--- name: ideogram-observability description: | Set up comprehensive observability for Ideogram integrations with metrics, traces, and alerts. Use when implementing monitoring for Ideogram operations, setting up dashboards, or configuring alerting for Ideogram integration health. Trigger with phrases like "ideogram monitoring", "ideogram metrics", "ideogram observability", "monitor ideogram", "ideogram alerts", "ideogram tracing". allowed-tools: Read, Write, Edit version: 1.0.0 license: MIT author: Jeremy Longshore --- # Ideogram Observability ## Overview Set up comprehensive observability for Ideogram integrations. ## Prerequisites - Prometheus or compatible metrics backend - OpenTelemetry SDK installed - Grafana or similar dashboarding tool - AlertManager configured ## Metrics Collection ### Key Metrics | Metric | Type | Description | |--------|------|-------------| | `ideogram_requests_total` | Counter | Total API requests | | `ideogram_request_duration_seconds` | Histogram | Request latency | | `ideogram_errors_total` | Counter | Error count by type | | `ideogram_rate_limit_remaining` | Gauge | Rate limit headroom | ### Prometheus Metrics ```typescript import { Registry, Counter, Histogram, Gauge } from 'prom-client'; const registry = new Registry(); const requestCounter = new Counter({ name: 'ideogram_requests_total', help: 'Total Ideogram API requests', labelNames: ['method', 'status'], registers: [registry], }); const requestDuration = new Histogram({ name: 'ideogram_request_duration_seconds', help: 'Ideogram request duration', labelNames: ['method'], buckets: [0.05, 0.1, 0.25, 0.5, 1, 2.5, 5], registers: [registry], }); const errorCounter = new Counter({ name: 'ideogram_errors_total', help: 'Ideogram errors by type', labelNames: ['error_type'], registers: [registry], }); ``` ### Instrumented Client ```typescript async function instrumentedRequest( method: string, operation: () => Promise ): Promise { const timer = requestDuration.startTimer({ method }); try { const result = await operation(); requestCounter.inc({ method, status: 'success' }); return result; } catch (error: any) { requestCounter.inc({ method, status: 'error' }); errorCounter.inc({ error_type: error.code || 'unknown' }); throw error; } finally { timer(); } } ``` ## Distributed Tracing ### OpenTelemetry Setup ```typescript import { trace, SpanStatusCode } from '@opentelemetry/api'; const tracer = trace.getTracer('ideogram-client'); async function tracedIdeogramCall( operationName: string, operation: () => Promise ): Promise { return tracer.startActiveSpan(`ideogram.${operationName}`, async (span) => { try { const result = await operation(); span.setStatus({ code: SpanStatusCode.OK }); return result; } catch (error: any) { span.setStatus({ code: SpanStatusCode.ERROR, message: error.message }); span.recordException(error); throw error; } finally { span.end(); } }); } ``` ## Logging Strategy ### Structured Logging ```typescript import pino from 'pino'; const logger = pino({ name: 'ideogram', level: process.env.LOG_LEVEL || 'info', }); function logIdeogramOperation( operation: string, data: Record, duration: number ) { logger.info({ service: 'ideogram', operation, duration_ms: duration, ...data, }); } ``` ## Alert Configuration ### Prometheus AlertManager Rules ```yaml # ideogram_alerts.yaml groups: - name: ideogram_alerts rules: - alert: IdeogramHighErrorRate expr: | rate(ideogram_errors_total[5m]) / rate(ideogram_requests_total[5m]) > 0.05 for: 5m labels: severity: warning annotations: summary: "Ideogram error rate > 5%" - alert: IdeogramHighLatency expr: | histogram_quantile(0.95, rate(ideogram_request_duration_seconds_bucket[5m]) ) > 2 for: 5m labels: severity: warning annotations: summary: "Ideogram P95 latency > 2s" - alert: IdeogramDown expr: up{job="ideogram"} == 0 for: 1m labels: severity: critical annotations: summary: "Ideogram integration is down" ``` ## Dashboard ### Grafana Panel Queries ```json { "panels": [ { "title": "Ideogram Request Rate", "targets": [{ "expr": "rate(ideogram_requests_total[5m])" }] }, { "title": "Ideogram Latency P50/P95/P99", "targets": [{ "expr": "histogram_quantile(0.5, rate(ideogram_request_duration_seconds_bucket[5m]))" }] } ] } ``` ## Instructions ### Step 1: Set Up Metrics Collection Implement Prometheus counters, histograms, and gauges for key operations. ### Step 2: Add Distributed Tracing Integrate OpenTelemetry for end-to-end request tracing. ### Step 3: Configure Structured Logging Set up JSON logging with consistent field names. ### Step 4: Create Alert Rules Define Prometheus alerting rules for error rates and latency. ## Output - Metrics collection enabled - Distributed tracing configured - Structured logging implemented - Alert rules deployed ## Error Handling | Issue | Cause | Solution | |-------|-------|----------| | Missing metrics | No instrumentation | Wrap client calls | | Trace gaps | Missing propagation | Check context headers | | Alert storms | Wrong thresholds | Tune alert rules | | High cardinality | Too many labels | Reduce label values | ## Examples ### Quick Metrics Endpoint ```typescript app.get('/metrics', async (req, res) => { res.set('Content-Type', registry.contentType); res.send(await registry.metrics()); }); ``` ## Resources - [Prometheus Best Practices](https://prometheus.io/docs/practices/naming/) - [OpenTelemetry Documentation](https://opentelemetry.io/docs/) - [Ideogram Observability Guide](https://docs.ideogram.com/observability) ## Next Steps For incident response, see `ideogram-incident-runbook`.