--- name: klingai-rate-limits description: | Handle Kling AI rate limits with proper backoff strategies. Use when experiencing 429 errors or building high-throughput systems. Trigger with phrases like 'klingai rate limit', 'kling ai 429', 'klingai throttle', 'klingai backoff'. allowed-tools: Read, Write, Edit, Grep version: 1.0.0 license: MIT author: Jeremy Longshore --- # Klingai Rate Limits ## Overview This skill teaches rate limit handling patterns including exponential backoff, token bucket algorithms, request queuing, and concurrent job management for reliable Kling AI integrations. ## Prerequisites - Kling AI integration - Understanding of HTTP status codes - Python 3.8+ or Node.js 18+ ## Instructions Follow these steps to handle rate limits: 1. **Understand Limits**: Know the rate limit structure 2. **Implement Detection**: Detect rate limit responses 3. **Add Backoff**: Implement exponential backoff 4. **Queue Requests**: Add request queuing 5. **Monitor Usage**: Track rate limit consumption ## Output Successful execution produces: - Rate limit handling without errors - Smooth request throughput - Proper backoff behavior - Concurrent job management ## Error Handling See `{baseDir}/references/errors.md` for comprehensive error handling. ## Examples See `{baseDir}/references/examples.md` for detailed examples. ## Resources - [Kling AI Rate Limits](https://docs.klingai.com/rate-limits) - [Exponential Backoff](https://cloud.google.com/iot/docs/how-tos/exponential-backoff) - [Token Bucket Algorithm](https://en.wikipedia.org/wiki/Token_bucket)