DnKzijx9Z8w7jpY+0PfWsHa+nljmJ4kw\n72923bGLFzFyMWeuWeaJlhlOApZGRjQw95SLh+hLTG52AJpbuj/RUtMcLPOTjeRa5u1G16kQ9Pmf\nzte2ZVbp1vqsdbMw7v5xtl/jy/IhvTIdHr8HqWNT4zdLuJbjvGspZSnOB6BnbnagZ64aQ65+V8R1\nfvO6xesst3tSPIYSuaGm+AFwVmg5/g6Il0TgRqCK67PLf7fSosOt8SOI+0uYu7LMPcDIW6Ra/6dI\nwPPen+3lpYwFbm6B22JGJ9uceUBZ5r1Fc7NLQnUg8vaFm72/58wNiCnzHrrvByY1TZLmwiLxpnsN\nqWlpk9I0oV92p75AgWHwd3GN3nQvwu1hV4O5Zh3EEYKORVd6k2cO9OgOdO3vwu67dwMAdn55JzZf\nstn5O+RmWFSjSp+cbhDmmkXEGFrea8GR548AiJ9is2bCGudFYqC/JADQWdeJvQ9Yrs1jQBOSNgGD\n2px5gi95nwtz0T4ny5zplnlgREDfniTLvOtAV2zAYy9ZlrMMDc/GyeVN4HITLjOcBLQ2Su+zeKeU\nMO8FYqZFsszNntTGlxuxhJbEHXsSQeWZu/nCdL1MXrAxiM46HsQ0/bXpli5rw4prLoIfPOkeNC9t\nxp4f6HXU5UFThkUYt/biaf4Og76mRcVLTbM7Rw+UsODhIMIt+oPb+GLU/exiUGupbYkRyumT0g25\n+uH2MLZeuxXbrtmGtdVrceDBA/x7G+IP+ivyVmDvz00C2qZdbRvbcPCRg9Y7wZWHSFckrjDXtGiL\nFy/UGuqbNd9dkJBlTjDc+2QJ81Wlq7CqzHk6QhBuC2NF4Qq0vN/ifFxzGLvv290HrYsyiCxzefpE\nzZn3HqtAydrJtQi16N5DEVDbp0ppVOwoN7sZ2biOCr+2LXzSXwtqIv1FkF8I2TJ3k2PozfCifZvR\n3ZtRmWF5bPPSZiwNLI07OLmx4OK62e2syj6IiNS+w0UA3PsL3sfOL/GFV3zDeQna/AvzDZb5idUn\ncPjJwzj8F2MglKg17USkM4IP//dDdO7txKZPbgLAq8q1bmzlbUxAaC1LX4baGbVa/9tpyU5pJMsz\nl6PurjrLz8n3dU3lGmy6ZJPlcU1vNWEJLUH3Eec8ZleWeUS34OTnvL+EeaQ7gv0P7XeMC4m0uRM2\nHbs6EDwSxIGHD9ge05v4k5WlK3HwsVjlzu2ceTKj2rX7Jyn1YrxSwrwXRLuubb0eJBZsDKJlrTRm\n90eAu3iVTWNKX47Xfc2AWebebKPpKoRf2yZ+k4jIaJlH/7ZbC90OuQ680zYZs5Ayz8065oO7dLNb\nzfemTUizvQO5H0lsPdvuw904+s+jro5tfIm7pULNIYz48ghkVmcaAuDMqX4CsR67G94pe8egVB19\nmbct0Yj7ju0d2nyyrULkd3azy8vLGirmScK8fWs7Gp9rxL7fGiPmAb2qYLziQ4lY5uQhwyDUXwP+\nvl/uw84v78Tue3ej48OO2EyFBBDPuGM6mVulxOKw7gPdqPt2HTr3dGKJb4n7c54EstLKMheoADhO\njxRWO4em3M89mGuOq/gJBdFkmRs+19dyXZz6pM4zJ2DW2lmY9to0bVPx54pjjrEqjWooBevGMk+L\n9Xcb1lN3gTkFynHeRLQ5Ttus3DW+bJ/tAz7p8cRS1jacvwE7btjh6lgtjzwsZRfIa8T31sCx6Ao3\nkd52xJ0zj1PgIdQsBfRJp7ASSh985YOYbdrcp3T+ts1tOPLiEct2urXMDcLcYQ17mXB72OBijEf3\nYe5NqL+vHqvLV2NF/grrdjEWd+1tLTbBaVDu5bRl96FubL1yq/E88dzscnngZCHaK79G0XYpyxw4\n/MxhvO17O2FXuK1ibDGkJ+KZcVpmmp+M/4oZU5jN3ycBA2aZp5WnIe88fe3v4ecON6aiyYOb1CpZ\n23IjzM3R0oBJUFkQOm4cHLv26ZY6Y8xVRKPdGuvaeSwEEfkJ3YesXbepI1Mx+anJcb9X0FnvUHvd\nCeEBkazx3loSVhqyJpDjFQCxKnvbizlzAIb4gnjC3PL8FoFMtVNrsfmizYbjhPfFyTIXebJEZOin\ncJu7aohrKtZgedZyV+0W53XDkX8cib/2dlRPNrg4TWj3N57h43CtzcubDf/H9eacBLLS0jIXwVtK\nmOPYq3xxqOAR98I8EoqgY5e1N8zgCe1J3FGcdmiKmHlMYbHHmDny4hGsHLEy8Ub1koFPTZOY9opu\nqRPp9cGJyLI6mis3e8DCzR5HmO+40WjRygNgpCviHAQhLHMHYc4YAwsxBEqNgXjkI4PiYMab6T4J\nvcdzrkKYS31kp2BYUfDZgphtVoOXm/lk28+KOfM4qWluotkNL6BLK1IT5g5KDmPM1Xrm7y+IVnvy\nwPD2hVvDrjR9N3ELMsdeOxb/ICR2z9s326cg9uQ5DHfGUWQGQ9EYi2h2zbobosK86a0mo9fLDQkI\n3j0/2INtV2+zPk1UmB954Qgan3MfACyIq1QIndRpTLG5rfXfrUf3we64RmDnXpMB1svneECEuS/H\neq3vQJEk3EjXwMlHqFpdhYonKgzHu7LMLYSq3RywHXJA0NbLt7pKT5BTrswIYTTuB8YcefIRhp87\n3PZzvqwE1ki3aWLqOOd8e6FAxVN47EgrT3N1nGa1xhnsnYS5lWXOGOtxHWXXlnk05sIp9UWemnET\nF2CeMw+3hnH0VXcxD25pXtGMrj3Wwr+7sRubL9tsuc8WF92r3d94r6rURU2vNzkXj+mBN2egsbLM\n+7LY0skGizCsP3s9tl1vLWz7grbNDpXRosPVrtt3SY0yHtJZ34mOOqNlLwwk86I8bdvacPRf0vsn\nFDEHy9xO+Ipp3XiKTtN/9Gkt+Xvqvl3Xo8j8gRHm6dZCyTCXTbrlkzIyBRmTM2Lm1eO5ss3HZM7h\nBWf8w42V5ebvn4+RXx8JO+Qc9cYXGx0tOG2hFQdFQ1vxx9R+8hHyzs/DvL3zLD/nzeq9ZR5XAbJw\nsyeC2za2b2lH+872uAOvlfW75fItAGzc7BFo1xBPmDPGcOAhPRLbrTAXdQY6PuiwrT519CV9IKj/\nXr2hgM4SWhIbWEeIcbOL6P+e0LW/K6aGwKE/H7I9fmXBShz52xHb/YLg0aA2KLkSmuJdSUB+hU6E\nnINM3VrmyUxNs7LMe1oGuY9pXd+KA7+3z0BwQ+NLjdpaCIA+Rnbv77+V6hIZ/4DY5/OdMe9g9bjV\nhm3CsDSvP1E7uRYbz98onSz6yyEAzu59EGOpefo25jjJgJKn2boP8UDQRBnwPHPDl5uE+cSHJ2LC\ngxNsi7S4scxlQVz6lVLUsJqYh4IC5Bj56HaeEdDdk7KgzrsgD5RC2uBqJ8yFNW93XYlY5nYBVGZF\nJgYLN3s8Zm2Ypf3ty3TXxmOvHcOaiWviuratLPO2jVxDt/KQsAjT5ya7Imh4tsH2JWte3owPvqYH\nuB15/oi7RUWifVR/Xz3WnW5dRU9uW6Q9gi2f3WLYLysRQPQ6pdsu10UAEgvmYRGGVSNX4cNvGte5\nP/h7+xx+t6zIX6GXxXVTh8ltIR75sIjzO+e6aIw8nxlhlgWSEiGheyAsc3lcYcZ9yWLtrLXY8UV3\nwbF2bLpgE95b8J72v1jMSq5P0dc4RqeLx4Ustjmd06UXT4whPQmA0ypyRsf9LVdswbKcZTHHyWOu\nefzuyTOTXGEuXQwRIbUsFaVfKo09LsNZ6MnIi2sUXVkEILZjPH4PDvzBXlM1BEzFIWthFm+bJKiz\n5mWBdTHUTqkFoA/05vl8cT3ydaWMTIEvjwvIRDVTM77hPq19dmhxCi5fSu8wr+ZaJz/1Wns2c2L1\nCdt9Vmk/Hbs6NGG/69Zd2HLpFhz6k7VFau7/+vvqcfjJw2h+p9nyeA3pcWhd12p5iNmyjElTM112\nuD3snGWRgBwSgrBlNQ9Ma9vahrc9b7s/gQWbP7MZS2gJP39UQXZjmYuBLHQ8hPbt8cv7ivPWf6/e\ndn+8aS6rdq07ax2W+pe6+n4rWta14G3P23FrUGhtsBh8NWVggEr1tu9ox6ZPb4pRYvpKmZCt8PAJ\nflGuPXq9TLuKOZ2FgpfIdEvcKTk7N7uL7xNjgWhjw9MNCDfHPgRysLb5enoydZRcYe4zWuZ2iLl1\nN8K8+4D+wAnNrvNDY6CBJ8PjWKLVagnVlNGx9dnzL86HP8cf0zbxvR07OnDgDwdsLXNROEeQfUY2\n5n44FwsOLgDg3uq1Yvam2VjYuNAyVc9Agpa5J90Db7oX8/fNR9WaqoSC9AD9oRUFa8xsvXKrfR17\nH8UMrrWTa9HwjLF0qFVQIQsz22kapyp0cpst90WMWri+w/hZs5UX6YggUGhdmRDQB+BwRxgH/3gQ\n22/Ybnvs7nt3A9Dn9o+/bbOgjji3C4vzyD8sXPAO41/79na0f9CuXW/3gW6sqVjj0AjjeUUKnRVx\nsytEX0vX1fx2HAUtDq1rudLmFLlvaIK0PoImKCKx+/pzfr/u23VofKHRdvXBvkQeI93M72r3xoWS\n2rqxNe4zainM3UxnuA1KtAuAc2GZCwUgXnu86frYGSPMezA1k1RhbsChJaO/PRqAtWVmJmMqr/Y2\nZ/scbdvw83iQmShc4/F5MO3labEfjmJVWCP/gnzD/6njUg0BegZBIV3LgYdNwlzad/wtPugG8gOY\n9NgkTPu/afD4PZr73az1Zs7ORPqUdNt2y3izvSAijPrGKOcDE5wzF9ZkSmkKMmdmJq5wiFr84+wD\n5w796ZDlyxzpiGBt1dq4X7H7O7tjtu37zb64td3tsFwRK3q/RVCcOdI+dDyEjl0d+neaThFpj8Bf\nZD8FIoT5svRl2P6F7Tj46EFDO+S/9/2cz8eLwSF4OM7g2kPvs9MAs6ZiDdZMWON6EJL7i4WZ47sd\nb+DtFwEpmuN21iB6v0LHQliaupTXAjC52ZemLMX7i/tm7WpLvMbv6yus3kVhmTf9uwkr8qxrF1ie\nK87z0fFhB96d/i72P+hctbB5aXPsfpvHxGqeO17mi5vUNNvvE/PsCWRhsBAznrsH3pyTRpg7zY+U\nfL4ENazG1Xkm/n4i5n44F+kTdaGXf0E+algNZq2bhRlvzAAAR6EYOhprmZtfkOJri+Ebpgsyu7xH\nxpg2cJGfDBH8sgJQcl0JfNnOgnHEF0dg1G1xhHMU4XmQha2VW1eLZo8K89xzc5FzVo79eU2WfsJu\n9ujLLKZOrNh+3XZ0fNC36xY3L222TW2LmxNtMQCJ6xbuM3OgTNe+Lqwev1p7bjp2dCDSHTEoAW4s\nc5k9P9Xn1a0WvRH31y7NrPj6Yp41YjXYx9GTw51h7LpDjxwOt4Wx5cot6G40fZepWYf+Yj3lsWaC\nbrWzCLNc/ljQ8m4c67iPZXnwaBAnVtlP9wgaX2lEy7po20zXHW4Jx0SzsxDDiRWx5z3y3BHD9KAV\nq0atwvYv2ntnAKmoT38t7Sth5b10da44wlxY+R3bnd//urvq0Ph8o0FusAhD8HgQXQdNFT1lZVDI\nWbdudtNxbgLg4lnmW6/eiqXpSw2fH/RudgN9NJfiTfMibay11Zc2Jg25Z/Myqd7U+EJoWNUw7e+C\nzxSg+Fo9uj4mMl0ubiML9ojugvX4PYblVEfeah9RbwkB2YuzXR1qNY2QOTsz9kBTnnygMICZb87E\nGeEzLM9rVggSdbO7scyBvl96kEWYrWUeN/XQQksWSpKIWLU7t7z9xJoTyKnhilLpl0odBZjVACpc\nv4AeMNOxWx/0gkeC+OC2D2IGM0HG1Ax4UjzWg32csePI349oniSAe08anmrA3p8ZF9UxD0p2ecIG\nwsD+X+233S1WCLRF3L4+kmHrz12Pg4/GDx7c9MlNWHsa9xSZ+3RV6Soc+9cxy32NLzca/t98yWas\n/6hzwZ6ufV1xAxo1Ye6UGdADrN5FYZnLLKElqL/fPvYBSMB9TIh7P5veMlUsDAO1lbVYNcK4cJAh\nqjxBN3tXfRcOPnEQx5cdN2wH7JUm85y5mcN/OYxIR8S4P2w8dyKlswVDTpj3JbLl5PF7UPYtaWlW\nB9esuW6w7GZPLeN53zPenIHyH5cn1iAC0se7c7NbzQ9PfX4qxnxvjPG4qOLhz/Wj4s8VmPCbCdo1\nBIpjLUezME8oFx76S1RyQ4lh+6THjOVr47qKEyUSaz3L+2S6DhmFofml3PnVnejczeMwgk1BNK9s\n1v4303VAPxf5CMFjQZTcwL0wTgql1WBjXtmueWUzVo/VU2+a3mjCvl/sw4l3rK1KT4oHkWDEchBq\n3+IcrCbWUBCIxXrM263ObesRieKmPK1Tjr/jIjI9WMKyfavUF27d7BYDtyiuY94nL1Qj2i48USzC\nsPt7u21zlDv3dmL9eestPTPiXU5EEd55y06sGu28ap7Ve2Nnmdd9qw51d9fFLlokTuHQtFBrCE1v\n6AI6nofBnCHS+LJ1vIAszG2j1E2I49o2tWH7dduxbnFsFotQqMPtYSyhJVqdCO2Zi3cb5MKUIWM8\nRdO/nUsrW5F0YZ4xPbqi2UkozP0FuuUUbjNGHzsViZEflHBrWLu5FCDNMnfrRpn74VykV3AB3gwX\njwAAIABJREFUHjMV4XD3zMd6h3nhz/Nr8QfadsmyLr6q2ODqn7VhFib+bqLh+JLrjULYrWWee24u\nUstTETwWhCfVg+z52Rj7g7EA+DWKzAPB+o/EKS2aIJGuiO0LnDXXGPG/qsQ4uJkH4/2/0a3I0PEQ\n3l9oPw8qIu0BXoyo+2A3AiX27nWBVVCRbHFFOiJaadiYz9ooQuQnIGwtXA/8zjkPee9PrNedb9vU\nhuYVerCZlfCMF8DmpkLalst4ql/Ley1Ymr7UKOwcLHM5VRUAGv7egGVZsWlCMob7neCcuZt9siEg\nBKW4ty21Ldh9927U/9Dawt33i31oer0Jre8bsyraNrfhxEquxNk951ZKz/5f7bcsLNTyfgsOP8MX\nKLK6f2bLXD53/ffq0fhco3UqqYNlvuv2Xaj73zrt/0S9c+ZYGREQGmqysMzj9ZFdM2VjOqpgimpy\nYilWMR+fSLEjFmYxwr/lPXfBl4KkC/PxPx8PX67PENk30Iy6fRRG3hbr8pbdoLln5xra6FTARjzE\nqWNT0X242+BmTx3FLXO35TPTxqZpFnJMJT2Xz/rkv05GVW0Vb7dZyDsI40BBACNuGqH9X8NqUPJ5\nkzC3cOdbeS3SxqcBYR4g5Mvl1zH6W6NRw2qQNjbNVUGg3tD07yZsusC6KEs8xcrppZQHimHVw2Km\nQVo36INuqCWE7sPWwrzoKq7M5H2Kr19gFYQpD0CR9kjCEa9aDfs+LC/aVd+F9xfpyoyVi9fJqpbb\nU3hlIfIvzLc8pnklVxj2/XofIh0RQwETq4FXZGeY00zrv1dvmM+2ws2cs/mZSWTxGTluRu6b4NGg\n5Xzrnh/viTnevBJk7dRabZVCu/ubyPOytmottl7OazBYWeHmugBW57Z6hp3aYFAQKH6QGgDH2Bph\nfBnaGqdevnasxVe3b2/H3p/rSq05N/zI80fQvLJZc5GvO8NozTf8rcFQ1c4Q0BqKzXRYWx0/2Fcm\n6cI89+xcLDq2yLKm+kAx7ifjMP6B8THbU0ZwK5oCBPKSwTJ3rPgW1bazFmQh0hHRbjr5CdmLsg3n\ndoNwE6VNMs4zj/z6SBRcGlsb3UzRFUXIqNDXdJ+3W684l/CctwnyEGpYjbFmgGmxm/KflSNQEECk\nO4JgU9AyLS2Z6wSzIAMFSMvvB3ja4M6vcVeyVUCkYNs1+pxw69rWmKwA2TJv+GsDEAZSSmLvfcpI\nvq3gYn4/rarBye7CcEc44SCZgVhf28oduap0FcKdDm7y6KBddFWR7XslFBGrimNCMHft7cISWoLW\nja36QG6yzIUHsOGpBnTu6zR8XkN2f9oI/RhhlsCysLIgls9z9JWjevEZqR/kYkBiLHH0DNoJc4c2\nyrnp5pRZIWTlaR6z0nbosdhAR8vaAQ56ndkwiHRGkHtuLmZvmo2Zy2ZiUcsi+w9boCmvUc9C27Y2\nvf6DSVEQqceat8uiqzacv0Gr5eAd5tXvneiWMBy9dFsu24LaqbXa/3t/qisGretaex3zkXRhnkxm\nLpuJ05afZitI0iu5e1sIZ1lgDZsxzPIzgL4WefZ8LriFpkZ+QmZ1JhY0LEDuWQmsVx79WvPDPv5n\n4zH5L/rKam4EOwCkjtbrtbuZ83YTdLfg8ALtb6GYVb1ThUUnFmHU10eB/AQWZAgdC8WvStcDSr5Q\nYrldm8ZxINIVgTfdi7I79JiIdWetw/5f7+crN9W5j6zP+3ie4X/h+gT03G2rWARt+kXkl5uFEIy5\n0/t+uS/h9BXh/ejrTAEZS0ESia31YPUZT8CjeW3MaAI7GoMgu361CoHR8xx95agmMIPHgjzNyaT4\nbL1qKzZ/mtem/+DWD7CqbFVsZD5gO8BqAs7FsrCNLzSi4Vm9FgILM3Qd4opH87Jmw3ZxDZG2CFrX\nxxYoEpY5CzPUTq/FewveiymSZGfRWglzsaCVUBSP/eeYVuxKICxzOZPFLMx33BRbYe7Awwe0+gHx\ngsIAGKdaiSs6gYIAMqZkIGdRjiF7KB5dB7q0533TBZsQagmhdnKtNhab3ez+PD4mBY8GsefHe1D/\n/VhFRO4/T4YnrscJgG35Z8A4Nuy4aUeMpzX7dHfBzlqbEjp6iJGzKAfZC2M7bOqLU5E1LwuZVcbo\nb23t7wxPzDyr4byLc1DDarT0t+4jxpKvgYL4c6aG740G1Fm5tOXCO1OemZLQeQF3lvm0f07D7K2z\nHY+RLVKhwXvSPFrUNwUIke4IOus6bQfsRKh4ssJ238hbRmLq/00FAAw/x34hG0Gki6eMye0S886s\nm6Gzzv3ysqVfLUXZt3WlwKo+c2q5rkzNXDYTo+8ZjdSxfJvrlJ9wYm5TQB+wDDWoe4CbdEQ5EwSw\nXqUqc1YmfHk+LZiLAoTi64zrMWSfwd9PITRFoF7bpjZNydr0KZMXI6ILnj0/3oOdN++MjXyGPkWy\n/1f70bW3CysLVsZY4nbWrLhPnlQPjv37WMwctpktl+rlfVmIoaWWW3iNz+uR7SzCtGmB/b/dj3dn\nvmuIb6AAacKIhRnaNrbhxKoTMZH3tp4Xk+xhjGlKY6gphEhXBBvO2RD7MVHtTfJMxgtq1L4j2n+a\nUHfyJplsquCxWC9e9dpqV9+7qnSVYYVB83SLuY9ErFDoWMjgCbFrnzfDqwfAOZQiTuRdk99nb7ZX\nGxPcckoLcyvIT8i/IB9Vq6oMAXCClFEpWsR3PMQctxjInFxjjthY5lbHzN46W5sfd4MbYe4b5jO4\n6a2Q57xFVK3sbvcEPAg3h9G8vNnS6gSAyr9XumkyKp6ocAwiG/+L8Zrm7ZT+Jaj/bj0iXRFLJSPS\nFUlImBMRUsc4v4SBfL3tOYtyMPbesRh+znCUP1COETfqMQo7v7rT/hzFAYOAtFuZUMZqcMiYFt9z\nYcZNJUZ5eWMAaHi2wRDZDwD+fD/IQ+jYwYWyx+/RvFmCYTO5UtC9vxv7H9QDD7dfvz1mEQ0BCzNN\n8GgDulV6oUWfmRWkD776gWV+tyzgNpy7ISay2o60CWno3NWpXbP8jkQ6IzFCRxYUrJtp3hlZyTAr\nSjHCnGLPBQAta/QAq1BTyLJU8RJagqOvRKO0JWvWbS5725Y2HHj0AJqX8nbHreYnEWqK9eKZDSy3\nxAjzrggaX2nEElqC7iPd2tjqWM1OLiXiJ+z/zX6E28PYerX9+g7Ny91XIpSfPU+KJ+EUQyXMJSqf\nqcSs9/VFRKzc7/P3zEfJddYuXTNC2xMvm3ku2S0TH5qI/E/na5+vWlNlcK+XfasMM9+eCQDIqMhA\n1izneuyGNvaiZKyMIR3PoqqcIcDN5n0uvKTQsIiL7XelUGyMBQEVf65A0ed4IJnocyuFzIrwibDl\n4B48EkSoKeRKWIpr9Ocav9NN3XvyEEbdNsoQZClHzZsJNYfQvkNPobKzlkVAHcAVUZnxvx6P6tpq\n18pfxowMlN5civTJ8dMjPQEPZi6dqf1/4KEDWFVqSoHyAvBAK9Bi9X7InrOdN8cqN3X31sVsY0Fd\nmIvyzlYBllbKjdUAapXfLVvmiRAoCqDpjSZt6U65XaGmUEyanrxMpqGdkjAVgW8CIXT3/mIvVk/Q\nFZ5VpavQ8aE+xSKntwWPBW2lgYjSDh0LacLOraDZ+LGNhuWBZWs5BnmIaIvwYFmL+JqE63MgdjnS\nSFcEx/7J6wB07evSPAaGyHcTXfV620VRm6b/NBnqP/QGgxvfrh6EA0qYSxReWoiMKYlbKoLR94zG\nlH/orm6zZd7TiO3M6kxMfW6qplxkzc4ypHKN+8E45Cyyr9pmhZiP6e1iLjIixkAgC3NZ+DoJNzdC\nE+FY67D488UovqoYk5/gSo4YzNPKeTaA/J0THo71rKSMTLG0zMVAKbvG7VjQEK2pbzqPJ9WTkCJX\n/X58V2KoOaRZd4AxQtrw3VK/mz1DuR/JhSfFo5VAjkfKCO6VkhVAuzgN8hNyTnd+JvMvzDcUWBLT\nAIJFJxah8DOFjueo/65FkJVHfz604hsWI13oRAht2+LnyQPAiXeNuftWrmfZyzX8YzbTO6bX7fCT\nh/X2HA/FWJDm1ffitRPQLfNdt+2KiY8QWQH8QP3PUFPIVblssXiOW2HOQkzLtwf43LA5NqHh2QYs\noSUGpclf5Eek09pbNv7nscHK8djxJeOcfqQzoj8TDFpfyGmWgI0XioARX+YetGBTz+phyAXIBLJl\nLmKMEkEJcxeIIJF4jL13rBaNDOjBZSLwqcdu9n5AuLt6G80uU72mGtXv6YJIFmAGl7tDHfjUUamY\nf3A+algN5uzU6+tPfETPd2chpr1kpTfzZW6z5xnds8WfK8b0f09Hzuk5mPvBXCw6yiNhyUco/WIp\n5u6ai2mv6a7glLKUGIsa0IV5+gQLa1S6jNRxqdqiO+ayvJ5UD+bV8QyCrAXxvSZu0jQ7d3caAqQy\nq43ux9Kv8NUHzZaeWKcA0AWR27r8os/F5zKmZxjiNOT0TnFM2TfLYuZCS79Wiqo1VSi5vsQgQITn\nIFAaTcXsodeo/r76GHd59/7umG1NrzehdrIx2MtuAH1v9nuG/8VUkdx3siCWg0wFlc9U2k4xAVyg\n2q3YaPYAOAlzbbU68RhJh267ehveDvAV9eT+6D7cHb/WB+kFdZy+P7U81TYgFTAWKIoEI4Z4AoGw\nkN0EywaKA8ia7/xema1n1sX094fpfSGsdcHCxoUxAcCeVA8m/nYivJlex0wXJ0beEutdkPu088NO\nNL7YiJYN7nPNTx7pcpIyb+88zP1wbo8+ayjrip5b5v2BGJgd5+ETxJvhReZpulCRBzr5e8QSqnak\nFPNBPX18OkbdOQrTXpuG/E/p+ceeNA/8+fwlTx1nbTGThzD8o8O17xbfX3QN92ikjUtD3nl5mL9v\nPvIuyMOkRydZWgEf3smDYcZ8dwwKryzE7M16IKAsdOWAPHOVPE+K3l6nwVxru4vnpH1LO1iQaXPe\n5kVbRIBmsMFoOUx5LjZI0m1aoFmYt20wWrXyYkRCcR13/zhUPG4MVvRl+5A1OwtEZAh+E+2YtW4W\n5uzQFTk3XhEz5nnjrVdtxfabnGubAzAsGkI+QuUzehzHwT/qlqMmMG1kmpWHKX1yusFVK5N7Tq6j\nMDdfj5MwPfDQAaydt9Y220GLLJcqu+26dZetS1//II9VWEJLHJ/jSEcEpTfHLmU9+m5esGrjJzei\ndUMr6u6uQ2e9dTyKeG7tVlec9qquiFe9UxUTcBmPYFNQq5N/+OnDtgVafNk+zHxrpmGbVvcj22db\nqS8e5joBgHWlve3XxX9mtXP2qCWnEKkjUxOOPpeR5xfduLEGispnKjHhoQn9mt8tu3hli3Dc/eNc\nn6P8R+XIOy8PgcIAzgifgYonK1BwSQHSytNQvbYaI7/mfv5scfdiTHrEWDY2pTQF016chozJGY4L\n3aRPTEflXyqRUZmhVa4rvEJ3AcvTMymlXBkRtfD9eX54Ah5kzsrEuB/Fv/Z4NReEQgLoqXfZi7JR\ncqNuDaWN5wqTmOIR69p7072o/HslvFleg2tezlYouqYIhZcVanUNhCIilAyz9SqEvF2wYdHVRRh9\nj155UJwP0HP4p/1TH5wD+QGDJ6T63WrknBnrsjcvljT84/oz1ra+zXw4Dv3xUIwC4oQnzaPl/wPA\n9i/oA+ue+3khF3M5W4GVx8uT5rGtue3P8yN0PHbOXFB4mXG6oeGpBsvjBCIf2o7aGbXY+AljpLVt\nFDdi4y2CR4LafZTrVgBcmFul7gpvRfhEGO/OeBf136vXovrNiAwgO8s87/w8LDi8AON+NA4pZSko\nu7PM8jgr8i/MN9Qr2PfAPkcLm7xkMBoKPsu9r137uqxz6QFLZUbG6h2X8857ghLm/YxsyZ1MpI5O\nRen/OD9wvUV2rXvTvTi943QsbFro2q0bcz4PofiaYk0pyqzKTEhB8vg9jsebPSl2iMp1Ex+aiOLr\nilF4ZaHBRe/L9qGG1WhTLkJoVtdWI+/8PMtzGtohWeZCYZj4+4lIHZOKOTvm6CmOJQGtvG56RTom\n/X6SJtxFRH3oRAjz6udhxusz9HNeUojTm0835A1nVGRg4iMTUfVOFSY/ORmVT1ei4BLefhFQlVHJ\nz22ovgauCFSvrbaNdyAPYey9YzWLxjw3Djina/pz/EifxAV39XvVyPsk70MR+U8phHn18zD9lem2\n5+gJ4ZYwMuckFj2dtTALOWfnaFNzmXP0ZYudprR8OT4Em4KWKXwAr+IoI4LSekoiSg0Qq4B37unE\n8POHo4bVxEwpiCm8iX8wloIW91DGXJJ49qbZSB2XGtcyB/jaGWV3lvEMklGpqFrtLpDTLtvEKRVM\n1A4B9L5wyuqIl/GUUpaCcT8eh+q11THrUvCTO37cEiXM+xkiQuWzla7mSocaMaVjU73avPLJyogv\njYh/UBTyEioeq0DlX6xT6oQyY1UkxvG8kjCf/OfJqGE1GHHjCMyrm4f0Cemae3/W+lnIPTOXD6gj\n+UAkcl99eT6UP1COGf+ZgdSyVFfTKSO+MMJQP6H05lKkjE7RPpv3CS5ExWJBIvMgfXw6MqsyESgK\nIOfMHM0LYCZzbtRTIVnmovKW09rucp+wIMOUf0zBouOLNE/AxN9N1NokEy9F0A3mOJeW91ocC4FU\nLa/CzDdmasK8+Lpibb7bl+UzCICcs3Iw5t4xGHXnKPhyfQg1hdB9sBvF1xej7FtlmPFfroD5i/z9\n5tVzG41vrrMebAgibaI+XTbl+Sla8K+YEjBPW2UvzDasGgkAu+/Zbfjfn+8H+QjdDdxydhUQG0V4\no+zImMGVUdmDZfj8BPvPi4WUMudkauPaqG9YL0ctx+LYQUQo+0YZMqsykXOG7nUquaEECxsX4vT2\n0+Oew4wS5gNA4WcKUbXCfe73YKfgIneV6E5Giq7mLuycsxPLDrBCpMW5DaAUGCL/LQbxsT8ci2mv\nTrO0Zst/Xo7MWZnw+DwYddsoZM3puRKZUpyC+bvnawOqGOwmPToJ1e9XY9g0oyuViDDzrZk4bdlp\nlucTFptsmc+rm4f5B+ZrcRJ2jLhpBAIlAaRXpPNKcdk+FFxSgPIHylF0hT7tIC/zm3MmL95kp0jL\nStPMZTMtjwGM2Rdrq9e6WgRIWOHhlrCmVHjSPJi1YZY2ZZC9MBtj7hmD8h+Vw5vpRdeeLrRtbEPq\nmFSM+8E45NbkYs6OOZizmccPuFmgJ1FEHn9PkAVtwUUFKLi4AEXXFGlxGVYBpXO2zonZJqAUQqAo\nAPKR5vaWi2LFwz/cj7RJaSi8XJ+SGHUHF7iLg4uRvSCawTPMa6m0yx6G0q+WGlbJDB3j7Zm5RH9O\nzJ6WCQ9PQOUzlcg7z+h9yzkrR4sXsEKe7kodmwp/nt/VEt1m+ibJWKGQGP/L8Rj7/bHJbkaPyJyV\niclPTUbBJQVo39aOd6e/2+NzpY3lws9quUon4llLvmE+W3d9/ifzkf9J68VKeooIdhJKiS/Lh8yZ\n9u5nuzgM2WsgH2tVq95MxpQMLDiwwLBNKCwyU1+aqq16V/ZNPhjbCcHFXYvxtodHdssW84KGBTj2\n+jFNWC1sWIjl2cu1/WI+2l/kR/BwEBkzMlD4mUKDd2H4R4cja14Wiq4owoibRqD1a60gImRMzkDl\n3yqxsnClwSKTFTg5dkOOHZi/fz46d3ci0h4x1PiOixe2wXCeDA/OCJ2B1nWt6NzdiYOPHgQFCMff\nPo6ZS2bCm+FFwzMNKLqiCE1vNvH1BSzaKZj8pD4d4M2WBFL0T0OmhmnNclGG1k1RIjvmbuPByrnn\n5GL7ddsx9odjMfKWkfD4PCj/KVd0U0elYsJvJ2D8L8Zjy+VbtCp8mdWZOPjIQVS/Xx3zfFf+rRId\nH3QYpqaEkpZzZg4qHq+ImW4Yc98YBAr1xapGf3s0lqYsjUkF9Wbwam+ddZ2WU1BuUZa5os8hLzkG\nk53MeHweFF1eBI/fg2HThmFYdc8tF5FiJbuV3UBewuxNs2PmSZNFzllc6PTW1SuUmkT7IxECRQFM\neGgCFh1fhPSJXBBmTNYHT+8wL+bWzcXcXXNBpC+eJAZpf6EfgYIAiq8qRv4nuFLky/JhxpsztH4Q\niGmH0XeNxuhvj8aIL+jWni/bh6pVVUgpTYEvy2fIuQ8UBFDDapB7tj4Pa0jjtMlmICKkjU1DxpQM\nTHp8Esr+lysrJTeWYO4HXIgJxSVzbqZWDMg/3A9PBr/O/IuMih55+CJSmdWZKLi4ANNfm46pL07F\nwsaFyJyZifQJ6RjznTHwpHgw7ofGefN4i0WJ1MKM6RmYu0PPCBp560ikV6bbZgn1RpgLSq4t4QtA\n+TxaO70ZXm3VRyJeeEpkyfjyfCi5ocRSkAM8+8VcGlpkb6SMSrFMRRzznTGGVSc9AQ/m1c/DaSti\nPVeFl3JvgizMx/3EfaAwoCxzhcKR05adllAJSpm0MWmY8vwUQyS/WzKmZPSqgFFfMumRSSj/aXmv\nz1N4WSFa17b2aTqkGSKKCewsvrYY9d+vx+xNs2P6dHH7YgBA1yGeMmYnoHLPykXrhlYcf+s4AGDY\nacMw/NzhOPTHQwZloafIlrmbkqUl15aAMYZRd4zS3NmLg4vBggyHnjiEki+UwOP3IGN6BkZ/ZzRC\nx0LYcdMOTH1+KrZcuQVd+7vQ/HazZYoUEVkKVKH45H0iDwWXFlhmGMiI4LXh5w1H2jh9PloUfTGX\nThUWq9tA1L6g6JoipJanInthNojI0eNkxpvmxbzd8xJSTq1iOwC91r0c8Ff65VLkr8oHXnB3biXM\nFQoHvGleg2stUQZz/IDAE/AgUNj7+dqy28v4CnoDvNxtWnkaaliN4zGBwgCGnz8cY+4dY3vMiC+O\nwK5beRnW8b8aj5zTc5BZl4m0Mc6BV24Qlnnx54tdxzkQkWFe2uPzAD4YlJnZ6/VsGhH9X/nXSjDG\nsPdne7UYETcECgKacurmnQgUBDDz7Zm2i1LJisS83fO0aQ1RclakgPUnRJRw9UwZK4u8J4i6AYba\nHOlejLlrjGthrtzsCoViwEjmuvVOkIcw/dXpjoLUm+rVIpiFpdkXglx8P4AB88YQEcruKIsbeGim\n4KKChJTbnMU5tqmocpBX6uhUfeWyaPBbxWP2KyMONYS7P15EvhM9EuZE9GUiqiOiDiJ6h4hOzmTq\nk4inn3462U04aVB9oaP6gjNY+mHMPWMw440ZWmGgvkKkYqWMTBk0fdHfPPvSs8luwoCRexZPMe2N\nByxhYU5ElwJ4AMA9AE4DsB7A60TUtyG0Qwz1guqovtBRfcEZLP3gTfcaAtf6CuGxSBufNmj6oi8Y\nNnNYTD2A2VtnY+6uuadUP/QFPZkzvxXA7xljfwIAIvoigI8D+DyAn/Rh2xQKheKUoPQrpUgtT+3x\net2Dleq11THVzjIqTo7Az8FGQpY5EfkBVAN4U2xjjDEAbwCY37dNUygUilMDT8CDggsHf7BkopCH\nTto4isFGom72fPD0/8Om7YcBxC7QqlAoFAqFot/pq9Q0Uy0fjVQAePq5eVhe605v2LQhjD891rNl\n5QaCrs5XAPTEFXYUREv7ujmDFNUXOqovOKofdFRfcFQ/ADvEH3Fz4Ih7yd0RdbO3A7iYMfaStP0J\nANmMsYtMx18B4K+uv0ChUCgUCoWZKxljTzkdkJBlzhgLEtFaAGcDeAkAiE94nA3g1xYfeR3AlQB2\nA7BehV6hUCgUCoUVqQDGgMtSRxKyzAGAiD4L4EkANwFYAx7dfgmACsbYkURbqlAoFAqFonckPGfO\nGHs2mlN+H4AiAOsAnKsEuUKhUCgUySFhy1yhUCgUCsXJharNrlAoFArFIEcJc4VCoVAoBjlKmCsU\n/QSp0lYKhWKAUMK8l4gBm4hO+b4kor5Z3HcIQEQ5kAJMT1XBTkTlRFQe/buvilQNSohoKhFdTETu\n1xAdghDRBCK6nYgmJbstQ4lTXgD1FCLyE9G9AP4HABhjkeS2KHkQUYCIfgngr0T0JyJanOw2JYto\nXzwI4DUA/ySiO4nIw07BSFMiOgvATgD/AADG2Mlb2rEfiT4TfwSwAXylyVNyrCAib/Td2AhgMoBT\nrxh9P6KEeQ8gonMArAbwHQCXEtGE6PZTrj+J6EIAHwCYAeC/0d8/JKKLk9qwJBCteLgLwBTwFQT3\nA7gMwOeS2a4kMgnAUgAFRHQDcOpZ50T0FQBHAVQAOI0xdtepqNhFuQ18fDiDMXY9Y2w5cOp6rfqa\nU0749BGfBPAegC9F/78eOPWs86j79CoAjzHGzmSM/RbARwB0A5iQ1MYNMERUCOBjAH7NGKthjL0A\n4OvgCxN1J7VxA4w0OI8GLy79RwB3E1GAMRY6VQZvIsoCcC+ANYyxhYyx9URUEZ16OGXWOiVOBoCL\nADzBGFtNRPOJ6EYiWgRArXnaByhhngDSIPQ7AL9kjP0evAre6UR0RvSYId+nUj8EwF2HT0a3e6PF\ng8IAypPUvAFF6osmcGv8cWl3IYDjAI4TUd5Aty1ZSJZnAYB/Avg7gCCA70a3pyejXQOFeCYYYycA\n3A5gJhF9lIieBfAKgH8BeIOIrktiMweM6PMwAsA4AP8iogcAPAfusXoOwAtRxUfRC4a84OktRDQn\n+lub92SMbWaMbYoe8jcAbQCujR4TGaqWh+gLRJ8bxthWxth9jLG66P9hIgqAD9arktTMAUHqCzFw\nBxljGxhjjdH99wPYDN4XDwN4k4g+Ft03ZN47+f2QtonnPwfc6toB4H4A/0NEfwVw/1BUbszPRJQn\nwKehXgdwAsDnAXwNfN74+9G4giGF1TMBYB/4dMP3wT02ZwP4VPR3NYC7huq4OVAMmUGlryGiC4lo\nP4BXiWhMVEjH9Bdj7F0Ab4AHdFw+0O0cCCz6IixH5JpewgD4uvebB7qdA4Hb5wJ8gYRzACwAH7De\nAffoDInpGKd+YIwxIkoBMA3AG4yxbgAlAFIAXAwu4I4lqel9jk1feAHNKv0ygB8DuJNsfsICAAAI\nlUlEQVQxtpQx9iq4UFsDPhUzJHDqB/D3YRWAT4MrO9sBNEWNojsA3AgXy3wq7FHC3IJoINO3wIN3\ntgL4JhA7CEuD+NPgmuelRDQ8um+a6ZhBiUNfhMUxpoCehQCGQVqIl4iKBqSx/Yyb50K637cxxt5k\njHUzxnYCeBeAh4gqBrjZfU68foj2AYHHlVxBRO8DuBnci9UOvlwyGwrBcG7eDwBrAfyAMXZUbGCM\n7QbQyk9Bg37OOF4/MMaaALwJHj/ijT4rwgjYFN0+eYCbPaQY1IKmr5G0yF3gD96d4Eu91hBRjekY\nbfBijO0F8CKAXAA/BV985g0i8g1WKyzRvpC4CMDbjLEmIjqNiP4L4OHBrNQk0hfSM2GOWK4CsJQx\ntm0g2twfuO2HaB8MA3ABuHt9OYBK8Pnj/wB4ChjcqWoJPhOMMdZq+nwa+DzyJsZY20C1u69x2Q+B\n6DEvAfgzgE8R0UckhWcR+Ji5bqDaPSRhjJ3yP+CR12Ta5ov+ngLg/wD8U9pH5r/BB+tG8BzShwCk\nJPu6ktAXHnCl5nYAvwEPhHsSgD/Z1zXQfRH9PxtAGYBHAHwI4ONWx53sPz3oB3/09ycAzDJ97hwA\nd4FbZYOqH/rwmRgFHuG/BUBVsq9pgPrBG/09NjomtIIHvz0FPpd+o1V/qZ8E7kmyG5DUiwc+C6AO\nwDbwvPHPS/tkIXUd+BzwddH/PabzXAEgBOAtAOOSfV3J6gsAI8GVmQiAFQAmJ/u6ktgXHwXwCwAH\nwfPvJyT7ugawH3wW5yLz5wbTTx89E+eBK/qN0WdifLKvK1nPBICbwLM/HgMwKdnXNRR+kt6ApF04\nH2zrwHPFzwXwAPi8zQ0A0qLHCE2zFMCj4AErw6Lb/NK5KgB8ItnXlMS+CER/TwHwDICPJPuaToK+\nGAUeuXxmsq8pSf0wKL0x/fxMjI6e4+xkX5N6JobeT9IbMOAXrFsId4MHJclC+UEAtQAusvjcx6P7\n7gUwHcDLAEYl+3pOkr54RfXF0HguVD/0S18M6vdDPROD42fQBiX1FBZ9ysADcnYxxoJE5I9uuwtA\nF3iARjFgCPD4L7iWeTd4dKofQMOANbwf6MO+8EH1xZB4LlQ/6Kj3g6OeiUFCsrWJ/v4Bdw39GsAt\nAOZI228AL+IgAjP80vbtAGqkYzOinw+BP6DTkn1dqi9UX6h+UH2h+kH9aH2e7Ab024XxIhUvAzgM\n4C/gZUePi4cTwETw3PD7ov8HpM8eBHCL9H8leNGPq5N9XaovVF+oflB9ofpB/cTcv2Q3oF8uipfQ\nfAI8GGustH01gMejf2cC+DZ4EYtR0W2e6O8lAB5J9nWovlB9ofpB9YXqB/Xj5mdIzpkzxtrB53Ge\nYIzVSZWmXgUwmYiIMdYCnuP4HoBniWg04+UHy8AXyHgxKY3vY1Rf6Ki+4Kh+0FF9wVH9MPgRUYpD\nDiLyM8aC0b/FAih/BdDGGLtROq4UXKv0gUdqLgDPobyCMXZ44Fve96i+0FF9wVH9oKP6gqP6YXAz\nZIW5FUS0HNwV9KS0KESEiMaDr9wzF8B6xtiTyWznQKD6Qkf1BUf1g47qC47qh8HDKSPMiWgcgJXg\nJTXXRrcFGF/R6ZRC9YWO6guO6gcd1Rcc1Q+DiyE5Zy5DpC3PuQhAq/RQ3gPgV0RUmLTGDTCqL3RU\nX3BUP+iovuCofhicDPolCOPBdNfDHADPEdFHAfwBPHrzasbYKVPEQPWFjuoLjuoHHdUXHNUPg5NT\nws1ORKkANgIoB68lfA9j7MfJbVVyUH2ho/qCo/pBR/UFR/XD4OOUEOYAQET/AbATwG2Msc5ktyeZ\nqL7QUX3BUf2go/qCo/phcHEqCXMvYyyc7HacDKi+0FF9wVH9oKP6gqP6YXBxyghzhUKhUCiGKkM+\nml2hUCgUiqGOEuYKhUKhUAxylDBXKBQKhWKQo4S5QqFQKBSDHCXMFQqFQqEY5ChhrlAoFArFIEcJ\nc4VCoVAoBjlKmCsUCoVCMchRwlyhGAIQ0eNEFCGiMBF1E9EhIvo3EV0nrYLl5jyfI6Km/myrQqHo\ne5QwVyiGDq8BKAYwGsB5AN4C8CsALxOR23edAKiykArFIEMJc4Vi6NDFGDvCGDvIGFvHGPsRgAsA\nfAzAtQBARLcS0QYiaiWiPUT0IBGlR/edAeAxANmSlX93dF+AiH5GRPuin10VPV6hUJwEKGGuUAxh\nGGP/BbAewKejm8IAvgJgCoBrAJwJ4CfRfSsB3ALgBIAiACUAfhbd9yCAuQA+C2AagL8DeI2Iyvv/\nKhQKRTzUQisKxRCAiB4HkM0Y+7TFvqcBTGOMTbXYdzGAhxljhdH/PwfgF4yx4dIxowB8CGAUY+yQ\ntP0/AFYzxu7q8wtSKBQJ4Ut2AxQKRb+jzYMT0UcAfBNABYAs8DEghYjSGGMdNp+fBsALYIcpmC4A\noLHfWq1QKFyjhLlCMfSZDKCOiEYDeBncZf4tAMcAnA7gUQB+AHbCfBiAEIAqABHTvtb+aLBCoUgM\nJcwViiEMEZ0Fblk/AKAagIcxdru0/zLTR7rBrXCZ96PbihhjK/qxuQqFoocoYa5QDB1SiKgIUcEL\n4Hxwl/pLAP4MLtR9RPRVcAt9EYCbTOfYDWBYVAlYD6CdMbaTiJ4C8Cciuh1cuBcCOAvAesbYa/1+\nZQqFwhEVza5QDB3OA3AAQB14zvkZAG5mjF3IOBsA3AbgGwA2ArgcXNhrMMZWAfgdgL8BaABwR3TX\ntQD+BB7dvg3ACwBmAdjTv5ekUCjcoKLZFQqFQqEY5CjLXKFQKBSKQY4S5gqFQqFQDHKUMFcoFAqF\nYpCjhLlCoVAoFIMcJcwVCoVCoRjkKGGuUCgUCsUgRwlzhUKhUCgGOUqYKxQKhUIxyFHCXKFQKBSK\nQY4S5gqFQqFQDHKUMFcoFAqFYpCjhLlCoVAoFIOc/wdIV/Iu3RKrMwAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%matplotlib inline\n", "yahoo_df.plot()" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfwAAAFrCAYAAAA0MTvoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzsnXd4FFUXh99JD6n0XgOEDtJFQBRQsQCKBURRERUFFewN\ne/lUFAsWwIYNO9KUIiJNpPdeAwSSQCAF0pP5/riZ7GxLsptd0s77PHlmdmZ25u5mZ3733HuKpus6\ngiAIgiBUbHxKuwGCIAiCIHgfEXxBEARBqASI4AuCIAhCJUAEXxAEQRAqASL4giAIglAJEMEXBEEQ\nhEqACL4gCIIgVAJE8AVBEAShEiCCLwiCIAiVABF8QRAEQagEuCT4mqY9rWnaOk3TUjRNi9c0bbam\naS1tjgnUNO0jTdNOa5qWqmnaL5qm1fJsswVBEARBcAVXLfw+wIdAD2AA4A8s1jQt2HTMe8A1wDCg\nL1AP+LXkTRUEQRAEwV20khTP0TStBpAA9NV1fZWmaeHAKWC4ruuz84+JBnYDPXVdX+eBNguCIAiC\n4CIlncOPBHTgTP7rLoAfsNQ4QNf1vcBR4OISXksQBEEQBDdxW/A1TdNQw/erdF3flb+5DpCl63qK\nzeHx+fsEQRAEQSgF/Erw3o+BNkDvYhyroUYC7HdoWnXgSuAIkFGC9giCIAhCZSMIaAIs0nU9sbAD\n3RJ8TdOmAlcDfXRdP2HaFQcEaJoWbmPl10JZ+Y64EvjOnXYIgiAIggDASOD7wg5wWfDzxX4IcKmu\n60dtdm8EcoD+gOG01xJoBKxxcsojAN9++y2tW7d2tTkViokTJzJlypTSbkaZQL4LC/JdKOR7sCDf\nhUK+B9i9eze33XYb5GtpYbgk+JqmfQyMAAYD5zVNq52/K1nX9Qxd11M0TfsceFfTtLNAKvABsLoQ\nD/0MgNatW9O5c2dXmlPhiIiIqPTfgYF8Fxbku1DI92BBvguFfA9WFDkl7qqFPxY1F/+Pzfa7gK/z\n1ycCucAvQCCwEBjn4nUEQRAEQfAgLgm+rutFevXrup4JPJj/JwiCIAhCGUBy6QuCIAhCJUAEvwwx\nYsSI0m5CmUG+CwvyXSjke7Ag34VCvgfXKFFqXY80QNM6Axs3btwozheCIAiC4AKbNm2iS5cuAF10\nXd9U2LFi4QuCIAhCJUAEXxAEQRAqASL4giAIglAJEMEXBEEQhEqACL4gCIIgVAJE8AVBEAShEiCC\nLwiCIAiVABF8QRAEQagEiOALgiAIQiVABF8QBEEQKgEi+IIgCIJQCRDBFwRBEIRKgAi+IAiCIFQC\nRPAFQRAEoRIggi8IgiAIlQARfEEQBEGoBIjgC4IgCEIlQARfEARBECoBIviCIAiCUAkQwS/DzJsH\nM2eWdisEQRCEioBfaTdAcM7gwWp5xx2l2w5BEASh/CMWfhljyxZo3RpeeKG0WyIIgiBUJETwyxhT\np8KePfDyy6XdEkEQBKEiIYJfxujYsbRbIAiCIFRERPDLGJpW2i0QBEEQKiIi+GWM7OzSboEgCIJQ\nERHBL2OI4AuCIAjeQAS/jJGTU9otEARBECoiIvhlDLHwBUEQBG8ggl/GEMEXBEEQvIEIfhljyZLS\nboEgCIJQERHBL0MkJMC6daXdCkEQBKEiIoJfhvjrL7UcN6502yEIgiBUPFwWfE3T+miaNlfTtFhN\n0/I0TRtssz9E07SpmqYd0zQtTdO0nZqm3ee5Jldcjh6FatXg/vtLuyWCIAhCRcMdCz8E2AKMA3QH\n+6cAVwC3Aq2A94CpmqZd624jKwtZWRAYCD4y7iIIgiB4GJfL4+q6vhBYCKBpDhPBXgzM1HV9Zf7r\nGfkWfndgvrsNrQzk5ICfH/j6lnZLBEEQhIqGN2zJf4HBmqbVA9A07TKgBbDIC9eqUGRng7+/WPiC\nIAiC53HZwi8GDwLTgeOapuUAucA9uq6v9sK1KhSG4IuFLwiCIHgabwj+Q0AP4FrgKNAX+FjTtBO6\nrv/t7E0TJ04kIiLCatuIESMYMWKEF5pYNhHBFwRBEJwxa9YsZs2aZbUtOTm52O/3qOBrmhYEvAYM\nyZ/rB9ihadpFwGOAU8GfMmUKnTt39mRzyh3GHL4M6QuCIAi2ODKCN23aRJcuXYr1fk9Li3/+n633\nfq4XrlXhEAtfEARB8BbuxOGHaJrWUdO0TvmbmuW/bqjreiqwHHhb07RLNU1romnancAo4DfPNbti\nYgh+aKhlm3ldEISyQ2oqTJ9e2q0QhOLjjtXdFdgMbERZ8u8Am4CX8vffAqwHvgV2Ak8AT+u6LrdG\nETgS/CZNSq05giA4Yc4cCA+H++6DkydLuzWCUDzcicNfTiEdBV3XE4C7S9Koyooxh+8wu4EgVBBy\nc+GZZ+CJJ6B69dJujXsMHWpZz8oqvXYIgivIvHoZwrDwAU6cgLFjQXeUy1AQyjFbtsBbb8GLL5Z2\nSzxDenppt0AQiocIfhnCLPh166o0uyL4QnklNRV27LDfbjilZmZe2PZ4CxF8obwggl+GMAs+qKF9\nEXyhvNKrF7Rv73x/QsKFa4unadjQMqw/cWLptkUQiosIfhnCmMM3kLl8oTzjyLoH+OgjtZwzBzZt\nunDt8SQZGRAVpdaXL7ffn5UFVarAkiUXtl2CUBgi+GUIsfCFikBGBtx8s+N9ug6ffWZ5nZh4Ydrk\nSVJT4dQpCA6GyZMhLMz+mAMH1FD/jBkXvn2C4AwR/DKECL5QXkhPh9deU6NSthw9Cj//bHlt/g1v\n3mx9bHnMKrlggVp27gy1a6sOgO08/u7dalmv3oVtmyAURjm83SoutoIPIvhC2WTGDHjuOYv4mcnI\nsH6dnW1ZP3xYLXv0UMvy6PC2aBF07AjXXw+1aqlt8fHWx+zapZa297MglCYi+GUIR3P4IvhCWcSw\nzFNS7PfZCr759Zkzavnnn46PLetkZMBXX6khewCj3ldqKrzwgrpnIyLg+efV9qSkUmmmIDhEBL8M\n4WhIXxDKGr/8ArGxav38efv9tiJutuIzMiAoSDm0OTq2rGMUJjM+d0CAWmZlwcsvq/WCTlD4MQ5m\nrEeXXrtQRhDBL0OkpVkehCAWvlA2uekm+N//1Hpamv1+22F6o3MAFsE3hLI8DenrOnz7rfU2s+Bb\nEbUIbWxXljXvzqRlky5I+wShKETwyxApKSo/t4EIvlDWsbXws7PhqqvUuhF+Zw5bS09Xgq9palle\nLPysLHj2WXjsMevtgYGW/QXU2AO3DCPkfDtqHLmXN1a9wffbv79gbRUEZ4jglyFSUuxDfETwhbKM\nreCnplrW77lHLR95BNauVesZGSqcDdSyvAj+kiXwxhuW14alb7bwO3WCNpdtgzE9ILUuvY/9TtjK\nqQxrPYz75t9HwvlynGlIqBCI4JcRMjPVQ8PWwheEsoxZ4G0x+6P07AkxMSru3hDJoCBIS9P5fvv3\n3Pn7nczZM8e7jS0BK1ZYvza8882CnxC+kN19L4LU+vDZfzSuG0bSGX8+vfZT/H38ueWXW2Q+XyhV\nRPDLCMaDU4b0hfLE2bPWr3NzrV9XrWpZnztX1Y/fu1e9DgqC1dlTGfnbSH7f8zs3/HQDn6z/pEyK\nohF217atWhqf0xD8fSdPcqLDw0T594FpGyG9Oi1aKCe/yMBqfDnkS/458g/b4rdd+MYLQj4i+GUE\nQ/DNQ/rrfN/h5IAr2Ze4r3QaJQj56Dq88gq8/rr1dlvBt03EY06va2slZzefzd9+TzCm01jW3pDI\niHYjeOCPB3hgwQOcTbc5cSmTng79+8Pw4eq1teDrvHbgBgg+y/uDPuDnWcEkJal8+3l56t6+qvlV\nhPiHsPDAwtL6CIIggl9WMEJ5zBb+Rt+Pyai/mOip0bT5qA1PLHmiTFo/QsUnMVHFlj/7rPX2bdvg\n448tI1G2gm/M14MK5zNIz07nZLfR5B7qw9e3v0mraF++G/YtLY/+j+kbvmDEL7eTnZtNaZGToxLr\nbN+uXhu+ByNGqOx6PXuq7QEBQK93SAz+j1orfuDqzh248UYVi2+MbiQlQaBfIP2b9efX3b+WyucR\nBBDBLzMYgm9Y+GfTz5LEYcK3PsVdne6ic93OvP3v2/LAEEoFR/H2ACdOwLhxsH+/ep1to9HmMFMz\nP+78kdyAJPjzfbJSLb3cfV88Sd6sX1h86A/6fNmHnDwHuXsvAImJ8PvvMHCgep2ergQ/Kgri4qB6\n9fzteSlw+bPw38M05XKrc0RGqqUxCnJP53tYf2I9G09svECfQhCsEcG/QFStqjJ02bJnD9x2m3pw\ngsXCf2LJE/hThdA9D/DFkC/49oZvuabFNYydP5Zdp3ZdsHYLAjgXfAMjo5ythW+ErVkRcI6HFz5M\n+PEb4XQr+/37ruPhiGWsjV1L9NRoTqeddqvNJcH4HPHxKteAEU5oy8qjK8AvC9aNZ5/NzJvZwgcY\n2Ez1HmQeXygtRPAvEElJ8NJL9tunToXvvoN169TrsDDQdZ3f9/5OD30ivucaFhz79fVfU8W/Ch+s\n/eACtVoQFI4S7JgxOgSGUBrFc06nnYbr7oWHouDmYVB/LVVGDyU7N5u02ZMBx6EoTX0u5Y9b/+DQ\n2UP8uONHz3wIFzCPVJw+DefOQUiI/XFz986F5AZwJsrOn8HWwg/0C6ReWD2OJB3xSpsFoShE8C8A\nhoOPo0IaxoMyIUF55YeEwO7TuzmddprG9LXy0q8WXI0ro65k9bHV3m+0IJgoSvDPnVNLQ/AbN4a/\nDv1Fncl1oMO3kBkOUYvhnp7k1l/F98O+JyexsdPz5eTAoBaDGNBsADO3ziRPz/PQJykeZsFPTIST\nJ6FuXetjTqSe4IvNX8C68TjquBiCb86n3ziiMUeSj3i8vYJQHETwLwBG+lBHgm88IL/9VhXO8fGB\nKWumUC24Go20XnZhef2a9GNHwg5Wxqz0bqMFwcRpm1H1Jk2sX9ta+AlZMdw3/z7a125P/bnbYNpm\neP8wTTfOYsVdKxjaaih33eX8ejk5qsRsk2NPsf7E+gv+ezcL/tmzqkNuW+r2v+P/kavnwtZRDs/h\n5wehodaC3ySyiVj4Qqkhgn8BMLKJGZXwTp+2xPVu2mQ5LjsbsnKz+HLLlzze63ECCLET/Fva3UK7\nWu34eMPH3m+4IOQzbJj16+3bLSl0wSL0xvKtHeM5l3WO7274jvWLmvPkk0BaDfz3Dqd7/e4AfPGF\n9Tl/+w1++kn5seTkwKBB8Nlz/YgMilRD5xcQs+D376+iEOrXtz5m44mN1A2tC+dsTH8TVatahy6K\n4AuliQj+BcDWwq9ZE+rUgfnzLXWzDeLOxZGr59KpTieHmfb8fPzo3bA32+O3e7fRglAIoaGWIWuw\nCH12NqDlsvH0cib0mECbmm2oW1cV3IHCU+lef706LjRUnS8pCdB9GdHmNmbvmX1BQ1KN4kBm7AT/\n5Ea61OvC0KHKm/+ff+zfExlpbeE3jWzK8ZTjpGYWkqJQELyECP4FwNbCN7juOrUcOdKyLe5cHAB1\nQus4zbTXvnZ79ibuJSvXtkSXIHieBJsU8IbwTZoE/fqpdcMizskB6mzlfE4qlzS6pOA9hre+TzGe\nOCdOqNryRkf5svrXcjjpMIsOLgLg++9hpZdH+H/4wX6beUj/4JmD/HPkH/o06sPs2bB4MVx6qf17\nbC38K5tfia7r/LzrZ883WhCKQAT/AmA8uDZscLx/6lTL+snUkwDUDa3rXPBrtScnL4c9p/d4uKWC\nYM/69dav589XyzZtYNkyNXJlNaTf70VqB9crGLqHogW/d2/7bUYFuq5Vr6B1jdbM3j0bUB3kvn3d\n/DAlwIi9B5VHINAvkPHdxxf6HlsLv1FEIzrX7czqo+J4K1x4RPAvAEZ6Uds84wbh4cpq+eMPZeH7\naD7UqFLDqeB3qN0BPx8//jnyj9faLAgGJ1UflNtuU0tz9jxQI1eG4GdkZUPUYu7r8BhBfpbAdSPn\nvDPBL8xiz83VuLzp5czfP5/cPCc3kYe59lr7beYptq3xW+lYuyNV/J1kFspn3jzVQXroIVizRm1r\nEtmEYynHPNhaQSgeIvgXAPOQPdg/9Hx8VMrOQYPg5LmT1A6pja+Pr9PzRQRFcF3L6/h669deaK0g\nWJOcrPJDGBa3bQIaPz/LkP6R83vBL5OOtTpbHWNY+O5UgMzLg6GthnIi9QQ74i/MqFZUFDRvbnl9\n4ID1/o0nNtKlbpciz2NMA3z4Idxwg1pvGN5QBF8oFUTwS4HQUOf74s7FUTdMef0WVi2vf9P+bIvf\nVmqpR4XKQ0qKGoV65RXlWGfrvGYe0l95Ws1Nd6zd0eoYw8K3HR0oDnl50LNBT2qF1OKtVW8VbLd1\nePUUmZnKj8BcyCoqyrKecD6Bg2cP0qVe0YK/0FQrx7jvG0Y05FjyMa87IebkqDK+S5eq1ydOQJ8+\nsHOnVy8rlGFE8EuBnBzr+UAzJ8+dpE5oHaBwwW9VoxXZedkcOnvIS60UBEVysioG07KlCp2zdT41\nLPxtcTv4Mf5lWP0Y1UMirY4xBN82W92LL0JH674Bn34KDRpYXuflQWhAKPd2vpe/jiwq2G6UqvU0\nQ4eqTIGG4JvbAjDp70lEBkUWpMotjOhoy7pxvobhDTmffZ6kjCTHb/IQn30Gp06p0QVQ5YlXrbLu\nhAiVCxH8UiAnx3GaXV3X2XBiA61rtAYKF/zWNdUx4rgneBtD8J3h5wfp2RkMn/4sZITD36/ZdQqM\naYARI6y3v/ACbNlive2++yxhfKAEH6Bz3c4kpMVD6Em3PseOHZYy1IVhCGL16vD227B8uWVfTl4O\nP+/6mfHdxlM7tHaR5zIn2zJb+IDXh/Xvv18ta9ZUozPGa6PzJVQ+RPAvIMZ8Xna246x72xO2cyL1\nBFc1VxlNChP8uqF1CQsIE8EXvE5Rgu/vD++vn8zu7IUw+xvIDXA6CjC+cKf2AsyiZNwDnep0Uit1\nN9m/oRi0b6+mJIrC8LGJjITHHoNmzSz7/jnyD2czznJtSwdefU6YMUMtDxxQnZcmkU0AvFYES9eV\nwBvUqqVKGxtkZnrlskI5QATfyyyyjECiacpTX9fVA3D4cOWoZ7AzQU2umcOZDJYutXhLq3NpdKzT\nkcUHF3ur6YIAqDz6zsrcAuQ1/odzHd+CLXfB3sGA4w6tn1/xnfbMHQzDwm8S2YQ6VRpAr3fA1zXV\nMjoNy5dmq0pVS5eqOrcOuDy/yu0jj1hvP5p8lCE/DKFdrXZ0q9+t2NceM0aN6J08qRL61AmtQ9d6\nXflxp3eKAqWlWQt8tWrW+0XwKy8i+F5myRLLek6OxZvZ3x9mzVKheAYnUk8QGhBKeKCqkWu28AcM\ngF69rM89rts4lh5eKvP4glfJynJS5hY1DZXQYwyk1oVllnmq4iTYKYwHH1QOZmARfE3TeL3rt9Dw\nX8LGDSSsnZNYvuRkmDNHzRc89hhMnkzml9/zLK9ygObQo4e6oerWhW7d4JtvrFIABgWppFjt2lmf\ndtb2Wei6zqq7VuGjufYBjeH8zz9Xy6ubX81/x/9z6RzF4Z9/7J2Cc3Ph4ostrwvLdihUbETwvYzZ\niEhKsngzO7KAYlNjqRdmSedlO6R/5Ij18b0bqWwl3hoaFARQgu9s3vffY/+SGXIQFnwC5y1z2u6E\n35kJDYX331freaZCeR3CL4Xv56GHnCR1yJUFo2KAEvpXX4VGjZTn3fTpylPt5ZcJunskk3iFv7X+\nsGIF7NvHrXzHnjM1YdQo6N69wJ09Lc3euTAmKYbXVr7GTW1vIiLINPyQkqJ67du2WRJt5OUph4Hf\nfoOvv4ZFiwjPSAB0DuX3zZtVbUbcuTjSs9NL9kXZMG+eZb12/r8jO9v6OxQLv/LiV/QhQkkwC35m\npsUByJHgn0g9Qf0wS8yTpqkb1VzIw0z9sPqE+Iew9/Rel+YUBcEVsrIc/17z9DzunX8vEZltST7S\nr2C77RCyuxijBHZidWggV5/8j1+qduO5Zc8x++bf1ET544+rm+XWW+HJJ6FFi4L3HduVSrO2QeTi\nz119VEd6Fi34+/ytxG3cBKNHK6v/mmsIT/yQkKZN1cXWrIGtW4nbOJcHE9J5LrIr/PornDmjvPsW\nLrTUDvbxUXMfubmW9Jr5jAFuJIK19ICDHxfM48ckx9CqRivPfGFYRB5UIaJbb1VfyalT8MQTqm8i\ngl95cVnwNU3rAzwOdAHqAkN1XZ9rc0xr4H/ApfnX2AkM03X9eIlbXM44aeNQ/NlnaunMwjceBKDm\nMVNTYexYx+fWNI1mVZtxOOmwZxorCA7IznZs4W84sYFdp3YxgmXM0i2DhbZhdu7iVPCBakHV8dt1\nOxurfojevz/asmVw113KW802UQCQExxGDkD+iJlRzjc8HOjcGTZvhpkz4emnmR3XjJR9tWDWOUhL\nQw8KonGVPJ7OgOBFD6k3apqaGnjmGbjxRnWj796thN7HR80HdOqkYvFiYlg0eTvLZ+xlDJ/BwIG0\nfusFAA6fPexRwTdPpQQHq+dMdraq0FmzppqakSH9yos7Fn4IsAX4AvjVdqemaVHASmAGMAlIBdoC\nlfJnlmQTartxo1raejGDsvB7NbBM1NesqR52M2c6P3+jiEbEJMd4oKWC4BhnQ/orYlZQxb8KncN6\nM8u0/ZprPHPdwgS/ShVoeLg5y/89i563Fu2PP1S9XidzCbZprY2CNsHBytrXNA3uvBOGDuWB6KUM\na76V/jdEwIABLAw4ytU/DWbeiHlcGzVITR0EBVl7MkZHWyoJ2dKyJUe6tOSNGfArw9hb725q3XQn\nMztpHLt8L7QY5Ph9bpCSYlkPDVWCn5CgttetqwR//XplSISFwZn0M8SdiyOqahSBfk4cNYQKg8tz\n+LquL9R1/Xld138HHN1drwILdF1/Wtf1bbquH9Z1fb6u66dL3NpySI6TRHi2Fn6enqeG9MMt1knN\nmmrpLAc/QOOIxlJfW/AqzgT/nyP/0LVeV+rVse692nq3u4sjwTfS+9bPPMSiA8+Tp8GPXz2uwl0K\ncRywvYfOnFHLbduUzhvkhUfybfowNg55GR59lPioOjz01yP0a9KPa1pcA76+as6isLAFBwwbppbJ\ntaNV4YBp07hxF9x8/SRLKjwPYBb8mjXVc+bff9XrNm2U4G/erCIRUjNTafFhC9p+3JZ2n7Tj1112\n9ptQwfCo056maRpwDbBf07SFmqbFa5r2n6ZpQzx5nfKE7YPmWH6uDVvBX3NsDRk5GZZYYyyCb8bW\nca9LvS7sTNhJ/Ln4kjdWEBzgSPD3J+5nwf4FjOowyq4sbEkd9gwMwTc7ru7ZA/5aDtesfJLwvHO8\nO2kAL8cXHd5mvg+ffx62brW8/uYby/quXcr67dZNheFFfRBFTFIMkwdOVqMAblKjBjz6qIrtR9Pg\n3nt5672b2Vo9G33QIDXh7gHMiYWqVlWfx0hBHBBgcTfYsAGe/OtJzqSf4YMrP6JBeANu/PlGXl3x\nqkfaIZRNPO2lXwsIBZ4E/gAGArOB3/Ln/isdRoaxjz6CW26xbLcV/Ll751IntE6B5z04FvzNm61f\nD45Wcc9/HvjTE80VBDscCf7qY6vR0Lil3S3Ur+88QVRJcGThz5gB86MfoeX2X3mCt+k8cBR7Tu8h\nOSO50HOZz/HKK3DHHZbX5vz+a9ao63brBrN3z+Z89nl2PrCzWHnzi8Lf3zJCAdBv0FgG3JJJytX9\n1TCDUXfYzJkzcPCg/dygE1JSlO9hXJwajLC9/okT+S/Cj/Pphk9h8dscn/0AUav+ptqB8Ty/7Hn2\nJ+536/MJZR9Pe+kbHYjfdV3/IH99m6ZpvYCxqLn9SoW/P0yYoNJa/moaMbP1lN13Zh8da3e0iu+N\njFQ3rdk6OXrU+n01qtSgXlg9icUXvIajzJBb47YSVS2K0IBCKkGVEEeC75uUSL/kz9l87fN8Ne9O\nJtTeBsC2+G30aezcpihsWsz82davVxn5fAPTeXXlqwxvN5wW1Vs4f7MLGA50BlFVo8jxhbUv3M0V\n6XkqE9f336tx94ULyVq0DL/d2/BBV6MCN96o0nWmpan0eV27quQctWoVnDM1VTn71naQ9ddK8C/6\nAj0nADbew78+sGqVBn5vU+uNn7j5l5tZcecKwgLD7E8ilGs8LfingRxgt8323cAlhb1x4sSJRNjk\n7xwxYgQjbJNvlzOys5VwaxrEm0bdz52zPu5I0hF61O9htc3HRw0Fmt9nK/gA9cPrE5sS68FWC4IF\nRxb+toRtdKjdwavXtRP87Gxmnb0SzQf2X34fzIMWVVvh7+PP1vitHhH8+HhVLGdd7DpOp53miV5P\nlPyDmK5jFvx6YfXw8/HjYM4p+OUXGDgQhuTPfjZsyI6q/fmQhxn3ZmO6+m1Rcw87d6ohiePH4bXX\n1D/mhhtUKE/fvqSkaCqFt67Dtm2sHrGSVbOOkocPVT8J45OO1XnqXCBnLnsB1t8PmRGWpEo5Qcy+\nZTaXfnUp7655lxf6veCxzy54hlmzZjFr1iyrbcnJhY9umfGo4Ou6nq1p2nog2mZXS6BQV/IpU6bQ\nuXPnwg4pl5gfloZnMKjcIGYOnz3M8LbD7d5fs6a14Dv639YPq09sqgi+UDKOHlW/N9sStraCn52b\nzZa4LTzU/SGvtseYMs/LQ4W73XMPHXI3M/vhVWTXUCWkffQA2tZqy7Ijyxjf3XmiflvBDw21dLqN\nKnYHDqg8PSNHwvx986kdUpuOdTwUY4i94Pv6+NIoopFyug0LU/MJO3YosW7fnp+f0fhqG9zeFeVl\nZ/aG1HXlEDRrFnzyCfzwAzRvzpsnm1MjNg8a7oTYWHr4BVCDxviSS9gXqYxJOsNdeblsmhrGwtPV\n+ZBTLF1qmTvsXrcX93S+hxeXv4iP5sOkSyd57PMLJceREbxp0ya6dCnelJPLc/iapoVomtZR0zTD\nu6xZ/uuG+a/fBm7RNG2MpmlRmqaNB64FPnL1WhUBc9ISw2P/2DEVomuQlJFEcmayVQy+gTGP/+ab\ncNllFqcbM/XC6ongCyWmcWPlfL5tm2WbrtsL/k87f+JM+hmub12MSjQlwLDwg47sgV690H/9lZF8\nx9lWFxeB8v+WAAAgAElEQVTMT+fmqhTTv+3+jQNnDjg9lyH4xv1kTg4UH6/E30ilG++zkQ/XfcgN\nrW9wOYVuYQQE2CfRahzR2BJWq2lqPqFDB9C0gueFw8RbmqashiefhEOHYP58tjUYROL5QKrUqKKm\nB5YsIe9sCtHsozkHSdqbwOfzXmb81XAo4yIm8h6HacozvEYw6sGSng4fDPqAxy5+jBf+eYGXl7/s\nsc8vlD7u/Jq7ApuBjag0Fu8Am4CXAPLD9cYCTwDbgNHADbqur/FEg8sb5vlP4wauU8f6GCOsrmnV\npnbvNx60ERHqYexI8OuHyZC+4DnWrrWsG8WezIK/8uhKOtTuYDekv2oVLFvmuXb4+MAYZnDx+M6Q\nkUH28jX8yHCCgiwOaTk5cFMbVUv332P/Oj2XMS1g1LY3nGlB3VP161v8ahKjJ1M/vD5vD3zbcx8G\ne6c9UAWBnCXOMp4XttN/dvj4wDXX0PGfD7ie36mxYjZMngwDBuAfGljw/PHz03l173TSx4zilpTl\nHFhyhK8ZxUu8wFL604nNpKeDn48fbw58k4d7PMzLy18mMS2xZB9cKDO4E4e/XNd1H13XfW3+RpuO\n+UrX9Za6rofout5Z13UH7qeVg9xc64cT2CfdWXhgIf4+/rSoZu8cZGTFiowsRPDD63M24yxxiemM\nG2eX1VMQXMIshoZ1aRb8A2cO0LJ6S7v3XXKJ89wz7uB/8ihTGU9Ct2th/XrSo9WwWGCgxVKPjYWI\noAiiq0ezLnad03MZFr6RIz/Mxh+tIH798mfZnPMDj/R8hJAAm4T6JcR2SB9Uyd8tcVtIyrD3wjee\nF+ZQu8Jo1Uq5ANjWATBGSr7c8QkxyTGM7jQaTYOLBlRnHB/Tm1VU5Swr6cPi21WMoo/mw5O9nyRP\nz5NQvQqEFM/xMo4E30xOXg5vrX6LezrfQ9Xgqnb7jdz7AQFK8B319huGq9mUqd8d5OOPraMBBMFV\nzBa+YZGaHdsOnDlAVNUo7zYiJ4dqo64hkepsffgLCA0tsMCDguCii9T6+vVq2b1+d5bHLCcrN8vh\n6WwFPzwc7r4b7r03/4CIo3DzMOjzBqObvsi47uM8/pH8/dVIgznqYFjrYWTlZvHnfuuwWl2HTZvU\nenEF389PTcvYYvhCfLjhHW5tfyt9G/ct2BcUBGvpSRc28pc2kFsX3wE//wyoMr7P9nmW99a+J3k+\nKggi+F6mKMGPTYnlbMZZrou+rtDzhISoh5Q5k5ZBjwY9CPIL4rDvQkDlzRYEVzA7tX30kSUk3Ohg\nGkKZmZPJsZRjNK/W3LsNWrAA/z07GMrvZAeq0D9jtCsoKD+BDZYsebd1uI29p/fy+OLHHZ7O+HxG\n6djwcFXXYto0IGoxPNAWGq+gbdxrfDryGa98JKPTZLby64fXp3ZIbfafsY5937jRkiGvuIKfmem4\njHG3bkBEDIeSDnFDqxusEgjt368S/63YEML2539haeA1cPPNBaJvOEIuOrioeI0oAZmZUtjH24jg\nexFdV3+G4C9YAONsDAfDYadxhIOuuYmBA9U8viMv/Sr+VejXpB+709UEqvFwO3BAVQsVhKKwfdAu\nWKDm4//4Q702Qr2PJB0hT8/zruCnpMCkSWR37s56uhdYxIbgG6LWpInlLVdEXcG4buP4fe/v6LrO\noEHw7ruW/cY9YUxXNM9v/pebv4Tbr4RjveCTbUwZ9jT+vg4qW3kAY1rEdli/YURDjiZbx9t266aW\n4eGWNMBF4SwF8pw5MGbGh/hqvvRv1t9qX4MG0Ls3dOkCgVV8uSJzLhua3qREf/x4aqf70KVuF6Zt\nnEZmjvfU+OxZ9b8xUhAL3kEE34sYDypjDm3AAJg61foYw2GvcWThgq9pSvAdWfgALaq14FS26jwY\nWc9GjYJJk2ROXygaW2eyTz9VkWDGkLeRyGXJoSX4ar60rdnWe435/HPYs4f092cAlpEx85A+wODB\nFs96UKJ/NPkofx74k4ULVSpbA9t78cYbIf5cPE8tfQp23ALf/YGeWpeBA733sRxZ+KAKYB1LOVbw\n2py1sF07Vdq2ODiz8OfGzOSzXe8wqe8kIoMinb5ffa8avQ5/S8KT76gfQZs2TKs5mjXH1vD11q+L\n1xA32J8/wLFggdcuISCC71UMq8I2xaWZmKQYalapSRX/ootxGOVyzXOABo0iGuULvm4Xc2xbolcQ\nbLEVfFsMJ7nvtn/HddHXUTPEQd5nT5CWBtOnw/XX49NJRQEYAml0lg1R8/e3nia7IuoKLm96OU8v\nfdrqlFlZlnK4zzyjRqt79ICRv40kNy8XlrwJeiE3qYcwBN/2u24U3sjKwjdn0a1d2zoPR2FkZtpb\n+PP2zuPOOXcyquOoImPqjY5UNgF0/vYRtsyJgTp16DJ8IuOD+jLlvymcyyoqZMA9jM/sKEOg4DlE\n8L1IcQR/xdEVtK/dvljni4hQvX9Hc3qNIhqRqZ+DoKSCoU/j5hfBF4qiqLnToCDQdZ1dp3bZZYT0\nKCNHqkQVjz1W8PvNylK/++nT1WtD8P387BPZjO0ylm3x2yBShbp9/rk6fvVqdf9ER+eXrz93gr8P\n/61C75ILH13zFM4sfGNIX9d1EhMtOQJWrFACmJBgOTY+3jK3b4sjC3/6pulc3OBivhryVZE5BczR\nGbGxMHpSfeUV2bIl776+kWo7D/HEEs9lHjRjTFWGei9Ts4AIvlcpSvBPp51m6aGljGhXvPTB4eFq\n6Wgev1FEfuq+iKMFoXuH8tPrHz9ezAYLlZaiLHyAU2mnSMlMcRiS5xEWLoTff1dDyd26WQnkAVNO\nHcOB0M/P3hH2quZXEegbCA81h7GdGLNiAFz6EnPXb6ZVKzU1lpuXy+NLHsfPx4+hrYZ657M4oLAh\n/bTsNBLTEwuiDkDVr69Vy1rwBw1S4Y/7HdS3ycqyFvzzWedZdngZ17W8rliV/mzD+TZvRvUC/v4b\nv+Yt+fOnAHbN+RwtLK6g6qenMCx82zYInkUE34sYQ+/OBP/Q2UPo6HSt17VY5zNKDTiax7cV/BMn\nLKV4X3rJSbYuQcinON7RRhU1R/kiPNKAUaNUIH9+WUlNU6KelWUJUQNLDL3tkD5AWGAYz188GXzy\nILEFaLnQ40MO9r6Mpq3UjfPH/j/4fvv3TL9uOlWDqxYk4/E2zpz2jPt/4YGFVs8KQ/BjY9WzJCfH\nUi1zyxbrcxj7zUP6X275koycDEa0L55B0acPNGtmvU3XUfM5s2cT1KAJ3/yUQ7Mhffl5rmeH9l1I\nBy+UABF8L2JY+D5OvuVjyUqRjTj6ojAE39HNUSe0Dr56ENTdTFoarMvPQfLhh7B7Nxw54kLDhUqH\nMwvfxwdezs+uui9xHwBR1bwQgz9rlvJO+/hjq6D/nBx44AH40VTy3hj2tR3S37tXjWaF7BgPb55W\nk/Uzl8GnWyAomeQGP5GRk8GH6z4kuno0d3a6E1Cdie3bPf+RbHFm4TeJbEKvhr2Ys3eO1b0dEmLx\nnVi7Vgm/wc03QwtTv8vosJkt/L8O/UW/Jv0cpux2RK1aqhKvmYK2NmqE/+w5VNWqs/GX/Rxf1IGM\nbM95AxuRCIUVORJKjgi+FylqSP94ynGC/IKoFlzN8QGoEc7HHlPrhQm+j+ZD46RR0O1jzqfpBfP4\nF1+slrGSeVcoBGcWfl6exaLenrCdRhGNiuVg6hLHjqlqb8OGQevWDg8xe6pbUsVaW/itWkHDhqoc\nNenVLTtSGsDuoSzyH0uT95qwPGY5k/paHNhq1rT29vcWzgQfoG3Nthw6e6jg3jaO6d5dLc+ft7+H\nzdMcRofNEPys3CyWHVlmlWTHHbZuhTfeyH/RtCl/vH2Av3z78u68wyT2ugj27bN+Q3Y2LFoE992n\nsgDVqQNPPOF4DsLEyvzC6SL43kUE34sUR/AbhDcodH5tyBB4Oz+ld2GCDxARfy2ExpOYFVvwwDAc\ngAwvZUFwhK2FX7euZT0gQDnszd07lyuaXeH5i3/+uVLvL790esiqVSpE0OyPYrbwi/x9//IDV/q/\nysCogawevZqRHUaWvN0u4sxLH/KL6CTFkJysRjCM9NuGgGdkWJIMtXUQEWl02Iwh/bdXv01KZgpD\nooeUqM3du6vIBuNZlqyHc1PacsYN7kX6wb2cH3CpStZw8KDKYtSwIVx1lfLHGDZMeUh++il07Qrv\nvWcdc5hPYqJyRIyMdByBJHgOEXwvUqTgpyrBLy4hIWqI1Vksvh6vngSntF0FD0LD0S8hAXbtKval\nFJmZyvqSu7DCY2vhf/aZZT0gAOLOxXHw7EGuan6VZy+8bBm8/jrcdpt9gnsbAgNVkRsDc2568xy/\nLfXrA7mB9Mp7im+u/6bYPjOepjALv3FkYxLTEzmVfL6gYw8Wz/lPP7UYyebvwMD4//n4Z/HiPy8y\nadkkxncb77HyvlOnqsJ8hkNwnP8KHpzYkrjAbLjmGpXJaOxY6N9fORocOaIyH02dquouX301TJyo\nojBsEgssXKgeMYMHi4XvbUTwvUhRTnvHko8Ve/4elBNTeLhzCz89rjFkB3PGdydZWapzYHi9jh7t\n2DKwIysLXntNlekMDlYlOAcOhD17it1OofxhrtEQFWVd4CkgwJIR0qMZ9s6dg4ceUmnezGnxTJg7\nHg89ZL2vWjVl+R4/rlLR2nLzzWppDItXr25/zIXEmdMeWJxuj6fGWAm+YeEvWKC0dOhQa0/206dh\n8cHFjFkyDBqt4rWD1/PS8pcYHD2YNwe+6VY7X39djcibmTAB3nrLMpKSnORL2x7XcdnYIPRVq2Dp\nUs5v2kv2V9+p2t/mUcvISOWj8eWXsHixKoRgii3cvl2N/tevL7aFtxHB9yKFOe3l5uWy69Qul4uQ\nhIY6L5eZkuQLZ6JI9TtUUJbXUeYtpyxcqAKVX3oJOnaEGTNU8POuXeppU9wcn0K54+xZtTx6VFnL\n5mI5gYEUJIYpiAbxBCNGqIno995TlaEcUK+eWo4bZ0mHa9AyPzowMRHi4uzfa0xnDR2qnN7GjPFQ\nu92kUAs/P7V2XMZRh4IPapSuXj1rwX/0xRNc+/21LD72G4zuw75z6/n2+m/5ffjvbvtaPP20GlFw\nhPEISEqCQc0HcexcLO/7rofLLye0c0uuvbaQE995J2zbpnIiDxig5ipjYzkRq9OwIQTlpeHnQUdA\nwR4RfC9S2JD+hhMbOJtxlgHNBrh0zqAg5w5Wycngd64J56uvJD0rC39/1dE2J9RwGD+blgYPPqiC\nfKOi1ITpt9+qcmL33KOSb5w7B9deK13wCkpSkupMNmyoRpHMgh8QoAQ/LCCs0NSsLjF7tqrQ8/nn\nKu2dEwzBq1PH+b7MTPtkVIsWWaa+GjdWVr75M5UGhQl+/fD6BPgGEJe700rwzc+OmBj1WQoEPzCZ\nucE3EOwfzBfdN8G8acy/aq/H/BNWr7bf9s47apmUBP2b9WfMRWP436r/FVQpXLy4iJPWq6f+OSNH\nKme+Bg349IcIZm2K5rk3Q9l3vIoKFzCKITjqyQluI4LvRYoSfH8ff3o0cC1rWWCgpYiIGV1XOfPr\nHniW7Grb+C/jq4IhRPPxjRopK66AnTuVVf/xxzBlCvz5p2UM1KBBAxUusGYN/PabS+0Vyj6pqeoB\nHmnSckeC3yiiUbESuBRJSoqasx80CIYPL/TQPn1UWODEifb7zIJ/7pxKSPPxx2pQ6oorLKMWjTw4\nKFESCnPa8/Px46rmV3Es7Gc7V4YGDVQUQUqKMo4LBL/TTJKqbOCPW/+kauZFsPFe6lW1L7HtLr16\nWaf5NWNsn9BzAvHn43l26bPFP3FIiBo93L8f5s3jh2bPsqnu1fxx7Sc8FDFTDefk5ipvwYsugi++\ncOjsJ7iOCL4XKUzw487FUTu0Nn4+fvY7C2HnTvjgA9ixw7ItJ0eF7Og6NPLpCXsHszLnXXyrOKqr\nqfPdxjncO+9ednz/nppvCwtTc/QTJjg3gy67TA3r33GH9cWFcs2aNcqi/+qrwgU/JjnGc8P5332n\neqHTpztPUmFqx6RJjjOwmQU/JUX9jO+/Xw1KAXTurJaOnNxKg8Lm8EENkSeHriewinWPoE8fS0he\ngYXvkwMXfU74yetY/Hkvrr9e7fd0prqICKxGHABeeEGNJuo6tK3Vlmf7PMu7/70LYSdcO3nz5nDt\ntXxT70l+7DGFLT3u46egUeoCixerIY3u3dVI43XXFb+KkOAUEXwvYluhy0z8+Xhqh7hfKeK99yzr\nr76qhmIBatQA/nmRZD2W9O4vAeo+2bwZ8M2Eu3vxzLahJM36kiZ3TeRM13awYYN1Fg9n/Pab8nx6\n0z1nIKHsYdRZOHoUzMah2WnP319ne/x2mlW1ScPmDgcPqsQS119PSVPcmQU/Ls6+8MqLL6opLEcl\nY0uDwob0AZWyWMsjN+yI1fagIOvRipAQoOcUqLWTlEWPFiRGAu+kpo20mcWJjlZGxunT6vVjvR5T\nhkv3D10+t66rGcXgYGUYWXnp166tavvOnq2cMAYPVilEBbcRwfcihVn48efjqR3qvuCbbwxzTosa\nNYC4TuRsGkla9Of8uf9PatRQhjydZkKDtSz+bzg//qKxKTqcCXfXc+owZUd4uAq9+eUXN2L8hLKI\nWXycWfiHMjZyOOmwZ/LOf/65UuBCYu6LiyH4c+bAf//Z9x/8/Ercp/AoRQm+4cCbUcU63Z3ZByci\nIl/U2/4Mu6+Ho72dHuspzOds2lRNnfj4wNy5altkUCQPdH0A+vwPun1Mv34q7L44VKmisoJmZqq/\n06cduAkNHQq//qocPO+8U/yISoAIvhcpaki/TogDTyQXzw3Qpo1l3UjFqa9+DP9zzRn641D+PfYv\n0zZMI+jq8XwxsxEDF/5AzPAnWTP5KX6KW0pKppPAfkc8/LByqnn/fbfbLpQdzA6gZpE3r29KXkx4\nYDj9mvQr2cUOH1ZxdsOHFxlzXxyCg9Vyxgy1NN8HZRFj1MSZ4DcIbwC5AaQFHrDabhZcf3+dnzPu\nhfrrYdeNducoYobELYyO1dNPq/TFjRpZcvwbvHvlFFj3AFwzjuURd7Nxu6PpRHsM/6LsbJg8Wa2v\nXevgwL59YeZMWLJE1VqQOX23EMH3IoVa+OdKZuGbHxrmh3NBrPGZ5kQtX0GLai245ItLeOy3sSxd\nVIPbYmL5vNMHNP3mFfb9eTuapvHqileLf+GQEOWtv3Sp220Xyg7FEfydyWvp2aCny/4mdrz+umVS\n3gMEB1sLXI0aHjmt1zCKATkTfF8fX3yTojnpZ614huD7+MC2U5tYcX4GLHwXdt7s5RYrjAiImBjL\n7yIy0jLNAPnPuj+mwvyPofMXMKZnQe2FwggNVUEaH35oifF3Gkp89dXw009qhPHWW6XijhuI4HsR\nZ4l3dF0v8Ry+2dPXbO2bk+sE+gaz/p71fDloGod39OfiXam8130WLyU+qN53tgGjO41m7t65rl28\nf381F7t3r9vtF8oG5ggO87y9OUd9bNpBoqtHl+xCWVlqWPaOOyzB9SVE06xHd71h3XqagIDCSxH7\n77iTbfp3rDm2pmCbIfgBATBz60yCfcJg3XhARUz8+qsXG4wamAG48krLtjp1lB/RkiXqtfpMGmy4\nH75YCZFHiJ4azbQN0wo9d3a2CtioWdNSIMm2AqIVN92kQobnz1eOS6YEPkLRlINbpPziLPFOSmYK\nGTkZHrPwjYfe3XerSKf27dVrf38I9g/mzhnrqTFvKdr06Zy4+MaCWPxatVRpzn2J+zif5UKy/YED\nlbuwbeozodxhtvDNo6TGcDnoHD9/uNgV15zy0ksqluvWW0t2nkIo7rxxaWJOB+yQ/yYQodVn1o5Z\nBZsMwfers4cP133I7Y2fgzx/7r5bzX9fKD+F22+3rN+YP5twxRUqK59VJ+Zob3gvBmL68PrfH5CT\n51jBdV29z3CqvOgitezRowjfvJEjVQKftm3h8stVB0AoFiL4XsTZkP6uU8rhrSRez/PmWR4cubmq\n2ImRhnTwYLX090e5X8+cqYZTR4ywMq5q14bWNVujo3PgjPW8YaGEhcHjj8PffztP+yeUCzIyLOVm\nzSHxBb+TGntJz0mjRbViRHE4Iy9PheBNmOC1snRPPGHvTV4WCQhwnjgLIDvLhy7BN/HVlq/YFr8N\nsAh+XuufiAyK5PYWDwPq/u7WzfsJhYywPHMKBnO/bfp0i+APNfw602rA4skcTd/FwgMLHZ43N1eJ\nviH45qH8ItN9NG2qcoZccQU89VThX6pQgAi+F3Em+H8e+JNqwdXoUrdLic7/33+W65hHEYwb1N9P\nV/PttWurouJY0o2C8pA1Oh2Hzh5y7eIDB6qxt+XL3W2+UAbIzFS/CV1Xoc5mevQALvqC6kE1GBg1\n0P2LbN2q3K+HlKxyW2E0aeK1U3uUKlVUgixH5Oaqv+uqPkmd0Do8sOABsnOzleBruWQ3nU/vRr2J\nDFPKaIistwX/yBHr+XpQIZzGSCJYpobGjoVHH83fGNuNMOpYTU+YMdpvCL45fLJYnbfISFW7Ny7O\nevhBcIoIvhdxJvib4zZzcYOL8fVxUlWnEMxWWGgofPSRym9tvoYxxBd1fLmqTPHNNwW9ALPg5+ZC\nzSo1CQ0ILbAmik2LFiog99FH7Z8GQrkhI8O5k1RoKFBnM5c0uJQgvxLEe33yiTrZxRe7f44isC32\nUlapUsVScc4WQwBrBtfhk2s+YV3sOvrN7Me+vIUwrg3ZtdbzSM9HCiz+CyX4kZGOBdjs8/HRR2oZ\nEGCestBo4teTNceLJ/h16qisu+BCOe+2bdXFf/5ZQoWLgQi+F3HmtJdwPoE6oe6F5H33nYqDBdXz\nHj9eVaA0X+PSS6E+x3nq4Bho1UptyMdW8DVN4+Y2NzNj0wzydBfiWzVNBeLu26fS7grlksxM57Hb\nkydDYIPdtKldAoe9Y8dU3NzLL3s1A055cNiD4gl+YKDKU7/8zuVsjdvKO/GDoMY+gg7dyGVNLyv4\nGm0Fs9DCNV7A3NF46y1LW154wWLlR/n1ZdXRVWyN2wooR/tvvlH7bNsPaoS+WjXnNoRDf4C77lK9\nhRtvhPj4Enyiik85uU3KJ86c9uLOxbntoe/jo/KFg3Uv2PCkBTX/+lyNaTQIOq28WU2Tb7aCD3Bb\nh9uITY1lR4KLKXNbtlSeUn/84eKnEMoKhVn4TVolkRkYS/vaxamr7IQlS9Tv74473D9HBeL4cZg2\nzXHuGGMa2hDAixtezF+j/uKamg/ClCNE/vUDoJxtwfKVllZRID8HUZoBAeoZM3myGhXoot1D06pN\neXO1ys75558wapQ61pHgg5ouSEpSz7d27eCvv9T2d/59h5DXQxj6w1Ayc0xz9gEBqtLnsWOWh6Pg\nEBF8L+JoSF/XdU6mnqRemPuhScYD2lERHQBiYhjr9xlBI25Q1e9MGCl4ze3r0aAH/j7+rIxZ6Xpj\n7rhDxcWuWuX6e4VSpzALf2fCTgDa1iyB4M+dqzzLzD1ND+KNzHLexDBADf8bM2YL36Bng5481PwD\nSG6MnqseJEFByufi6qvVMaUl+I7C52xrMGjZoQyJHsKKmBXoNslyjKF/W8GvXl2VAt60CXbuzmHg\nqE1off7HY0seo2eDnszZO4fPN39u/aaOHVVP4u23VXVPwSEi+F7EkeAnpieSnZdN3bC6bp/XdkjP\njnffVSbEK6/Y7YqMVJms/Pws7aviX4Uu9bqw5NAS1xvzwAOqF+HtYGDBKxRm4T/z9zPUCqlFqxqt\n3Dv5P/+ovLdenGDfuBG+/tprp/c4RrjZ/Pn2+2wtfIMCL30nM26OEntdCGJi1HKoKeOyuZ6BEYLY\nt3FfYlNj7SKBnFn4zZurmcLY+AwY3Rvu6wIDnib61JP8c8c/jLloDBMWTmB/4n7rN06erJ5FU6Z4\n6BNWPCqk4L/xhvrBlDaOBP9EqrrjS2LhGzfIuHFOLvrzzzBihNMyYd27K4PLnLBndKfRzNk7h78O\n/eVaYzRNTbwVWQhbKIs4s/ATziewImYF71zxDoF+zlKfFcEff6j5pbvuKlkjC6FNm/LloF23rqpr\n4ShJnCMLHyz/H2fZZD1RsdgdjNGK/v0t2+qYXJOMJEN9G/elRpUajJ47GrB8CGeCHxUFBw/p/H58\nGjRYS9MNP8J7h+l0+n9omsYHgz6gfnh9+nzZhyNJRyxvDA6GMWPUiKOjIRSh4gl+VpYqo1wWpgwd\nzeF7UvAd8vjj6k4s4iloW5lqTOcxRFeP5tttbiSxuOYa5SErc/nlDmcWvuHP0a1eN/dP/vffKjFK\naSlSGcWcXvfUKRVlA84tfCMJkjMLv1o1VYDQ8JS/0DRtalk3/6uNnAPhgeF8OeRLVh1dBXW2FOx3\nFmVQu3EScZcM58fkCfjuHk57n5shqUnBczTYP5h/R/9Lek46M7fMtH7z2LHKc3/CBA9+wopDhRP8\nhAS1tK3hXBrt2KmmQE1ZyyAmKQYNzW0vfSikuF16usq+8/TT0KXwGH9bwdc0jeHthvPTzp9YF7vO\ntQYNHQq9eonDTDnEmYW/69QuAnwDiKoWZb+zOKxZoyZhBwwoWQMrIP7+lvnvWrUsBa+cWbxFDelr\nmpq6btTI820tDuaUu2b8/Cyf84qoKwgNCIUuM8BXfVBnn3de9gRovpDep2YS/tc3Bd8PqGfWxo0Q\nu7cug1sOZer6qQWJzACVFOzpp9W8ZVkY5i1jVDjBj4tTS8OTtbRo3Rqef16tmx+oC/YvoFfDXgT4\nuh+i5FTwp09XlS6KMbxhV3samNBzAq1rtuaBBQ+41iBNg6uugtWrpXRlOcOZhb81bivR1aPdL5jz\nzjvKxdqLqXTLK7bpdY1bxrDwXR3SL238/ODQITh50n678YwJ8A3gqYufh26fwKRAft6ywKHg5+l5\nrE9aAOvGc271KAL9/Qqe5YmJarq2a1flBxq8cjLBfsF8sPYD6wtfd52aSrr55rL7pZUSFVbwzb3C\n0hj93EQAACAASURBVMAYpjNX9MrKzWLJoSUlrivuaIS0MUdU8Ou996qkOEXgSPCNutab4zaTnOFi\nJapLLlGxNJL8wiu88453yr86svCzcrOYvWc2V0Rd4d5JdR1WrFAP3tJyIS/DOMun766FX1qsXAkv\nvqjWmza1nr8H+2fMg50fh28Wwpkonpj3hsMpjDXH1nAm8zQcvIItW1Tnx4jp79IFDpj8/lb8WZO+\njfvaJw0LDlbpxLduFY99Gyqs4BeUiS1lzNb4tvhtZORk0LtRb49ew5cc9g1+TLngv/tusd7j42Mv\n+AD9mvQjT89j/j4HbsSF0aOHmkd5+23X3icUi8ceg927PX9eRxb+ppObSExP5Oa2bpZf3bNHTU6b\nEj4JFow5fNvkMkVZ+I7u19Kkd2+VZMcZ5iF9yO/kHLwS/n6FI3mr+TdWpeWOjFSW/aS/J9Hnyz60\nqdkGjqusjAEB6lneuLEydMwO0Hv3Qsuq7dh5aqddyB+XXaZCBl55xXmmo0qIy4KvaVofTdPmapoW\nq2lanqZpgws5dlr+MResrNr+/EiNspJ5y5wcZ+9pVU62XS3PFhAZxdcEzP1V1asMCSnWe4KDHaev\njKoWxVXNr+KdNe+41oiQEHjuOZg1y3mycMFtjAI3hl9ISdF15Ty/e7e9hW/UMW9T080hhZdeUp5k\nRkpIwYpFi1RxGLO1qusqdwzYW/iG0VBo2dgyiK2FX9D+nTfTxPdivj35LD4+atr9112/8urKV3m8\n1+OsHr2aO25TX4LR+YmJgU8/tQ9BXPB1S1IyUziVdsr+4u+9p7L2vPGGdz5gOcQdWQwBtgDjMMdY\n2KBp2lCgOxDrXtPcY+1atSzt4S9jSsE8tXAi9QThgeHKecVD1OUErwa/pkrk3XZbsd/XrJkqae+I\nwS0Hsy1+m3U2q+IwYIDqxsswmsfp1Ust27WDlJSSn+/YMfjqK7Vua1HuS9xH/bD67v1O09Nh9mzV\n+Stm57OykppqWf/4Y/jwQ7Vu+/8wRK68Cb5DCx9A96WHzwMczF5N4FUv8MG69xgzbwwDmg3gzYFv\nEhkUWfDTMXd+zpyxL84Zs7ElAFvitmDH8OEqB8Sbb1qS9FdyXBZ8XdcX6rr+vK7rvwMO4200TasP\nfADcCnj8Z6rrzh0wY/O7F6U9/GVYTWYP1pPnSpZhzx6dnwJvp27YOXj1VZfeWa2aY+HYtQu+eqsD\nuXoue07vca057dtDeLiavxU8StWqlvXjx0t+PnPKcVuB2X9mPy2rt3TvxP/+qyajzcHZgkPMHe7x\n4y3rzsJuS9uIcRVbC9/st9AqZzjN028lo/PbTFw0kQHNBvDjjT8W7DdGNcwRTgDLllnWfXygZ1Qb\n2tdqz5T/nCTbee01lXjk0UdLXxTKAB4f+NY0TQO+Bt7Sdd0Ls46qgEx0tOPhTaMHWNo3x7lzKgR5\n6lTLtqPJR6kb6n6GPVu+4k56Z/6N9sUX1rUqi0FIiONS9m3bwrp5asphe8J21xrk66sqeHz0keOT\nC25jnqJymmHRBYzwVbAXmH2J+9wT/ORkFSESHe21uvcViT1O+tPOBL+ISNsyh62Fb17Pzfajxbbv\nuHpnAnGPxvHLTb9QLdiSftkQfFtfLMNHC9SA4pHDPoxsP5J/j/1rP48P6kH35ptKLIYNK5YwaJry\nmamIeGOm+ykgS9f1qUUe6SbGjWL+5xsY+eVLU/BTU5VDzt13W6ynPD2PFTEr6Nmgp0eu0ZuV3MHX\nrLz+XZX4xkVCQ+3n8AsK8GRGUCe4EWuPr3W9YS+8oP4x5q64UGKyslSWNrA4d5UEs4V/5Ihl/dDZ\nQ2yL30bXel1dP+mCBWqI7Y8/yo4TTRlkxgy1dBbQ4igKZ/duSxGZ8kJhFn5mJhw9Cs0ahFI7tDaa\nzYc2BN88smVLr16q+neTkHakZKZwNPmo4wMvuUSl/p4zRxUgKIYT3zsuujCVFzx6V2qa1gV4CPBe\nLk0sz5JHH7UXduNhWJqCf+yYWpoTYexI2MGptFPuhzqZOXqUhb7XsImL6POze/6QkZEqrtXcKV6+\n3LJ+df3b+Xzz55xNd7HWfYsW0KCB9cmEEnH4sHpeGQ9PTwh+QoIlYq5JE8v2H3b8QIh/CLe2dyN+\nft486NxZOYgITjEs+C0Opp2d0aqV45r0ZRmnc/ioDuzRo86TBRlD+S0LGWi68kr1nE/a3xqAvYl7\nnR98ww3www/quTR0qIoiqYR4uhveG6gJHNM0LVvTtGygMfCupmmHCnvjxIkTGTx4sNXfrFmzHDc6\nv9Vbt1qKUYASL8PCL83pmqP5HU1zZbpjyaoX4PbcqEFqKtxzD1VqVKHpwaVuV87o0kWNwBpxtGBd\nfe/K2neSnpPuetY9TYN+/ZSTjMyZeYS9+c8xI5+SpwQ/KkoNxpizkG5P2E6nOp2o4u8su5MTVq9W\nNRyGDy954yo4huDHxdlb87NnX/j2eAunXvoo387UVOdFFI0pp06d1PLee+2PadFClQs5vKUR/j7+\n9sV0bLnlFiX6mzap3sI6F59tZYBZs2bZ6eTEiROL/X5PC/7XQAego+nvBPAW4CQBo2LKlCnMnTvX\n6m/EiBEOjzXfJNtMORdyciwWa2lZ+A8+CI88otbNlaMSzqtfcI0qNdw/eVYW3H8/rFyJNm0aVZsV\nMt5VBD16qOXLL1u2mYWkuhZFRGAEG05scP3kY8ao8crp091un2DB+L8YQRieEvxatdRv1Nxn3JGw\nw72w0c8+U2XOjB+/4BRzLiJzIMMVV6hgm4qCMwvf7D/krFKjMZTfoYNaTptmf4y/vzou/bwfbWq2\nYcH+BUU3asgQWLJEWTe9eqnc+w4ME3fLP4wc6d3SESNGjLDTySkuVAd0Jw4/RNO0jpqm5fe9aJb/\nuqGu62d1Xd9l/gOygThd14vofhUf8/Sgkb4WrC3U0hL8qVMtCVLMP+ZTaaeIDIosUUpd7r9fxbl/\n8on64ZaAsDC1NHrQYO0MlpGh0aVeFzacdEPwL71UeWn//nuJ2igojN+14cBU4GtRAhISrDukANm5\n2ew9vdd1wc/NVfVer7++9Gq1liPMTnnG0PXQoWpQrCK5PhgWvqapP0P8Q0IsIYnOHBQffljNzzdo\nYNlm2znw81PRUBkZ8Fzf5/jzwJ/FG5G86CJl5b/yinKoGDLEY8l5vv9eLb/5xiOn8zju/Ly6ApuB\njag4/HeATcBLTo73eDJj802xcaNlvSwIvhlzTy/hfAK1QkqQ4H/nTlX4+/XXPVYKcOhQ61jgzEzL\nTZWWBpc0vIS/D//N6bTTrp/86qtVPXRHdUAFlzAs+po1VQpTT4TlJSTYp5/eHLeZ7Lxs1wX/pZdU\nkPTNbmbmq2SYQ8388ksVOCtAU54JCLDOwWWETJstfGeC7+dnH+jx5Zf2xxiCPyR6CH4+fmw8sZFi\nERSkiuz89JOy+J980ko03LXSjc8zapR77/c27sThL9d13UfXdV+bv9FOjm+m6/oHjva5i7N/xgaT\nMVoa08c7djjfVyLBT0pSMX6NG8O4ce6dwwG//65igc3FO4yhtPPn4cHuD5Kenc6PO350fhJnDBum\neg8yxFtijI6sv78ahXnrrZL7HKWn2xdhmrZhGo0iGtGrYS/XTvb993DPPcpyEorE7NNoFJzp5eJX\nXh4IDrZ+JiYmqmWVKhZDw9mQviNsOwdmwff39ad5tebsPu1iJPiwYfC//6mh2eefL9ANdwW/rHfc\nyuUAktnC9/OzzNtffbVle2lY+J984nzfqbRT1KziRkWfffugZ0/1q16+3JJj1YMYQ21ZWer0/v7K\nwq8ZUpOW1Vu6fhOB8licMEH1KsR5r0QYBW40zWIllSRES9eVhe9nUwhvzfE1DG452LUKebGxqtco\niXaKTf36lvVJk1ReEWOuuiIRFKRsFQPDVmnatGgL3xG2nQMfH4vgA7Su0dq6VG5xmThRDe+//jpx\nV95BB7a6/cgyQp0LCycsTcq94OfkWA9LG5SG4JtzY9viloW/aZPyeNd1WLrU+knhQQzBN4b0Q0Is\nP9zoGtGuZ9wzGDhQDfVu3uyZhlZSHBW4sa1M5gp33KEexObp9uzcbA6cOUDrmq1dO5mRsrRvX/cb\nVMkw/y+joytuBWHbGg0GxZnDd4T5WCOyJDDQIvh9G/dlecxyjiQdcbmtPPMMfPQRVf+dz1Y6sZiB\nKmukixijGGVhStkR5VLwbYdbTp+2/4JL4ws/VEjgoVuC/9ZbytxeulQVgfYwkyerpeE9m5mpbqoq\nVSw+LK2qt3Jf8I0KehU1i8UFwlzC9sYb1dJdC+TUKYtDkfkeOZx0mOy8bFrVaFX8k+XlKRN18GB7\nD0ChWHgia2JZxTYtLsAXXyjfEWOkylmnwBGG4FetCoZjup+f5V64p/M9+Gq+zNkzx+k5cnIsIanv\nv2/a4eND3PX3UzX9BLfyHTU5pRL2XH11sefPzp9XoeJhYSL4HsVW8E+dsg7/CAoqncyuzoqanM86\nz8nUkzQIb+D4AEecO6c8n8eOtXZV9SDGXKJ5SN/Wwm9RvQWxqbGkZ7tRAS8gQKW1/OEHy2Sl4DIZ\nGZYHo1H92F3BNywQsE669PrK1wn0DaRDbRfGlnfuVIkwHn7YvcYIBdkTKyKOxNzf3zqZjitlzKOj\n1bKVqU9qDv0LCQihba22bI3f6vD9jzyirj9vnjLObIOIZs+GLAKZxa10Yz1H35ylHMM6d4b//iuy\nfYYBNWCACL5HsQ1dOXXKOotTRoZyaL/QpKVZep5m/jv+H7l6rmvOUI88op7ITnIReAIjHths4QcG\nWlv4HWt3BODvw3+7dxEjsHjlyhK0tPIybZqq/2EMAxvD8K4K/r//qoRQ5o6wIfjHU44zc+tMplw5\nxbU8Ef9n77zDmyrbOHyng7YU6B6UFspu2UOWgCIbZIqAIKggiCggIiLopzhREEEQcYAKiqIsZYuA\nbGRvyh5tKZRCobS0pTPfH2/f5iQ9aZMuUjj3dfVKc3JWkpPze5/nfcbOneKO27xwykU/jHTufL/P\noOhQE/y0NOH0k1gj+OXLiyqmfyhiiE1z/ev71VcVfL3ecG+WBrtp90HlFFc6jhwJeUZMqwYFiSmr\nt9/ONUVGFjF7/HHjwbQt8UAIflLS/W8dqdeL8zCNfAbYG7UXNyc3y/uLp6aKfPu33jKue1rIyKAt\n5Rx+qVLGFn4D/wY08G/AouOL8neQ8uVFSaytWwt8vg8jMtBJflf5bZXasqVI8lAT/M0XN6NDR7/a\nVqbVrV0rSjaqXfQaufIwxDhKl35AgKHqqIeHseBbe+kEBhpXMFUT/JMxJ0nLSDPaTumVl51W790T\nlr6cVklKEgPrSZPE85SUrANu3cr2BmPImD0HmjQRQX6LF4uGKSY89ZTQJ83CL0RMrZuUlPsv+Kmp\n4ktWu4Cj70ZT0a0idjoLP+6ZM8WduVevwj1JE5QW/sqVsGyZWKa08HU6HQ39G3Lxdq6VkXOnd2/R\nfF3WHNawGDnek4aFJRZ+Wpr5G46yYZJcZ8OFDTTwb4BXaSvMrX37hOCPHm35NhrZrFunHmz8ICEt\nfCcnCA8X77lnT+OeAAWt02Qq+G2C25CSkcKiY8YGirIegMznT04Wc/lvvimeJyaKwYisPtqvnwhD\n0juW4vH906mUGEZY5a7iZjlwoKgL3KIF7N5NerqYau7cWRP8QufWLePn5gS/OD90KZBqgn8j6Ybl\nrtIbN8QQc9y4Is/VkVbjV18Zxhbr1hlb+ABB5YKyewHki//9T6jQ+vX538dDihR8GR9iieC7uwtL\nQw1TC//CrQssObnE+mY527aJC6V/f+u20wCEJ60IMmxtCin4er0Qwy5dxKPSwi9oGdocFr5/fZ4I\nfoI/Txs3JVALjpTxLIcOiUfpoVWmq+7bZ5jyjCKQjyr9ABcvknkpnKNvLESfng7t2hH33Bga6g/S\nmIO4JN7UBL8wiVRoj6OjseAr3T3FafXnJvg3k25aLvj//CN+IcXQkFla+KZxB6VLmwi+WxDRd6NJ\nzchnSHHZsqKGbz7SXB52lLXWwXAzMif458+La3GlmUBlpeDb28OWy1vQo2fkIyOtO7H//hPuTdNk\nfg2NLNSi9MFY8AuKqeADhHiH5EjNU/afkAkl0s0vBybmpmSVVXfj40U40o+bKtLgi+cIDt8Ob76J\n57LvOcgjNHrpEV6Y5M/3GUNtsv5IiRP85GRYtcrw3MnJWPB/+MHwmq0I/o1EC4vuZGaKKhyNGhVL\n+K65e7Wrq/FFHlQuCD16riZcVd/AEh59VAR52Wo0i42iHHhB3ha+siDPG2/kfH3YMPHo6yuK4+2L\n2keodyiupVxzrmyOlBTRHa9FC8u30XjoUFr4Sopa8Cu7V+ZS3CX0igMrLXw56JW/IXmeiYk5B9hg\nnH21bp2I3zt8GHCJJSLxLnz4If/Ou0BT9nJj/QH295rC8/oFImDZxu53JU7wz50zlGfX6XIKvlLE\nZE2Q4sBU8JVp8xZb+EuXCrf3hAmFf4IqqLWmfOstg4X/+++iwEWQm3CbXIkvQBH37t1FhIyZlsca\n6sh5xb17xfO8BF/p/ZoxQzSxU+P6ddHcblfkLloGtbTupObOFQFLD2rFGI1CQQqpqXu7XLnCO4aq\n4HtU5m7qXWKTDTmoSsFPTDSeSpD37BwWfugK6NuXSr3nQeXNUHEn2An//tHoY/BGBRhTjWPXj3HL\npQL7aUqpFo053mUCz/GzGB0UpwhZQIkTfGX63Xvv5S745uYxiwKl4F+4AP9mZbHp9XrLBf/770U4\ndTHNi6oV7vvsM3EvP3lSZATOmgUVygjBj7hTgKC79u1FvsqSJfnfx0NIYiIMHgxNm4rneUXp37kD\nBOyH6utAl8Hw4cavd+1qyJT86/RfhN0Io0PVDtad1KZNoreDaXcTDQ0F0qVvauQW5iyQOQsf4NJt\nQ1tJ05bSynNSE/zPf9+FXd+BUHsZ9HgJnm8PQ1vDa1VhTDV213wM7rmBLpPJWydnew1cXUXQ3q88\ni75lS1GrvzDaWxYSJVbwjx0TeY+yBaNS8JXNKYoLpeBXqWJoP3s39S4pGSl5C/4XX4hRwpgxRXui\nCszNsZlOtcdeK0tguUDLO1GZ4/HHhVvfViNabJCkJGM3oxT8hAS4fDnn+mGpf8OwFvDskzC6BjXb\n7je6uSmL+Mw7NI/WFVvTJ7SP5Sek14siJJo7XyMPzLn0CxNlpT1JZQ8h+OduGTqy51bRUP6+4uMN\ngZS7mE7FslVgSgLMDIfvDsIfy+FaI7gRiv5sF/j+IGz8nFVnVrE1cgM+PuJ84jKuQvX1ZKxcK3Y+\nfrzNlFQscYIvhV0GnNnbC/1QCv6sWUDZq/DUszSf35wVp1bk61j791uuTebm8GVrWR/XXObwIyJE\nLsioUfe1xejx4+LRtGBGWBg8EfwEWy5vKdgBWrUSobFHjhRsPw8Rd+8aC77sLf7aa6IJiZJj14+x\nJaArpWNbwo87IN2ZiyGvkpZuuIjj4oRXTK/Xs+fKHtpXaY/OmlDpU6dEmowm+Bp5YM6lX5ioWfie\nLp7U96vP0rCl2ctMK68qA5XlecbGgrc3HIk+wuozqxnb8hVILQN3KgqhP/UU/P4XLF4NyxdDfCAc\neYGOVTuyOPMpgmrGsj9qP+9cC4Fnn2TigSmiPPpffxX6NO2KFeK+bC0lTvClhS8F387O2MJ3dMyy\nghp/B/V+41LcJZ5Z9ozVXZTOnxdu1GnTLFvfnOBfT7wOYN7Cv3NHtBV1dRXpa/cRGUxjavlHRkKz\nCs04HnOcTH0Bfr2tWokiPCOtjAh/iLlzxzhvGYxzlyMiDBbUvIPzcEz1pUvMJohoRb3r00nzOcC4\nDYaMj4sXRUrYuVvnuJV8i+aBVlbJ++ADEVDa0sp5f42HDnMexMJETfABBtQZwD8X/skO3JNxXyBy\n65XTmdJDEBsrKv9N2jyJEO8QRjZ9ie7dcz++exlnfu71M5l6PWcea0qbhW3wd6wO5zsxa98Mbvfv\nKURk1ixDwn8h0KdP/mbUSpzgm87VS5e+HAg4OMD1O3HQ9Gs4OJyIsRE42juy9uxaq44TEyMeZdWl\nvJCCb3qR74/aTyn7Uuabknz3nTC79u69Lw1IPvvM8L8cRJlmBN67JwL30jPTiUmMyf/BXFyEJ2Pf\nvlxLVGoI7t0Tf6aCr/TAVKokQj92hO9gzv45eJwfSYXyjuj18OnQLrDrTRYdXwg6cVeTFv7H2z/G\nzcnNOsFPTxeBSGPGqIcza2goyM2l/8wzhePMNCf41b2qk5SWlO1hjYsTt58rV0Tms7JjYWqqaHoT\nGQnunulsu7yNIQ2GUMq+VJ73/5AQ4b31XreR8va1eavlW0yqsBlW/kh6Zjp/nf5L1FSZMkUU23/l\nFUN7vwKSn6mSEif4pha+2hz+zui/oXQsbHsXJwcnWga1ZGv4VquOI6OiQfSwyQtZltG0ctT2iO00\nq9AMZweVwtKnTsHEiSJXSllAoBiRwWBg+ExNf4jJyVChrBgSR8VHFeyAnTqJD8m0c4VGDqRVYir4\npoPKtWthWdgyKrpVxPG/d7PXDw4GzvTgTuotCDiQvX6KcwR/nPyDd1q/QzknK0Kmjx0TvtFWrax+\nLxoPH7m59BcvNq6Jn1/s7dUFP9g9GIDwO+GAuIe5uAjLvlw546JHd+6IMiEAKeVOkZyeTJMKTQDh\nDZg0SXT3GzLE+BiOjob3lni6JSPdV/He4+9RxsEdEgLoUqUb4zeOJzb5lrjPf/mlqDhas6bogJpP\nZGng/FCiBP/8eUNLw9wE/4bjQYirBPFCRNsEt2FH+A7uplrWQu+ff8SgTLJ8ed7bmCvacDb2LHV9\n66pvNG+e8CHNnm3ReRUFyh7T8n+dzjitMDmZ7E5/BUrNA1FM++mnRYqFufaCGoCwSiCn4MuCIXIa\nPerOdVacWkGnqp24E2eXPTVTqRIQ1QwSfeCFJ6D9W9BsNkvcmuLl4sXwxiYh/Hmxdau4SIqgVbPG\ng4e5KP3CxJyFLwVfFuDJyDDODmjdWmTM9e4t2qtLrvAfOkQ5cRBTxlOmiH4Ab74p+kRJV7q7u0Hw\n09IMXgPZ62VOxx9ISEng1+O/GgJvdu0SwTedOolewfng3Lm81zFHiRL8N98UYgw5XfpKwb9X7hje\n6fWpXVssG1xvMPfS7zH/kJmkZBPOnDF+bkmrXXOCfyPxBr6uvjlf2L5d1LQdPtzYv1TMKA8tB1Eg\nelZL7t0TbitHO0eiEgpo4QN8/LHI/du+3arN4uJEMZm0tLzXfRAwJ/gSb29RuuGQ/yvEJsUxotGr\n3L1rWN/VFch0gCVLwTEZWk2DLq/hU9qHXUN34e5sZsdqJCWJO99TT1nXxFzjoUXeo4s7aA/Aw9mD\nMqXKZAt+erqx4Ds6QseOogCVUvDXx35Nx6odKetUNsc+Q0NFgcnQ0KxjeIj3pteLaQFpMEnB93bx\npUfNHry35T2OXT8mFjZsKFxy/fqJzlj5qEsiZ9PK5jzFPClRgq9MtzMXpW9vr+fI9SNUK1fPUG7X\nLYiWFVuyM2KnRcdJNmn9Lm+8uaEm+Lnm4M+fLwLYZKeG+4Q5wffNGqPodOLzsNPZEVA2oOAufRAd\nK6pXF5PPFgz/v/tOnOe0aaKYjFpr6sxMOH264KdmS8iBp7mii+fOQYXa4VBjDYMDP6Syi2hlnGOA\nEP44zNsDn9yF2ef4b8jB7NQli9mzR0Q1vf22ddtpPLTI5I/isPBNj6HT6Qh2D85u+pWRod6ox9tb\nIfiu17mcfIwXG76Y6zHleNfDw9jYNBX8zEyY3WU2bs5ufLT9I8MOXF2Fd7dzZxg0CObMsepDkscz\nrcJpCSVK8JVfmPzQTaP0j8buISYxhmCeMLIE6/vVN4yy8kDZxcrBwbIYCzXBv5Nyh7TMtJwpeSkp\nIjCgT5/7XotcKfjKz7dPVmq2n58hirVCuQpExBdCxzudDj79FFavFn958OGHYgQtf5hq38cbb4iR\n94PUgWzdOuE99zYZLx4+LB5TUuCVrX0hoQKtyz3H5MliuWols6hmkOYKt6rh61VKZYU82L5dlGaU\nbjMNDQt5/vmi27e8faqluT9e6XEWHVtEVHxUDpe+RAp+27bQ+EmhDw38G1h07LJlhajLY6sJfkDZ\nAN589E2WhS1j8XGFNe/qKtqTPv+86Dg5caLFrkupdfnxnJQowVfWdzfn0t98ZQ2+rr5UtX88R5/k\n87fOk5ia97Do2jXD/4MHW1aTX03wZUR7Dpf+O++I4ZkNlCYtZebe3727uJCDggzvv2VQS9aeXWvR\nZ5gnffpA3brw5595r5vFdZHhaNTbWvL33+JReY2UdI4eVc9+a9BAlD3+ZUUMR2L2w78f45zpxZw5\n4nVlVbG5cwvhRDIzxQC1dWvD3UxDwwLS0kRNsaJC6oDaLNPHbT8mPTOdxScWk56ubuF7eYlb8blz\nYOd/jNKOpanqWTXXY8oBeOnS6oIvPRtSkF9q/BJ9a/Vl2OphHIlW1CCxtxfz+J9/LiL4u3a1yGJR\n6pG13pMS9es1dbWD+Myiow0tcyMSLhLqHUopB3tjC9+/Pnr0bL6Ud3TkVUWPGHNzRKaoCb5sKSsD\n3gBxFfzyixjVycmg+4iHh3hUmw9ydDSuZDWkwRBu37vN7shC6nrXubNQ6jyGqvKili7uGJXMQHmO\nD8r8fnKymKIw1y+8f3+47pQ1RRX+GCkpopAhwBNPGNYrlFzo+fNFD9HXXiuEnWk8TDg4FLwFbl77\nl5iKn7uzO40DGrP/6v5cLXwQKXm3Sx+grm9d7HS5y+JHH8HPP4teFLlZ+PJ8StmX4seeP1LFowpP\nLHyCqPgozsaeJSMz66Y1fryI2t+3T5QgzyNoTKlH69cbG6h5UaIEPy5OzGeePGlYZm8vYiBefFFE\nJV9NvEywezCOjsYfTAP/BrSr3I7hq4cbPmgzSMF3cFAv3aiGquDHqwj+f/8JxZIN6O8zMqJ7PTMQ\ngAAAIABJREFU6FD115VpL9U8q2Gvs+dSXCHVhn76aWG2v/9+rqvJH5T8Xnbvhr59xchc/qgeNMHf\nv188Hjhgfp1159YR7BYM8YEMGiRa1A8YYHwdmvPgWMX8+eJ6VY4kNDRsAKWIq92nmwQ0YWfETpLT\nk1QHz/XqZf3jE8YFpyU8FZp3AxZXV+H5ldPJasXgwNiOKVOqDBsHb+Re+j0CZwZSc05NOi7qSEp6\nljuuTRsh+kePChfexo3q8xQ3b1LmwlG6s4qB/MoLT8YwYECep5xNiRJ8OddSq5ZhmXIwNGoUXL5z\nmcrulXFwEF9EUpIQBTudHZNaTSImMYYLty/kepzoaHj3XbHvglj4J2JO4F/G35CDn5QklLV6dZsq\nTZqYKILh1FAOeBztHQlyC8oOhCkwTZuK/MevvlJ33yjODwyu6qVLxfTX0aNQvz40bmz4jh4UwZeY\n+14i7kTw05GfeLXpq0Y3sooVjdeTgu/oCAcP5qN30dGjYsMnn7RyQw2NoicvwX+x4YvcTr7NIaeZ\nqhZ+hQpZVfdqrMFB58zY5mMtPradnciJlyVU5P1fCr7p+fiX8efrrl/DsWdh51vsCN/JsNXDDCs8\n8ogoO67TiRQCd3fRVnzgQOjZU/y4fXxoP74Bq+jJrwziCoG8l2BSKS23c7Z4TRsgLi5nBLKyLHvd\nhslE340m2D1YNDGIE6Ox778Xr9fzE8O5o9FHcz1OSopwcTs55V/wU9JT+OHwDwyooxh+LVokigms\nWWPeV3sfKF3a/NSsaWGLKh5VCk/wAUaMEF/Uxx+bXUUG6ZkOeM+dE/X/Dx3KKfixsTk7ZJUkZCyC\nr0pGJ4gKjpn6TAbXG2wUeGkaU6e8CTVqJDwjVvHuu6KcmDVmhIZGMaG89tUEv7ZvbbpU70K4499m\nb7mevslQbxE1HNpRyt5yl5jp/mS6nExpjo7Ouc3QhkNhxSLY9BnO/73P0pNLSUpTBB6FhIi5y0OH\nxD0xIED47BMTRXnCP/7g7/f3EEQE3txgPNPx5mbOA5mhRAl+WlruLsqMMiKCXLr0JRs3ikcfVx/8\ny/izN2qvytaK/ShSOPIr+KduniLuXhxP13paLIiLE3Vs27eHGjXy3qGNYDqlEewWnJ3bWihUry5E\n5bPPVCejcuuzc/684X/5HckicN7e8OyzhXeaxY30apirYHsk+gjly5THr4yf0W/CVPClNyxfg597\n94Sb8fnn1YtMaGjcZ5QV88xNvXao0oHrjv+Bs3p+9flaw8HzPAMrvmXVsU2NJPlbrZoV83dBxZG8\na5fhf8cLvUnJSOHfS//m3HHDhsL7uWwZbNkiWlJPmwb9+nE9uBlXCCIWb75iDBP9Flh+zhavaQOY\nFk8w5XT6Rux19oR4hxitpwwa6VurLz8f/ZnUDPPtCpXHyU3wU1NFwbjdu3MKvkwBzK6yt2KF6Gf6\nzTe5vEPbw/T9VyhXoXCK7ygZN04caMGCHC/lFuqgrDglA/ni4gzR/P/+m3ObkoIUfHM6ezj6cHb6\nkNLKUU53Qf6Kc2Tz55/iwu7atQA70dAoOpS/D3OCX13fDTu9E5G1xuV4berOqSRX/xXWfMvzba1r\nCGUq+HLw4ekpYqNMBf/iReOq1OXSalLXty7vbXnPqqZkpnoUEGDFOVu+6v0nPd24OAyIOc5Ro0R2\nw6ITP/JU6FP4lfEzWk/5xfSv3Z8bSTc4fdN8lRZLLfw1a0TEZsuWYi7HVPCreFQxVGxatUrMxyir\nB5UAZNqjpLZPba4mXLXYrZ+ZaUHhInd3eO45YekfNZ5u6dTJ/GaqJSad7jDs+znQ4U38GuYS8Wbj\nJCaK61atCOPt5NvsitxF4/KNAcM6Q4bkTE+S16TVkdKZmTB2rMjP1HLvNUoA5gS/fdNAMjZ+xI3A\nn5izb0728tSMVD7e8TEcGgpHBxt10LMEcy59nU5Y+RdNbpGmz8uW0fF5h885HH3Yqm6uKSnGhq81\n3rsSJfhpaTkt/NdfFzFfzz6XyomYE7QJbgNg1sKv7StuXidjFKH+Jlhq4csyvxKl4O+L2mew7g8d\nEvkTvXubPaatYvr+u9XoRmnH0qw4tcKi7T/4wFCCMlfmzhXRM9OmGeXX6PXmK7nmSM9zjYHRNViT\nORqazOX0Y00YsXpErt4cWyUpSdxA1IT6l2O/kJyWzMgmos1wRFYtJNPBMBg+O6ur4R45Ij7g8eOL\nNq9KQ6MANG5suK2q3aezbyX7R+J/sz+j14/Ovvdvu7yNu6l36eI1mp49rb/GTX9vyum3KlVyWvgy\n80a5fquKrbDX2fPH7t0cP27ZcW/fFvfUiROFDakWzG+OEiX4ubn0w26EkZaZlu3mNGfhuzu7E1A2\nwOyISq8X4qS08M2NHE1TpqTg74rYxY6IHYaAvS+/FK3LRo3K5d3ZJqYWvmspV+r61uXkDfMDJiWr\nVonHm3nFlTg6woQJ8NtvomxeFikp5t3aRoH9ugzo8SI4pMCXF2FaLGV3zmL+4fk0m9/MKpeZLZCY\naH7+/tj1Y9T2rU1AWWNfnprgS622WvA3bhQffHMr2udqaBQzOp1oNgrq9+ls6zfdhdlP/IyXixff\nHviW7eHb6b+sP6Heoaz9oX6+mneaBpArY2kqVDAE7Z08KVJmTatSlykj7qcN/Bvw8cJdhhTBXMjM\nhB07xLE//VT85pWxTHlRYgT/5k3xAaoVXQERxKRDl21Vm7PwARr6N+SvM3+pds+TlqjSwjeX6mUa\nYyaFafXZ1fi5+tGvdj8xSlm7VoRH38cmOflFzcNRzbMa529ZdpXJz9Pc92bEq68Kt/4332QPh1NS\njIWvgaLqZWysYtvAvVBzDayaB3GVId2ZhE1j+Ln77xyJPsKO8B0Wna+tkJvgh90Io5ZPrRzL1QQf\noEsXWLjQioPfuiWqf/XoUUiJ/BoaRYc0ztQEX9mQs2XzUoxqOoo5++fw+ILHqeFVgy3Pb0GXTw+W\nLFqmhqOjOJ/bt0V3vTZtcq4jf99dq3eF2kvAI/d0cRBT2Bs2GKx6ZRCgJZQYwd+wQTxKi1FJWkYa\nM/6bQQP/Btlz5uYsfID327zPudhzfLM/ZwCdoQmPeHR1NS7woraupHRp2HB+A3P2zeHJ6k+KC2n+\nfHED7dnTkrdpczg4CO+usjGNNYIvRdmSTAdAzBvXrCnKxl25QmqqsYX/6KNmglQC9+Ds4AKnRZSf\np6dY3MilD+XLlOeXY79YeAK2QWKiumdDr9cTdiOM2j4559XNeb/WrRNT8RazYYP44j7/3IqNNDTu\nD7kJvrJSrY8PTH58MgPrDqSmV01+f/p3/Mr45fu4Sgt/nEk8oDSU/vvPeHnPniLWBgzG0MRWE0VX\ny9pL8zzm2bPiUQ4WrA1MLjGCL0VbLZdyR8QOjsccF0UNssjNwn8k4BF61Owh+hSbIC8aeRw3NzGa\nUmvYYipiDs73GLFmBM0CmzGz80zxjX74oeiI1KRJXm/RJgkIEKNUZRXgap7ViL4breohMUW68i2p\nVggIpd6+XYSXt22LLvGukfDdvCkGH40bm2wXuIdGfk0gU4z0ZJxZRLgdE1tN5IfDP7Dt8jYLT+L+\nI+fwTYmMj+ROyh1CvQ1fiGyrXWhT7Zs2iQ8wMDDvdTU07jOWCr6jo+ii9+tTvxL2ahjB7sEFOq60\n8Js0ydkvwN5eeIaluEvmz4dvvxWB3nK6obRjadHRMuRPktPMFyADg8PN3188tm5tmNKwhBIj+PJm\nplYgZsulLfi6+tI80DDfqBR8tW1eaPACR68f5bsD3xktlyIut5ejuDt3cu4jI0MxynO+zdyooUTf\njWZOlzmUcyon5qOvXRM970soppXbQAg+wPHreUeZyIvaYgsfRLu3LVsgIoLBYRMp52yISrlxQ4wF\nqldXrO9yC6psonXwo4wbJ6ad584VP7rLl2F009HU96vP+9veLzFz+eZc+ouOLcLZwZnWlVpnL5M3\nnkIpNBQXJ1wC7doVws40NIoepeCfO2foqwKGwbApedXLtwR571cLmnNwEMG0ciqzXz/x6OYmRDs4\n2OT3engIBBwgcGYQ03dPNxL+/v3F7VDuFwyCD+an/tQo8YKfkZnBpkubaFqhqdFcjNKlr2b5dK3e\nlV4hvfjpyE/G+1Ox8EE9tSw9XeThD/14M4wvz9abv/NL718I9QkVkRXPPSd8qa1b59y4hKDm2Wjo\n35BqntX4dOenFu/HYgtfUqsWvP8+Pa7MZewVQ+nIZ54Rj19/rVi30TxwSOG1ZmP44gvhRqtTR5S8\nvHxZjOqntp/K1stbWXjEmsns+4c5wd9wYQPdanTD08Uze1mhCv5XXwmzaKzlJUY1NO4nSsGvUUNU\n7JZ89VXRHVf+7tQEX+mJDgoS3S1TUw265ORkcm891Qe+PUoLn85M2jyJ8l+Uz+6st2SJEH0wxJMp\na7cpiw/lhdWCr9PpWut0ulU6nS5Kp9Nl6nS6HorXHHQ63VSdTndMp9PdzVpnoU6nK2/tcUyRc+jj\nTcoGT9s1jX1R+3i58ctGy5UWvrmgu/aV23Pw2kGjtC0pTHJ7KfihoRAebrx9RgYk291gdamB1C7T\nmvOjL9C3dl+hOF27ClPzzz9LdFqTrBql9O46OTgxuN5gdkfuRm9hf0arLHzJxInMDZxCr8ivGMY8\nPv0UXnpJvOTpKVIyFywAqmzGMaoN5csaX2ayKiVAp2qdeKzSY6w+uzofJ1L8mJvDv3DrAiFeIUbL\n5I1HbXBmNZs2QYcOULlyIexMQ6PokW5u2TZbrcJdUSAtfLWBtlJ/Vq8WEqA0Qp2cxHa//iqMSQcH\nIKYOwz0XsXXAYUj0pcfinoTFnAIM701G8k+aZNjXo49afs75sfBdgSPAq4Dp3b400AD4AGgI9AZq\nAivzcRwjZAqWaVe3X479wrN1n+XJGsbNPZQfrjnLJ9QnlPTMdMLjDEpuGrSnDMw4fNh4+/R0+DP5\nNTL1GWx69ReqeFYWC0eMEIFnq1fbVM38/NCzJzz2WM5qwHV96xKbHMv1xOsW7cdqCx8ROzb+2nj2\nhLzA986v8dajxpH2M2ZAvwEpUHEnLtFtc2xfqpTxYK9tcFu2Xt6aZ7dEW0BtDj85LZmohCiqeBgX\nb5LV9Aos+ImJYrCqufM1ShB16ohHtYDuokQmXal1OVcKvtH0o2Lby5dFeNfQoYZBy4ULsOzrOtz5\nej0pKZn87993jbbLyBDrKpNnSrvHYylWC75er/9br9e/p9fr/wJ0Jq/F6/X6Tnq9frlerz+n1+v3\nAaOAxjqdLtcIoH79zFROyyI52dCuVrL27FpO3TzFM3WeybG+cj1zN0I5F33uluHApi59P0UQZ7ly\nxtunu0ZyKGUJkx+fjH+ZrEkVOcn8/ffg5WX+DZUgKlbMaaHX8RW/Mkvm8SF/7ubOnSElw4G/2n2F\nrl5ddF06G/dGBhYe+wkc7lH2Ws5ubqYplR2qduD2vdssOWlty7jiR82lL9sSV/WsarRcNusocCLI\nZ58JV5pWSlejBOHiIn7rpoFzxcGBAyJUyxSZLte6tbqnrnx5wzSxrGANcOlSViGt21UZWvMt/jqz\nAioZgo1Ni89turiJLr92sfh8i2MO3x3hCci1wOqFC4audmokJ4svVsm8Q/NoHticLtVyvmGlhR9l\npvR7YLlA/Fz9+Pv839nLTIP2lKnzqakiQrxs2axgjHaTKGvny+D6gw0rlS8PO3eK1mQPCGq5+JU9\nKmOvs8+11bCyul5BigzqypYRTVwCA8UEnSJHcPGJxXCmO5OGh+TYLjJStNKVbv0WgS14svqTTP9v\nev5PpphQE/w/T/2Jk71TjpS8MmWEThe4od0vvwjvVAkr/6yhYaoNkycXz3EbN85pCILBwKlUSX27\n55/PuczfXwQcyqnjLuVfoKFfE+j9PNinkp4utMzBQaTnztoziwHLB1DXr67F51ukgq/T6ZyAz4Df\n9Hp9njlc5gqHgLrgH7p2iMcqPqZaOEE5Cjp7Vj2P3k5nx6B6g1gWtix7mamFryQ1VXjp796FTZv0\nUHkzrcsOwd3ZpORSCZ6zV0NN8B3sHKjlU4v159eb3U7pxrfW3aw8np0dQtV27xbm7IgREB+PXq/n\nRMwJPnz5EV59Nec+zpwRjzuyZgJ0Oh3da3TnaPRRElMTrTuhYsZ0Dl+v1zNzz0yGNRqGV+ki8Bxd\nvizuNO3bF/6+NTSKGFNt+PBD8ejmJsp7X7ds5rHQkPpjruu3n1/ODKjmzUUK9MGDWfvILMPU1t9C\nuSswsi59Btzl88+FITVuwzjGbhhLhyod+KTtJ5afVz7ei0XodDoHYCnCun8l7y1eZ/lyN06cMCwZ\nMGAAA7LMFlPBv5l0k8j4SBqVV7eklYOHxESYN0/oxL//ihxIOQdSy6cW1+5eIyU9BScHpxxBeyAu\nmjt3xKhNpkN8+k0EtI+mou7BLz1qrp/AhJYTGPznYLOV3/IVqJeFHCDUqgUDB2Yt9PISX2SvXvDG\nG8TM/Jhbybey+yOYQzn+ahHUggx9BgeuHuDx4Mfzf4JFjOkcfvTdaGKTY+lYtWPhHywzU4QBe3qK\ngkcaxUJERAQ386w5rWEJaqnXhw6Je3Z8PFy5Iv6KCxlkd+mSSUVQBR06wA8/GJ5nZIiWK5ITJ0SE\nP3N/ggHDWBU/GWjM3eQFfPnaRqp7Vefuwbt8fMfMqEKFIhF8hdgHAW0tse5hJs8914h33lF/1VTw\nD14Vw6CG5Ruqrm9adWx6lhe3bVsR4ThlinheoaxokRR9N5pK7pVyBO2BmDYODMSo6tuJ+O3iONeb\n5f3WSjjmBL9bjW6AmMcvbMGXLrGPPzZp1tahgygiPXYsaUnXoTqqVeeUKPNya/vUxs3JjbXn1tqs\n4Ov1OQVfdic0DdgrFI4fh337RAno3OqFahQaERERhIaGkiQnbzUKHVmc64sv7s/8PsATT1i+7mqT\nBKIRIwz/233jROaoGVCtNrjE4uLhwv439uPm7MahQ4donKMSmTqFLvgKsa8CPKHX629buq01Lv1v\nD35LNc9q2YF3ee1LGbylTK+rUE4IflRCFJXcK6m69KVVn5KStdwuHTpMgAsdyCjnm8e7KvmYE3x3\nZ3fcnNy4HHdZdbv8ROZLpIWv2vTl1VchKYnASZMY39UxRxCbKS+/LAIAy5UDDw97RjQewTcHvuGT\ntp/gaJ/LRXefSE4Woq8m+JXdiyBdbuNG8ePSovOLjZs3b5KUlMSiRYsIVQvz1tDI4tSpUwwaNAj+\nmg51z1AjNJX5g17EzdnN6n1ZLfg6nc4VqIYhQr+KTqerD9wCrgLLEal53QBHnU4n49xv6fV6Mxnx\nAnP58iAEQAp+akYq686tY2r7qWYrJpmrKw6GNCYwWPhR8VEsXAgvvJBze3t7Ebx3927WQMLvKJSN\nhqVLaTElt3f0YJBbi+DKHpWzo8dNKQwLX7XfkL09d19/lcUr3uHzdWmwc7fIHcyF4GDxqNeLokvT\ndk/jbOzZPKcD7gd3s/xhpoLv5+qHaykrympZwr17IljvscdKZHOnkk5oaCiNHqAAX40i5PITzB73\nBqNH538X+QnaewQ4DBxEzM9/ARxC5N4HAt2zHo8gBgDXsh5b5LXj3LxbsbGG+9GFWxdIzUilob+6\nOx9yF3zlfc3d2R1nB2euJlzlvfcMy02D9jw8REBFSooe6vwO6U681reJYX75ASY3wQ92DzYr+LIC\nVefOxs8tQRbPMNfWdWv4NkZ0ySS5cX2RRiYjXSwgO6UwxsIG1MWMzCpRNgm6GHexaNz5y5fDsWPw\nieWBPxoaGveHgra3yE8e/ja9Xm+n1+vtTf6G6vX6cJXX5PPtee17yhRx71Fj9WpDPWEpMLndAHOb\nHlCi0+moULYCUQlRRnO9pgMGfdOv+C1lAD/fegVaToe9Y/Byc3rQAvJVyU3wG/o3ZM+VPUbVCiXS\nWyKLtik/37yQXaZq1sz52u3k27y58U1q+NTEeeMWcYBnnzW0kspCVuUzxau0F+XLlOdEzAn1Fe4z\nly+LR+mVSMtIY9PFTWYDVAvEhg2i57CFc4AaGhr3D7UiPtZgc7X069fPucy0jv3VhKvo0OUopapE\nCra01JVpeTqdiNiUrtNK7pU4eeOkkYdBaeGH3QjjeqMxnC31BzuSv4WIR3H9b2p2Q4QHndwEv1dI\nL+JT4tkennM8t3GjePTNCnOwRvA3bxbB+Gq1i1afXc3pm6f565m/0Hl4wKJFwn3Qvr1Rg+jvvhNe\nGTXq+tVl/9X9lp9QMRIeLqavZEGdXZG7uJpwlSENhuS+obXExwvB79SpcPeroaFR6EycaKgqmF9s\nTvDVkJkr69aJRzcnN7pU74KDnXm/vbTw5by/aRGToCBo1Ur8/1TIU2w4v4HM0tHZr8sBQ9iNMNr/\n3B6XTF9qLk9ggmM4nqu3cjdBp2p9PojkJvh1fOvgYOfAuVjzZRJl0KO59BQ1Tp6ERx5Rf21XxC5q\n+9QmxDur2E79+qKlrpeXKG31+usiJ+fePcqVUy+L0LdWXzZe2MiZm2csP6li4vJlUbBDnvel28Kj\nJaciCo133xVz+KY9PDU0NGyOvn0Lvg+bFfwWLUSHITC0ppXC0bd2X9YOXJvr9lKwpeCrxSMdPSoe\nB9YdKNqmVjMkQep0otjJ5K2TcbBzYKzHFi6ddSUlpiI+nrYX2V2U5Cb4djo7KpStwJV480mu0sKP\nizP0RMiLpCTzXaB2Ru6kZVBL44WBgWIef/Jk+Pln4aL28MDutdF4ueas+vNs3WfR6XSqnon7zY0b\nxiWdI+Mj8XX1xcmhEIPqMjNh2TJRyPthGblq2CTBwcEMNW2SolEk2Jzgl8/y0u/ZQ3b1NCn4aiUM\nzSEF39FRuOeVld5MLT4PFw/8yviBuyFfLyUFVp5ZybKwZbz72Lu0qlGL1FRRDOFhS1XOTfBBpDZe\nSTAv+LJ2QY8elrVy1OvFwECtBvWmi5sIuxFGl+oq9aPt7ITgR0QIi3/iRPjmG/Ym18XNpLKzi6ML\n1TyrcfLGyZz7uc+kpBgHK0beiSSoXFDhHmTlSrh6tWA1jzU08uDixYuMGDGCqlWr4uLigpubG61a\ntWL27Nncy7opq1VK1SgabEbwBw8Wrf/S0+HJrD4oUrSlWJuWT8wNWXnJwUHkg586pb6erIhU0a0i\nuEVkL09Ph38v/Ut1z+oMbzw8W3w2b7buPB4E8hL8wHKBOSx8ZY8b5Ty8sr6+OeT3rSb4y8OWU8Or\nBj1r5tIpxtVVuPYnT4a9e/HOvME6uuKO8YR+Hd86NhO4d+yYIc4kJcXYIxURHyGuz8IiPR1GjoQu\nXQzzWhoahcy6deuoW7cuy5Yto0ePHsyZM4fPPvuMSpUqMWHCBMaOHXu/T/Ghw2YE38NDWIA3bhjm\n6h0dxc1f1kK3NPJeia9v7tu1bi0eheAbLPz69WFf1D6aBYpKesp2hMr/HwbyFPyygUTFG3coOnDA\n8L+MNrcUGTyp2g/+9gVq+9S23Cpo3JhXA1cSyim28Tgpe49kv1THpw7HY46L6Zz7yJUr4nqbNk04\nJq5dMxb8QrfwN20SxcU//li9JqmGRgG5fPkyzzzzDJUrV+bUqVPMnDmTF198kZEjR/Lrr78SFhZG\n7dq2VwPjQcdmfu2Ojjnn2R0cYMIE0bVTrmMNv/8ueiQ3Nyl3r4zGv5SVQl7Tqyb4ngBdBhUrQkrG\nPQ5HH6ZpQNMcx37YqmFa5NKPv4JekQrh6Wm8vTXIz1fNk3Lh9gWqeuReWc+U456P055NOJCOw1M9\nRClZRLvcG4k3eG/Le3nsoWiRRYYmThSl7A8eNPwWMvWZRMZHEuRWSIKfkCDmyurVg4bm61hoaBSE\nqVOnkpiYyA8//ICvb85qpFWqVGF0LhVkLl26RN++ffHy8sLV1ZUWLVqwTlqCCr766ivq1KmDq6sr\nnp6eNGnShN9l8FcWV69eZejQofj7++Ps7EydOnX48ccfC/4mSyA2I/ilSqkL/iVFTRdrBb9/fxET\nYFpEZ60i3k/2CulZsyeUiYFqf1OlCvx89GfSMtKym5Uorfri7rx0v3FwEK54c+74YPdgEtMSiYyP\nzF4mRQzUOw/mhgzsM7Xw0zLSCI8LN1tO2RxOTnCIxnTmb9KdSot6/Fev0qpiK0Y0HsEfJ/+w7gQL\nyNWrokaBrCypVmFSzuFvu7yNu6l3cwYp5pfffhNpAMuWPXBdHTVshzVr1lClShWaNbO+10hMTAwt\nWrRg48aNjBo1iilTppCSkkL37t1ZuXJl9nrz5s3jtddeo06dOsyaNYsPP/yQhg0bsnfvXqN9NWvW\njH///ZcxY8Ywe/ZsqlevzrBhw5g9e3ahvNeSRJF1y7MWc4KvDF7KryvdVHCioiAkBOrWNeSGPxLw\nCFxrCI1+oKb7k8w7NI/uNbtT01tEMCsHGw+j4IOIhcjIyDnwale5HU72Tiw9uZQ3Hn0DEIHyIFpA\nWiv45lz64XfCydBn5Fk73xRvb/EYSUWOzNhCs+H1xJe/aRPNfBvx3cHvuJt6lzKlLIgoLAQ+/BAW\nLoTXXhNGtnJwJJG/hXXn1hFYLpDmgYXQlfHKFVHdqmvXglfw0NAwQ0JCAlFRUfTq1Stf23/66afc\nuHGDnTt30qKFKNA6bNgw6tWrx7hx4+jZU8TvrFu3jjp16uSw6JW8/fbb6PV6jhw5gru7aGP+0ksv\nMXDgQN5//31GjBiB00NUUtpmBN/BIW/Bt9Y1LJHTlJUqQbNmsGQJPPqocFPLADGdTgcn+kOHiZx0\neYkDVw+w5Okl2ftQDjZk1sDDgvzcjx0TufG7donPT+Lm7MajQY+yN8owspadny5dyr1HghrmBP+/\nSFF+L9TbumYjAwYY4kKu25UX+Zht20KjRrwAtC8LaVvagZO7yIcLDBQjlbZtoUYN607eAuT0iGlQ\nqhI5JXIp7hKh3qGFE8n85ptidDFzZsH3pVGsJCXB6dNFe4yQEPW4GWuJj48HoKyyaYlYHs/LAAAg\nAElEQVQVrF+/nqZNm2aLPYCrqysvvfQSb7/9NmFhYdSqVQt3d3euXLnCgQMHeMRM0Y4VK1bQv39/\nMjIyiFUUAunYsSN//PEHhw4dMjrOg47NC75phbz8IC1MR0dDap+Tk9i/0roKuvU8V28tZKfnPILd\ng7Pbv8ptH1akMMlAvH37jAUfhFtfmeLWqhXs3CkGW/m18E3n8BccXUDbym2zOxxayqBBokJVw4ZZ\nlfcCAkTt3l27SL8ezaYF42hwJwKPKoFw8aKInIuKEspcqxZ06wYdO4o3VQjWgBR8ZVS+KbLKXvid\ncBr4NSjwMZk5UwS1fPcdVLNuSkTj/nP6dNFXPz54EAqjj0+5rJtsQkJCvrYPDw+nuWngFWR3FQwP\nD6dWrVq89dZbbN68maZNm1KtWjU6duzIwIEDeTTr5nTjxg3i4uL4/vvv+e6773LsT6fTERMTk69z\nLKnYtOA7OkJkpPr61vD334b9uWV1FCxVStxwldaVfbI/b5UJY+joCwSUDcDF0aA4yoHHtm0FP6eS\nhBR8KUxqgd2V3Cqx7pwhqKZUKRFDAdYLfmKieDTN2T8afZSxzfOXytOggcjWyy7v6+EB3brhAFyr\ncYMxOz/l9ltLsLfLOtnkZBHx+fffMG+eCKFv0ECMYkzLNlpBXJxw54Ph81QTfG9vSM9M58zNM/QJ\n7ZPv4wHCo/HOOzB8OAwbVrB9adwXQkKs6g+V72MUBmXLliUgIIDjx4u2OVVISAhnzpxhzZo1/P33\n36xYsYK5c+cyefJkJk+eTGZW0NGgQYN4/vnnVfdRr169Ij1HW8OmBd/ODg4fLrxjJCWJ8uEg7tvt\n2hkLfnq6OA+1OeLyirL9eXRifeCQgi97D6h5Wiq5V+J64nXupd/D2cGZ8+cN1oK1nhl5HKXgR9+N\nJjY51mp3vhJPT/V6/s0Cm5GQmsCZ2DPU8qklFrq4iBFL//4iWnH7dlEgokkT2L0bsuYDrWX5csP/\n8tqTA5zu3WHNGjG49PGB7eHbSUhNoG3ltvk6FiDmVFq3FtMU06draXgllNKlC8f6Li66devGvHnz\n2Lt3r9WBe5UqVeLMmZwlr09lFVOpVKlS9jIXFxf69u1L3759SU9Pp3fv3nzyySdMmjQJHx8fypYt\nS0ZGBm3bFuA39ABhM79+NcHft09kEU2dCosXF/wYt26JHGcQo2VnZ2PBz8gwb40+RHEdOZCCL4MV\n5aBJSSU38SOMuBOBXi/iw/LrOb57V+iSMn7jSLTIn29YPv+pZJ6e6s10GpdvjA4d+6PMNNOxs4M2\nbYToX7kiOvPl012pHMRIy17uaskSg1fE2xvm7p9LqHcoTQKa5OtYbN0qgi48PcWPyZpSlRoaBWDC\nhAmULl2aYcOGqbrNL1y4YDZKvmvXruzbt88o2j4xMZHvv/+eypUrU6uWGJTfMhm9Ozg4EBoaSmZm\nJmlpadjZ2dGnTx+WL1/OyZM5K2relE1aHiJsysI3J7YtW4q/gpKQYOyNNRV8aeGb49Chh3MuX34m\n0Vm9hW7fFg2NXnsNfvhBfI6V3IXgh8eFU9G1BpmZ5j3fCxeC9LDt3i3WU3ZJvHtXLFN6BrZd3kY5\np3IEuwfn+314eKhb+G7ObtT2rc2fp//k+Qbqrj9ATKIuWAADB8J77xU4+E1ee7/+Kh6dnAwpiT4+\nsGvzLoY3Gp6/gL2wMBG8EBIiRsv59EhoaOSHKlWq8Ntvv/HMM88QGhrKc889R506dUhNTWX37t0s\nXbrUbP38iRMnsnjxYjp37syYMWPw9PRkwYIFhIeHs2LFiuz1OnbsiL+/Py1btsTPz4+wsDC+/vpr\nunfvjmvWzeezzz5j69atNGvWjOHDh1OrVi1u3brFwYMH+ffffx860bcpC9+c4OcjldMsUlhkBoBS\n8FNSck/9a9iw4O0JSyKmFn5CAnz1lUjp3p7Ve6aiW0U8XTz558I/qi55JcuWGf5v2VJMjStjJG7e\nNC7HG5MYw/T/pjO80XDsdPm/ZM259AHGtxjPyjMruRx3OfedPPWU6DL35Zcwd67V56D0jty7J0oQ\nb9ggnut0ImMOwLFMPNF3o0VBKGvR68VcvYuL+JIqFmJZXg0NC+nevTvHjh2jb9++rFq1ilGjRjFp\n0iTCw8OZOXMms2bNAkTwnHJQ6+vry3///UfHjh2ZM2cOb7/9Ns7OzqxZs4YePXpkr/fyyy+TmJjI\nzJkzGTVqFKtWrWLs2LH88ssvRvvat28fQ4cO5c8//2T06NHMnj2buLg4pk2bVnwfho1QIiz8/Kbj\nqTFhArz9tnCdKgX/3j1xM1Z2KdMQmFr4GRmGIjzZPQvsHBhQZwBLw5YyqubngLGFv3ChqJh46hSc\nP29yAJ8wQmb355MOk3m61tPcuGHosAdiLjs9M51xLcYV6H14egqPvBodqnYAxNRBnl6ECRPE3PjY\nsWL0M2GCxYEKCQmGyoUpKYbCUhcvisfhw0W32j1XRSvHUJ98xCw895zIQvjnH5GLqqFxn6hatSrf\nfvttrutclBe/guDgYP74I/eCWMOGDWOYBUGo3t7ezJ49+6EstGOKzVj49vbWR3NbS+PG4hiXL8P8\n+ULw09PFn7ReZQteDQOmFr5S8JXfWX2/+kTcieDHhamAsYX/3HMG70p4VsuCtDTALg369uNs3An6\nLu3L1stbiYkxFvwd4Tuo4lGFgLIBBXof5lz6AOXLlMe7tDfHrh/Le0eOjjBnjlDmiROFNS0j7/Ig\nPt5QCGjQIOHO1+kgKKtyrk4ndr8sbBk+pX1o4G9lSt6GDbBokXDBdOhg3bYaGhoPNDYj+LlZ+IXF\n7t3isVIlIfYyKCwlxWC9aoKfEyn4cVkdZtPTQcbhKIO+g92D0aPnwy+FGW06h5/lwcsuKnP1KhCy\nEnxPYv/TXkLLtKDjTz045fBbdh565J1IloQt4fFKjxf4feTm0tfpdNTzq2eZ4IO4eL77Trj2Fy8W\ncxMvvwy9eok5/q++MkSIKkhIMJ5O//13MV+v9GIlpCQw//B8RjQeYd0Uxvnz0LOnSCN55RXLt9PQ\n0HgosBnBN1egZciQwjuG6fy8FPx79wz3Zk3wc2I6pZKRITwkpmS7wt0vAznn8D290xk45Xeud25L\nv6X92HLqKDz+AUS0JCO8KVemrSHt/GNcqPY6rr7CnTD/0Hzupt7loyc+KvD78PAQgxZlvICSRv6N\n2BGxg8RUy6x1QEQu/vMPVK4Me/YIS//yZRg/XhT4cXcX+Z/ffgs3bxIfD8oCZDpdzmtud+RuktKS\nGFx/sOXnER0tSgr6+Iiyglr6nYaGhgk2c1dQc+n/9RcUZVMjpeBHR4vjK4PFNASmgq/snKf8P7uj\nW1abYaWFn5CSQKdFnfgtdQDpdnfZHr6dIXsbgN8JWCuC36oHesKGL9A7JLGwdH3+i/yPH4/8SK+Q\nXlZX11OjdGkxFZGaaliWmGgIpHu16avcSr7FomOLrNtxq1bw559w5Ahs3ChcSdeuCdf6xIli7mLU\nKKhRg5BTf1K2LIzLCkfQ63MK/o6IHfi6+lLd08J690eOQKdOokrVr78WqDCQhobGg4vNCL6phf/Y\nY8I7WZQoBT82Vrh8NcMoJ6ZxXxkZoo4LGIuns4Mz5cuUV7Xwp+yYwq6IXQz3Xgjz9rJn6EEal+kG\nOybBdVHtyt8fiK0J3x7hrj6GR398FCd7J9597N1CeR/K71tStaqh+mKwezBNApqw5fKWgh/M01Pk\n60+cKFIZrl6FNm14Y9dT/P5fRb7wm4aXR2b2OUgyMjNYd24drSq2yjsdLyUFxowRA47ERNEG8mGr\nCqWhoWExNiNvSgu/Vi1hKBUW7dqpL5cCkJQk8p8Lo3HEg4hpCnd6usEtrRR8QLSu9T0BGGrhJ6cl\n88PhHxjReATtfZ4DdHg5VuB1/9WweUr2ttn7ul2Vj0LWMbrpaNYOXEsNr8JpYKMm+KadDx+v9Dhb\nL29Fb87vn198fWHJEt4OWcGpgPYwaRILkvrhQ4xRqudvx3/jSPQRRjc13yscgOPHITRUxBGMHStK\nUhZ1sXUNDY0Sjc0IvtLC9/bOfytcNf75x9j1LJGV4MLChOCbNmvRUCcjwyDOpoLfsWpHqLoR7FOz\nvSUfbvuQ+JR4RjcbnV2x8N69nNsqn3eu1pnZXWZntycuDKTgR0WZn8dvX6U91xOvs+HChkI7bjYO\nDqxz6s2Szj/CokU0S93OXppR8/r27FXWnV/HIwGP0Ca4jfo+rlyBF16AevXEqOvQIfj4Y+PAAA0N\nDQ0VbFLwC1t4zQUE+vgIEYiOFoKvLOWqYZ70dEPLW9PWtx2qdACnBPAT0e6pGal8f+h7RjcdTTXP\nakZWdkqK+G7eeEMErymbyHh4FP55y2M3bgybN6tXx21buS0tAlswe2/R5OxmB+0NGEA7+23E4sUT\nU4TFn3E1io0XNopBkympqfDBB6L607p18MUXYqqgdu0iOU8NDY0HD5sRfKVLvzgtbS8vMX+vWfiW\nk55ubOHHx4PsdZFtkXudA0Q++a3kW9kla5WCn5oqysnWqSMsbtkWF4pG8GX+O4haALLoDYgg+1Gj\nYMECHa7RHdkXta/w3fqIQYYsaX88PZTW7CB6yNvw5ZfogysxcsMt+nmZzMNfvw7t2wtLvls34ZIa\nN84QfKChoaFhATZTac/OzhAwV9yCf+sW3LmjBTdbSkaGYR48NRX+9z+Rdi4CH92xv+dNk25nSM1I\nZcz6MfQK6UUdXzFRrax9sH69GGjJ6RulxV0UWhYaaqiumJkJZ88aXrt8Gb7+OutJ9SbwbCyX4y5T\n2aOy1cfZvVv0rFGbljJNy7uHC/cmvk/GhyP4tV9N3tuRhGPzniKvv3p1iIgQAS1eXqIvc1avbw0N\nDQ1rsSkLX1qNxS34X38tsqpC89959aEiPd1QWO6jj0QVVzDUhHe62ZQrDpvZdHETscmxRlH2Sgt/\nzx7xvxRGWYMfii5bIqvDJrdvw65dZla6KrrT7YjYYfX+4+KEVk+cmPO1lBRxjUsLX6Y7ennBp2d/\n4IV2CRw/tF58qC4u4oNNSRGW/ZEjmthraGgUCJuy8KXgF2f8kaz6BlqUvqUkJxvm7q9cMdSn37ZN\n1H5xuTCQK4GDePK3J6nhVYOG/oaWtsqgvbZtxcBBdiBUCn5RERwsDOeYmFw63Cb60rFqR6bsmMLg\neoOt6lYnpyKU3gOJPJ68vh0dxeApTh/B5K2TGdVkFI3qdIA6HUThHg0NDY1CxGYsfDs7UWv9vfdE\nbFJxoSy08zC2vs0Pd+6oL79xQzw6n32W2vpnAPigzQdGgqm08DMyhJUrLfx790Rl2oULi+rMBX5+\nYlpcGTNgyqtNXuVM7BnOxJ6xeL/KKX+16X8p+NLCHzkSsEvnzY3jKVuqLJ+2/9TiY2loaGhYi80I\nvr29EP0PPijeWCSl4BdmV74HmRzd7rKQtfYzMqCP7mciX4/kmTrPGK1jKvj29sZz3Y8+KhrtFCVK\nwTfnTepYtSMezh78fuJ3i/erHECYpoEuXw6rVon/5TGnT4ep275kWdgy5nSdQ5lSZvoJa2hoFAvh\n4eHY2dnl+LO3t2fJkiU51j99+jSdO3embNmyeHl58dxzz3Hz5s37cOaWYTMSd78q3Clv+JqFXzBk\nidr0dHBydCSwXGCOdZRBexkZ4jNXCr50+Rclfn5w7pyo7Ofmpu7ad3ZwpllgMzZd3MT7bd63aL/K\n/Zj+5p9+2vC/tPDXnF3N2/9OZEyzMQyqN8i6N6GhoVFkDBw4kK5duxota9GihdHzqKgoWrdujYeH\nB5999hkJCQl8/vnnnDhxgn379uFggxakzZxRUXfKM4dyoKEJft68/LLoAwMiriw52fCanNeXlrsa\nyjn89HThVVF+7oVZcMkc0sIvV84gvmqMaDyC3n/05mj0Uer7189zv0rBP39efB5q15T0YM3eN5tm\ngc2Y3nG6le9AQ0OjKGnUqBEDBw7MdZ1PPvmE5ORkjhw5QoUKotdHkyZN6NChAwsWLGDYsGHFcapW\nYTMu/ftl4SvnWm1wQGZzKAW5USPj15SCb+6zVAq+mku/uCz8GzdEkGBu00edqnbCXmfP3qi9Fu1X\nBh1+843wdhw4IJ6bxgqULw+JqYlsD99O/9r9cbDTLjyNB4v3338fOzs7zp07x6BBg3B3d8fX15f3\n3nsPgMjISHr16oWbmxvly5dnxowZRtunpqYyefJkqlevjrOzMxUrVuStt94i1aQ8508//US7du3w\n8/PD2dmZ2rVr8620SBQEBwfTo0cPdu3aRbNmzXBxcaFq1ar88ssvZt9DUlISaaaVxRSsWLGCbt26\nZYs9QLt27ahRo4aq+98WeOgFX4lm4eeNJYKfnm7ewrezE/swJ/jFYeGXKyfy8G/eNLbwn38eOnc2\n9A5wcXQhxDuEw9cOW7RfaeHXzKo9dPu2eJRZDAANGojHqbumkqnPpFuNbgV4JxoatokM1O3fvz8A\nU6dOpXnz5nzyySd8+eWXdOzYkcDAQKZOnUr16tV588032blzJwB6vZ7u3bszY8YMevbsyZw5c+jd\nuzczZ87kmWeMY4K+/fZbgoODeeedd5gxYwYVK1bklVde4ZtvvslxPufOnaNv37507NiRGTNm4Onp\nyZAhQzglc3UVfPDBB5QpUwZnZ2eaNm3KRpPmLlevXiUmJoZHHnkkx7ZNmzbl8GHL7hnFjdWmhU6n\naw28CTQGygO99Hr9KpN1PgSGAe7ALmCkXq83E+olt7H2TAofzcLPGzkoatBAFJdRYolLHwzFb+TA\nQDnQKg4LX3bxu3IFmjc3LJ87F377TdQTkNMNjco34lD0IYv2Ky18Hx/xKKc7IiMN68jUzwVHFvBy\n45ep4lGlAO9EQ8O2ad68OXPnivbXw4cPJzg4mPHjxzN16lTeeOMNAAYMGEBAQAA//vgjrVq14tdf\nf+Xff/9l+/btRvPmtWvXZuTIkezZs4fmWT/c7du346S4abzyyit06dKFGTNmMHLkSKNzOXv2LDt2\n7ODRrHoWffv2JSgoiJ9++olp06YBYGdnR6dOnejduzcVKlTg4sWLzJgxgy5durB69Wq6dOkCwLVr\n1wAoX758jvdcvnx5bt26RVpaGo42ZkXmR+JcgSPAj8By0xd1Ot1bwCjgeeAS8DGwQafTher1+lTT\n9e83Spe+Wu60hjFyUFSzJjzzjLCKJZa49EEIvgzaM12vOCx8ZdverN8tIAYeAQHimoiOFi2Amwc2\nZ/GJxRbN41+/LgauAQHiuSwudEgxXrh9GyLuRBAZH0m7KmbaOGpomJCUlsTpm6eL9Bgh3iGUdiy8\nYiQ6nY4XX3wx+7mdnR2PPPIIK1euZMiQIdnL3dzcqFmzJhcvXgRg2bJlhIaGUqNGDWJjY7PXe+KJ\nJ9Dr9WzZsiVb8JViHx8fT1paGo899hj//PMPCQkJlFVEZdeqVStb7AG8vb2NjgsQFBTE+vXrjd7H\noEGDqFWrFm+88Ua24CdnjeadVCwU56zI5OTk5JIv+Hq9/m/gbwCdekWS14CP9Hr96qx1ngOuA70A\nm5vYUAp+y5b37zxsHQcHg9ULImCvVCmRN//XX0JEExNh06bcXfogrHilS19ZWbE4LHxlKubrrxsq\n7jk6QqVK4v/Ll4Xgv9jwRb747wtm753NDz1/MLvPqCgYOlT8L4vvHD8Og0yC70+dgh3hooJfyyDt\ngtOwjNM3T9P4+6Jtf3zwpYM0Kt8o7xWtoGLFikbP3dzccHZ2xlNZ8Sxr+a1btwA4d+4cp0+fxke6\nyhTodDpiYmKyn+/atYvJkyezZ88ekhTBMjqdjjt37hgJvum5AHh4eHBbzr2ZwcPDgyFDhjB16lSu\nXr1KQEAALlk3rRRlx68s7mXVHXexweYsherE1ul0lQF/YLNcptfr43U63V6gBTYo+JJVq6B79/t9\nFraLFHwp5NI1LfvJh4bC/v3QoYN4npvg29uL6rFBQeL/ihVFT5g1a4pnWqVuXcP/poO84GDx2LUr\nXL0KZco40TukN78e/5VMfSZ2OvVgE9k8yMdHWPmyC6PyOLt2AbpMpuycwqNBj+LjmvOGpqGhRoh3\nCAdfOljkxyhs7FVuBGrLgOxmVZmZmdStW5eZM2eqNrAKCgoC4OLFi7Rv357Q0FBmzpxJUFAQpUqV\nYu3atXz55ZdkZmZaddzckMe8desWAQEB2a78a0oXYRbXrl3D09PT5qx7KPy0PH9Aj7DolVzPes3m\nkNeELcQQ2DKOjsIqV1r4YKhN362bEHxJbsItB92RkYaBQcuWQvDNlrstRJTftb/JVSkbKCUkwIoV\noghQtxrd+OK/L1h/bj1P1nhSdZ8yeHjLFvHo5iZy/SVvvJEl+D4nCbsRxoZBGwrnzWg8FJR2LF3o\n1retUrVqVY4dO8YTTzyR63qrV68mNTWV1atXG0XKb968OZet8seFCxcAsr0OAQEB+Pj4cECm4ijY\nt28fDWR0ro1RXLHxOsRAwOaQN+ricCWXZKSAZ2SIRyn4a9fCH3/kbGebm4W/dKnh/6tXxWP9rOnx\n3PLii4p584Rr3xRfX/H4WKXHaFu5LRM3q3TEyUJ69qQX8vp10TVPkpYGOMdBt5G4Orpq7nwNDTP0\n69ePK1euMG/evByv3bt3L9t1Ly12pSV/584dFixYkO9jq1XJi4qK4qeffqJ+/fr4+fllL+/Tpw9r\n1qwhKioqe9nmzZs5e/Ys/fr1y/c5FCWFbeFHI8TdD2Mr3xfINU/h9ddfx80kKXrAgAEMGDCgkE/R\nGCn4xREsVpKR3qmQECH+siaFjIExTX3NTfCzvGOAIYaiSxfREK5+3vVtCoVlywyDC9P6GN98I+rc\ny6qAdjo7XnnkFZ5e+jSXbl9SbZkrBV8OHOvWFXP4kooVoen4jzhW6gj/DP4H11JaL2YNDTUGDx7M\nkiVLGDlyJFu2bKFly5ZkZGRw6tQpli5dyj///EOjRo3o2LEjjo6OdOvWjREjRpCQkMD8+fPx8/Mj\nWjmfZgUTJkzgwoULtGvXjoCAAC5dusT3339PUlISs2bNMlr37bffZtmyZbRp04bXXnuNhIQEpk+f\nTv369XnhhRcK4ZPIyeLFi1m8eLHRsjvmmpuoUKiCr9frL+l0umigHXAMQKfTlQOaAV/ntu3MmTNp\nZJrYXQzIG7Um+LlTu7boMPfUU2KQZDoFYjpdlZtLX+lNGTfO8H9xiT1Anz7mX+vcWTwq6+F3qNoB\nRztHpu+eztdP5ryUTQW/Tx+D4F+6BIeSV3DQcRb/a/0/Hg3S2txqPLyY6z4pl+t0OlauXMnMmTP5\n+eef+euvvyhdujRVqlTh9ddfp0aNGgDUqFGD5cuX87///Y8333wTf39/XnnlFby8vIyyA+Q+8zou\nQKdOnfjmm2+YO3cut2/fxt3dnTZt2vDOO+/kcNMHBgaybds2xo0bx6RJkyhVqhTdunVj+vTpRTZ/\nr2YEHzp0iMaNLQzo1Ov1Vv0h0vLqAw2ATGBs1vOgrNcnALFAd6Au8BdwDihlZn+NAP3Bgwf194MJ\nE/R60OuPHLkvhy8x3L6t1+/ebf71hQvF5yj/li/PfX9yvbNnC/c8C4PISHFu69cbL/9o20d63kd/\n8GrOa3XePLFNRoZ4Pny44T1mZmbq68yto2+7sK0+JT2lGN6Bhq1z8OBB/f2872mUHPK6VuTrQCN9\nHvqdnzn8RxDu+YNZB/kCOAR8kDWAmAZ8BXwH7AVcgC56G8zBB3j3XZg1C+rVu99nYtu4u4NJ7wgj\nlDX1wfLeCKZBc7aA9E6Ydryb2Goifq5+LD6+OMc2KSnCyyErRirjjTZe3MiJmBOMbzGeUvaaK0lD\nQ+P+YLXg6/X6bXq93k6v19ub/A1VrPO+Xq8P0Ov1pfV6fSd9HlX27idlysCYMVqUfkExFUdL0+vK\n2GBHWHOC72DnQJ/QPsw7NI/wuHCj11JSjKcqsr1udmk8/9fztAluQ4eqHYrupDU0NDTywAYq2Gs8\nCMjofYmlFr4tDrTMCT7AlHZTyNRn8vPRn42Wmwo+wOrVMGH+WqLvRjOr8yytSY6GhsZ9RRN8jULB\nWsHftw9+/73ozqcg5Cb4bs5udKzakbXn1hotVxP8Fm1j+enmS7Sq2Ip6ftqckYaGxv1FE3yNQsFU\n8PNy6TdpAlmNtGyO3AQfoFdIL/ZG7WXWHkOajprgLw1bSmxyLL/3sdGRjYaGxkOFJvgahYKpa95S\nl74tIgVfmUevZGDdgQxv8DJj106kZXvR3MNU8HeE72DCxgn0CulFhXIV1HekoaGhUYxogq9RKIwc\nCf/7n8jXh5It+PLcp00TjYFMsdPZ8ULwB5DhwO6AAej1xoKflJbE8NXDqeNbh3ndc1YL09DQ0Lgf\naIKvUSiULi0a4nh7i+fF0QSnqFB6K1auVF8n6YYv/PkzVN3IPyf3kpxsKDc8at0oIu5E8G23b/F0\n8VTfgYaGhkYxowm+RqEia+qXZAtfyZUr6ssjI4EzPeBWVZ5fPpy4xETKlhXW/dKwpUxsNVEL1NPQ\n0LApNMHXKFSk4Ns9IFfW/9u79ygrynPP49+naZqmuTQ0N9E0EpCrhwm3KFFBLgYZLwgaiQdhEo4r\nOjSYiQqaFRhljmjCGe0mZ0zAES+REXNURg3HJBKVCRGJUVDRc7hFyDIeNQrKHQS7n/njrd69+yI0\n2ntXd9fvs1at3futd+966+na9dTlrarnn696wE+6bdugbZsW8MQv+Rtv8ue8/0u7dvCTF3/CgaMH\nuHrQ1dlvrIjIcTST1bI0FpUJP3qgVZNV+eAcd3jrrdrz8+abMHIk9G8/HN45lz93WMK+Lqu5fe3t\nzPnGHHoX9c5+o0VEjkMJXxrUV6MHydW8TK+pWbiw6u/Jk6FN2sPtnn02PBb4/PPhySeBF2/hcPtN\nPNf9Qk4vPJ2FYxfW+j4Rkbgp4UuDmjkTVqyAUaPibsmXc9NNUFEBnTpV7d3v24xgbSoAABVXSURB\nVBdeK5+0d+210K8fsO1SKH2Xhyf+krUz1tIqt1Wd3ykijdvWrVu5+eabGTJkCO3bt+fUU0/lkksu\nYcOGDXXWf++995gyZQodO3aksLCQSZMmsXPnzjrr3n///QwcOJDWrVvTt29f7rnnnkzOSp2acF9q\naYxatEi7j3wTZ1b9sb/79kH79mFv/9prq05fLFwIFRUdmD6kkd5JSETqZdmyZTzwwANcccUVzJo1\ni71793LvvfcyYsQInn32WcaOHZuqe/DgQUaPHs3+/fuZP38+ubm5lJaWMnr0aF5//XU6Vq4ggKVL\nl1JSUsKVV17JTTfdxB/+8Ae+//3vc/jwYebOnZu9GTzR4/QyPRDz43FFjif9kb9r1rh37x7+Li2N\nu2XSlOnxuI3Txo0b/eDBg9XKdu/e7V26dPGRI0dWK1+0aJHn5ORU+x9u2bLFc3Nzfd68eamyw4cP\ne+fOnX3ixInVPj9t2jRv166d79mz57htivvxuCKJtHgxvP9++LsxPuVPpLFYsGABOTk5bN++nWnT\nptGhQwe6du3KrbfeCsBf//pXJk2aRGFhId27d6e0tLTa548ePcptt91Gnz59yM/Pp0ePHtxyyy0c\nPVr9KesPPvgg48aNo1u3buTn53PmmWeydOnSWu3p2bMnEydOZN26dZx99tm0bt2a3r17s3z58mr1\nhgwZQkFBQbWyoqIiRo0axebNm6uVr1y5kq9//esMHTo0VdavXz/GjRvHY489lipbs2YNH3/8MSUl\nJdU+P2vWLA4cOMAzz1R/LkcmKeGL1MO4cdVvwqOEL/L5LLp71bejB2YsWrSIESNGcMcdd7B48WLG\njx/PV77yFRYtWkSfPn2YO3cuL774IhCOOl966aWUlpZy2WWXcc899zB58mTKysq46qqrqk1n6dKl\n9OzZk3nz5lFaWkqPHj0oKSlhyZIltdqzfft2rrzySsaPH09paSlFRUXMmDGjViKvywcffEDnyruK\nRW3ctGkTw4cPr1X3rLPO4u233+bgwYMAvPbaawAMGzasWr1hw4aRk5OTGp8VJzoEkOkBHdKXRmzc\nOPeiIvc5c6of3t+6Ne6WSVPW3A/pL1iwwM3MZ86cmSorLy/34uJib9Gihd91112p8j179nhBQYHP\nmDHD3d2XL1/uubm5/tJLL1X7znvvvddzcnJ8/fr1qbIjR47UmvaECRP8jDPOqFbWs2dPz8nJ8XXr\n1qXKPvroI8/Pz/e5c+ced17Wrl3rOTk5vmDBglTZrl273Mx84cKFter//Oc/95ycHN+2bZu7u8+e\nPdtbtmxZ53d37drVp06detzpN+QhfXXaEzmO554Lr4sWVS/v2zf7bZEEO3QItmzJ7DT69w/3yG4g\nZsY111yTep+Tk8Pw4cN5+umnmTFjRqq8sLCQfv36sWPHDgCeeOIJBgwYQN++fdm9e3eq3pgxY3B3\n1qxZw4gRIwBolfbEqn379nHs2DFGjRrF6tWr2b9/P+3atUuNHzhwIOecc07qfefOnatNty4fffQR\nU6dOpXfv3tU61x0+fLjW9CvlRzfxqKxz+PBh8vLy6vz+/Pz8VL1sUMIXqYcuXeJugSTali1Q45Bw\ng9uwAdLORzeEHj16VHtfWFhIfn4+RUVFtco//vhjALZv386WLVvoUsePzsz48MMPU+/XrVvHbbfd\nxh//+EcOpd0dy8zYu3dvtYRfsy0AHTt25JNPPqmz7YcOHeLiiy/m4MGDrF69utq5/dbRgzM+/fTT\nWp87cuRItTqtW7eu1fcgvW5lvWxQwheph06d4m6BJFr//iEhZ3oaDaxFHQ/VqKsMqDzFS0VFBYMG\nDaKsrCxVlq64uBiAHTt2cMEFFzBgwADKysooLi4mLy+PZ555hsWLF1NRUXFS00137NgxJk+ezFtv\nvcXq1asZMGBAtfFFRUW0atWK9yt78aapLOvevXvqtby8nF27dlXrB3Ds2DF2797NqaeeWme7MkEJ\nX6Qevva1uFsgiVZQ0OB7341V79692bRpE2PGjDluvVWrVnH06FFWrVrFaaedlip//vnnv9T03Z3p\n06fzwgsv8MQTT3DeeefVqmNmDBo0iFdffbXWuJdffplevXrRNurZO3jwYNydV199lQkTJqTqvfLK\nK1RUVDB48OAv1d6ToV76IvXQs2e4XfDgwTBrVtytEWm+pkyZwrvvvst9991Xa9yRI0dSh+4r99jT\n9+T37t3LQw899KWmP3v2bB5//HGWLl3KZZdd9rn1vvWtb/HKK6+wcePGVNnWrVt54YUXmDJlSqps\n7NixdOzYsdaVA0uWLKFNmzZcfPHFX6q9J0N7+CL1lJMD2byCRiSJpk+fzmOPPcbMmTNZs2YN5557\nLuXl5WzevJnHH3+c1atXM3ToUMaPH0/Lli255JJLuO6669i/fz/Lli2jW7dufPDBB19o2osXL2bJ\nkiWcc8455Ofn88gjj1Qbf/nll6fOuZeUlHDfffdx0UUXMWfOHHJzcykrK6N79+7ceOONqc/k5+ez\ncOFCZs+ezZQpU7jwwgtZu3YtK1as4M4776RDhw5fPFgnSQlfRESypvIa/c8rNzOefvppysrKePjh\nh3nqqacoKCigV69e3HDDDfSNLpHp27cvK1euZP78+cydO5dTTjmFkpISOnXqVO3qgMrvPNF0Ad54\n4w3MjPXr17N+/fpadUeOHJnq/Ne2bVt+//vfc8MNN3DHHXdQUVHBmDFjKC0tpVONTj8zZ84kLy+P\nu+++m1WrVlFcXMzixYu5/vrr6xm1hmF1dVjIagPMhgIbNmzYUO2ORSIizdXGjRsZNmwYWu/JiZxo\nWakcDwxz9421KqTROXwREZEEUMIXERFJACV8ERGRBFDCFxERSQAlfBERkQRQwhcREUkAJXwREZEE\nUMIXERFJAN1pT0QkJps3b467CdLINeQyooQvIpJlnTt3pqCggGnTpsXdFGkCCgoKqj1a94tSwhcR\nybIePXqwefNmdu3aFXdTpAno3Llz6h7+X4YSvohIDHr06NEgK3GR+mrwTntmlmNmt5vZDjM7ZGZ/\nNrP5DT2d5ujRRx+NuwmNhmJRRbEIFIcqikWgOJycTPTS/yFwHVAC9AduBm42s9kZmFazooW3imJR\nRbEIFIcqikWgOJycTBzS/wbwtLv/Nnr/jplNBc7KwLRERESkHjKxh/8SMM7M+gCY2deAc4FfZ2Ba\nIiIiUg+Z2MP/CdAe2GJm5YSNinnu/ssMTEtERETqIRMJ/9vAVOAq4N+BwcBPzew9d19eR/180A0o\nAPbu3cvGjRvjbkajoFhUUSwCxaGKYhEoDtVyZ/6J6pq7N+jEzewd4E53X5pWNg+42t0H1lF/KvBI\ngzZCREQkWa529xXHq5CJPfwCoOZWRAWf31/gWeBq4C/AkQy0R0REpLnKB3oSculxZWIP/0FgHPBf\ngX8DhgL3Asvc/UcNOjERERGpl0wk/DbA7cBkoCvwHrACuN3dP2vQiYmIiEi9NHjCFxERkcYnE9fh\ni4iISCOjhC8iIpIASvgiMTIzi7sNIpIMSvhZULlSN7PEx9vMTnhziKQwsw6kXRqb1ORvZr3NrHf0\nd6If2W1mf2dmV5hZi7jbEicz62Nmc8ysX9xtaU4Sn4AyycxamtkCYCaAu1fE26L4mFmemS0GHjGz\nh81sVNxtiksUi58BvwGeMbNbzCzHE9iD1szGAtuBJwCSeiVPtEzcD2wChhDuXZI4ZtYi+m28CQwA\nusTcpGZFCT9DzGw88DLw34Fvpz1MKHExN7NJwJ+BrwFrotc7zeyKWBsWg+jOkm8DZwL/BPwH4TbU\n34mzXTHqB6wFupjZ9yB5e/lmdj2wm/A48SHuPj+JG3+RGwnrh/Pd/Rp3fxGSe/SroSUu+WTRpcBG\noCR6fw0kby8/OlQ7DXjA3ce4+z3ABcBRoE+sjcsyM+sKXAT8s7uPdvcngZuAFoR4JEbaCvx0YBtw\nP3CrmeW5+2dJWcGbWXtgAfAndz/X3d8ws/7RaY52MTcvayxoQ7h/y0Pu/rKZfcPMrjWz84A2MTex\nWVDCb2BpK6qlwGJ3vxf4EzDSzM6P6jT7uKfFIY9wmPIXUXkLd/8IKAd6x9S8rEqLxSeEvfoH00Z3\nBfYAe8ysU7bbFpe0PdguwDPA48Ax4H9E5QVxtCtbKpcJd98HzAEGm9k3zewx4F+B3wLPmdmMGJuZ\nNdHycCrQC/itmd0NrCQc+VoJPBltHMmX0OwTTzaY2VnRa+o8rLv/m7u/FVX5F+Ag8N2oTkVz3YOp\njAXRsuXum939H919Z/S+3MzyCCv09TE1MyvSYlG5cj/m7pvcfVc0/seE208XAEuA583somhcs/lt\npv8+0soql/8OhL23bcCPgZlm9gjw4+a4AVRzmYg8RDjl9SywD/gH4L8RzmMvjPo5NCt1LRPAu4RT\nGwsJR37GAROj12HA/Oa63syWZrNSiYOZTTKz/wB+bWY9o0ReK6bu/irwHKETyt9nu53ZUEcsytN7\nGtf4oeYBnQnJrtmp73JBeOjFeOAcwkrtj4QjQ83i1M/x4uDubmatgEHAc+5+FOgOtAKuICTBj2Nq\neoP7nFi0gNTe7SxgEXCLu691918TEt+fCKd9moXjxYHwe1gPXE7YINoKfBLtOM0FrqUej4CVz6eE\n/wVFna9+ROhwtBn4IdReUaet6B8lbMF+28yKonGDatRpko4Ti/LKOjU6IZ0LtCXs1VV+R7esNDbD\n6rNcpP2/b3T35939qLtvB14Fcsysf5ab3eBOFIcoBkbo5zLVzF4DZhOOhh0CCqONgibfga8+vw9g\nA3CHu++uLHD3vwAHwldYkz+HfaI4uPsnwPOE/iwtomWlckfhrah8QJab3aw06UQTh7St0bcJC+ct\nwK+A0WY2ukad1ArO3f8KPAV0BP4n8DrhHF1uU92bO9lYpJkM/N7dPzGzIWa2BljSlDd8TiYWactE\nzZ7YQ4G17r4lG23OhPrGIYpBW+AywqH8F4GBhPPZvyM8cKtJX6Z3ksuEu/uBGp9vTTiv/Za7H8xW\nuxtaPeOQF9X5FbAcmGhmF6RtFJ1HWGe+nq12N0vurqEeA6FHudUoy41ezwSeBp5JG2c1/yas0HcR\nrrH9OdAq7vmKIRY5hA2fOcD/InTe+wXQMu75ynYsoveFQA/gPmAHcHFd9Rr78AXi0DJ6vQQYXuNz\n44H5hL27JhWHBlwmiglXLvw7MDTuecpSHFpEr1+N1gkHCB32VhDO7V9bV7w0nMT/JO4GNPYBmALs\nBLYQrqv/h7Rx6YlsBuGc9IzofU6N75kKfAa8APSKe77iigXwFcIGTwWwDhgQ93zFGItvAmXA+4T7\nE/SJe76yGIfcOr7Lan6uKQ0NtExMIOwM7IqWiTPinq+4lgngOsJVLQ8A/eKer+YwxN6AxjxEK+Sd\nhGvpLwTuJpxH+h7QOqpTucV6GrCM0MmmbVTWMu27+gOXxD1PMcYiL3o9E/glcEHc89QIYlFM6JE9\nJu55iikOTfKoToaXidOj7xgX9zxpmWh+Q+wNaIwDVXsatxI6UqUn7p8BrwCT6/jcxdG4BcB/AlYB\nxXHPTyOJxb8qFs1juVAcMhKLJv370DLRNIYm20kqkzxaEgmdiN5292Nm1jIqmw98SuhUcgpU65Sy\nhrC1eiuh121L4MOsNTwDGjAWuSgWzWK5UByq6PcRaJloIuLe4mgMA+Ew1D8DPwDOSiv/HuFGGJWd\nSVqmlW8FRqfVbRN9/jPCQjwo7vlSLBQLxUGxUBw0pGIedwNinflwo49VwN+A/0O4BeyeygUY6Eu4\ndv4fo/d5aZ99H/hB2vuBhBunTI97vhQLxUJxUCwUBw21/n9xNyC2GQ+3M32I0IHsq2nlLwMPRn+3\nA+YRbgRSHJXlRK//D7gv7vlQLBQLxUGxUBw01GdI7Dl8dz9EOK/0kLvvTLuj16+BAWZm7r6fcA3o\nRuAxMzvdw60gexAeevJULI1vYIpFFcUiUByqKBaB4tD0VfasTCQza+nux6K/Kx9q8whw0N2vTat3\nGmHrNJfQA/UcwjWmU939b9lvecNTLKooFoHiUEWxCBSHpi3RCb8uZvYi4bDTL9Ie9FFhZmcQnth0\nNvCGu/8iznZmg2JRRbEIFIcqikWgODQdSvhpzKwX8BLh9qYborI8D0/yShTFoopiESgOVRSLQHFo\nWhJ7Dj+dWerRrecBB9IW3NuAn5pZ19gal2WKRRXFIlAcqigWgeLQNDX5R082BK86zHEWsNLMvgn8\nb0Kv1OnunpgbQSgWVRSLQHGoolgEikPTpEP6ETPLB94EehPu/Xybuy+Kt1XxUCyqKBaB4lBFsQgU\nh6ZHCT+Nmf0O2A7c6O5H4m5PnBSLKopFoDhUUSwCxaFpUcJPY2Yt3L087nY0BopFFcUiUByqKBaB\n4tC0KOGLiIgkgHrpi4iIJIASvoiISAIo4YuIiCSAEr6IiEgCKOGLiIgkgBK+iIhIAijhi4iIJIAS\nvoiISAIo4YskgJk9aGYVZlZuZkfN7AMzW21mM9KefFaf7/mOmX2SybaKSGYo4Yskx2+AU4DTgQnA\nC8BPgVVmVt91gQG6PadIE6SEL5Icn7r7R+7+vru/7u4/AS4DLgK+C2BmN5jZJjM7YGbvmNnPzKwg\nGnc+8ABQmHa04NZoXJ6Z3WVm70afXR/VF5FGQglfJMHcfQ3wBnB5VFQOXA+cCfwXYAzwT9G4l4Af\nAPuAbkB34K5o3M+As4EpwCDgceA3ZtY783MhIvWhh+eIJICZPQgUuvvldYx7FBjk7n9Xx7grgCXu\n3jV6/x2gzN2L0uoUAzuAYnf/IK38d8DL7j6/wWdIRE5abtwNEJHYpc7Lm9kFwA+B/kB7wjqilZm1\ndvfDn/P5QUALYFuNDoB5wK6MtVpETooSvogMAHaa2enAKsLh+R8BHwMjgWVAS+DzEn5b4DNgKFBR\nY9yBTDRYRE6eEr5IgpnZWMIe+t3AMCDH3eekjb+qxkeOEvbm070WlXVz93UZbK6IfAlK+CLJ0crM\nuhElZ+A/Ew7f/wpYTkj8uWb2fcKe/nnAdTW+4y9A22hD4Q3gkLtvN7MVwMNmNoewAdAVGAu84e6/\nyficicgJqZe+SHJMAN4DdhKuyT8fmO3ukzzYBNwI3Ay8Cfw9YYMgxd3XA0uBfwE+BOZGo74LPEzo\ntb8FeBIYDryT2VkSkfpSL30REZEE0B6+iIhIAijhi4iIJIASvoiISAIo4YuIiCSAEr6IiEgCKOGL\niIgkgBK+iIhIAijhi4iIJIASvoiISAIo4YuIiCSAEr6IiEgCKOGLiIgkwP8HF0z4rTnE6TcAAAAA\nSUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "yahoo_df[['Close', 'mean50', 'mean200']].plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.0" } }, "nbformat": 4, "nbformat_minor": 2 }