{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "# Research Discontinuity Designs (in R)\n",
    "\n",
    "This is a jupyter notebook that can be executed with an [R kernel](https://irkernel.github.io/) running in the background to execute R code."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "The content below draws heavily upon these two excellent souces: \n",
    "\n",
    "- Cattaneo, Idrobo and Titiunik (2008) \"A Practical Introduction to Regression Discontinuity Designs: Part I,\" in Cambridge Elements: Quantitative and Computational Methods for Social Science, Cambridge University Press. See also \"Part II\" paper.\n",
    "\n",
    "- Meyersson (2014): [Islamic Rule and the Empowerment of the Poor and Pious](https://doi.org/10.3982/ecta9878), *Econometrica* 82(1): 229-269.\n",
    "\n",
    "Links to these papers and data and both Stata and R code for replication at [RD Software Packages site](https://sites.google.com/site/rdpackages/)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "### Sharp RD\n",
    "\n",
    "Assignment to treatment status is a deterministic and discontinuous function of a covariate (running variable or forcing variable) $X_i$. \n",
    "\n",
    "$$\n",
    "D_i= \\left\\{\n",
    "\\begin{array}{@{}ll@{}}\n",
    "    1 & \\text{if}\\ X_i\\ge X_0 \\\\\n",
    "    0 & \\text{if}\\ X_i \\lt X_0 \n",
    " \\end{array}\n",
    " \\right.\n",
    "$$\n",
    "\n",
    "where $X_0$ is a threshold or cutoff. \n",
    "\n",
    "**Example:** National Merit scholarship awarded to all students with PSAT score above some threshold. \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "![sharpRD](media/sharpRD.PNG)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "$Y_i(1)$ and $Y_i(0)$ are potential outcomes observed under treatment or control, respectively. $E[Y_i(1)|X_i]$ observed only to right of cutoff. $E[Y_i(0)|X_i]$ only to left. \n",
    "\n",
    "Treatment effect estimated as \n",
    "\n",
    "$$\n",
    "\\tau_{SRD}=E[Y_i(1)-Y_i(0)|X_i=X_0]\n",
    "$$\n",
    "\n",
    "Local treatment effect at/near the cutoff.  In practice SRD estimate estimated as difference between weighted average of outcomes on the either side of the discontinuity. "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "![sharpRD2](media/sharpRD2.PNG)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "Conditional independence:\n",
    "\n",
    "$$E[Y_i(0) |X_i , D_i ] = E[Y_i(0) |X_i ]$$\n",
    "\n",
    "once we control for cofounder $X_i$, treatment assignment as good as random.\n",
    "\n",
    "For observations very close to the discontinuity we effectively have an experiment.\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "![rdd1](media/rdd1.PNG)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "Non-linearity must not be mistaken for a discontinuity.  In this example with linear fits on each side, estimate a positive 'treatment' effect. More likely relationship is non-linear with zero treatment effect.\n",
    "\n",
    "![Non Linear relationship](media/rd_nonlin.png)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "\n",
    "### Example from Meyersson (2014) \n",
    "**Identifying impacts of municipal election victories by Islamic political parties on educational attainment of women**\n",
    "\n",
    "$X$   -  *running variable* \n",
    "\n",
    "$Y$   -  *outcome* women's high-school completion rate\n",
    "\n",
    "$T$   -  *treatment* Islamic party comes to power in municipal government\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "#control the size of R plots in jupyter\n",
    "options(repr.plot.width=5, repr.plot.height=5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {
    "slideshow": {
     "slide_type": "skip"
    }
   },
   "outputs": [],
   "source": [
    "# Load R libraries\n",
    "library(foreign)\n",
    "library(ggplot2)\n",
    "library(lpdensity)\n",
    "library(rddensity)\n",
    "library(rdrobust)\n",
    "library(rdlocrand)\n",
    "library(TeachingDemos)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## R Code"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [],
   "source": [
    "data = read.dta(\"CIT_2018_Cambridge_polecon.dta\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "outputs": [],
   "source": [
    "Y = data$Y\n",
    "X = data$X\n",
    "T = data$T\n",
    "T_X = T*X"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "**Raw Comparison of means**  (Figure 2.3a)\n",
    "\n",
    "If we simply compare outcomes in treated (Islamic major) and non-treated areas (secular major), we find lower female educational attainment in areas where Islamic parties won."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAJYCAMAAACJuGjuAAAANlBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDT09PZ2dnh4eHp6enw8PD/AAD///+NHJ0BAAAACXBIWXMA\nABJ0AAASdAHeZh94AAAgAElEQVR4nO2diZarKBCGMVvnJp1keP+XnbizFItCodL/f87MjQoU\nJV8DFiYICUEMEltXAKpTAAtiEcCCWASwIBYBLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCCWASw\nIBYBLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCCWASwIBYBLIhFAAti\nEcCCWASwIBYBLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCCWASwIBYB\nLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCC\nWASwIBYBLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCCWASwIBYBLIhF\nAAtiEcCCWASwIBYBLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCCWASw\nIBYBLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCCWASwIBYBLIhFBcAS\n0OG1otXzg7SBia1Vu4sAayPV7iLA2ki1u1gUrN+fSzf8Xm6/XCYOo9pdLAjW56RM7c4sJg6k\n2l0sCNZNNP9e3af3oxE3DhMHUu0uFgSrEa/p80s0HCYOpNpdLAiWFtrwxzlqv+uyfhfRY22k\n2l0sO8d6vLtPmGPV72LJcMNZeSo8fVhMHEe1u1g2jnXr4ljN5QdxrNpdROR9I9Xu4n7ASlwa\nP5pqd7FkuKEJDIDpJg6k2l0sGscSF++UPd3EgVS7i0XBaqMMUWjVftdl/S6Wjbx/vk+F1wef\niQOpdhdLL+m82oDD5f7yd1y133VZv4vl1wpftyb44Ff7XZf1u7jJIvTrfjkBrLq11dsNPCYO\npNpdBFgbqXYX9xN5L2xia9XuIsDaSLW7CLA2Uu0uAqyNVLuLAGsj1e4iwNpItbsIsDZS7S4C\nrI1Uu4sAayPV7iLA2ki1uwiwNlLtLgKsjVS7iwBrI9XuIsAK6/lkKHRfLuYXwArq+eQga1cu\nMghghfR8spC1Jxc5BLBCAlirBLCCwlC4RgArLEzeVwhgbaTaXQRYG6l2FwHWRqrdRYC1kWp3\nEWBtpNpdBFgbqXYXAdZGqt1FgLWRancRYG2k2l0EWBupdhcB1kaq3cWiYGGH1Vm1u1gQLOyw\nqqp2FwuChR1WVdXuYkGwsF+hqtpdLAgWdlhVVbuL6LE2Uu0ulp1jYYfVSbW7WDLcgB1WFdXu\nYtk4FnZYnVS7i4i8b6TaXdwPWNhhtSqVBOtzax8Ff05CnP8xmTiOanexIFjvpt2xsMGSTqfa\nXSwI1rXdufcqru8vY1eEG7auALOKRt4/w/++oyICpFtXgFmll3QaoRxkN3Eg1e5i0aHw9Z26\n9+s6H/8kq/a7Lut3sSBYL9HcXvLSfMl6nIR3y/Ha77qs38VksB6XdlS7vCMyPpo5UPWTu1ZH\nU+0upoJ17sOZookhS/67dm+RXn4CqWu/67J+FxPBuovzpwXrLq7ZqiTrv+uyfhcTwWrEp3/A\ny7sKU/tdl/W7mAhWNwwCrBWq3cVEsE5Dj/USp2xVkvXfdVm/i3nmWN/nvXu2Ksn677qs38XU\np8JL1PcEk0zUqdpdzBLHEpfAazBpJqpU7S7u50W/wia2Vu0uJoJ18b79slq133VZv4sZwg0M\nqv2uy/pdzBBuYFDtd13W72IiWJ/LOfBNrlWq/a7L+l1MHgpZvlhT+12X9bsIsDZS7S4i3LCR\nancRYG2k2l3MBdbvJbUmQRN1qXYXU8G6YY61TrW7mAjWzJX3yxEpJipV7S4mv0H6T57F+30W\nWcNZtd91Wb+LGZZ0fr691SvvezO133VZv4sZwHq0L/lhjrVQtbuY+nbDdyh8i5P8BVgLVbuL\niWA9WqC67xbi61/LVLuLqeGGn/boKvy/SpRmok7V7iIi7xupdhcB1kaq3UWAtZFqdzEVrPsJ\nSzpfPZ9LcxzOxYVKBOsH72O1ej4Xk3U0F5cqeUlnyTega91h9flcTtbBXFysgt/SqXeHVYBl\nK/nthvhv6VS8wyqGQkvJv90Q/y2dGvcrHHnC5N1UAlhCVzhf/Bh6lLu+oqcadRQX16ogWPX1\nWGvmVqMO4uJqFQyQ1rfDKsByq2Tkfcc7rK7EA0OhUylgfW7dx9+TaOKiWbvdYXU1IKu5Alie\nLE03sXoc/xf9Uoa0tQJYzizt749+/2mal/ycRfJv+i17EsgqgJVfCWCdRTsV/+12L/mN77La\nZetL4MtihxkK1wtgObP0/cqt/+JXdBxrmMH73zg9yuQ9QQDLmaUH5SSUA3++NslN3L7j5/vm\nX7yu/a7L+l1MAOvUDoXv/lsUgR1T+3xtxmbcYdW74UDtd13W72ICWLd28n7tv1sfs0mTtjVK\nHUs6CardxQSw+g3pu0n7XSjLNc58/Rd6hoMalnRSVLuLSQHS8Wtfwcl4n09cfu6PLi7xuVWx\npJOi2l3MsqQjLjHvzigxKiGafS3plFftLpZcK3y97vfLpZvC3/zvB9Z+12X9LuLrXxupdhcB\n1kaq3UWAtZFqdxFgbaTaXQRYG6l2FwHWRqrdRYCVTcvekDikiwtU8Fs6vLXaXAvf6Tqii0sE\nsDJp6VuoB3RxkTAUZhLA0gWwcglDoaZksP617xpfkr9K4TNxEGHyrioVrPFLqIf++tcWqt3F\nRLDuomnfIH0s+wG2RSYqVe0uJoJ1Gt4cffnfYU8xUalqdzERLCHMD1lU+12X9buYrccKf0tn\npYlKVbuLmGNtpNpdxFPhRqrdxfQ41gVxrDWq3UVE3jdS7S4CrI1Uu4tY0tlItbuIyftGqt1F\nhBs2Uu0uYklnI9XuIpZ0NlLtLmJJZyPV7iLmWBupdhfxVLiRanex6JJOrTusrlHtLhaMvHPv\nsFr+J7VTBLByZOnEvMPqBpsApAhg5cjSiXe/wi22LUkRwPJnuU/jWzgfGQDLVSuAtS8lgvWz\nnx1Wj8UVwPJnWRK/4t5h9VBcASx/lkUrOTveYdUWN6Y7cJFViWDdhP93tXXtdodVW+wD6/Yu\n8ip18n45x+wdkGRiCz3ZnwU2d5FZCWBl/n2sDXdYtfVkJ2tzF5m1CVjBxNvfdXaytneRV5t8\nmeIAYLEPhjtwkVUFwVrQwxW96y56MBSmKBWsz62NdIY2Xer02+wSLJKf7hQm7wlKBOvdjNvE\nvcMZPxdx7pLtaSgkR7wCUXyA5c1yFte2r/rcxCUm6z/R7YO5d7BKrDsCLG+WpV+meJ/F5bMr\nsKjeCWClK3mtsJ9cfaLDDT+ieewKLGoqhaEwWclLOl3k/fccsyl0r9cpHPTa/K6ncxUqYXMX\nmbXFlymu+wcrWcE+7/gu+pXnyxTnrF/+Kn3XGYa98CwNYOXIskMTc7NzTKgA1l8Fa253nkdA\nDIUJWT637uPvSTRHGwoVmljAChcJsNxZ+qj744jfhFZpCkOwmLsIWAGWM8tdnNsgVtO85Ocs\nsv6mX8mhMMyNezXRdQJgpYB1Fu3C36/46f6ftcsqOnm3j8yUruC8ecJ1RAlgObP00aib+J0P\ncqn0Xfdy4F5NfM5EmomCoyfAcmbpWToJ5SCXCt/1wMjlXE2c86mvBcbNyACWM8upHQrf4tp+\n/hz6h9dCUyLHaqJClvGU6bXV/wuwnFlu7eT9KtofXvtO5K8ZK7WvodCdxeiylPNhS2I8Xl7b\nQygBrE8zxRnuQvn6fAaVAUtpVH/70ldVrtyTLSpP+0lMx0uqfBwlBUivon+pQYj4lxuWmeBU\ndKPSCXWuIos1wIoISxxVWZZ0xCXzt1ZLgBXdqI6EzvyBKZY6FAKsxCw7NJEE1jRhX2O2/xdD\nYY4sOzQR3agkV+nf4sHkPUeWHZqQsY1qg5VlAEO4IUeWHZqI7yzIDmsMMoTKdqYAWDmy7NDE\ngunNBJH5PoSziIhoKcDKkWWHJpaOZ0TQyvNcOM3CnEYAVo4sOzSxCKznrJgiANYfBmvJk/5T\nB0uZQK0YCvUlnWr1d8GKf9K3uApPzd0pxtwAy59lwe+8rzVRTC5MJqhCw1uUjSE3wPJmWfI7\n7ytNFJO7J9JIAlhRSv7thszfz7FNsIoGhohcaQfxXLnXqAGWNwvTz9CWuutqAGEGK9QnLeGK\nIqv7B2B5syz7nfdVJlZp6WqNFkwwwVo98BEhikkAy59ln7/zHjlaGfEmRxjBU5j5lh9ZPp0d\nYDmzZP6d98RaqYqdXxtcqReowpyhA6c1D1kAy5llOViltu6NBGtM5hmwpNGtefL3Z4gEAIsv\nSyfurXsVLeiwngGulLevzFQWWEYCH1cAK0uWTsxb92qKn7y73xA1jojh0hgK7RQDuJRtgOXN\novZBoe9TMG+EuVxqj2VdcCTW04xLh44whXZoFAmwvFm0WVbgO6u8W/eu0DxUuV7kk32PJp29\nkTQC9u6ez7wGsPxZrk37hdXv0PYrL4HvgO2ux3JNgnRo6PGSvuAegS1DAMub5TbA8vrOxj/i\n5M3HvXXvCjlm1yZXVCoXcbGWAJY3i7aBQCjksL+te2mupp6H4Eq/smBJWikFi9DhLM3UYzUR\nC4d727rXxZWVQBsbzfORKz5T4j4HwPJmaYc32c2xbvJfvh9fy37X6U4pDIaRSkHDyVUoIjbk\nAVj+LMoGAiLtFRq29SFJxQ/UgSzc5agdVgCsQA8oAVZklkc7ul3abqv7zcgI3RtxCiCY+a7b\n7T9Pd1aQRQyRHlOOsgBWjiy9Xpf2d7t/CizpGHKDFSJBm6tPn7QwhMeUc2laAqw8WTq9OqJu\n7Q6H74t/2Cw1FNLXpEKGQZ+7q1IZdFpVBLCcWfoIQ/y06NrGrm59ZDQQ82KbvFM0EVwNqzR6\nRyUDXJnr0CqNdn0AljPLUrD6JMNWrAWXdDSGrGUYM60acVIAsiOmlpExh3GKWItsTwGsHFn6\nfF3Gf/0YWG5JR2lXrakpsp6EHAk8OdVzSixVTyziol+HVUGwrv3+0a0+12JLOmq7hsAKcdWP\nkG6yzILV4dNMC7ByZOn0aZQFIP+bEExg6VMlMx0NlrHw7FxfnCkia2CdwlDozLL81eTbiFMT\neHeLaSikHt3UVHOHZg9605GjN9MNmGXbpwCWM8t+v0yha+yl9HNWGhUWDS09gXsCH4yLaocA\nK5CF5Sur+cskO5j5nMUVuUjoGyf9T5r2ZYAVyHIMsByzIpss5bOaz+LJAmvqzyjTRAUAViDL\nccGiRjrj80wSDVafXCvBE+Aac2ZzMTD4bqo/Aha9cEOx5BgApfqvVMCy2CQjX3agy+liPC2E\nT/vRXwGLai+TIPqs0dWoHOk5SbBsYIdjl4vxtBAU70h/BixKOkP9GbIPmhvQANBA0saCQLbP\n5nBxAS0AK9UEn9RxajyeOzcCLKsDcgTbLQtagZ4A6RJa9szVX4hjOWUFpSxILLK0Lo4kSxoN\nbmE3ZHEt6SyhZcdc/WWwFCxosKzoldT7OCMX1auN/9MZ6MFyELRnWhao5BukuzJBUWN1F2aa\nGSObNbWM+YJSkMLMCFYdDJH662BpkQa9uyBD7u7x0ezTyAfGGT2hmq1QfxcsPWBgtbHeQxlk\n6TgapOldl5liPABYObLs0ITFFT0IShMtoyejpvh20FWPNChgFfBzI/1ZsChq9KtucqSZcSJG\nEkUMR/NEawaL383N9FfB0rsPH1jKRT1RgCz1/HRqvhDp4mHhA1gzM/M1PZZpfdLKsBg0rjqi\n8XEuHrdb+6tgaePSELQ0rlgRVIosKxo2XqZpmzO61wqNSh6UrCxfsZfy8s5UH8oEj6hogpSS\n7nZoskYopYqQAqxd3pzPEXnX0/5hsM590F00Wckq9xacTUwMWAYyBk4eUOdShbGoqFrTz3C5\nzqtEsO7i/GnBuotrtipJXrCsxnTFoYbL9HCnv7oXJMsw/OyHQgMbLRdd2+MoEaxGfPr3Gw6z\nVkj0ASYKBln0EySFGHVRi5cqpQqrL6O4Oq4SwZp+IfIQYNFTabuTmZK4WHKQ5bo2F6W56ACL\nx/fSSgTrNPRYr8AP2yaYyCcNHur0cE0DbAlGjqipPXUbXDSqUg9VMtcc65F5Q0wWsBxcWUOh\n+UE/lsq8y6TICRZBFgGWGUk9tFKfCi/zT0VmFC9Y1BX386ENFhmpcIBlYqq66KhNHV1XljiW\nuPzLVB3SRC7ZXLmnUvZZHRE6lwc1febmBcsJ3JH0pyLvZov5CAlx439WdPRncy3IodBRzUPq\nT4GltKQ6OAUQWiHpKnS+IMZauKr5JCKoB9Ife+d95sp+YvNwsgIsJ1kqWJ5qTna5bgWzioLF\nt8Pqwvuv8KIcxwDjvqTN1D2FKkNhsIZKaUdTwaGQcYfVpfd/xkQ5TOJqRkaJGdB5p8m7Wh+6\nhjpYh2KsIFh8O6wu/8vWMsRyFamhTEmcUw6EURuqhuYy0JHIygXW7yWYj2+/wjiwzOfBwJC1\nACT9cAotGFzpZgVdGSNIaq34LLsxGyoVrNvSn+OmDpJrFccVvS6XypVRhkWZRVb3jwMsDzx/\nC6yZq0cwH+cOq3FckWSRrCSQ5ShHsdv9jxwKDQxtD5bel+2U/NrMP3kW7/dZBJ7zJOcOqzE3\n3GheL1nSOKB7oQiwjFRSSUlN3o2ka9zcjTK8NvPz7a1eMYuFXDusxv0pm92GGsbqTzpC8OZp\nL0W+gMRo2gZLqVeULwdQBrAe7ZsNcXEslh1WY1vD6DR0IH1BzRUQrQPLN8U6mhLBunyHwrc4\nyd8NI++L/8ynDNakeiEpsanM3tIJlnO0Ox5uiWA9WqC6IS75nff160OL/8ytDCNqi7iK02hA\nsWVN3vN7uL1Sww0/7dFV+Ofigz7fdOfh6TFruGHxXTczOKHIwpUS45/tLXFRRfQoKrmk0/QL\nhX0hWeNYCzS3tX7WQcUqmDSsiGe99mjJJk0Ay6tbO8n/3Jvu+XErsPS+hDjtQMSXwI4/qEYI\nizpYEcgcj6uSYDV9xndzem8Gltb8rgvxckzONJgog09lKPRCQ8zRDqLkJZ1m8ZLO53zeH1jr\nxrwRLPM0SdZgZvhHaHaVapiV4roVzMq2pBMuqP2q2PDpvLOhcO10isxkmRnJkyop4qlXaD4y\nK0s5kfmuMCg5QBr/ta/5a/hvcd5w8k5xFXoClNYHN1jE8GeVItsfXrMrpFWNqqlS3Z0rQ+Q9\nWrcp9SPQw7G+Vm81l48oo82t8+qRCzIyszCpm5OZp0P136WSh0Lvmp+h1/TS1vu6F7CcS4RG\nw/q46v71FBMHlm7QydXfAEuez3l/GYsw4dDKe6svsNjtbs/HlZROsOgEPglt+mVx5cPnCFwl\ng/XY6ls6K+/uBM18aLQrCZCe1loDcpRFMTueEY7nhYCDI467VyJYP1t9/cvzBx2RbcwbZGE6\npSemujWbHSud2kEJPbvFFY3PKqc3UfKLfll/DIQyQSsJrCkzBZZTManpwU29OkoQVeHyeguV\nfCpcZ8KhlXdYaejx0GrzBGll2leVz+Jp9FPa84Sn9n8DrJ9FT4WrTLi0fvKuUpkXLLXEQBen\nDYVz1YxnC7v2B+Eq/bWZc/hl90QTHDJn5Jk6LE3SWajswLK5MrP7Kr53JQ+FZSbv/1UnQa3m\nRJB1FB0ErLzSw1hjH8IoaXDTuWjgQ+U6MF0FX5vZ3oQScJpPUQ3PDdazXYQer+hVUaf0RoJD\ncfaXwNKaWF16dlC1jDZfYimtLmsEy+o95xrOebX6H0PJYB1nyxOdFrXZEpBRg59ermiwpMKO\nwZUFlnG4cyWvFfbTqyNseaI1nDpzDqBEpugvEKs7VgqygKnHUmixjBld1J8C6zhbnqjtpINF\nU2PhQV2gg61aAjJ//z6WTpbxYSxfc+E4XKUv6ex9yxN1wq4OOgum7XaIyU4RU45WgjBO0MsB\npC+HUIYlnV2DpcGjnJvJCkMQGistrmIgM8B6qh1SIPx+CCWCtfctT/SGNk7GdTIx78OYRS0A\nyyBSqXmue7CN8syxdrvlydReWrMt44pOJlV8VoTBQmAdXalPhXvf8mRqLqo7iCJgelyzyXIc\nLAHLqMZcuaNTliWOtectT7wNFM9EiMK43k/5JKZitedALW57ZP2lyLumuV+IA2sBM+7EcmZG\nbL0KnlvpTbhrsGL/zud2dsefloA1J5yL9xHYLULbK4j6mdV3YQdKAIvp7VHVxGIFm8OaXUkW\nssKphJVOcyEPVxuymQwWC15ry9RayJVgTriMmEgphnzJBEH4mHX+v0yCI3AzWFU7WPaiSHyk\nYZVmO67YlhzA0sgiqztez3Y3CqousKxmMI7Ntn9GdVgLF2sCMf3B9vRNaLWKenWtyO6KmwGw\nSBPL5eqhlBNS7bOknwI1SQCnYDk2WONTIl1dpbjVNwNDIW0iVXazPKdluPGKmwg1ZQib+HDE\nUKJQDsnq6nVY6//qrKn6A2BR5wKvu4wXTWTckC2Ztc09ll4//XguN9PNKKsksNb/gnb+WlGi\nuLLBciFhRzqtMIXUD58WbtFgqYUrFc1zH7ZQUbD4dlglZXQI6ln1agQKRFrVxMycUZxZmkK1\nUEZlo2uca5rlNmyjgpF3xh1WaZFgPbXGdHUxFF9aF6VaeCrdjfSNieoUfwyQ6uUQFT6oCoLF\nt8OqSy6uApN230mVLAM6P1nmwCnsWs0JK1BBsDj3K3TIOcOSrqHQwISAje7plC6Lum6Po4Ko\n1pS9ArgKgsW4w2pAynzYIEuOH2gIqMHO/A0svRgLsDmNfijMKtoGfZ7sXnX3WL20pteQURJQ\nXGlzfI0sg7L5qhozePpEgiWNbs3pyf5Vdo7FtMOqX0Sb+cMN9ilpptPGRc2MnoHKM4D1pCtp\ndlkqSU7gdqiS72Px7bAauKzRMrBAtKSTLBkIS8xmqGUZutDp7QYlpZZHPa13ijuUXauiL/rx\n7bAal0BpX2qKNR9IGzfflGnKqA+XdhhBBcusu0mjXjdjVN6ZiHod/w3SiNttNt4IhprfNZE3\ncCKfF5VaeBIbQ6Gn7vNJorQFt6aUqIrtB6y160PLbzdJhHGJQGFKZ51TL3vIUkuVPrDkWDWC\nrCWOltK+wVptYjVXWnDAvDReNlEhkpnQmP+QSayh0OGXVZ09inDjyGBRD04xuaxGdndYxlk6\nnc1OGL0x3ODnyiJrr9p48p7XxJpb7epFtDJVBKazurXhaAlYxoQr6OJk0uZ/hYpTWTTyHj2N\nijGx5l4bDWxMjty9BEWWNPAhy3WRFeOiYtDja9wtSMRyhQqCdd8GLKM/UhpYm3WrV+zhxwJL\nOTldIXFyKMZFsyd13YWYkoqTVXIofDWxv/CQcShUUxk8SQqxmSw7K1E0TZZv8j5I6JGrsBvk\nUSQxlYMlX/6FnKUmlv+tGjgpUBjNPg51sxWqYQywLDL9YM0VW9rqes6lf15lVHbyflfWoZlM\nGDLuvD7+OajQGkG5TJUun3PPZpFJI9Wnt35tJm62pM4ElepF5SuqAz8VejU2mXnn7SY2PhmN\nrF02DChTM7tw9Vj/2FeO/BmjCLfMyuw1CFEpWP2dtzsCqvNwiMggJcnQ08BQJYicDfVPhVqq\nOLKUWifeIHbVCRbR5tb58Vo8WXImxZFY2seabTl3ovPkfYYlFqxgN7UD7v40WORJ+rJ8+ub6\n9ulgzYR+hnzsnFJo2ePcD6fiVZ1gqUMhEcnSmt/JlTlLo3IZPZpF5WhUKmWRYHm5Mp4+Ypzf\nnKxKwZon71bDqASMVy2iVH4kwZWcz0szn0mJamm+KvTrFAvaM+Mi3wFWARP6bSYIsKgiplLK\nZ6kmkFoqrVyDO9OiUGtIsqDZXezyogwM+qtgeWdWRCJJPOJNxzM281X3PN8CS0qKBcpuvM8L\nM+RX/WAZDaM3P03WDMl8UgtcaMCpp6TRNUnrgwMsmwW9EjlvSBH9AbCMNlP6GQsp/Z8h73RK\nL4Qmy0+r0rmJKZur0nPpRyTrL4ClS28vkiwLGXuiEwKLCq1qZsV84KqlEfA4lv4cWHMrESyR\nXOm5nKc0PPUT+kxJBcvJDMBiEW0iy831g+V89necMstVONLBskARgViCev6AXB0ErLVPR5T0\nBjaIMPAwsjkImC7T5SgnhvQzWB6npivaY8NhdAiwjKZJlNoTjKWTQFh1oMxPPVSEVF/syfvM\nkWYvk9eldQSw7NbJIa0PkXozxoOltb/JkfWcqVyx7qLB0VhwXqfL6Thgza2yemSg5kTmRSN0\nFJroqAjNpRozJAs7y0XDScUewMopOixtNM1i6a3tL4ho1HlqZhU6J5sJsxLolQ+CpY6Jy33d\nXIcAS2nTBLK0fDEF0Snshqd7FX2uZP1RhIZCq6CD6VhgRfHgktn/UAWRAQSqFIJS25pSikWp\nfRfz9lBb43gIsLQ2XH/r9Xz6TMiYWo0HNDBW9+NKZmdwueispjtV4LI7QRHmjgCW1b7Jk3dr\nutQbMAzRXaOLLCqRlWFO4byLtFUqVeCyK0GmLjGgQ4K1RuYgp13Qhqs5CWl0TqjAYpGvVllP\nPPwXC5b1dEolchZCpMlyN8M6Alg5/sbUIqxWt6ME7rs/NpgGlppc5U61ZyhyKFQMmGmCXRZ9\n4wCWopihIXDZYEZvdPMvXE9DFaR3VETxIbI8d9Hq6ggYfHA8x3gH7UQRrg4CVlChmzXfYr3R\np496AWGw+s/S4JOegVFc+cAya0HGM3xcWbUyE4RtJ6sOsFwY6CnmlCpOExFTSm+BerNZFZhI\ncD4XkmC5GZ7JciZ034vQXWHUocEyxgx/UuoRTeVKB8pdHt0dPFUD83U1qT41E3qZzln2TKoz\nIZXNqGx5HRks7QbGdVjmrNbqaMKIqkUaXdbwyb4cAMthVK2SN6HL1y11YLAW/GnqjaOmVwFT\nOghHKVahugE74qAdaXacYGmPhPSjRkB74KoasFKT2h2W1dJWERZXxPzfPJisuIZCshR7xN29\nDgzWkvxCYzUAAAf7SURBVLtsNg+VQk9mffD1ZipYRhdIZO0+Oibvhg2C10iPt9aRwVpwl9VG\ntoDUBx8jg/GBJEvnyphMOZB0uEh1fLFO7kqHBmuBzM4j1HY2WG6yhrPUU4AKlp7J5aKH+kOp\nGrBCDWBO0pULYbLUU1Za7aQKk0azmcezVuh3JErb41gLWJFDhqPDco9vUm8kT4dlpNCy2lzF\nRN7XawcDaCVgueggE86hpvlUbJkuBF1HzkoIxpaPvhuMKgrW70+3X6G43HLuV9gq/lYSj+6O\njGvKjMsFsHJl6fQ5KftS+LcSYBsKjRz9bChfmTKyUTEUZsrS6Saaf/3PvHPsCb34Tg4E+Npg\nVetENSozWH9r8r7ZLvYOTVxlboW44oq4uKEKgqXty2Rv0rR2h9X1mmNMRczpAlg5snTaW4/V\na6vpCMDKkaXTd471eHefOOZYq7XRdARg5cjS66yMdacPi4njqHYXy8axbl0cq7n85I5jHU+1\nu1hJ5P14qt1FgLWRancRYG2k2l0EWBupdhcB1kaq3UWAtZFqdxFgbaTaXQRYG6l2FwHWRqrd\nxZ2CBR1eK1o9P0j7sQlD2xkCWDDEYghgwRCLIYAFQyyGABYMsRgCWDDEYghgwRCLIYAFQyyG\nABYMsRgCWDDEYghgwRCLIYAFQyyGal+XhzYSwIJYBLAgFgEsiEUAC2IRwIJYBLAgFgEsiEUA\nC2IRwIJYBLAgFgEsiEUAC2IRwIJYBLAgFgEsiEUlwbqPxm6NaG4f82NOqb9lwWRiEnf5spQ7\nWdunIFiv8UdL+r0HTsbHzKamlmAyMYm7fFnKnbztUw6sVzNU/Fc0r/boV/uY15a4jB+5TJQq\nv1URdzK3TzGw7uI89uXi8f3/P/GjfcxsbCqRy0Sp8luVcCd3+5R7O/827j53Ee3uTt1fofIx\nq+7iPn7kMlGq/FYl3MndPsXAesmx4so/+pl8uojH9TvpNKyxiLv8ViXcyd0+JZ8KS4LV6WwZ\nza8yYBVxB2BFWPon5efWjiA1gFXIHYAVqU/7nFwDWL3Y3TkUWOqP7g7/NnNtm8y3yfiJXw4T\nprjLV8TtTtb22QCs/lHjPT91vLM94xBg5TZhirt8RdzuZG2fDYbCny448mg3klY+ZlUj2lWI\n7oZwmRjFXX6rQu5kbZ8NwCoQeb+1t+LThfdqiLwXcueYkXc5D9Wn6eFZ/ZhTn6Yr98ZoYhJ3\n+bKYO1nbZwuwPt2Sufkxq9pyT3dWE6opzvJHG/zuZG0fvI8FsQhgQSwCWBCLABbEIoAFsQhg\nQSwCWBCLABbEIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCLABbE\nIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCLABbEIoAFsahasIyf\nkA78ojR5ubnc392H9/3SLLRn6XMdfuvxV9ml7SQeRr5HyM5RBLDcl4UQ1+7DVYR/6TyUot22\npN9Ea/6t2LdojHynatqjGkdMLQPLUcSp76iaU/oP9gvxHj79TL9ufbN+57rEPgRlVI0jprKA\ndRMv2W6rdssB1vjpI8ZxtZlgs1MdXdU4YqpvosdZiPNjPHx8x6Npd7Yf0XRbPXa9Rp/61ojz\nWy3i0W0UeBf/htKU/J9Tt1/DN8tt2nbm2ytdulIn3U/9rx1rW2acRT+T+m1/51qzPKUa8w2G\nhmnZh3eH4KyqG6x736DDrlk/Yvq59O98p/34OA8nutTdQfNRivh08FzEu7uu5b90H7os1xms\n7gfZZ7LO48+ka2A9pqnbw7A8ppryDYYu/bSMdx/XvKobrKYdyv6Nu2Z1u7P1nc+31T4tdt3/\nm/7yv/boqkx7vie7yfQ4xTbzt4j0OzdMYHXlTd3Kv+Hyv7E+g9S9j3TLfSolX29oQPFqDZ37\nVd1gCfFQD9ULv3KcUI9YdN3CPAHqTt6+536/rWrs/DTkb7c+lW2zT2D9aqbGy2epg3XrUPs3\nDcKz5T6Vkm8wdOp20znQSFg5WN8Z1OX1mg7l+/FznvoJ9f/K5nxaEe3g8/PFYLhm5De39lNL\nNS5rpb861M7dk4FuWStBudRtN/57oJGwcrDkTzvpad7qVGYRWO8vAudvv9ZfM/OvBavrgIaZ\neBxYXXf2c6CRsHawvgPK7TTOsa7fJ63HexFY7Y5u0xBl5V8N1r3rCO9qXjWHDZZst/46HWgk\nrB8sabS7G6wzMcdqp9TtxHnOpIFlzbF0y+PlizTAanurftpkWNbnWJc523f0fB1pJKwcrFP/\nHDc9Ff7Kl3uOdW8fwG76U2H7ENg/nEkiv/1UOJfayvVU2EUahpiDbrl/nNCeCoccJ2GHU/es\nusH610+KfvvDm9AOTbCIOFbXQYlximbln2ZdDrCUeJQB1kOMD6y65ZPoekw1jjXnONJIWDlY\nfeR9igFc2wNlhDHA6h4i30YRTdfS/XUzv+xD5r9OsOR92mfQmME145CrW/499eenfFO2jzjU\nSFgvWCXFu79qr4c41EgIsJLUzb8+F9adxged+4fIwwhgpWhYPQy+BZgs7l2n8wtgJen+ncOd\nCvRXTReyOJIAFsQigAWxCGBBLAJYEIsAFsQigAWxCGBBLAJYEIsAFsQigAWxCGBBLAJYEIsA\nFsQigAWxCGBBLAJYEIsAFsQigAWxCGBBLAJYEIsAFsQigAWxCGBBLAJYEIsAFsQigAWxCGBB\nLPofjUYopXdurmsAAAAASUVORK5CYII=",
      "text/plain": [
       "Plot with title \"\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "rdplot(Y, X, nbins = c(2500, 500), p = 0, col.lines = \"red\", col.dots = \"lightgray\", title = \"\", \n",
    "       x.label = \"Islamic Margin of Victory\", y.label = \"Female High School Share\", y.lim = c(0,70))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "#### Local comparison of means: Narrowing the bandwidth\n",
    "\n",
    "\n",
    "In last plot we compared mean value in treated and control group.  But these two groups differ considerably.\n",
    "\n",
    "Below we focus on more 'local' effects (closer to just above and below the cutoff).  \n",
    "\n",
    "In next plot we fit a 4th degree polynomial on each side but now limit bandwidth to 'closer' contests where absolute victory margin was within 50 points."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAJYCAMAAACJuGjuAAAANlBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDT09PZ2dnh4eHp6enw8PD/AAD///+NHJ0BAAAACXBIWXMA\nABJ0AAASdAHeZh94AAAgAElEQVR4nO2diXqsqhJG7SGdpE26N+//sidOWBOIAiqc+r9793GA\nYlqBAm1pjEqVQc3RGVDVKQVLlUUKliqLFCxVFilYqixSsFRZpGCpskjBUmWRgqXKIgVLlUUK\nliqLFCxVFilYqixSsFRZpGCpskjBUmWRgqXKIgVLlUUKliqLFCxVFilYqixSsFRZpGCpskjB\nUmWRgqXKIgVLlUUKliqLFCxVFilYqixSsFRZpGCpskjBUmWRgqXKIgVLlUUKliqLFCxVFilY\nqixSsFRZpGCpskjBUmWRgqXKIgVLlUUKliqLFCxVFilYqixSsFRZpGCpskjBUmWRgqXKIgVL\nlUUKliqLFCxVFilYqixSsFRZpGCpskjBUmWRgqXKIgVLlUUKliqLFCxVFilYqixSsFRZpGCp\nskjBUmWRgqXKIgVLlUUKliqLFCxVFilYqixSsFRZpGCpskjBUmWRgqXKIgVLlUUKliqLFCxV\nFilYqixSsFRZpGCpskjBUmWRgqXKIgVLlUUKliqLFCxVFilYqixSsFRZpGCpskjBUmWRgqXK\nIgVLlUUKliqLFCxVFilYqixSsFRZpGCpskjBUmWRgqXKoh3AalTFa0OrpwfpgCSOVu1FVLAO\nUu1FVLAOUu1F3BWsn897P/zeHz+5kihGtRdxR7DeV+Da3bIkUZBqL+KOYD2ay/dvf/R6XppH\njiQKUu1F3BGsS/Nrj3+bS44kClLtRdwRLLS04V/nqL3WTf1F1B7rINVexH19rOerP1Ifq/4i\n7rnccAOzwus7SxLlqPYi7ruO9ejXsS73T13Hqr2IuvJ+kGov4nnAinw0XppqL+Keyw2XhQEw\nPomCVHsRd13Hau5elz0+iYJUexF3BatbZQhCq/ZaN/UXcd+V9/ffrPDjmS+JglR7Efd+pPPb\nLTjcv379HVfttW7qL+L+zwp/H5fFiV/ttW7qL+IhD6F/v+7XbGC1bUTk/aRgpYgyxAuPGFHr\nbVsGWQpWiihDvD3AattCyFKwUkTZLwkF6ySqDSwdCk+i6sBS5/0cqg+sQlR7ERWsg1R7ERWs\ng1R7ERWsg1R7ERWsg1R7ERWsg1R7ERWsg1R7ERWsg1R7ERWsg1R7ERWsg1R7EasDq5AnOgpW\nkij7JVHKM2gFK0mU3ZIo5q0ZBStJlN2SULDOosrA0qHwLKoNLHXeT6LqwCpFtRdRwTpItRdR\nwTpItRdRwTpItRdRwTpItRdRwTpItRdRwTpItRdRwTpItRdRwTpItRdRwTpItRdRwTpItRdx\nV7B0h9VZtRdxR7B0h1Wo2ou4I1i6wypU7UXcESzdrxCq9iLuCJbusApVexG1xzpItRdxXx9L\nd1i1qr2Iey436A6rQLUXcd91LN1h1ar2IurK+0GqvYjnAUt3WK1Ke4L1fnRTwc9r09y+MyVR\njmov4o5gvS7djoUXfaTTq/Yi7gjWR7dz70fz8fpj7EOXG47OQGbtuvL+Hv/5GxV1gfToDGTW\n3o90Lg04SZ5EQaq9iLsOhb9/rvvwXOftd7Jqr3VTfxF3BOu3uTx+zf3yR9bz2ni3HK+91k39\nRYwG63nvRrX7KyDi8zIvVH2mzlVpqr2IsWDdhuXM5hJClvn+6N8ivX8uhK691k39RYwE66u5\nvTuwvpqPZFky9de6qb+IkWBdmvcwwUv7FKb2Wjf1FzESrH4YVLA2qPYiRoJ1HXus3+aaLEum\n/lo39RcxjY/1N9/7SpYlU3+tm/qLGDsrvAf9TjAqiTpVexGTrGM194XXYOKSqFK1F/E8L/rt\nnMTRqr2IkWDdvW+/bFbttW7qL2KC5YYMqr3WTf1FTLDckEG117qpv4iRYL3vt4Vfcm1S7bVu\n6i9i9FCY5Yc1tde6qb+ICtZBqr2IutxwkGovooJ1kGovYiqwfu6xOVlMoi7VXsRYsB7qY21T\n7UWMBGvmyvvjiJgkKlXtRYx+g/Tb3JrX69YkXc6qvdZN/UVM8Ejn86+3+k373kzttW7qL2IC\nsJ7dS37qY61U7UWMfbvhbyh8NVfzo2CtVO1FjATr2QHV/7ZQf/61TrUXMXa54bM7+2j8XyWK\nS6JO1V5EXXk/SLUXUcE6SLUXUcE6SLUXMRasr2uVj3TaNncKhxcxsyLB+qzzfay2zU7W0UXM\nrehHOmt+AV3KDqttm58sBcsbZU1HVc4OqwpWvKLfbgj/lU5BO6zqUBit6G83hP9K58z7FVKO\n1HmPVQRYDdZyvPAxdO9a36GHolKwnFHWgnXeHmsPn4pKwUoRpdd5d1hVsNJrz5X38+6wqkNh\ncsWA9X70hz/X5hK2mnXeHVZ350rB8kS59I7VU7/ot0W1FzECrO77o3//uVx+zfvWRH/Tb91M\noHjVXsQIsG5N54r/9LuX/IR3Wd1j6/vCj8Vqr3VTfxGjlhu6fx/DD7+C17FGD97/xmnttW7q\nL2I0WNcGnPjjdUEezeNv/Hw9/A+vS631FXOAUosYqgiwrt1Q+Bp+RbGwY+oQr4t4mXZY9W44\nUGitr1m1KLSIwYoA69E57x/Db+tDNmlCW6Oc65FOGq1aZy2ziOGKAGvYkL532r8a8LjGGW/4\nQc94cqZHOomkYAFFLZBOP/tadMaHeM398+vZr0u8H6d6pJNKEUPh/iu0mZXkkU5zD3l3BqxR\nNc3lVI90Ummz837AM6XM2vNZ4e/v19f93rvwD//7gaWCtUKoiEc8Bc8s/fnXQVKwUkQ5YRJH\nS4fCFFFOmMTRUuc9RZQTJnG0ai+ignWQai+ignWQai+iguVVPtfnNEXMpB1/pZM3V1mUcbJ2\nliLmkoLlUc7lpZMUMZt0KPRIwdouBcsnHQo3Kxqs7+5d43v0Tyl8SRwodd63Khas6Ueo+vOv\nlaq9iJFgfTWX7g3S57oPsK1KolLVXsRIsK7jm6O//nfYY5KoVLUXMRKspqEHSVR7rZv6i5is\nx1r+lc7GJCpV7UVUH+sg1V5EnRUepNqLGL+Oda95HSufai+irrwfpNqLqGAlV9hqfdFFDJA+\n0kmtwOeLJRcxROq8J1boGxEFFzFIutyQWArWIH2kk1o6FPbSRzoubX5jRp33TvpIx6Hcv00+\nQRGzSn0sWdm/pnB8EfNKZ4WyFKxI7fpIp5QdVjvpUBinHVfey9lhtVfmz3ScoYg5tSNYBe2w\nuoNqL+KOYJ13v8IjVHsRY8H6suPbcjxxASxVrkpT7UWMBOuzih1WY7XFHSusiKsVCdaa9avz\n7rAaqWkCuYqvsoq4Xqke6YQo8Q6rZ/m64rTktW6BQsHyRnk0/u9qYyXdYfU034MdwVq5pKpg\n+aPcbyF7B0QlIcs2Z4bkV2rusBQsqwiwEn8fa6Wx1io24XhNLpYOhbMOAWsxcOhQeBayBqnz\nDnTIjymSgGXW+zVnkoKVIsoQL7yHC06CclUOZQqWP8r70a10Lm261OvnkgosgA/lqhiyFCxv\nlNdl2ibutRzxfW9ufbDIodCJT0kjo4LljXJrPrq+6v1o7iFRv5t+H8w4sNz4HAWWPtLh2vnH\nFK9bc39nA+ugoXBTqgqWN8q4Kb15By83fDaXZ66h8BjnfVs/qWB5ozyafuX95xayKfSg3+vy\nole4836gplwoWJKO+DHFxxawzgET0EyTDoWC0vyY4pb0x19Srk433YP9lDrvXIesvK9PItd8\nb7uzFpsjBStFlOgkfM0Y0bwR08tY0hUsd5T3oz/8uTaXA4dCbwP7296J63J3FN2DKljuKMOq\n+3OfX0L7uPIMaN7W3w5W/NCsYDmjfDW3bhHrcvk171uT9Jt+K3LlHyQXlrz8Q6G3J1Sw/IoA\n69Z0D/5+ms/+36Rd1ppcLXRY/hHUh93CGBs5l1CwnFGG1ahH8zOfpNIqY5uanzLHwy10SrFz\nVAXLGWVg6dqAk1RKZiy0M2MMta0EVsIVDwXLGeXaDYWv5qM7fhf34TXGFYLGxVXU0gY6VbCc\nUR6d8/7RdB9e+3PkPxJmapdaHxu6/w8fGF1cRXxAEkdVsJxR3he7zvDVgJ/PJ1BMra9r+rG9\nxQ5LCrsVLBZXwXJHeX80w0sNTRP+csO6JNZrXdvb9hZcrFjbckKTFKyAKM098a9Wt9f6yl7F\ns0QqB9+WJ6NDYZ4ouyUh+EYCDL7pYHrJfaKClSLKXkmIXDFyyIRwY1rr8sQuK1gpouyVhMyV\nuES1NWsJ8tRLwUoRZZ8kpMcwIWCtp0yI7jYiY6xgpYiSJokFAPoGpE0esM65vv8iY6n3cbZx\n5FvBShElSRILALiGQdHJ8sZbEorRts5kvFKwUkRJkcRC2/G2DWzytGAFW1KwUkRJkYQXAAkh\nESxx8SHdUOi3Be8pWCmiJEkiiCv+ZJlTEP/Ogst59/d+6J6C5Y+y4jvvW5OwCuKKdFk4mjg0\nru+xnAroVaezJv8K2qGKBGvNd943JsElrnjKyDgD0mtiIlu6Mn+HBcBKyPMZFf3thsS/z+FJ\ndFpaHrBj3lJbYbA8w5fEqdeulFMpl5OaNeYLVCRYaTsqMQmz9FLecJEGo5pZAlw5yZJ7QI/x\noIDIeVewfFHWfed9UxK05cczuZPBjed42Ay4miZ0cWCt6txG6VDoj7LHd95Ju9lxz7BQFCCy\n2sQjWLDwjZVDobsTdUudd2eUxN959+SKNJvoT7VA6Ao4Jqk4uZp6vhUulsO4W7rc4IyyHqzN\nW/c6pnf8igAW8qe4WWZJMu3PbVgGiRSsFFF6pdq61+Goy0MhIEuwYkLA2uIMLQ+kClaKKL0S\nbN2LHp5IN6nz7mze/rqM6GIPFiCBThJCwfJGgX3Q0u8p4jfCpIMduOGL4LOEI3M2N4Il0YkD\nKFjeKMjLWvjNavTWvdyNAjfGAyGK39Ry6C1cCWu6xIiC5Y/ycel+sPo3tP2Y+8JvwKJ7LBdY\noO9Z2ZcFDXoesEKJU7DWRnmMsPz+eePv5uqNF7917wJY4A50zdEFEIkRI4PlGQpD+zLJhILl\njYI2EFhacojfurdvH9cQBqCbArj6stFxhwv4dEqJjPvGU185hHDTgYLljXKxPdYl4MFh/Na9\njkcwADjUqU1HJAoOMFugjhEwLmfGjZwrmD1UsLxRuuHN9D7Ww3yn+/ja0mszAldc/A4Njns0\n56oD/a87I+J1aHs+VrD8UcAGAk3cKzQrlvGltVGEytyUm8GSryxkRI7Kku6L6y+iZHVtjEMV\nvUD67Ea3e9dt9d+MDNDXpbkuIBieK9IxIX/LzLfAgugc3LChEBkG98gFT07EkGQUXllEErEQ\n7fnO+++9+273Z+wjHaiJFzDHoz2QRYjTZkCbu8c5Z6cmBXcte4BwK4s4m+cd9Tobu2pHsH57\noh7dDoevu3/YXH5WOB2Ccc7t15DAgfM5CuEiVzPdAU0eD9a5+7CotxuQY7QY76Nbu3oMK6ML\na15uY7iCIVjiPJFHncnypM8ZZXNGMV9BwA7Bo4fC4LSO0Y5gDUHGrVjXPdJhfrch5+I4QS+6\nujcmHDGMF9thhbR2ux4sx4xlrZXdtONQOLD0PYyBqx7p2BrkEHlak18O7FVoiFCy5qD+kH2o\nJpqJU3O1J1gfw/7Rnd4fax7pzI0lcIWcckc0cmmp7V1EDkeGdx7+ROVATrDCaTkzV7u+6HcB\nD4D8b0I433kXuHKD4uNqscuSr1iQV8SVA3mfWlWgXV9Nfkw4XRbe3XK/8y4PUlJj4E5GCO7x\nx/nleUljCcw45z2oxytBRfyYQnBc7YGjoefLhMq2BW+Oyo0or221WCHF8IVSsBaiZPnJ6sI6\nFmKFjR7zQlXboufPCAk3IiS8YeE9Tc9QdAbRoXAhys5gofaFF4UQ7YwYuMENSSkY0qWRzs6T\nO25IDOJ9gaMCFQaWOB45gAF88GCAGzLyMbDWLSNQj84YQy/15yd6uyELymWB1VKBi2KQ4QpA\nhhnD4IHr1E/DUHpyh85RsjBb66stV1cW8BezQaWCxZpfCIOnki1bbpfswAPp0hxxPsEJg4ui\nudY9FHobOE/7Z5sulAEW64+M0MFM6LTySzKs9giB0wEOSnozEBGcYHMkOAertypUm7eBM7X/\n/xss1I6gsdHdlgpEFskaLyEynPXMu0RkBKUj+Fr4qPsvrzZ/C2cD63xD4W7rWIQTFlrmivVX\nLXC2DOIKkLrcfhK2OCVpNgEz324BK9tQeD7nfX+wcP8ihOFc4Q5ruD7/y3oXfkqz1goR5sA2\no9JQiK40lm/JlKRcXOXRnm+Qbk4CNFcLj0kQkSzhBgojgkXHLpYQy9t8Cv/jMDKABVDHkatQ\nEWDB+RvEgS6S4p+Agestv4uvoJTsFQrRnBcS3lcWgbzuSsNyWpfKAIt4ShgXG8QGJf4yjuYZ\nNlGE+ZjlRbCDssBzzswrWEmixCYB2oB6yszXgv9hbW//FblCzJJhkXdTjE1mag7LY0pDYU0q\nCSxH49KALJ7ri6WAIBBZQgauFLjcNjL9Q2QJoAvOe1UqAyzxDxu0O3SJwEU3V163jXGFAwWA\nBRlDc1kwFCapKFCctPaiVQhY4E8eXQQI0dFNaHE0qjn6HnrRCJZErgzDB+UTFkAGK4YNlNwp\nVApYo1h7Tf9dFlq1mA1wPpALhkJZQuZ/W06szZrDz5qWG3xFWymawAmU5Cf2xtxfifIjJWGQ\nF4Sdl/lqEFfSiEW5wsb5goXB10kuZ8akrM4RHW7ksgKmnmdQLFi3YdG9uSQlS1zHMnRMEQCx\nZ3xEg2ywLsvGAkkaEmaMjTLFgZHyJ4zgECzQLwp1Qa7KoU7HVSxYX83t3YH11Xwky5IRV95n\naNhFtjAAAJp/HCYQhIChTSP2akYAyVBjQu/Ky9OgM+NkQ4SXd1tn4yr+w2vv4f2G7DtTMDdm\nCTJCBHKMXCGplyRwxYZCKRjLFBF03oENMSS2QhM5rSLBsl+IzP0rHbn/B7fbVuphUDNgh9sX\nkvRviCuejsyV3/NpOVhyOHq7FLIiwbqOPdbvwodtI5LoFcKVDxcQSYaBhJ0PBYCMfNmVllRA\n+EtoPyTMBHETz6o0PtYz8YaYCz//Gv/jdt3dYM1k+cCCsSBQLBWDuLKZwzmDubaZaMJ6Nua8\nL4Y/iWJnhff5U5EJ5XtvF7W9MbhdhcWBLWQBaqhRkgpLn+WVzToMAYtFX1ARXKX6VOR3ouyI\nSXQizSiuNhh0Zmd6KCQKgWhBpxQWChYMACyQvKIJgzU8XG8kUyEqg6tSVt5pixthUih1L3MU\nw+DErNBrIDq+TdPA6wWEZNO2vGs0GKyALov3uJuqdU8VBhZuXHzf1SHhnmu+Yg+lSCw5xhXt\nqkBoElKyB32sRVbw3SK4KuKd906YCHsR3Cfel58U1MbYXbchMH4waQiQ4TxL/h8Fy5DvYy1x\nhclaWZ1HaFewNu+wauyEDLQz/dO1rYYbeKEzIjwZcbpJoGjnSCA8CMJNwBNXEV2iYBWhHYfC\niB1WMQhskkbbrQWukfF2YaLPxrxqN1mGEolyNFkFhm00Ty0yiJa5ct8/isgdwdq+w6qHjAkO\nGAoPUXwFwkmLlCqPAe45D2dbrob1f1CHXXLXlSPK4p3MSgXWz30x3ub9Cv1cuZDhQ5QbLGEi\ngBwphhagiY576FJoEVlp4fmCJd9Y6b6TW7FgPdZ+jls6WcjVNrAkMLyjIkrNjmtidNxgE5j2\n4kJz9rfE8lNmjR1LWx9h7vQWcpJRkWDNXD0X423fYVWAiDnmIWBJMzds1bsKxu6iDDJny1W4\n4V4znbA7zLKQoGhy3Z3Min5t5tvcmtfr1izM80zUDquMEAE2kSxjZPZGq4Ya8iw8YV/d2fr2\ngqtsY7CGB5yzQENj66LR9XfyKsFrM59/vdVvyMPC2B1WHQCIztTcDiJXzrbz4TkHN87WB+c0\n8yjwUERg3hEtsMs6nxKA9ezebAhbx4raYRVXMD02i2CJmIgheBRsDsYkFsApyzxMDYMFiiQU\n22DrZSgSrPvfUPhqruYn98r7vErEKPJ75H5MjBF5pJZlv5yhhE955uEhHApbEl0q+7pB7XgG\nI8F6dkD1Q1z0O+9Ly/i4iRfYCZGBs7BWApRM9Ayke44Is9c6yGIhkfOOMyVqHSk+Szspdrnh\nszv7aPy++Kj3X7jbOHtct/uXHRDoaoDLuZJJ4lx57sPkWjvjl8xOOQSnjBJ42t9DRWTGePHX\n9VfrwufQno90LsODwsHIOrBsu6Opva0/scExGXAgQ2dehXn2cx5xhnAJcEC6VGcLJtUHN0fv\nrwq+h3Z9pPPn5L+/Lv38ce1+hQAIqWFdXBjU3uDAEwkbwKdCCD4NmI5cpesDCbt/ta0r2gIp\n7KY39D7aEazLEPF1ub62geWGx7mIBW/hdneahddpIGH2j9oQpOvvYBzbys2pOG44zTGy3Knv\no+hHOpfVj3Tet1t6sMTZH7lBp/fTCISm9DAOTX46w64XC2hDgfyPaczhPCsqUofjI8tL3VFK\n9khn2VD3U7Hx6JYALNr8EldDI/2bJBKJoxsIDp02OrNELxKHiYeUwRJhpdlzRQsmax8GoxdI\nw3/2Nf8M/9XcVoElcQUn/zBU/59/SFOMf1RCGmhyILpzQqY8OeUX5SKCAjCwaH+K7sCIQVrD\nYIQSrLwH62FDPxd6uIC3G+ANM3FmZpRc8YAQYMCUWzBHYj8kkSUbaYx7MgeT8q1y2UvCPZdE\nQxkUPRR6n/kR/dqXtl4fkWDxG5gRVzwJE4TjeMv+Q2OQMDQ7fNLqSLcheQAZn+6wUpBaQkmH\n1D+JlFWxzvvtlvbLWEISDsccnqGBba44IZ7YTHgAbS1AwlDoYsZAHsB8QMrEUERwgkZzmW0J\nHVqMMG2Js0GxYD13+ZWOb4gCXtQY1jawM55pMVewGZH7hbgxHlQNaGc4NIpxuosNjghS4yOt\nbzoYWqVwHA+NE6NIsD73+vmXo03pXI+FI76T9GeOAw43AV1TcBdYsm8uJICml+08FM7xQEDS\nNzq0bgQMDZtE0S/6Jf0YiJTEJN6kPVW8XaV2p41rzNxpCawMGumaGx0Fxr72AgI07jQUzumb\nORGelEdhvCzbSa09Z4XbkpgEW7O1fZU0QWNkGdotWXMsNG/KiS6W0BxyGSxQhBksVLDpGA+p\nAVwF8VIcWJ+rZoWbkhiFG3YcAR0TNAkSiSvZtxbaAC6H4Z5qzhuwCDNNSjCDhQtGS9pKFhy1\nEkpWQLB0in5t5rb8sntkEr1g2wmt7AOLjXjgjMZH7jrJwD/USY5GjDizwJnmJWjnIgqpBUHA\nhtGg8Pspeijc9dsNI1awhQSuhG6IO0KEKHDL0Vh9YLAeYeh0kpElpDej7AErBAJoNqBC91cp\nYE0N08/VCDGC94xb0cOZ0Ls5wJrN/qOZ4EMqzAS+TcEiaARiMqdyUq7K+YyRGZtUmDAJbeoi\niuPEAQFNPbn+ZjYK4PqH44EDQzLBZpOwiGME4LZJsHj8sCUdwl4ZYNnGZCyhE+clsYUFsCw7\nMFnb0hCMCS7yOuoQDGeb/SkIzjsbUWmNgGt44rCsFUETKhqsPbY8gVgRj8VQNtzjXysxJ3DF\nOxx4jwgvpErdCkuWFNGTVWrKHhrWmbolmdtB0c8KB/cq75YnQwvKMMAL/gEQGJNNGR9YUpJj\nuGFUZC3oSmgs4oQkvO3ssuZr+CigLiVzOygSrL22PKEv6XEqHFeElkJX6P35unGQhXwia/Mf\n6lCNK/J8v195n96rMLAjEomx16wRUiq3AoMlVvQjnX22PPknYCN44HJzwlYZ/iUkwSYCQcSO\nELcTau1/09wCG8aRzRi9gabhg2/HGIf60dl+SG2W6LzvuOUJayQ+6ZJDGtT+BjcJCSinZ0AS\nhCvS70lvRmBDU0oNu2fgWzvWBq8c2nWdU5Fg7bTliYwLduFpGzNgcOMatgImjZZSatQipfOf\nsM6Fku5DMbBGXKQn36JIls+mND5W9i1PRFx4iw1BuXMvMSQ1uDs9cs1QnjAehr7Og5MhYNE5\nn/W9SKYM7sHovXMpdla4z5YnYhPKzSr3Rb5GBtB4UgzNgzVgO67JY8P+XANPQESQ1kgXqQfp\n+IRKso6VfcsT2wRLlJgp2CoYgQPF0uRpOM1YazY6+qWGQfwisOBkFI7sreS1zcdpKz2tylh5\nN7gFnO2NBpslEkC7GnxKPDhMhcMKtmfmlgdvc8GhrMHh5yzDyFMI5LaBDKeu94QqAyxQib6+\ngzjYPg74lBKfz+nCxpwu+bozmOnxiE32zPhqsmEJ8bSQlX/t/wCsTG+PwiRG4ToMwsUPFrTi\ngISkhZI3cLA1AlfEcWrnQdEaaZDVlloAVmEg/ir+CSRmJBqsLHhJvyscD/0dEW4eT0D3TZAc\na+3pIh65GBUoK3hAszYaZJQOhaQgqCJauCCB6ymiyreLZHJUWWDBhpJ5QeSwzsjdT4FrwJMW\nWtcVCwR0mO00+0rNNMmwHt38r4OreWwkv6Scbyap/XUSstmpBLBIz+DpbAwoZ1Cj49vzf0lQ\nm4/FKYGBrQ+PbGFGT6mZrqObsMQoaVQV0x20HCEG30GOdIsAC7myjBfe/DIA811nbGYHxZ0N\ng/Z1sQsMsM6k44GsvJPCUovS3eHUdl3Mzl6Sky0DrE4uHNq5jwHhWHAQRA4B0hBSNKSxLVdo\nWQJYh9Zom3dn9JEOumnQZdZyNIl5nX5rhUepWOd9ECWlFSrSPVbB1qEtz86nqsK3SaJCNHzZ\nJkQz25/Yn9iTu/gqtQgC0dQEr+tIRYG1diPMuFyhZnBwhcYqLsNaWbwF2o23sEATP2YZGu3O\naTY2IZQhe0KzRUuKUph0Irh2BStmh1XcvYhkwTahBJL2gg1J5gbg/hwTZwFlR+rYDIyBvHl7\ntSGZQinA0sAMiNVCLpwErh1X3iN2WDWk2emwhEIIbr6RXHpj25oNhMwMToRnyJEz4c4UF77d\nQIfe+RgerNAJ4NoRrO07rJrWNbaxNkdtSxrTOGggBmwP4k4FpefJGTqFlghYpADzidkGVq9j\n4doRrL6iqC8AABB6SURBVCT7FbLmtEGElgau8ILnBVMxtAvjQaR5I8ugmHMbEb/dQNKfTvHB\nBh3Xde0IVoodVg1gBTYDxMhC5Fx6ICjgVKR0xYwYCSxqR06stSvvID2aPvqjiRB7q2sXldBj\nCQ1ncAOim4NHzmJSK9jLFqcDbq6oTySmIWXBXhN3pghEaDVp0hOgzNrXx9q4wypsGG+zzkMi\niEnaFs/YDGbQiAnzbLjQ5mDxOcFw4Pruib8OQcb5VW8E8fFiRu35Ptb2HVblRsMtRtrYxiTR\nDQ5mgxIcprjomgiWnEM+ouLlEAYWj+eSHI5kVDDdHe4H164v+m3fYdUDluyDtY7odLZlwzqB\nkFY04GAq5U8yRCZ6jk7ZXy/InHRxLgszbc/3gaucN0gdZKHbxtFC7D4xalhELyJwokBu0Ggo\nzenf7n+yG2nmSG5JAMJkSa6F+tgBrvOA5VvGZ2BZbwrdNpix8Z6BFIDYmIH5mDnjwBIAhoMl\n9KukqcEd57uMAU687GKBAtAqEO3lZes8YHmSQFVGnSNXh4VGBRucGoIBJFefNjfr0YzhMUAe\nYFOj7LnfvsZUBAskw8lyRcoHV1Fgsd4E3wWVKjjawBbySGBHJqGB8iBkiUeCqYJLOJb4ypmU\n0hpNESlZXuWBqwiwyACHwZJRIBeRLcHBp3DwVsHXfFwRL93mCg9SnlrczJXkGwQpg8u168p7\n8NsQbh9rPBUcd1yXbkLAbXIB4yJngeenbVk0ew5zAC5IRcRpseN1qK3kqlditnYE62szWCIl\n6I/ToEZzxsEmyQVDOACXgUFsHOdAzPAYDKHGi2gc7IDYriCS1nPVx0kI155D4e8l9AsPHrDk\nibY9opGcAwvCB8ZBRwJA823Uf3lyHAaWmE8cK5AWscdlRXcklWpU3NXH+vU/yHEmwVqJ3xwP\n6fUFV5jdwmMd7vZmREhSUhI8xwAwoYiOfEr5WNJSIMd9YD0FW/s671/gOfSKJMLAwg0+XUaR\nhA6qtZNDRqX7x4eOHPhzjP36ILBA2dhY75LDkP/+dMOeRLNV2KzQ0kJuGlD3KAbp0VyOEBzO\nbCSWMEUFGfLlVwgbMhSirMtBuCRw4BU3nvRqFFtlgCU38HwTh4ARjKGw+Uyi69b2Elik3Six\nQklAEUkx/GNsoIvl71KD8By1na2SwXJ1EvB8OISALFhctC61i4gruwwC2CJKCbnOQuXr+cT7\nXnG2guIXDRZvEk7OfLgWLOiyeVOW8ylcBgHGItKg/DyswhYibAPUin4pJ8RYIWDRnkBqXuds\nTSZCuMfC2ggMLDZskWw6rs5HAWD5XHCHXI0exVUn9KWcELKKAwud8Zhs+iO9yzLdtRHmm5wg\nN1nEHkoUXZUiLw+FIp/u4s4J8VpJonXfiCgELEczs4gcBEeHRWLPp36yYEaQQRoOX3WDJTj3\nqMisDuTiuoMklf0I03LQMsBa4Io3BgoPQMAGrVvP3e/ZZUMGhWFNTJhkx6AYCCynAsCSrywZ\njtLw9ZGAgCWBRV1peBeFo64OQghaIIaQOeQRuWYPCBwQA2dHSDYQLCljrFrwpSW70QpbgigD\nLFKF7jMLBalzR5u4yKKBQsEi1+wEAbhgU9Clh9Azqq4Q2Qc+twLYKgQs7rpQsOaWY9dcf9ou\nsOYWZFyZeYiETe9izeC4MGcLK+/UmqDjuDIBaJUFlvdnKOQPXhoiRZvyDXiffMwI/CNABbii\nVmCiC88KmT2uQ8EyS2wVBhZoNuZvS74SGSKl+54bhCwSiGVMAoiCZU/oL6FpCZbBErywneVD\nq0Cw2ORLOGfXhBbgUUinIvECI0MraMwDWcTdHjhjP7EXMiMkzOcCzru7yMlWmWCRxpbbQLxG\n74vnhAiBLHAB3AEsYa6EOWbQG6SsQ8XZoNnyljaXHGiVAhYeUXBbQw6EOO5kpHnYfGM6g5RI\nlkEcB5F0XO0CbqpFUiD/6W4S0SoPLHiG7/BqDatoPKix69YQuO2CGDtVLjmKGJJTnC4/O8jp\n4mwVAxbx0Of+w8MVH16kekeEunIERjXj46p1dFn4nqOIy6Lp+gbKY1UOWI4excuVZAKfk75v\n/teXvpCYkyGSv0iwFtzz83BVElhGmBOt54p6USyq2xCIzAldFjayqhbXAbMTXv5kygILytVy\ni1GmIxlKnyk6/fNlxkNWcBGh9eShY/FbSKZ0sAAiw8XFOHNcEUtrNiRxeiEErBVFdCWWIvQ6\nWNcnUypY8yRt1UIOHsucZImG2MSek2UYYaxbnKBNDVbsX8ZaYQPcVKFgyXXHa2vBXRI7FDwB\npFGIZ4ZoM/S+c4qYfCgM+cug4eO7LE8GywTLUS3ssrvyvDNK4dJsm3DlzIZfm5134a+Jltzx\nl8EzuSYLvpxIqZUMltyk4Gipehe4WnKiHICTQCnAkkqILtCMLIO1zXmXrZYNVssfqVAXSx6O\nPOnIQeSojCoTApZBXUowWL4hXOAdDdT2epDFVXJVqHC1DLDgH/50BVWo8GccwJWrppZ4w3w7\njPKASN5adObbCRYDSuzYYuWs0UKdd/LHzq5BvFD/sPh36qgp2lwkH/7YEtMgnwFgOdvPORQa\nM5VejumxuErhVkoAi/6xy1fRLxl4RYY2FLrMjcjdhSu3NCa4swUsMg2dL9oUcoMVPqLWAJYU\nwP4H2BCTcnIlNhOZFE24ODNLY87XNwyF4tXpIshyuMWMKgGs6Y+RNDRoVYIXjjgdrKhZGSwC\nypQ6BYjE5WT2V8Kcd2E4FXMKnU6/xb1UBFiG0kSvEs8KBkZ/zyHCHR61hk1Loy4ki5rwFNGR\nF7E0huaDhT1eZYAF5Ks/uY2lO4v2+dwKUztDzEyjvsOZ8IrHoSRr9K9L6t2OV2lg8Ybi45Nw\nHgyWOyDpDjFZLOSCPe+skNCLDPPLx/C0mGpZYLUtayha9TSCGMwtD4FC/4F6NzkXDq48YJF+\nkd8J736zaTkDRYHl4CqwKwpL2mNO6EACjDpmcsIOq0IqcllPwdVCFnYF6+ez36+wuT/W7lfY\nS+Aqw1+vxxona2sSoWA57hztTp0LrPcV7Evh30rAB5ZwcWOGVgtkIC7R0KEw+M7eOtVQ+Ggu\n38Nn3tfuCT3J4a9szM8GAa5iyQpx3lfc2Vtnct4372I/6/CK3bbeKmkHT/VQ7QgW2peJb9IU\nvIPTCaRgLaqsHus0ivd2Tl/ESO3rYz1f/dFWH+tEih6Uz1/EOO253HADY931nSWJclR7Efdd\nx3r061iX++emdayqVHsRi1p5r0m1F1HBOki1F1HBOki1F1HBOki1F1HBOki1F1HBOki1F1HB\nOki1F1HBOki1F1HBOki1F/GkYKmK14ZWTw9SOmXJXA6j/2ebxye1XgpWATaPT2q9FKwCbB6f\n1HopWAXYPD6p9VKwCrB5fFLrpWAVYPP4pNZLwSrA5vFJrZeCVYDN45NaLwWrAJvHJ7VeClYB\nNo9Par0UrAJsHp/UeilYBdg8PinV/0kKliqLFCxVFilYqixSsFRZpGCpskjBUmWRgqXKIgVL\nlUUKliqLFCxVFilYqixSsFRZpGCpskjBUmWRgqXKohOD9TPm7XFpLg/vl+RD9XW1ltIZTWmq\nU55MZqhNv84L1vsy5G3YqeCawOKjt3R5JzWa0lSnPJnMUJsLOi9Y9+HjOT/N5df8XpqFXQoC\n9Nt8/DXXV/OR0mhKU53yZDJDbS7ptGB9j19lejTP/uwz2uJ9KGtnNp3RlKY65clkhtpc0lnB\nejW3oSruTbcX1G9zT2W5M5vQaPL89UqcyXy16dRZwbo1r6EqmvlPOIne3UbDCY2mzl+v1JnM\nVptunRSsz+bb5KmKr24wODtYiTOZrzbdOidYfV+dpSpel3taozmaKnEm89WmR+cE69pNt3NU\nxftyS2w0Q1OlzmS22vTpXGCNn+j96OcuQ+kv0VUBv/t7G1Zw4o1aJTQ1KXEm09ZmqE4JFvwM\n9DCPeUXMY2awXtfbsN1wvFGrhKYGJc9k2toMTjV7ChsEq+Kz/3t7+redDtOzuY1HCY0mNNUr\nfSYz1eZSqtlT2KzUa8Uv22QnXnnPk0mTvjYX08uewmaNjsC1/2O7LQQO0AfYZiGZ0aSmTLZM\npq/NxfTyJ7FVY1W8++fxSezNbZbMaFJTJlsm09fmYno7pKH6H0rBUmWRgqXKIgVLlUUKliqL\nFCxVFilYqixSsFRZpGCpskjBUmWRgqXKIgVLlUUKliqLFCxVFilYqixSsFRZpGCpskjBUmWR\ngqXKIgVLlUUKliqLFCxVFilYqixSsFRZpGCpskjBUmWRgqXKIgVLlUUKliqLFCxVFilYqixS\nsFRZpGCpsqhasMgXpxc+QC3evty/hu8Xv77ul5XpMb0/muGTsj9gU7dr8yTxnkvplCIFy327\nabrd3czwYdCV6THd/2wMe27Nn5Z9NRcS71pNe1RTEKp1YDlMXIeO6nKN/+J+07zGo0/7MewH\n+yz2Dl/230nVFIQqCViP5td0e9E8UoA1Hb2baVy9WNh4qNJVTUGohiZ63prmZnf8eP6NR8Mn\ng/9OP5vLZ79T7sOGflya2wuaeDZfptuL63u0BuK/r/32Dn9RHn3s4f+ve2/V6uvaXL8M3nbF\n3JrBk/qZN48bU7ahpnhjQqNb9t5jz91Eqhusr6FBv4bTz+FsAKk/ed7GC33om92NeTLx7uG5\nj7v9ofj3/qCP8jGDdWmsK2UmiwM+AKyndd2eJOUplI03JnQf3LI9dkZNpbrBunRD2Xf3dz60\n+3e/iW1/9/busOv/vQy3v7uzD+D2/F3snenJxabxO0SGjR4sWL092618j7e/p/yMglsl4ZSH\nUCDekNCI4gcbOs+rusFqmic8hTd+zORQT1j03cLsAPUXH3/Xfv5aFWAB4v9FGbamsWD9oKSm\n2zeDwXr0qH3bQXhOeQgF4o0JXZuO44JGwsrB+vOg7r+/9tS8np8320/Af6f/UxPd4DPvT0rj\nw//MFgjDoGea9NujdutnBjhltqvgePjVDYI/BY2ElYNlPjun5/KCrswqsLo9k25//dpwj8bf\nClbfAY2eeBhYfXf2WdBIWDtYfwPK4zr5WB9/M63naxVYf+7QPESx+JvB+uo7wi8YF8bgYP31\nvU9zLWgkrB8sQ9rdDdZN8LE6l7pznOdICCzmY+GUp9t3Q8DqeqvBbSIpYx/rPkf7Gz1/SxoJ\nKwfrOszj7Kzwx/y6fayvbgL2wLPCbhI4TM6MEJ/PCmernVyzwn6lYVxzwCkP0wk0KxxjXBu+\nnHpm1Q3W9+AU/QynjwadUrCEday+g2omF43Ft16XAyywHkXAejbThBWnfG36HhOuY80xShoJ\nKwdrWHm3awAf3QkYYQhY/STyRUxc+pYe7tP4Zlgy/3GCZb4u4wo69eAu05CLU/65DtdtPBvt\n3RQ1EtYL1p7aY8fSZ1PUSKhgRan3v973Hfbu/hsdv/InklAKVozGp4eLbwFGa599nFNKwYrS\n158Pd92hv7r0SxYlScFSZZGCpcoiBUuVRQqWKosULFUWKViqLFKwVFmkYKmySMFSZZGCpcoi\nBUuVRQqWKosULFUWKViqLFKwVFmkYKmySMFSZZGCpcoiBUuVRQqWKosULFUWKViqLFKwVFmk\nYKmySMFSZZGCpcoiBUuVRf8BVOe5XmrOCzUAAAAASUVORK5CYII=",
      "text/plain": [
       "Plot with title \"\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "rdplot(Y[abs(X) <= 50], X[abs(X) <= 50], nbins = c(2500, 500), p = 4, col.lines = \"red\", \n",
    "       col.dots = \"lightgray\", title = \"\",  x.label = \"Islamic Margin of Victory\", \n",
    "       y.label = \"Female High School Share\", y.lim = c(0,70))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAJYCAMAAACJuGjuAAAANlBMVEUAAABNTU1oaGh8fHyM\njIyampqnp6eysrK9vb3Hx8fQ0NDT09PZ2dnh4eHp6enw8PD/AAD///+NHJ0BAAAACXBIWXMA\nABJ0AAASdAHeZh94AAAgAElEQVR4nO2diZarKhBFMVOnk07y/P+ffVGjYaYYCpV7zlq3b6JA\nUbgDJQ6IHoIYJNauANSmABbEIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCLABbEIoAFsQhg\nQSwCWBCLABbEIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCLABbE\nIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwC\nWBCLABbEIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCLABbEIoAF\nsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCL\nABbEIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCLABbEIoAFsQhg\nQSwCWBCLABbEIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCLABbEIoAFsQhgQSwCWBCLKoAl\noN0r4aiXB2kFEyureQ8B1jpq3kOAtY6a97AqWH8/p3H4PV3+uEzsRc17WBGs10EK7Y4sJvaj\n5j2sCNZFdL+P8dPz1okLh4n9qHkPK4LVicfy+SE6DhP7UfMeVgRLmdrwz3M03+zte4geax01\n72HdGOv2HD8hxmrfw5rTDUfprPDwYjGxGzXvYd15rMs4j9WdfjCPtXYFuIWZ93XUvIfbASvz\n0vjO1LyHNacbusAAmG9iP2rew6rzWOLkDdnzTexHzXtYFaxhloGEVvPN3r6HdWfeX++zwvON\nz8R+1LyHtS/pPIYJh9P14e+4mm/29j2sf63wcemCJ37NN3v7Hq5yEfpxPR0AVtta6+4GHhP7\nUfMeAqx11LyH25l5r2xiZTXvIcBaR817CLDWUfMeAqx11LyHAGsdNe8hwFpHzXsIsNZR8x4C\nrHXUvIcAax017yHAWkfNewiw1lHzHgKsddS8hwBrHTXvIcBaR817CLDWUfMeAqx11LyHAGsd\nNe8hwFpHzXsIsNZR8x4CrHXUvIcAax017yHAWkfNewiw1lHzHgKsddS8hwBrHTXvIcBaR817\nCLDWUfMeAqx11LyHAGsdNe8hwFpHzXtYFSyssLqoeQ8rgoUVViU172FFsLDCqqTmPawIFtYr\nlNS8hxXBwgqrkpr3ED3WOmrew7oxFlZYndW8hzWnG7DC6lfNe1h3HgsrrM5q3kPMvK+j5j3c\nDlhYYbUp1QTrdRlOBX8OQhx/mUzsRs17WBGsZzesWNjhks6g5j2sCNZ5WLn3LM7PN2NnTDc0\nrqoz76/Pn/eoiAnSxlX7kk4npC/FTexHzXtYdSh8vEP36brOyx9kNd/s7XtYEayH6C6P/tS9\nybodhHfJ8eabvX0Ps8G6nYZR7fQkZLx134mqn9K12pma9zAXrOM0nSk6Cln973m8i/T0E0jd\nfLO372EmWFdxfA1gXcW5WJX6f6DZ2/cwE6xOvKYTvLJXYZpv9vY9zARrHAYBVrya9zATrMOn\nx3qIQ7Eq9f9As7fvYZkY632+dy1Wpf4faPb2Pcw9KzyRnhPMMtGkmvewyDyWOAVug8kz0aKa\n93A7N/pVNrGymvcwE6yT9+6XZDXf7O17WGC6gUHNN3v7HhaYbmBQ883evoeZYL1Ox8CTXElq\nvtnb9zB7KGR5sKb5Zm/fQ4C1jpr3ENMN66h5DwHWOmrew1Jg/Z1yaxI00ZSa9zAXrAtirCQ1\n72EmWF+uvA9H5JhoU817mH0H6W9/FM/nURSdzmq+2dv3sMAlnZ93b/Uoe99M883evocFwLoN\nN/khxopT8x7m3t3wHgqf4tD/Aaw4Ne9hJli3Aajx2UI8/hWl5j3MnW74Gb6dhf+tRHkmmlTz\nHmLmfR017yHAWkfNewiw1lHzHuaCdT3gkk6KmvcwE6wf3I+VpuY9zL6kE/MENFZYXdS8hxWf\n0sEKq5Ka9zD77gb6UzpYYVVS8x5mv7uB/pQO1iuU1LyHGWAJVeF89DG0+WZv38OKYKHHktS8\nhxUnSLHCqqTmPaw5844VVr9q3sMcsF6X8ePfQXS02SyssLqoeQ9zwOrGwOqGN/olqHkPM8Aa\n3j/6/q/rHv3rKLLf6Rd3JrB3Ne9hBlhHMYTif+PqJX/0Lmu4bH0KPCzWfLO372HWdMPw9zI9\n+EWex/pE8P47Tptv9vY9zAbrIKQv/nxDkou4vMfP58V/8br5Zm/fwwywDsNQ+JyeogismDrl\nGzJ28wqr3gUHmm/29j3MAOsyBO/n6dl6yiJNytIouKTTuDLAmhakH4P2q5Au1zjzTQ/0fL7g\nkk7bypognR/7CgbjUz5x+rnexnmJ1wWXdIrqfi9bXr6KXNIRJ8q9M9IclRAdLukU1P2+ObJq\nXit8PK7X02kM4S/++wMBVpTu9+2Rhce/1hHAKpJlgyZWFobCIlk2aGJlIXgvkmWDJlZW8x4C\nrHXUvIcAax017yHAWkfNe1jxKR3eWu1MzXsIsNZR8x5iKFxHzXsIsNZR8x5mg/U73Gt8yn6U\nwmeiRTXvYS5Y80OoePwrTs17mAnWVXTDHaS3uBewRZloU817mAnW4XPn6MN/D3uOiTbVvIeZ\nYAmhfyii5pu9fQ+L9Vjhp3QSTbSp5j1EjLWOmvcQZ4XrqHkP8+exTpjHSlDzHmLmfR215aHl\nBtb9g7W9u3Ipagos2y33u7+ks8HnCChqCSzrQ0J7D963+OQTRQDL1KamGwDWBsQwFK5/SWef\nXLUFFkPwvoFLOrvkqjGwLMIlnXXUvId7j7H2quY93PtZ4V7VvIdVL+lghdVFzXtYceYdK6xK\nat7DimBhhVVJzXtYESysVyipeQ9zwbou41s4n3UCrFStdqbmPcwE6wcrrKapeQ8zwYqZv8IK\nq5Ka97DUJR2KsMLqV817mAnWRfjfq60KK6wuat7D3OD9dKSsHZBlokk172EGWIXfj4UVVpvS\nKmAFEzff7O17uMrDFACrfQ8rghXRwzXf7O17mAvW6zLMdIYWXRr11wGsRc17mAnWs5uXiXuG\nM75O4jgmw1DYvoeZYB3FeeirXhdxomT9FeM6mACrfQ8rP0zxPIrTC2CV8HDjD5FkXyucgqsX\nebrhR3Q3gJXv4dYfe8u+pDPOvP8dKYtCT3ocwpNe/ypYdFY2/6DuGg9TnAGW3cMIVpoHa3qY\n4lj04a9/FawoWDbOVQOvMdqnssFqPHhn0r8J1uZ7oRjlgPW6jB//DqLDUBip3OB988oBa5p1\nv+FJ6AQ172EGWFdxHCaxuu7Rv46i6Dv9mm/29j3MAOsohgt/f+Jn/Fu0y2q+2dv3MOtGv+Hv\nRfx9v5RS883evofZYB2E9KWUmm/29j3MAOswDIVPcR4+v/6VF6+VOm/broeFlAHWZQjez2J4\n8do7kD8XrNR2m73YTNNmPSylDLBe3TLPcBXS4/MFtNVmL3eFbqseFlPWBOlZTDc1CEG/uSHO\nxMYEsMgqcklHnAo/tbpys7vZwVBIFa4VmvLRg+CdKIBlqMqtTgCrSJYNmnALYJUQwDJV4+4V\ngFUkywZN+FTh7hWAVSTLBk2srOY93BtYrdwKB7CKZClmYoM376ZVKK0RN+e8W/sCa4MPPSVW\nKKkRN+e8R7lgRbznPdWEpO2BlVoj3UNKGdvz3qNMsGLe855oQtHmWrYQWKRC/iWwCq9TaDOh\nanMNW2QoJCKzI66KvW2mrPZ0zlQieKf2RdxcFSw/+6UgMe95TzLRplKGQnaVrEVu8L6D97xv\n4ZAZSgneuVU0hst6mILt1exFCvu00TY6A11b7JP3C1bVpXs/jbTRU6ktgrWpoTBCdZfunYEq\nD1aR0jYJ1oaC9xjVXbp3AaoIV1IRZTjdJlgFlT3d8O2DQs9TVF4IcwFg5iCDBwmmQj0gwPJn\nUaKswDOrtZfu1Q5/Bg8yTHsCa83YMncoPHfDA6vvoe2vPwWeAVt36d4cIJS8+xkKVz1ryZ4g\nnWB5vKPxlzh48627dG80WHJiJetegvd1z4dLXdIZPoSmHNZdujeaK5WsaGv+/QDLn6VbeqyO\ncOGQf+leX0NGc1Um2rdLxFepfCU4lT0UzjHWpf8t9/K1VLDKNWUeWOHcYk6WaoJWDc7S/coN\n3qUFBETeLTQFrg+V7PyzO6wwWBu9KFBG2ROkt2F0Ow3d1vjOSIKunTgEENwAWHk/d9JQCLCy\ns0x6nIb3dv9kXtLxh1FbOVCk4H071S2vimA9RqIuwwqHz5N/2PSY8B+M3RyoGsH7qsq6u0EJ\njIL5zsPc1WWaGQ3MefluTZYnwYk13preFcclHXeWWLCmJJ+lWFMv6Uhg7XYgGSoOsIpkmfKN\nGX+nMTD5ko7C1S7JugOsYllGnaf1owe9zumXdApfDa6v7YDF2Xw1b/TrpAtA/jshSCZ2ytV2\nhkLWBqx6a/JlxqkL3LtFq9VOudpK8M7b5Tf8MIVD28ARYIWysDyyaiuzUBswNKa1QNJF6HW1\n1aHw860SWIVageFnai2QdBF6FZW+s8yhvYBVCghCOZFmrCUGzawGVq1Tnn8NrHDDxtrZF1jV\nJmn2Apb50E2qCFzFk0XbKElUO4lQ7QAsQ5Uu5KgtT3sFjC2VPeeyVdQaknQ7GArt4v/FqZe5\nw7ZiavRNKYrHem6LOlkFig1rJ/NYpZ8X9elrgmQsokZS0jBY1U5WeLQPsKTG4W+nSLAiaqSD\n9d3uTetIQbeZmtdWGjVlzTtIk00ojVyPK+pRoddIGgp7mRpH9E/7NXnNl+aKXNr+wGJWgZ7C\nE8t/g3eXRWWzP4WRLnJntGKOwy7Aqngjg7PtUrolz7YwWFqX5rIfhK5gy7UHVkrPkdag7qOc\nEEh5tollD6XsVHZKd/WtDYUpSm1RS773hogjFAXWtDnrBKHiUNhc8J4gAgmO3Y7LM3FdVnCb\nWDbTivWS5c1HKZ1BewErtoHChyzmkMYNKc6ASdrhBssR4UX2PasBNWsnYMV36RSuSGV+EhY4\nUrJBYW5ybZEqkWRq+k7PW0ZFHrHv+9OzUH1sJtImsoIDYYFRKEqKRTl4p1Qrnis5felQi6Bc\nsI7TpLvoipLlBqvceU5M0FTCnh0sbyJrJWhTtkop5RqNrkywruL4GsC6inOxKvWeoTA23HFI\nj3gic2ZMZcyfne1eJjQ0O6ydgdWJ13R/A/fDFCpXmY2UXsKUMzW/EbwHEjkqEH+ZaX9D4fKG\nyJoLYZbgKq3nuUvKq4PIILvabHGOMsE6fHqsR+DFthkmFBUaCD+FRJdVDKy7yOszV1KE6TIx\n1q3wgpipAwXRdYmrYHpbrGLJFne07wNYpS4MZGsukdAW9WbeT99XRRZU8rhKdJ1+himn8Ayh\nkcc7GaxwleOLlU+MMo1LKjKPJU6/8cXQTdAVOUh5En92yAXaC1f7PurpJnko1JIFHYzv0eRu\n2OEe1bisncy8fxVs1riJREep8q/YC5Z6UMa/pCoQg3ejLAJXkT2aFyx1U82hkEf+hyk8GWPJ\ncpQq9UDaUOiwJx8bUhWorz2xkBWZwUzg2ORxj2Zc0T7ueZ90D9++Eg2WPYpXfsVaYrs9qRxe\nsFw1kXLEFugO3hN/p4OqgpW3wirpqEVzZR8FPKODz974jVQFYrs7uXLaKDO/GrBPUMWhMHOF\nVWJvEM2Vff6APB+hA0msArUR3VzVma5IntyoCFbmCqufxoyaeApJHcns++mlxUj2MNoGdby1\n503JFa9SYP2dgvly1yukNWXZrp7tMGgPU0TmzgCrlnLBusS+jtv2hVgrKldJEw58spoQ0u55\nOI4qc+Nc5YL15eoWzFdlhdU1f8p2u0Z9xq8GWNWCn0rKvm3mtz+K5/MoAud5fa0VVlPAKnOQ\n7IYN0qev4mt24WrrrESpwG0zP+/e6kG5WFhohdWyJ9Q9PchJMqxv/nwXkll1ZmPbeJFrVwCs\n23BnA20eK3mFVcmfAAbxYFFzJBrWti9gWbYTrKwseu0ywTq9h8KnOPR/Vd82Q5wiJbYBEawI\nw95881Bobo+oDJPCk3bk2mWCdRuAGoe47HvePdP4sj9h3+SUJMv0DitpbkLrmJbgnTRyVlXQ\ndD2w3gFWP6yS44/FP3q90x0/Z49R0w2LP/ZZcrsiGoFeIKk4T/FLGaJ3mF2Zq6grWD7VvKTT\nTRcKp0Ki5rEWrowJH7ef5X/7+aV965R+j2zpfHIJ4RazXvqyqeolnXeQ/7p24/lj5ASpdOlO\nuzbnJyu6krzdBQWsjKLzS4gtw52jIljdlPHZHZ6pM++2QNhHVnQduQciZSg09tk+WvfbC46e\nZSlQhDNL9iWdLvqSzut4TAPLJOvz1dkcsTEWqW3NoTjicMxJbU9OKtXw7beW693vKe+7K63D\n4gHr4jqRs2h4VOzz6Zi4dK+1y3I3iGWHa6ZJLt9Xs8Ukxb5H1me9lwlT6aNlv7taETvn8uRd\n0W546pQ9QUp/7Ov7GP5THHPWhFa/u5vcssOWUk72+RQ4RkuG+1356s/Zy0loYGm9WGAwDNTZ\nus38pQbr7y93VoGZd7IuS+pboIfzPkxBjg3MHdakJhhKIlsJc467+pU0mkxJSEOhVrPk8M/p\ntrErzggjWBfhvean6bHctPU8p4Jl+u52j5jUi5/+g1ZJsn6l9B6h4F3i1rI/VtZaGZ1ifPzu\nSZ0bvB+PZd+MZTGhitgNzbssuYPJ5AL1Yzt9lffLkYax21n/QLtLZPkTEqVHU9ourXJx5dqV\nC9at4lM6oyy+xzQGKanWYVkiaANtOefde3ymXf7mctjJEgmaYiTngvVT8/GvSRbfIxqD1nLO\nqMMLzPz3HiKrJ4NVULQyi1nNvtGv6MtAbCa+Mk7B45VwxIyz0HC5AbIG0YbCHFnPcXILoavm\nWWGaiUUlfsQcXYE2BSFt8GQJtVsBriyRaG4hEcoeCmPOCpNMjLLMuHw2R2oupSRddwMs74zF\nqOQfJLHitvrE+exocmoNsm+bOYZvds800dsPXZ/2K7zfHYUls2YvLzA5JKwpacbolXJ/JxZg\nyUQsJ3sorBG8+7gqRlZUUda5La9BbaP47780u9Q+xOpe1NmzmytKMTsCyx6ORpMlg5X6k7Zl\nDc1cqRL9fxNacS4Q+hB5hk1NFcOwo8mrgcUkzz3v+uZSXVZMUWbeYHJ92+DhSFakC8E+JLbr\nXPYRKh0yIGsfYHnP8qNLt81hRndYMXadwfuAVqQL5pzLWJn/LCJU+9u90ScH6wTvdZY86Y1G\nmpV4fLO4KjHzMXv4Pv4pRY0VsEEkOWLfaRbTx/9SCMq+VjiFV8xLnnyGjTxJbad3WJFjaoGj\n8PXwv3i2TGD8dVtSW89++i2CVWvJkwJkyY2XB1aJg6B4aBu3bFqAioqWlMxaUrnLotSAaqzA\nJZ1KS570MWh5In35i74zpaBALZzphJRKCpIWA3JaS9QkJ4lBwllMKldhB+nSL+lUW/KESpbV\nXa1TskQbxIKc3Zt9ls3R8EJLNaWzheD23ox0GuiQVGRW10tyMEJylrpLntBGDNPdqe+IDiRc\nGezbbX2g26JwpoqsqJGYlpM6+noKpf1yImSJsaoteUJpDUtTS2RF1MKZwcWVZdaUBFb/iaCV\njImVjMhKh8vtMNdQWGnJE6n6hLaw9h0pk17ODM6h1thgdp2ThJFtSRv5A7DxTM5MY8taqP+H\nU2Yei3vJE6X6hKbQj+b32EXWQxmhgmktk49mTT4fhbzt26Euo3ZaJd3dsqfEMFz2Qj/19XfJ\nMao+8677FRcelJke+JThiK59YbZaxlwToW9dOgCWcDpQbqjq1h/NckI7nXdoWfYIVjRayQdr\nyEgHp9cS62a9YOWQ5Zqes1r21Nxeqv65twzbZstkgMV096hsYpK1WVzNkN85zeXLMKUc8buB\n40xQr92P9fn9p4JlHGZrinC5KlueHFJx4wfbLy4bLBa8fDHWImszxB4YC7ALDPLhSODqm3sp\n8xtBCSXlN30iV/JhdqUhFbbA5auL2jD286ldgOXqhr4/MXU8oRuSUpuDnVJYoNTw/MPXxLDZ\n+sDqPeZWPKshTydDLm9qBW9Lqs1mTbIPsNzSOpdIsIbE3ultalm2lNbcs0Wbh6mjeEo3F9CH\nf2ex8x532Ll3sAbNrTBHKvRcUwfiThPDlY0sc8OcslSrzadn5XUPtE3gXHLfYH0HKikwCuQx\ngnJf8cRDRusoP2OdHrzniKGzkouWL42rCp4j7xosJQS6y3e+qXx5ZgxCXEWQRUmzRFFlWi0t\n2o8ofPzwn02h3FlgxS6EGW3CL09wTW0Fb7BLOGzU2N6oLr25CqGfoKySq4KVt8KqIVez3u/W\nPY5Q2ln0p6BQDUhVNVKT273QYL2kT90Zq4oz75krrFrkipmtYFlRcxyYeUeArNgOQ0pLjyIV\nE5Rfi8est7plO7+KYGWusGqRo2NyckXZpuwIkJMxEqWBlWTum8lb38LDakWwGNYrdLFC7Z0C\nQ2FvL0otU/5KrHaveUgd7JKOvZTJ685+wcpeYVXRfB1E3+rthRyluIp3Qdpbg/uo46Je0vGT\nJafLAsssQf2806GwaI/lOtyetk88JA4g7/I9I/GT/tpFaFqoRLagpDL7PMfQutfgveQKq0Zn\nYd2cKT9X38lOHTOKvGDZi4nhSiPLUUjh0U9RzfuxCq2w2us/vLt8gH0RUVx1XWRJEClmLbbd\nJn1DocuJGK68MTopYaaq3uiXvsLqIC2c0X53wcEopQ1lYObsJkQqZjSTnuDd7QbRAamAQFjJ\nx9Uu7iCdZBxL6SMBLNdOf8t+e6c5+/LVVbWwyUGeRtSzJf4ePBWzlV2asO2AFZjG15rbiEfn\ng+4q3nGU1ZHBnVGj1zgZtX9MAssIqVPIclbAeWZTmKztgBUw4Rsg1J4/punkUn3lSzxZybJb\n8aT0NqLcI3qtBWTJG9e5fpvGttWrvYDla1/iL9zJ1V37aM0o0+uui7orFSzZCT/HAVm5sgcE\ntu1y23gKtWonYNFbN+o4GFx5Mt4pnYi2y12ivxH1jjQDLG/95D7JzpUZuxLrU3XmnXw3hHnP\nO7lxrUltjSYF5hSudBu0XbSzQmspCse0egUqY62ffbRTahEAy167imBdq4Dla83v35mjzx/n\ngEMfVQm7ZPmDdz1UIxVpKSf0Gwu0q9ydm1vtX2fVHAofHfUND9ah8PMhmNnK1UyTfpb3hcs1\nGBCrTKrJV8KdYK5XtsI/x1AKQvDuKqJqjPXwX8jxmZACZ6Ixo/O+W6TuNYvwDhXhGrgzCWeC\nmN45owLUFJ6sSwmrg/UeDR/hRBYT8YGsktDSVX1L+vZn9kKiibbkNiWcCe7efLFVyE/hSBtq\nmV2cFSpOkJpCOzpyqLBg5DshSjZs1EHbNH9yg0UlK4W9zIFdO9/1Rid7AMvoOMyT6F7fYD04\ncgjvy27uigbri7BUvlTGdyj0j8AeA/GUBFhwZZJrJbviLWVnYCkHTN7fW3KUGU4MG45x05Jc\nO6eSK7UE767RkFCf5C40JqtWe9uPxKo9gGU53fV9X7YVrZL2W6WfbX0/m2C54yzXF5sFd13N\nHN9g01d/qx2DLG/GXYDlOsE1j5c9R0nd71oD22zawTKGwp5ykB37vVy5IzfpPJgkN1gB7QMs\nVXIPIP//3U80Q0noGGWt3Yx+Hmp8VoN3I6XdvpMsSg4tQoo/xU3kapdgSad3tnCc7D0loZnG\nx5V+Hmp+niW8e53FUqR3l67akVtJKoBek12CNZ9Oefp8ghFKQvUgff9PsKvui3nEPiVIN+pk\nFBNZbizguwTr46Td0wSw3Mljxg9b5+bcG9GI8eGidVLAwlU0WRHJ9wjW0inbPbWPU56Elgz6\nWfUyEND7JDPQkvenNmIkZW4aUoZYdx3MTTsEKzjY++NqI6GlOGmDwlXUwVBS691jYiNGj4v+\nzrhUHSybdgWWZ3rBK2VA8+3Vt2iBaxxZamKte0xrxHjXvYWVqoOtWnsCyzN0+SV3Fw6yrOnl\nXJ+BMGBb2ammVX8VGwArxby9DjsHSx9NtJ2+8lRCHDuNyMrCo40V6bNWuqd79D7+FXYkLXem\nlm68saHQ93P1N7g0tJkJZa5skdX3u/JBM0rr0L6ZhDNdyBX/PoYeTW4eOUCQU+w1eA8NgW6f\npd22X9v9u8tSiEqajUi10VWwHJX9BO8Gsu6RhiizBkWk9NaOcyDL5l2ANbvk/ZX7WlWmx5pP\ntbJQpJ3UuSOLz2ejD3PpLkzSv9aT0Ag0QaqkEj1c7bPHInQFFLL0LRpX6pFVM9jLtmCkbnAf\n4hks7bBRBzNbCh6utJ9PKMVXewLLDIUsabwDkJreTqytJEfZrkBeyuJwcB4KLWARwm97wTOX\nodyRCqNqTbEHsFQAXAcswJUZPd2Ni0LykGglK8aHMFjWoTCj5OJMUYvdLVi2cMZQiCuFozmt\nxtUSWRmFRXMVyCIs/ZMnhDQL5oEoTbbq7AOsXo9ebPs9jS11Qu7x1NivQ1eSLBFRnpGSi6vE\nUq1tsxuwJLn7K2eSpcMyT/i0IqSRyVO+qxrKPsWeJkGHI9J0ulJ5bQMs/2AnfVNzfAMad/Pp\nfZq7fMOGpST/eZqYy6eF6jVGvnQ7ux4KP3L4bnJli4mlbstZ+Lw3NBSGyzHIkpPL97zbC1GL\nC6UpoAyAdxu8T3JjYYxicscjHdgAWMo5v5rs/slspvSXIqVT0otwKXJ5oRRF5GjatMJ2BJZn\nZNH3aDTJ0wiB37+WWDGgj7C2MM3cZ0d1ehI6gKe7mjyy9KzJndh+wPJwFSRL2eZvKetp4/1u\nsW4P/819i1kNrADmyYc0V8avIqkaewPLcr4n7XUMhp+/cW1ksOHG2mLUVnEVLIc/zsJqYeZs\nxzjtByxXCGCL0s3Ey0FMaKaFyUAjJ4HlL8w/8rJItZtsdkdg2ZjQfl7OxEu6hIaamfR0L3JK\n52Zlrwgyg2cAAAfjSURBVCBimt91REs19A8E7zapQ174bM95fGhZw9XxbZb3Cq9NybB5cssu\nsh1fwp2D1VObXuo1bIk8Wa0jmS0Zuc6DKB4aXVaUBX55q7RzsOiDhX6OaBTjJYtQfNxxJ3mo\nBVkx5VeQv0X2DVbCb9ozW+HPEuSKeuTHdDQPNzf4qZmaBUuNb6UpqGiDGQGUVJMIUxUacTJG\nS5VMlnPnnsG62w9nUjPl9g1RXL2TsjZidCeeTJZ7X1Ww/n7G9QrF6ZKyXqEhN1crxCP0gZAd\nrMV/YlOwtFhFsF4HaV0K/1ICEUOhdePmAl1J7EPhfenJqU3B0WAVwbqI7nd6zXv+mtAf+eYj\nN6uI4D2xfIUscpXKqiJYRVex92nbXE3iHgoXshjteFURLGVdJnORJvIKTk2IOXhfPx5oscfa\ng7g9XJuryjHW7Tl+KhZj7VfsHq4dD9ScbjhKY93hxWJiN2rew7rzWJdxHqs7/RSZx9qzmvdw\nzzPve1bzHgKsddS8hwBrHTXvIcBaR817CLDWUfMeAqx11LyHAGsdNe8hwFpHzXsIsNZR8x5u\nFCxo90o46uVB2ozFapZgiKOE7Vrc0WFozxDAgiEWQwALhlgMASwYYjEEsGCIxRDAgiEWQwAL\nhlgMASwYYjEEsGCIxRDAgiEWQwALhlgMNX9hHlpHAAtiEcCCWASwIBYBLIhFAAtiEcCCWASw\nIBYBLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCCWASwIBZVBus627t0ort4Xw+fr+QXWkSphieD\n6nhT7AjVBesxN8y0/MCB21iFQ1HDk0F1vCl3hKqC9eg+1f4T3WP4Flh6INOaOHEWP6mKJ4Oq\neFPwCNUE6yqOn2pfxO3991f88JpjLX5SFU8GVfGm4BGqCZa4zAvQncSwwBPzj/AqrpzFT6ri\nyaAq3hQ8QjXBevRztdX/mHQSt/M7/uQ0UcmTQVW8KXiEKp8V1gVrlH/B6lxVBKuCNz3AItn6\n7fvXhXcIqQZWFW96gEXWi3cqoKIng5i96XcFljz/8vm/4zwc2nwP7zFn9cQidkOljtA6YE3n\nHE+ec6mqYLF6YlEtsLL9Wmco/BlnSW7+taRz1YnhggTzMa/iyaAq3vTljtA6YFWZr74MrfKa\nZvrYVG3mvYo3fbkjtA5Y/aHCufOrG40w9yU1PBlUx5tyR2glsF7jtXNmY4ORA/fpeRVPZkPs\n3pQ7QrgfC2IRwIJYBLAgFgEsiEUAC2IRwIJYBLAgFgEsiEUAC2IRwIJYBLAgFgEsiEUAC2IR\nwIJYBLAgFgEsiEUAC2IRwIJYBLAgFgEsiEUAC2IRwIJYBLAgFgEsiEUAC2IRwIJYBLAgFgEs\niEUAC2IRwIJYBLAgFgEsiEUAC2JRs2BprxcOvG3Yurs7XZ/jh+f11EXaM/Q6f97z+Ce9qv0g\nblo+7leMVhPAcu8WQpzHD2fCOoGhFMOSJdNSWt83xj5Fp+U7NHM8mnFEVxxYjiIOU0fVHfJf\nry7E8/PpZ3lD7cV4V221hQjY1YwjuoqAdRGPflhc7VICrPnTS8zjarfAZqbau5pxRNd0iG5H\nIY63+evtPR5NbwJ+f/0R3c/QaYy9xpT60onjUy7iNq6JdBW/n9Kk/K/D+C7/d5Zpjb/p3/M0\nlrroepjedKyslnH8vKz9b3jbtWJ5STXn+xj6hGX8K+mUU9tgXacDep2+/ojlVenveGf4eDt+\nNoypxy/dSyriNcJzEs9xv5L/NH4Ys5y/YI0vY/+SdZxflq6AdVtCt5tmeU615PsYOk1hWYWF\nXIupbbC6YSj7HX7n03H/Hb6Jce/xNWA3/u2m3b/Dt7MU9rw3jsH0HGLr+QdEpvUbFrDG8pZu\n5fez+3euz0fyCkiq5SmVlG8y9EHxbAyd21XbYIllhZDvcf3s+OvngHrGYuwWvgHQuPHy3vb3\nPqr6ok9T/mHZ03447AtYf4qpefexV8G6jKj9LoPw1/KUSsr3MXQYV9LZ0UjYOFjvCOr0eCxf\n++ft57j0E/Lf+Z9exDD4/Lwx+OzT8sv/fUvQGJZ6plmPEbXjeGagWlZKkHaNS43/7WgkbBys\n/mcIerqnHMpEgfV8I3B892vTPj1/KlhjB/SJxGlgjd3Zz45GwtbBeg8ol8McY53fZ1q3ZxRY\nw2puyxBl5E8G6zp2hFc5r5zDBKsflv067GgkbB+sXjvubrCOlhhrCKmHwPmbSQHLiLFUy/Pu\nU6+BNfRWU9ikWVZjrNM323v0fOxpJGwcrMN0HrecFf71D3eMdR1OwC7qWeFwEjidnPWW/OZZ\n4bfUQa6zwnGm4TPnoFqeTieUs8JPjoMwp1O3rLbB+p2Cor/p60UoX3WwLPNYYwcl5hDNyL9E\nXQ6wpPkoDaybmE9YVcsHMfaY8jzWN8eeRsLGwZpm3pc5gPPwRRphNLDGk8inVkQ3Hulpv56/\nn6bM/5xg9ddljUEtguvmIVe1/HeYti/5lmwvsauRsF2waqrCAqtDj7WnkRBgZWmMv14n/gV1\nh9GRf3XVkgJYOfpcPQzeBZitKstOFxXAytL1HcMdKvRX3ThlsScBLIhFAAtiEcCCWASwIBYB\nLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCC\nWASwIBYBLIhFAAtiEcCCWASwIBYBLIhFAAtiEcCCWPQ/soMHuKDfM4EAAAAASUVORK5CYII=",
      "text/plain": [
       "Plot with title \"\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "rdplot(Y[abs(X) <= 10], X[abs(X) <= 10], nbins = c(2500, 500), p = 4, col.lines = \"red\", col.dots = \"lightgray\", title = \"\", \n",
    "       x.label = \"Islamic Margin of Victory\", y.label = \"Female High School Share\", y.lim = c(0,70))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "![Meyersson ](media/Meyersson1.PNG)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## RD plots\n",
    "\n",
    "- scatter plots (as above) make it hard to discern 'jumps'\n",
    "\n",
    "- RD plots aggregate or 'smooth' data before plotting. \n",
    "\n",
    "    - local sample means (from bins) represented by dots\n",
    "    \n",
    "    - polynomial (or local linear) fits\n",
    "    \n",
    "Plenty of variation in bin and bandwidth selection and curve fitting based on these concepts."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAJYCAMAAACJuGjuAAAAM1BMVEUAAAAAAP9NTU1oaGh8\nfHyMjIyampqnp6eysrK9vb3Hx8fQ0NDZ2dnh4eHp6enw8PD////UNI3wAAAACXBIWXMAABJ0\nAAASdAHeZh94AAAY/ElEQVR4nO2di5aiOhBFI0IjbSv+/9eOPMUXJKQeSc3Za90Z2ulQHNgX\nQkBwNwAYcNoLAGwCsQALEAuwALEACxALsACxAAsQC7AAsQALEAuwALEACxALsACxAAsQC7AA\nsQALEAuwALEACxALsACxAAsQC7AAsQALEAuwALEACxALsACxAAsQC7AAsQALEAuwALEACxAL\nsACxAAsQC7AAsQALEAuwALEACxALsACxAAsQC7AAsQALEAuwALEACxALsACxAAsQC7AAsQAL\nEAuwALEACxALsACxAAsQC7AAsQALEAuwALEACxALsACxAAsQC7AAsQALEAuwALEACxALsACx\nAAsQC7AAsQALEAuwALEACxALsACxAAsQC7AAsQALEAuwALEACxALsACxAAsQC7AAsQALEAuw\nALEACxALsACxAAsQC7AAsQALEAuwALEACxALsACxAAsQC7AAsQALEAuwALEACxALsACxAAsQ\nC7AAsQALEAuwALEACxALsACxAAsQC7AgIJYD2bNjq9OLpFBCGfMJIZYO5hNCLB3MJ5QXqzk6\nV51ZS2SA+YSCYg39uXLo2tUsJfLBfEJpsWpXt7fbtXYNR4l8MJ9QWqzCtd10644cJfLBfEJp\nsabxjfVxDvOr3X5CabF+JrEKjhL5YD6hqFjVqTm73/tkW6/33s2vdvsJRcWax/qdK1qOEvlg\nPqHkONbl0jRV1Xfh61Wv7K92+wkx8q6D+YTpiBV5aTwzzCeUFKv9ca4cL+ZguME4gmK1Rb8z\nqoaZQCzbCIrVX8Zpm6LsZwKxbCMoVjE0vBbHK8Qyn1D87ob7TqssIZb5hIJiHd00eHUsIZb2\nAnAjKFbjfsapqyshlnEkhxvq2abzxlCV+dVuP6HoAOmlmqauPxDLNumMvAuXUMZ8Qoilg/mE\nEEsH8wkhlg7mE0IsHcwnhFg6mE8IsXQwnxBi6WA+IcTSwXxCiKWD+YQQSwfzCSGWDuYTQiwd\nzCeEWDqYTwixdDCfEGLpYD4hxNLBfEKIpYP5hBBLB/MJIZYO5hNCLB3MJ4RYOphPCLF0MJ8Q\nYulgPiHE0sF8Qoilg/mEEEsH8wkhlg7mE0IsHcwnhFg6mE8IsXQwnxBi6WA+IcTSwXxCiKWD\n+YQQSwfzCSGWDuYTQiwdzCeEWDqYTwixdDCfEGLpYD4hxNLBfEKIpYP5hBBLB/MJIZYO5hNC\nLB3MJ4RYOphPCLF0MJ8QYulgPiHE0sF8Qoilg/mEomL9nSrXUdV/XCVywXxCQbHao3tQspTI\nB/MJBcWqXfF76aeu58LVHCXywXxCQbEKd5mnL67gKJEP5hMKiuXctx/ISuSD+YTYY+lgPqFs\nH+t87afQx7KfUHK4oVycFR5blhLZYD6h7DhW3Y9jFdUJ41jaC8ANRt51MJ8wHbHcEp4SCWE+\noaRY7Y9z5XmcCYYbbCN5SacYLhQOM4FYthEdbmjudjVFf5kQYhlHdIC0/+taHK8Qy3xChUs6\nbVlCLPMJBcU6umlQ9FhCLO0F4EZQrMb9jFNXV0Is40gON9SzTeeNoSrzq91+QtEB0ks1TV1/\nIJZt0hl5Fy6hjPmEEEsH8wkhlg7mE0IsHcwnhFg6mE8IsXQwnxBi6WA+IcTy4uN4bsz9iMkl\npAZi+fDxptaoO11TS0gOxPLg4+3ScfdQJ5aQHojlAcQKB2L5sFRonsKhcA2I5cXSq4VZETOM\nXKDkgVhhUH07Ld2ERECsMCCWJxArEKKv0yackAaIFcDhmZhZJZqQDojly7tKMXKlmJAUiPWd\nxTHvm0O71UojISMQ6yuP3tSqPvvUSiIhJxDrG/P536Y5e9RKISEr5sQiewTSKJaXNeFqQSyS\nJnIlCB+u1c3K15hgsyAWSROxEqSPbfP36k6gWRCLpIlYCVKxwnZDYb8NsUiayJVQ8yrw9yEW\nSRPBEnRehbcIaAKxSJokWGKDfaNT/o30EzIDsT4S6tVjKNW3Qdj88wNifSLcq9ms54+/twhe\npsyAWO+ED0q5j2atnUhALJImCZZYIXwYfTnIMWu5OvQBsUiaJFjiK7uu/C0NglgdEOuFnTcr\nLJd4adbXBnuq5ATEeibuvtBpJuPf6LxzN0mwxGdIvPLppUEskibcJaiG24m8glhGxKK6QEji\n1XBz4OZvEVRKGgtiUd3SQOSVl1kQi6QJbwkisci88jELYpE0YS5B49U0r6i5QKwRE2JRdN7H\n/VW0o/MM1s2CWCRNEizxwsKraLOmWa7+VlSNDIBYfb3DfCCkvAV1rSJRjWSBWLf+WxNuniTz\nCmLxN0mwxLLa3SuSp6m9smIWxCJpkmCJZbUD5X5qwcoABsQiaZJgiQVcXq3tsiAWSZMESzy4\n71eYvFoxC2KRNEmwxG3qTlFdeP4IxOJtsqQ5OledWUv4MRwAWb36bhbEImkytOsblsNQUc1S\nImxxhqfJMJf5Mn+IRdJkaNc1rF3d3m7X2jUcJcIWp3+cDHeZb2KxF1ZGWqzCtd10644cJQKX\nR8Crb2Y51nOGBJAWa1qX6+tUqvMusdv4JtbdLK5RjhSIFutcdWununq06xr+TGIVxEu1B+aO\n+1Tl04euv0AZaVbKXsaKVQ7nVq7YNut+Mnhqzu73PtnW6713mRUm49XnMq4/FB+i1GAb16Ug\nUqzGlW2XrnE/2+3cfO+Ac0VLvFQ7kOo/fxHrFtnHI70Tg5xIsbq++FPfaY3LpWmqqu/C16te\nyYgld172oVKf0PfZuZ8xLVZ/GPQVa18JLoQOhH2p94/mhJFm7W7MTaRYx3GPdVkfPvCa7ZLY\nmW0j6NUnsx4JXxckIHzCXhH1sc7F+oBnTAkeRL1aFetlUZLeDQUQe1ZYjbuYkmqB3kuwIDzw\n/VZumXBpVtodpwBIxrFc9Uu0OB9LMCC7w9oQa7k0EGtHO+fdjeJes9JevZvlvv2zEa8kxWqS\nEUveq/cu+td/tuGV6P1Yl8K3J8YtFu/sfWq+JlRwnZdYseoiYITgsnEbVsxSBaCyDTfEUloq\nPiLFqsOGnhp34Voqf5R2Ds9VP4hly6zokXfS8atPJajR2oCrYgncJC0MwSUdBljFYpy3f+Hn\nhCK338sSfShcv5q8E0axDmonXd/FmvoSlsyKvh+r9LjFL64ExfwW13z1TueX2nwUy5JZsWKd\nWa4bE2/7x+Id+L71vM1XsRYP1fJ9F0/yRIp14rkhgXaFLpbvoHnFZHoEV//n8z99fKhW1oPw\n0Tf6ZXBW+BDroLuxDrfZlq8LYeWy4X9xVjh7ddA9vBwOsy3fl2I2678W65THWaHXY0EF8BHr\n2SyJpWIhtvN+Kv+oFuVbid0zebseRzHXOA6bh8JlBz5jr+IPhcl23t+WKQGvbvOxeC2hiUEH\ns2K9L1QKm+uxM1r9rRQWNRLJ22ZES7yJlcbGmt845/VbGWNWrNdDYSLbyk+sVJY2gmixfrsv\n2Sd5z3uKXj3erOL3a/kSfa1w7GGl/i2dZDaUp1jpLPBOIsVqXNE99TH57xWms5kglleT43hL\nKME3ob+VoEB9K7295H47ofoyx0F1SSe54YYl6qfvyxMJX7EyN4tsj7X6ILWYEgRob6KnoQ9v\nsdQXO4r/oY+lvoGex9T6xfESS33BI/gPzgoT2D5PY2reYqWw5LuJH8dK/dkNSWydtzE1v4RJ\nLPs+7I68T6S3bfzFSnDhfTEvVor/0x/8xUpw6f2IFautu9PBrWeKRpWIIskt4y9WmsvvQ6RY\n12J6CjLpt8AIxSKbEyEBYmVrVqRYpfvp9lVt7SqqJXotEUWiW+UQkDDRCFvYHnlPdaMEibX/\n4beaRH/9a+hctUmKlexhJESsTB9+GylW7fovU/yVvk++Ci8RQapeBT5BIsuH31oeeU/Xq8BH\nk/yPYg0j7yXx96FJ1lzCXgUmfN1lUS8MB4YHSO2I9WIW8aLwYFespL0KTZh2mE9QDTcUqd2P\nlfimCE2YeJx3iMS6pjbckPqGCBYr9UCvRIj1eOZaR2L3vKe+HYIT5mZWzB7ruPSK9Nkg0WIl\nvxXCEyYf6RmqPhYtsXNNfyPsECv9UEtMnhVmsAl2JMzLLIilw56EGcR6EH0oTPAxRjlsgF0J\ncwg2YVCsLFb/PrGyiDZAcyj8K0nv84sSK4+Vvy9hHtl6iPpYrfuJXpSNEr7ksfJ3JswjXAdV\n513qULhZJ5NVv3d1ZRKPTKxG6NkNm525XFY8xFpv8ui7n8gW6fZ9qTZPEyyv94FcEhKJdaS9\n02+vWPmcNu3vOWQSMbMBUitexYiVR8jMxFrvvOexynsiVmIeKePEapv+WTMnzy/Y/52q/lhW\n1Rv3Qpgf5bE/oBIl1rkYu1iFz2OM2uVtNuvf6jE/Lh0nVg5BY8Q6O9fvei61cx5m1Xf/hgdL\nXu9Grn4P0WupXl+Vk8PqnjF/0SpCrNa58zh5V2z7aFiMzyvt2Hhmqc9Svb55Ioe1/cD8ZfYI\nserFXqf2GMd68mB9nNNjqV5GHjLzKlas9NNGiHV0j0cXXT3ueafdY72Ktd0iKczfcRYhVsAe\nqOfexzoPKpL0sbL2ytrN1++bX1Cs+TkP/VD9ap8stPOe2Gr2wNbXRT6MWwseCm+3v7ofxyqq\nE+04VlIr2Q9TYn260ibYed9Rwo8MurJvmPrm5CzW8hETO2Yz/h063LA12yUhDXP0ythDBN69\nihog/XWu7k70ugHS80qDiBIeJLR+A6AQK6Hkw66ASqzFl+xpvQpZqpRWbwAUV/KTS04m1q3t\nryqXvheh95TYIFOvTD4B7PlZqeHt964T57y7Ud4lcvWKSKy00muJ1dCLldiaDYDmpra04muJ\ndbsUvo/A9SyRr1dUd0smtQLUxLpdfB/a7VciY68sivW8LLK3JjeL69DRJXL2iuz+7oTWgaZY\nlCWy9opuJaazFoyIlc4K3QXdSkxlRby+8id8DimIlffu6gaxPpGAWNl7RbkS01gXr0uRpVj5\ne0UqVhJrw4BYaazISChXoscK4X9PSv5imfCKdiVurhHqJy56LENuYh1seEUs1mHjClnwPW7h\ni/BWM3wemmIZ0Yp6JR7WvYFY6yWs7K06SFeicx5mURZ8J2OxLGlFLpbbPBhS1nvnfdNkItbB\nllbUK7ETi3SGoWQp1sGcVTfylXg3i3aGYXwonrxYBqXqoF+JmqspR7GMwiCWolkQKxkYEkKs\nJEooE5jQ66xOzaxPhSGWDmEJ/cah1A6GECsdghL6jpxrmQWx0oFFLKWD4ceqEEsHjkOh1i4L\nYiUER+f9pmPW55IQSweuhBBLu4QybAnlzYJYKWFHrC8FIZYOfAmlzYJYScGYUNgsiJUUnAlF\nzfpWDGLpALFImiRYQhnWhIJmfS0FsXQQ/s6MfCWIpYP4lxukC0EsHYyI9b0OxNJB+hvv4mUg\nlg7sCUXMWikCsXSAWCRNEiyhDH9CAbPWSkAsHQQS8psFsdJDIiG7WRArPSyItTp/iKWDSEJm\nsyBWgsgkZDVrfeYQSwehhIxmbcwaYukgJRafWRArSaQSQizpEsqIJeQya2u+EEsHuYRMZkGs\nNBEUi8Ws7XcWhM8TYhEgmJDDLI+XrITPFGIRIJmQwSyIlSoiCadHiUAswRLKSCR8PPyI2iyP\n+UEsHSRWouMyy2duEEsHYbFozYJY6SJ7KKTtwHvNC2LpINp57yA0y2tOEEsH+YRkZvnNR16s\n5uhcdWYtkQEKCYnE8pyNoFjDjrkc+pQ1S4l80EhIY1aiYtWubm+3a+0ajhL5oJKQ4mjoOwtp\nsQrXdtOtO3KUyAedhPFiebspLdZ0ovL+4HK3ZGeJfFBKGG2W9wykxfqZxCo4SuSDVsLIo6F/\na1GxqlNzdr/3ybZe772/lrC3C1MLFCVWgJaiYs2HOeeKNqCEwYOjXp4Is0J2d5LjWJdL01RV\n34WvV716KWGx26UYZ//RMKRhDiPvEIuWvWIFtctBLBwKidm3zwprlYVY6LwTs8eswDZ5iGUP\n5YThZoW2gFg6qCcMFCXYRIilg37CIFXC93AQS4cEEgbIsqNPBrF0SCKhry57+voQS4c0EnoZ\ns29wAmLpkErCbWt2DtRDLB2SSXhYF2fjn78DsXRIKOGaO/uvK0IsHfQSfriK8U2tmJu3IJYO\nagk/X3c9vLv14aOgOiJNEiyhjFbC73eKHBYmHSKtukEsLdITq+MwQlFIpEmCJZRJ7FDIUEek\nSYIllEmq885SRqRJgiWUMZ8QYulgPiHE0sF8Qoilg/mEEEsH8wkhlg7mE0IsHfgSJvKNJoil\nA1vCVL6DCbF04EqYzLfGIZYOEIukSYIllMGhkKRJgiWUQeedpEmCJZQxnxBi6WA+IcTSwXxC\niKWD+YQQSwfzCSGWDuYTQiwdzCeEWDqYTwixdDCfEGLpYD4hxNLBfEKIpYP5hBBLB/MJIZYO\n5hNCLB3MJ4RYOphPCLF0MJ8QYulgPiHE0sF8Qoilg/mEEEsH8wkhlg7mE0IsHcwnhFg6mE8I\nsXQwnxBi6WA+IcTSwXxCiKWD+YQQSwfzCSGWDuYTQiwdzCcUFevvVPUPnKvqP64SuWA+oaBY\n7dE9KFlK5IP5hIJi1a74vfRT13Phao4S+WA+oaBYhbvM0xdXcJTIB/MJBcV6ejjm+5My3ZKd\nJfLBfELssXQwn1C2j3W+9lPoY9lPKDncUC6OdceWpUQ2mE8oO45V9+NYRXXCOJb2AnCDkXcd\nzCeEWDqYTwixdDCfEGLpYD4hxNLBfEKIpYP5hBBLB/MJIZYO5hNCLB3MJ0xULJA9O7Y6vUiJ\nVBOsZTRWVC2IlVepbGpBrLxKZVMLYuVVKptaECuvUtnUglh5lcqmFsTKq1Q2tSBWXqWyqQWx\n8iqVTS2IlVepbGpBrLxKZVMLYuVVKpta5i/MAx0gFmABYgEWIBZgAWIBFiAWYAFiARYgFmAB\nYgEWIBZgAWIBFiAWYAFiARYgFmABYgEWIBZgQUasZipTF66o29dJYpYPsuCrMsFfoUMsE9Wm\nEhHrMj2uZHjrwPFlkr7avBH4qkzwV+gQy0S2qSTEuhTj0v654tL99Pc0SV7OVdMkYxWxCj1S\nmeg2lYBYjSunfbg73//8daenSfp680wZq4hV6BHKRLipJB68Vk/vnatc916n/v++xSQ1jWum\nScYqYhV6hDIRbioBsS63aWkXfz1/Qkrlzj/3zuZLQSb4K/QIZSLcVDJnhcJi9ZRvdTkQE0sq\nE8RaKfZ7u7V1d/AwI5ZcJoi1QdudH5sRa0AiU/piLR+3O/5dPBaxoF89L8/3ZaryAn+FJQKZ\nqDaVqFjD+cX1capxpTy3+SAWQ5UX+CssEchEtalED4WnfkTk3L1CejFJTeG6qw/9imCsMsJf\noUcuE9WmEhVLZuS97lZB2w/rmRl5l8uU0cj77XF8Ps4nzctJYtqin3XNW2WCv0KHXCaqTSUr\nVttfJ3+dpKab9bHhrrIoxlthLiOSiWpT4X4swALEAixALMACxAIsQCzAAsQCLEAswALEAixA\nLMACxAIsQCzAAsQCLEAswALEAixALMACxAIsQCzAAsQCLEAswALEAixALMACxAIsQCzAAsQC\nLEAswALEAixALMACxAIsQCzAAsQCLEAswALEAixALMDC/yzW+Kq20uPhmqvPov5bvHLt2D8J\ndr31y6OdbWI2mAduYtusdQEeD369umK7NcQyzvwGtdgHxZ7mR1XXPg+thljGeXm9wX7aeT9V\n9A/b96xLUTpZzAbz4Ems4Yfh3THXyhWn2/PU8qf+Lcn1wopy7Fn99Tu/c+XmV8C1R1cNv7j8\n9L5nW74jrjm6Yn4foREg1ngoXIrVP1T99Dy1/Gl4S/LPQ6yz++n//ukEO7n5mezOVW408PXT\nxTviKpFHxQvzf4s1crk9i1W2t2Z40dZjavnTeXxXw2PlLV9k1L8C7necLNt5rotPh+a/w7+c\nu19qy0+nkxkDsVx5GX6Y/hzOEl+nlj9V49tlHiuv7iy5e1MvZn6bmiyOmeOnQ/NqmlsnXyv0\nnicp/m+x7n8ci/Pjh8X7+d6nXj9f9rwv/ZGs7Pd9t9v1fCoXHbfxr0+fDv+5lxeXWcBWmjD6\nTfnnhhO5OLFux/tupx0HSsvZk+UvfvwUYllk2JTVcAyKFKu5d+pPw6vmf9yxOV9fFfr86WJu\nxjAZypNhi14Wnfc/P7He+1j93urYd5aG3/uo0Pzp3+2pj2Wr2z4AscZd1vG+u2lLP7Hezwr7\nkYZxzKHz5vKhN7X4dGh+Hv7lt/vxvstD590K42Zv+11W0/VyKj+xpv7ScuXd91/jnqd+XIFc\niPX06U9f7HluhceYfUZArG6bd9v4VNz3OJ5idSPv5d9z56iYr+v8dHdMzEe6qc3Tp/U4hD/8\nQnO8u2bLq/9arFisDZaTArF20I+itxX3G8azBmLtYLzu9+nWKzACsfbQ3PvbR+yv1oBYgAWI\nBViAWIAFiAVYgFiABYgFWIBYgAWIBViAWIAFiAVYgFiABYgFWIBYgAWIBViAWIAFiAVYgFiA\nBYgFWIBYgAWIBViAWIAFiAVYgFiABYgFWIBYgAWIBViAWICFf/yPc+gs43GwAAAAAElFTkSu\nQmCC",
      "text/plain": [
       "Plot with title \"\""
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "rdplot(Y, X, nbins = c(20,20), binselect = 'esmv', x.label = 'Running Variable', y.label = 'Outcome', \n",
    "       title = '', y.lim = c(0,25))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "The estimating equation:\n",
    "\n",
    "$$ Y_i(0) = f(X_i) + \\epsilon _i $$\n",
    "\n",
    "$$Y_i(1) = Y_i(0) + \\beta$$\n",
    "\n",
    "All in one:\n",
    "$$\n",
    "Y_i = f(X_i) +\\beta D_i + \\epsilon_i\n",
    "$$\n",
    "\n",
    "The function $f(X_i)$ (e.g. a polynomial) must be continuous at $X_0$ "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "The RD estimate is difference between weighted average of outcomes on the either side of the discontinuity. Fitting a high order polynomial can mean these weighted averages are driven by observations far from the threshold.\n",
    "\n",
    "Parametric (polynomial on full data) or non-parametric (local regression closer to cutoff) approaches?\n",
    "\n",
    "Andrew Gelman's [blog post from 8/13](http://andrewgelman.com/2013/08/05/evidence-on-the-impact-of-sustained-use-of-polynomial-regression-on-causal-inference-a-claim-that-coal-heating-is-reducing-lifespan-by-5-years-for-half-a-billion-people/) discusses this issue.  See also [Development Impact Blog](https://blogs.worldbank.org/impactevaluations/curves-all-wrong-places-gelman-and-imbens-why-not-use-higher-order-polynomials-rd)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "Chen et al (2013) \"Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy,” *PNAS*. \n",
    "\n",
    "**Policy discontinuity**:  North of China's Huai river free coal for heating is distributed in winter. None ti the south. Using RDD method find total suspended particulates (TSPs) air pollution 55% higher just North of river compared to just south. Estimates China’s coal-burning was reducing lifespan by 5 years for half a billion people. \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "![](media/ChinaRDD.png)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "subslide"
    }
   },
   "source": [
    "Are observations far from threshold affecting polynomial fit, driving results? Smaller estimates with linear fits?"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "![](media/ChinaRDD2.PNG)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## Fuzzy RD\n",
    "![](media/fuzzy.PNG)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "A fuzzy RD is like an RD with imperfect compliance or non-compliance.  Assignment to Treatment is as before summarized by indicator $I({X_i \\ge X_0})$ but compliance is now imperfect.  Like an Intent-to-Treat (ITT) estimator, the measured jump at the cutoff in the outcome needs to be rescaled.\n",
    "\n",
    "Structural equation:  $Y_i = f(X_i)+\\beta D_i +\\epsilon_i$\n",
    "\n",
    "2nd stage reduced form: $Y_i = f(X_i)+\\pi_2 I({X_i \\ge X_0} +\\xi_{2i}$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "First stage: $D_i = g(X_i)+\\pi_1 I({X_i \\ge X_0} +\\xi_{1i}$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "Standard IV: $ \\beta=\\frac{\\pi_2}{\\pi_1} $"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## Multi-Score RD design"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "Example: Third graders have to go to summer school if score below $X_{10}$ in reading test OR below $X_{20}$ in math test. Does summer school raise test performance next year?"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "![](media/RDD_2force.PNG)\n",
    "From [Zamosc 2012](http://nrs.harvard.edu/urn-3:HUL.InstRepos:9368030)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "### Polynomial Fit in 2 dimensions"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "![2d polyfit](media/RDD_2force2.PNG)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "With two forcing variables \n",
    "- The cutoff is now a boundary\n",
    "- Heterogenous effects, depending on what segment of the boundary\n",
    "- with right assumptions (lots of data), can identify one treatment effect for every point b on boundary. Treatment effect curve $\\tau(b)$\n",
    "- Average Treatment Effect (ATE) would average over boundary"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## Geographic RD designs \n",
    "\n",
    "- Latitude, Longitude forcing variables. Collapse to one-dimensional distance (e.g. 'distance to border') problematic."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "![](media/2d_distance.PNG)\n",
    "Keele & Titiunik (2014)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## A spatial RDD Application:\n",
    "\n",
    "### Dell (2010) Persistent Effects of Peru's Mining *Mita*\n",
    "\n",
    "Dell, Melissa. 2010. “The Persistent Effects of Peru’s Mining ‘Mita.’” *Econometrica* 78 (6): 1863–1903.\n",
    "\n",
    "Continue to slide notes.\n"
   ]
  }
 ],
 "metadata": {
  "hide_input": false,
  "kernelspec": {
   "display_name": "R",
   "language": "R",
   "name": "ir"
  },
  "language_info": {
   "codemirror_mode": "r",
   "file_extension": ".r",
   "mimetype": "text/x-r-source",
   "name": "R",
   "pygments_lexer": "r",
   "version": "3.5.3"
  },
  "nteract": {
   "version": "0.11.6"
  },
  "varInspector": {
   "cols": {
    "lenName": 16,
    "lenType": 16,
    "lenVar": 40
   },
   "kernels_config": {
    "python": {
     "delete_cmd_postfix": "",
     "delete_cmd_prefix": "del ",
     "library": "var_list.py",
     "varRefreshCmd": "print(var_dic_list())"
    },
    "r": {
     "delete_cmd_postfix": ") ",
     "delete_cmd_prefix": "rm(",
     "library": "var_list.r",
     "varRefreshCmd": "cat(var_dic_list()) "
    }
   },
   "types_to_exclude": [
    "module",
    "function",
    "builtin_function_or_method",
    "instance",
    "_Feature"
   ],
   "window_display": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}