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Abstract

The theory of data-flow analysis of computer programs has been
extensively studied. The increasing need for dataflow analysis in the
automatic parallelization of computer programs motivates the devel-
opment of mathematical foundations for this field. We present a new
approach to program dataflow analysis that incorporates partition lat-
tices and the Sierpinski topos.
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Chapter 1

Introduction

Richard Dedekind and Georg Cantor developed set theory in the 1870s be-
fore the first inklings of computer technology had been developed. Set theory
has as its basic objects sets. This stands in contrast to most branches of
mathematics, including those related to computer science, for which the
fundamental objects are functions.

In computer science, functions tend to be a better core primitive of study
then sets. Hence the influx of functional programming languages into the
computing industry. Similarly, sets are often better treated as special cases
of boolean-valued functions than primitive objects in their own right. This
suggests that the Sierpinski topos Sets→, which takes functions rather than
sets as its basic objects, is a better foundation for most applications than
set theory.

A second issue with the traditional set-theoretic approach is its overre-
liance on subobjects to the detriment of the categorical dual logic of quo-
tients. Several authors, including David Ellerman and Giancarlo Rota, have
emphasized the dual role that partitions play to subsets in category theory,
arising from the duality between monomorphisms and epimorphisms. [1] [2]

We combine these two ideas to consider the categorically dual logic of
quotients in Sets→. The resulting construct can be used to define dataflow
relations for any function that describe how functions map information from
one location in a structure to another. Combined with our understanding
of information locality using set partitions, this leads to our theory of local
computation.

In order to study this categorically dual logic of quotients in Sets→, we
found it necessary to introduce a new kind of adjunction. In set theory,
every function f : A→ B casts to an adjunction between power sets, which
can be used to define subobjects in Sets→. We generalize this to form a
categorically dual adjunction between partition lattices which can be used
to describe quotients in Sets→. This fundamental adjunction is the basis of
our computational framework for handling quotients in Sets→.

3



Chapter 2

Functional dataflow programming

2.1 The idea of functional dataflow programming
In physics, motion is modeled by changes in the location of particles in space
over time. In computing, change refers to the movement of bits of data in
some information space over time.

Space Place Atoms Change
Physics Physical space Locations Points Motion

Computing Information space Partitions Bits Dataflow

The word “topos” means a place or location. The topos theoretic for-
malism in this paper is is all about locations and data movement between
them. To get started, we need a formal model of locations in information
spaces.

In physics it suffices to use the classical logic of subsets. In this con-
text, locations are simply sets of points in some ambient space. This does
not suffice for modeling computation, however. If we instead switch to its
categorically dual logic of partitions, then places in an information space
can be modeled as partitions. Furthermore, if we use the lattice Part(A)d

suggested by Ellerman [1], then the atoms of this lattice are precisely bits
of information. This gets us closer to the common knowledge that the basic
building blocks of an information space are bits of information rather than
points in space.

Physics would hardly attract the interest it does if physicists only de-
scribed where things are without saying anything about how they move from
place to place. By the same token, partition lattices are not very interesting
without some additional algebraic semantics to describe the motion of data
between them. We provide those semantics for dataflow using the topos
Sets→. In this model a dataflow relation is simply an ordered pair (P, Q)
describing that the information in P maps to the information in Q so that
the bits in P together determine all the bits in Q.
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2.2 Four definitions of functional dataflow
The fundamental objects of this study are functional dataflow relations in the
topos Sets→. These dataflow relations have four equivalent formulations:

1. an equivalence class of epimorphisms in the topos Sets→.

2. an ordered pair of partitions (P, Q) that preserves equality.

3. an ordered pair (P, Q) determined by the partition adjunction

4. an internal relation in Sets→ defined by the pullback of an epimor-
phism along itself.

A series of theorems will now be presented, demonstrating that these
four different definitions are equivalent to one another.

2.2.1 Definition using topos theory.

In category theory it is customary to represent subobjects of an object c by
an equivalence class of monomorphisms into c, where equivalence is defined
up to an output isomorphism. The categorically dual concept is a quotient
object of c.

Definition 2.2.1. let C be a category and c ∈ Ob(C) be an object. Then
a quotient object of c is an isomorphism class of epimorphisms m : c → x
where two epimorphisms m : c → x and n : c → y are equivalent provided
that there is an intermediate output isomorphism o : x → y such that
o ◦ x = n.

This leads to our first definition of a functional dataflow relation, which
combines the topos theory of Sets→ with the categorical definition of quo-
tients.

Definition 2.2.2. let f : A → B be a function then a functional dataflow
relation of f is a quotient object of f in the topos Sets→.

As partitions are equivalence classes of epimorphisms in Sets, functional
dataflow relations are the corresponding notion in Sets→.

2.2.2 Definition using partition logic

The topos theoretic definition of functional dataflow may not be the most
suitable definition for computations because it requires an equivalence class
of objects. In order to do computations on a given object, it is typically
necessary to introduce canonical representatives for elements. This leads us
to form a canonical representation of dataflow relations using ordered pairs
of partitions.
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Definition 2.2.3. let f : A → B be a function, P a partition of A, and
Q a partition of B then (P, Q) is a dataflow relation for f provided that
a =P b⇒ f(a) =Q f(b).

We will now demonstrate the equivalence of the definitions provided by
topos theory and partition logic.

Definition 2.2.4. let d : (f : A → B) → (g : C → D) be a morphism in
Sets→ with components i : A → C and o : B → D. Let =i be defined by
{(a, b) : i(a) = i(b)} and let =o be defined by {(a, b) : o(a) = o(b)}. Then
the ordered pair (=i, =o) is the kernel Ker(d) of the morphism d.

Theorem 2.2.1. Let d : (f : A → B) → (g : C → D) be a morphism in
Sets→ with components i : A→ C and o : B → D.

Then the kernel Ker(d) forms a functional dataflow relation of f .

Proof. let a, b be elements of A and suppose that a =i b then i(a) = i(b).
Applying g to both sides of this equation yields g(i(a)) = g(i(b)). By the
commutative diagram above, we have that g(i(x)) = o(f(x)) for all x ∈ A
so we can replace g ◦ i in these equations with o◦f to get o(f(a)) = o(f(b)).
Rewriting this in relational format yields f(a) =o f(b). So that a =i b
implies that f(a) =o f(b).

It follows that every morphism d in Sets→ yields a functional dataflow
relation Ker(d) determined by the ordered pair of kernels of the compo-
nent functions of d. In the other direction, we can extract an epimorphism
in Sets→ from a functional dataflow relation (P, Q) using the projection
morphism π(P,Q).

Definition 2.2.5. let f : A→ B be a function with dataflow relation (P, Q)
and quotient function f

(P,Q) then we can define a morphism of functions by
d : (f : A→ B)→ ( f

(P,Q) : P → Q) with component projections πP : A→ P
and πQ : B → Q.

The projection mapping takes any a ∈ A to the unique class in P such
that a ∈ P . The quotient function is defined by projection and choice. The
application of f

(P,Q) to an equivalence class C in P proceeds by selecting
c ∈ C and then taking πQ(f(c)). By the definition of functional dataflow
relations, πQ(f(c)) is always equal for any choice of c ∈ C.
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Theorem 2.2.2. the projection mapping defined by definition 2.2.5 is a
morphism in Sets→ with diagram:

Proof. let a ∈ A then we can apply πQ and f to a to get πQ(f(a)). In the
other direction, for a given a the projection πP maps it to an equivalence
class C in P that contains it. The quotient f

(P,Q) maps C to πQ(f(c)) for
any choice of a value c ∈ C and by the definition of functional dataflow
relations it produces the same result for any choice including for a ∈ C. It
follows that πQ(f(c)) = πQ(f(a)) for any c ∈ P so that f

(P,Q) ◦πP and πQ ◦f
coincide.

Given an epimorphism class with representative d in Sets→ we can form
an ordered pair of partitions by Ker(d). Given an ordered pair of partitions
(P, Q) we can produce an epimorphism in Sets→ by π(P,Q). It follows that
the two concepts coincide.

2.2.3 Definition using adjunctions

In classical set theory, we were introduced to a fundamental adjunction
between set images and inverse images determined by the functors ℘ and
℘−1. A categorically dual adjunction exists between partition images and
inverse images.

Definition 2.2.6. Let f : A→ B be a function and let P be an equivalence
relation on A. Then the partition image f(P ) is the equivalence relation
closure cl(R) of the image relation {(a, b) : ∃x, y : f(x) = a, f(y) = b}.

Definition 2.2.7. Let f : A→ B be a function and let Q be an equivalence
relation on B. Then the partition inverse image f−1(Q) is the equivalence
relation defined by {(a, b) : f(a) =Q f(b)}.

The partition image and inverse image form monotone maps of partition
lattices f : Part(A) → Part(B) and f−1 : Part(B) → Part(A) such that
f is a lower adjoint and g is an upper adjoint of this adjunction. Partition
images and inverse images define the minimal and maximal partitions that
can be used on either side of a functional dataflow relation, so that leads to
our third definition by adjunctions.
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Definition 2.2.8. Let f : A→ B be a function, then (P, Q) is a functional
dataflow relation provided that either P ⊆ f−1(Q) or f(P ) ⊆ Q where ⊆ is
the inclusion of equivalence relations.

We will now demonstrate the equivalence of the definition using adjunc-
tions to the definition using ordered pairs of partitions.

Theorem 2.2.3. let f : A → B be a function with P a partition of A
and Q a partition of B. Then the following three conditions are logically
equivalent:

1. ∀a, b : a =P b⇒ f(a) =Q f(b).

2. P ⊆ f−1(Q)

3. f(P ) ⊆ Q

Proof. suppose that P ⊆ f−1(Q) then by definition 2.2.7 the inverse image
f−1(Q) is equal to {(a, b) : f(a) =Q f(b)}. So by the definition of inclusion,
this means that ∀a, b : a =P b ⇒ f(a) =Q f(b), which is precisely the
statement of condition one. So conditions (1) and (2) are logically equivalent.
Condition (3) implies condition (1) for consider (a, b) ∈ P ⇔ a =P b then
f(P ) ⊆ Q implies that (f(a), f(b)) ∈ Q⇔ f(a) =Q f(b).

Lastly, condition (1) implies condition (3). Suppose that condition (1)
is true, then let R be equal to {(f(a), f(b)) : a =P b}. Then condition one
says that R ⊆ Q. R need not be an equivalence relation. However, f(P ) is
the equivalence closure of R, which means that it is the smallest equivalence
relation that contains R. It follows that if Q is an equivalence relation and
it contains R then it must also contain cl(R). Therefore, f(P ) ⊆ Q and
condition (1) implies condition (3). It follows that all three conditions are
equivalent.

This theorem is the last piece needed to demonstrate the equivalence of
our three definitions. We can now speak of functional dataflow relations as
defined by equivalence classes of epimorphisms in Sets→, ordered pairs of
partitions preserving equality, or by pairs of partitions determined by the
adjunction between partition images and inverse images. That partition
images and inverse images form an adjunction easily follows.

Corollary 2.2.1. let f : A → B be a function then the partition image
f : Part(A)→ Part(B) and inverse image f−1 : Part(B)→ Part(A) form
a monotone Galois connection from A to B with f as a lower adjoint and
f−1 as an upper adjoint.

This corollary demonstrates that partition images and inverse images
form an adjunction. Partition images and inverse images are useful as a
computational tool for handling functional dataflow relations.
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2.2.4 Definition using internal relations

Let d : (f : A→ B)→ (g : C → D) be a morphism in Sets→. Then we can
form the kernel pair of d by pulling the object back upon itself. First, form
the product function f2 and its projection morphisms π1 and π2. Then form
the equalizer of d ◦ π1 and d ◦ π2 to get an internal relation R on f , which
represents a functional dataflow relation.

In the other direction, given a subobject R of f2, we can get its quotient
object by forming a coequalizer of π1 ◦ i and π2 ◦ i to get a projection
epimorphism. This demonstrates the equality of this definition with our
first definition. By transitivity, this indicates that all four definitions are
equivalent.

• given an internal dataflow relation R in Sets→ you can form an equiv-
alence class of epimorphisms from it by taking the coequalizer of its
projection morphisms

• given any equivalence class of epimorphisms in Sets→ that equiva-
lence class can be converted into an internal relation R by taking the
pullback of any epimorphism by itself

The dataflow model provided by partition adjunctions is essential be-
cause it enables more efficient computations. On the other hand, the singu-
lar importance of the definition of dataflow relations by internal relations is
that we can use it to relate dataflow relations to the logic of Sets→ and its
object of truth values Ω.

Let i : R → f2 be an internal relation of the function f . Then by
the fact that Sets→ is a topos we can use its subobject classifier to get
a characteristic arrow χi : f2 → Ω that classifies R within the subobject
lattice of the product function f2.

χi : f2 → Ω

Then this equivalent definition of dataflow relations enables us to use
logical operators on Ω on dataflow relations. The logical connectives and :
Ω2 → Ω and or : Ω2 → Ω recover the lattice operations on dataflow relations.
The operation fill : Ω→ Ω takes 0 to 0, 1/2 to 1, and 1 to 1 on the inputs
of Ω and is the identity on the outputs. When applied to a functional
dataflow relaton (P, Q) it fills it up to produce an injective dataflow relation
(f−1(Q), Q). This enables the use of Sets→ logic on dataflow relations.
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2.3 Duality of set and partition images
We saw that in Sets, there exists a category-theoretic duality of sets and
partitions. By transferring settings to the topos Sets→, we now have a
category-theoretic duality between set images and partition images.

• let f : A → B be a function with S ⊆ A and T ⊆ B then (S, T ) is a
subobject of f provided that f(S) ⊆ T or S ⊆ f−1(T ).

• let f : A→ B be a function with P a partition of A and Q a partition
of B then (P, Q) is a quotient object of f provided that f(P ) ⊆ Q or
P ⊆ f−1(Q).

The dual concepts of monomorphisms and epimorphisms in Sets→ can
be defined by a dual pair of adjunctions.

• let f : A → B be a function then ℘(f) : ℘(A) → ℘(B) and ℘(f) :
℘(B)→ ℘(A) forms an adjunction between ℘(A) and ℘(B).

• let f : A → B be a function then Part(f) : Part(A) → Part(B) and
Part(f) : Part(B)→ Part(A) forms an adjunction between Part(A)
and Part(B).

The category-theoretic duality between monomorphisms and epimor-
phisms can be used to infer the duality between set images and partition
images in the topos Sets→.

2.4 Properties of partition images

2.4.1 Categorical characterization

Partition images can be defined by coequalizers. Let f : A→ B be a function
and let R be an equivalence relation on A. Then there exist projections π1
and π2 on R that map to A.

These produce a composite pair of parallel morphisms on the equivalence
relation R:

We can now form the coequalizer of the parallel morphisms f ◦ π1 and
f ◦ π2 from P to B. This produces the following coequalizer diagram in
Sets.
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The coequalizer of f ◦π1 and f ◦π2 is the pair (Q, q) defined by a quotient
object and its epimorphism q : B → Q. We canonically identify partitions
by equivalence classes of epimorphisms, so the partition on B is isomorphic
to the equivalence class of epimorphisms in which q belongs. In other words,
the partition on B produced by the partition image on R is equivalent to
the kernel ker(q).

The coequalizer in Sets takes a parallel pair of morphisms f : A → B
and g : A → B and it returns the equivalence relation generating by pairs
{(f(x), g(x)) : x ∈ A}. Then in the case of the parallel pair of morphisms be-
tween R and B this yields {(f(π1(x, y)), g(π2(x, y))) : (x, y) ∈ P} which can
be simplified to {(f(x), f(y)) : (x, y) ∈ P} which is precisely the definition
of the equivalence relation generated by the partition image.

The partition inverse image has its own categorically dual characteriza-
tion using equalizers. Let f : A → B be a function, P be a partition of
B, then the function f and the projection πP form the following morphism
sequence in Sets:

Then we can compose these two functions to get πP ◦ f . Then the
partition inverse image of f with respect to P is simply the kernel of πP ◦ f
denoted ker(πP ◦ f). The kernel itself has a categorical characterization
using equalizers of diagrams of the following form.

Then the equalizer of πP ◦f ◦π1 and πP ◦f ◦π2 is the pair (R, r) in which
R denotes a subobject of A2 which corresponds to an equivalence relation.

The equivalence relation R is embedded into A2 by the monomorphism
r. This characterization is dependent upon the representation of partitions
as equivalence relations. To convert R back into a quotient object we can use
the coequalizer of its projections, which generates a quotient object for the
partition inverse image. Taken together, this demonstrates that equalizers
can generate partition images and coequalizers can generate partition inverse
images.
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2.4.2 Upper and lower bounds

Let Part(A) be the partition lattice of a set A. Then we will use A0 to
denote the lower bound and A1 to denote the upper bound of Part(A).

Definition 2.4.1. let A be a set then A0 = {(a, b) : a = b} and let A1 = A2.
Then A0 is the equivalence minimal partition of A and A1 is the equivalence
minimal partition of A.

Then the partition image and inverse image can be applied to the upper
and lower bounds of the partition lattices for any function f : A→ B.

• f(A0) = B0 the partition image of the smallest partition produces the
smallest partition

• f−1(B1) = A1 the partition inverse image of the largest partition pro-
duces the largest partition

• f(A1) the partition image of the largest partition is the image collaps-
ing partition which equates two elements of B provided that they both
belong to the image of the function f .

• f−1(B0) the partition inverse image of the smallest partition is the
kernel of f denoted =f

Two special equivalence relations come into focus as a consequence of
these applications of the partition image and inverse image function.

• ker(f) is the equivalence relation {(x, y) : f(x) = f(y)}

• icp(f) is the equivalence relation {(x, y) : x ∈ Im(f) ∧ y ∈ Im(f)}

These two partitions can now be used to establish upper and lower
bounds of the partition images and inverse images of a function.

Proposition 2.4.1. let f : A → B be a function with P a partition of A
and Q a partition of B.

• f(P ) ⊆ icp(f)

• ker(f) ⊆ f−1(Q)

Of these results, the more interesting of them is that ker(f) ⊆ f−1(Q).
This demonstrates that the partition inverse image of a partition Q always
produces a partition f−1(Q) which together with Q produces an injective
quotient.
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2.4.3 Lattice theoretic properties

Let f : A → B be a function then the partition image and inverse image
functions are adjunctions of partition lattices Part(A) and Part(B). This
means they have limit/colimit preserving properties common to all adjoints.

Theorem 2.4.1. partition images are join homomorphisms

Proof. let f : A→ B be a function and let P and Q be partitions of A. By
the monotonicity of partition images f(P )∨f(Q) ⊆ f(P ∨Q). It remains to
show the converse f(P ∨Q) ⊆ f(P )∨ f(Q). The left-hand side f(P ∨Q) is
generated by the image of all pairs in P ∨Q. Such a pair (x, y) is determined
by a sequence (x, c1, ...cn, y) of terms that are consecutively P -equal or Q-
equal.

The image of (x, c1, ...cn, y) under f is (f(x), f(c1), ...f(cn), f(y)). Then
each pair in (x, c1, ...cn, y) is consecutively either P -equal or Q-equal. It fol-
lows that the image (f(x), f(c1), ...f(cn), f(y)) is consecutively either f(P )
equal or f(Q) equal so that f(x) is equal to f(y) with respect to f(P )∨f(Q).

The left-hand side f(P∨Q) is the minimal equivalence relation generated
by all pairs in P∨Q. The relation generated by all pairs in P∨Q is contained
in f(P )∨f(Q), and f(P )∨f(Q) is an equivalence relation so it must contain
f(P ∨Q). Combining f(P )∨f(Q) ⊆ f(P ∨Q) with f(P ∨Q) ⊆ f(P )∨f(Q)
yields f(P ∨Q) = f(P ) ∨ f(Q).

Partition images are not in general meet homomorphisms. They are
meet homomorphisms when the function f : A→ B is injective.

Lemma 2.4.1. injective relation images preserve transitivity

Proof. let f : A → B be an injective function and suppose that R is a
transitive binary relation on A. Let (x, y) ∈ f(R) and (y, z) ∈ f(R). There
there exist values a, b, c, d such that (a, b) ∈ R, (x, y) = (f(a), f(b)), (c, d) ∈
R, and (y, z) = (f(c), f(d)).

We have that f(b) = f(c) and since f is injective this implies that b = c.
Substituting into the previous equations we have (a, b) ∈ R and (b, d) in R.
This implies that (a, d) in R and now taking the image with respect to f
this yields that (f(a), f(d)) ∈ f(R) which is the same thing as (x, z) ∈ f(R).
So the image relation f(R) is transitive.

This lemma aids in the computation of injective partition images.

Corollary 2.4.1. let f : A→ B be an injective function then the partition
image of a partition P can be computed directly from the relation image of
P without computing transitive closures.

Theorem 2.4.2. partition images of injective functions are meet homomor-
phisms
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Proof. by the monotonicity of partition images f(P ∩ Q) ⊆ f(P ) ∩ f(Q).
We want to show that f(P )∩ f(Q) ⊆ f(P ∩Q). Let (b1, b2) ∈ f(P )∩ f(Q).
Then by corollary 2.4.1 there exists (g1, g2) ∈ P and (h1, h2) ∈ Q such
that (f(g1), f(g2)) = (b1, b2) and (f(h1), f(h2)) = (b1, b2). By the fact that
f is injective this implies that (g1, g2) = (h1, h2). It follows that (g1, g2) =
(h1, h2) ∈ P∩Q. Then since (g1, g2) ∈ P∩Q and (b1, b2) = (f(g1), f(g2)) this
implies that (b1, b2) ∈ f(P ∩Q). It follows that f(P )∩f(Q) ⊆ f(P ∩Q).

Corollary 2.4.2. partition images of injective functions are lattice homo-
morphisms

Theorem 2.4.3. let f : A → B be an injective function then Part(f) :
Part(A)→ Part(B) is the lattice embedding that embeds Part(A) into the
principal down set generated by icp(f).

Proof. f : A→ B is an injective function so it has an underlying bijection f :
A→ Im(f). Then since this is a bijection, it produces a bijection between
partition lattices Part(A) → Part(Im(f)). Any partition in Part(Im(f))
can then be extended to partition on Part(B) by adding on all non-image
elements as distinguished members.

Then this mapping from Part(Im(f)) to Part(B) is an injection, and so
by composition the produced mapping from Part(A) to Part(B) defined by
partition images is also injective. As the image of this extension mapping is
all the image collapsing partitions, which are partitions that are contained
in icp(f), it follows that the partition image function embeds Part(A) into
the principal down set generated by icp(f).

Theorem 2.4.4. partition inverse images are meet homomorphisms

Proof. let f : A→ B be a function then by definition f−1(P ∩Q) = {(x, y) :
f(x) =P f(y) ∧ f(x) =Q f(y)}. This can be turned into an intersection
{(x, y) : f(x) =P f(y)} ∩ {(x, y) : f(x) =Q f(y)}. Then by expressing this
again in terms of inverse images we get f−1(P ) ∩ f−1(Q). It follows that
f−1(P ∩ Q) = f−1(P ) ∩ f−1(Q) which implies that f is a meet homomor-
phism.

Theorem 2.4.5. partition inverse images of surjective functions are join
homomorphisms

Proof. let f : A → B be a function with P and Q partitions of B. Let
a1, a2 ∈ A then for a1 =f−1(P ∨Q) a2 to be the case this implies that
f(a1) =P ∨Q f(a2). In other words, there is a sequence (f(a1), b1, ...bn, f(a2))
in B such that each term is consecutively P equal or Q equal. We have that
f is surjective, so each of these terms in this sequence has at least one inverse
image.

Select a choice of fibers from this sequence (a1, b′
1, ...b′

n, a2). Then pairs in
(a1, b′

1, ...b′
n, a2) are consecutively either f(P ) or f(Q) equal so this implies
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that a1 is equal to a2 with respect to f−1(P ) ∨ f−1(Q). It follows that
a1 =f−1(P )∨f−1(Q) a2 so that f−1(P ∨ Q) ⊆ f−1(P ) ∨ f−1(Q). The reverse
inclusion holds by the monotonicity of partition inverse images, so f−1(P ∨
Q) = f−1(P ) ∨ f−1(Q).

Corollary 2.4.3. partition inverse images of surjective functions are lattice
homomorphisms

Theorem 2.4.6. let f : A → B be an injective function then Part(f) :
Part(A)→ Part(B) is the lattice embedding that embeds Part(B) into the
principal upper set generated by ker(f).

Proof. let P be the set of equivalence classes on ker(f), then any partition
on P generates an equivalence relation on A by taking the union of all
members of equivalence classes in P contained in an equivalence class in A.
Each of the resulting union equivalence relations is bigger than ker(f) as
they are contained by equating its members by the equivalence relation on
P . This produces a natural mapping between Part(Q) and the principal
upper set generated by ker(f).

We will see that the partition inverse image can be made to filter through
this function from Part(Q) → Part(B). There is a bijective mapping that
maps any set on B to a set on Q by taking fibers. So it follows that this
maps any partition on B to a partition on Q by the same process. Then by
filtering through the inflation of Q partitions into A partitions, this produces
an injective embedding of Part(B) into the principal upper set generated
by ker(f).

If f : A → B is a function then Part(f) : Part(A) → Part(B) and
Part−1(f) : Part(B) → Part(A) both are functions whose kernels and
images have been fully characterized. In both cases, the kernels and images
of the partition image and inverse image functions are described using the
partitions ker(f) and icp(f).

• let f : A → B be a function then ker(Part(f)) has that P is equal
to Q provided that P ∨ ker(f) = Q ∨ ker(f). The image of f is all
partitions on B that are less than icp(f).

• let f : A→ B be a function then ker(Part−1(f)) has that P is equal
to Q provided that P ∩ icp(f) = Q ∩ icp(f). The image of Part−1(f)
is all partitions on A that are greater than ker(f).

Let f : A → B be a function, then Part(f) : Part(A) → Part(B)
and Part(f)−1 : Part(B) → Part(A) are adjoints of one another. As is
the case for every monotone Galois connection, Part(f) and Part(f)−1 are
associated to a closure operator f−1 ◦ f and an interior operator f ◦ f−1.
These closure and interior operators on partition lattices are discussed next.
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2.4.4 Closure and interior operators

Let f : A → B be a function then for any given partition P representing
some set of bits of information, then that partition determines a specific
collection of bits of information in the output denoted f(P ). However,
the lossy nature of an irreversible function f means that the same output
collection of information may be determined by some subset of the bits of
information in P .

This leads to the notion of the injective equivalence closure f−1(f(P )).
The injective equivalence closure takes a given piece of information in the
input, and it determines the minimal subset of information needed to deter-
mine the functions partition output. So for example, f−1(f(A0)) is equal to
the kernel of f .

Definition 2.4.2. let f : A → B be a function with P a partition of A.
Then the injective equivalence closure of P is f−1(f(P )).

The interior operator of the partition adjunction f ◦ f−1 on the other
hand deals with the relationship between the partition image and the set
image of a function Im(f). As the partition image is determined by the
applications of the function f it can only ever equate elements of the image
of the function.

Definition 2.4.3. let f : A → B be a function with Q a partition of B.
Then the image equivalence interior of Q is f(f−1(Q)).

The following special identities make it easy to compute the closure and
interior operators of the partition adjunction.

Theorem 2.4.7. let f : A→ B be a function with P a partition of A and
Q a partition of B then

1. f−1(f(P )) = P ∨ ker(f)

2. f(f−1(Q)) = Q ∩ icp(f)

Proof. (1) let (a, b) ∈ P then f−1(f(a, b)) is the set f−1(a)× f−1(b) which
is the cartesian product of the fibers of a and b. Then relations of the form
f−1(a) × f−1(b) generate f−1(f(P )). Let (x, y) ∈ f−1(a) × f−1(b) then
(x, a, b, y) is a sequence with the first pair of terms equal by f , the second
equal by P , and the third equal by f again so x and y are then equal by
ker(f) ∨ P . Thusly, f−1(f(P )) ⊆ P ∨ ker(f). The dual inclusion holds by
the properties of closures and the bounds on partition images.

(2) let (a, b) be elements of the image of f such that a and b are Q
equal. Then they have fibers (x, y) such that f(x) = a and f(y) = b. Then
(x, y) is in f−1(Q) and furthermore (a, b) is in f(f−1(Q)). So Q ∩ icp(f) ⊆
f(f−1(Q)). The dual inclusion holds by the properties of interiors and the
bounds on partition inverse images.
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The dual operators of closure and interior f ◦ f−1 and f−1 ◦ f of the
partition adjunction produce important fixed points.

• the fixed points of f−1 ◦ f are the kernel preserving partitions

• the fixed points of f ◦ f−1 are the image collapsing partitions

By theorem 2.4.5 it is not hard to see that these fixed points are both
sublattices in their respective input and output partition lattices, and not
only that, they are principal up or down sets.

Corollary 2.4.4. let f : A→ B be a function then

• the kernel preserving partitions form a principal upper set of Part(A)

• the image collapsing partitions form a principal down set of Part(B).

Every monotone Galois connection is associated with fixed points in its
source set and target set. In the case of the partition adjunction, these
fixed points are the kernel-preserving partitions and the image-collapsing
partitions.

2.4.5 Functorial properties

Let Sets be the topos of sets. Then corresponding to the adjunction between
partition images and partition inverse images is the dual pair of functors:
the covariant functor Part and the contravariant functor Part−1.

Part : Sets→ Sets

Part−1 : Sets→ Sets

These could also be defined by functors to the category Ord of par-
tial orders and monotone maps. In other cases, they might be functors to
categories of residuated or coresiduated maps. We will prove that these
mappings define valid functors.

Theorem 2.4.8. Part(f ◦ g) = Part(f) ◦ Part(g)

Proof. the partition image is a join homomorphism, so it maps generat-
ing systems for equivalence relations to generating systems. Therefore,
f ◦ g of P is the equivalence relation generated by {(f(g(x)), f(g(y))} with
x =P y. g of P is {(g(x), g(y)) : x =P y} and so applying f to it yields
{(f(g(x)), f(g(y))}. Therefore, (f ◦ g)(P ) = f(g(P )) and the two equations
coincide. It follows the partition image mapping is functorial.

Theorem 2.4.9. Part−1(f ◦ g) = Part−1(g) ◦ Part(f)
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Proof. let P be a partition and consider Part−1(f◦g)(P ) then this is equal to
{(x, y) : f(g(x)) =P f(g(y))}. Consider on the other hand, Part−1(g)(Part−1(f)(P ))
then we can expand Part−1(f)(P ) in this expression to get Part−1(g)({(x, y) :
f(x) =P f(y)}. Further expanding Part−1(g) yields {(x, y) : (g(x), g(y)) ∈
{(x, y) : f(x) =P f(y)}}. This can be simplified to {(x, y) : f(g(x)) =
f(g(y))}.

The compositionality of the partition image and inverse images is helpful
if you want to algorithmically compute partition images and inverse images
for a given function. With these theorems, the computation of specific parti-
tion images and inverse images can be simplified by decomposing a function
into simpler functions using function composition in Sets.

2.4.6 Relations generated by partition images

The partition image and inverse image functions define dataflow relations
for each argument partition they receive. These dataflow relations have a
special role to play.

• let f : A → B be a function and let P be a partition of f then a
dataflow relation of the form (P, f(P )) is called a full relation on f .

• let f : A → B be a function and let Q be a partition of f then a
dataflow relation of the form (f−1(Q), Q) is called an injective relation
on f .

In a few exceptional cases, they coincide. The fixed points of the com-
posed operators form special classes of partitions in A and B. In the first
case, f−1 ◦ f has as fixed points all partitions P such that ker(f) ⊆ P .
In the second case, f ◦ f−1 has as fixed points all partitions Q such that
Q ⊆ icp(f).

If P is a fixed point of f−1 ◦ f then it is the case that (P, f(P ) is also
an injective congruence for (f−1(f(P )), f(P )) = (P, f(P )). Dually, if Q is
a fixed point of f ◦ f−1 then (f−1(Q), f(f−1(Q))) = (f−1(Q), Q) so that
(f−1(Q), Q) is a full congruence.

• let f : A→ B be a function and let (P, Q) be a congruence of f then
(P, Q) is both a full and an injective congruence provided that P and
Q are fixed points of the closure operators of the partition adjunction
on their respective sets.

Using the logical operator fill : Ω → Ω defined on the object of truth
values Ω of the topos Sets→ the injective dataflow relations (f−1(Q), Q) can
equivalently be considered to be those that are generated by the use of the
method fill : Ω→ Ω on their expression as internal relations. Fill takes any
dataflow relation and it makes it injective, by filling up the input with any
missing equal pairs.
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2.5 Operations on functional dataflow relations
The division of memory into places and locations is handled by partition
logic. All computations that move around data from one place to another
are modeled using functional dataflow relations. As the core concept of our
model of computation, a number of different operations have been defined
on them.

• composition

• restriction

• partition

• quotients

• join/meet

• products/coproducts

• preservation/reflection

• morphisms

In order to create a good general idea of functional dataflow relations,
we will review each of these different operations and their properties. As
we will be using these relations as the means by which we logically reason
about computation, any theorems we can prove about them will be helpful.

2.5.1 Quotients

We can form quotients of functions by dataflow relations in Sets→.

Definition 2.5.1. let f : A → B be a function with (P, Q) a congruence
of f . Then we define the quotient f

(P,Q) to be the function which maps any
equivalence class in P to the unique equivalence class in Q that all of its
members are mapped to. Let C be an equivalence class in P then given a
choice c ∈ C this can be defined by πQ(c).

There also exists a corresponding projection epimorphism π(P,Q) : f →
f

(P,Q) in Sets→ whose existence is guaranteed by theorem 2.2.2. Quotients
can be used to classify the congruences of a function into special classes.

Definition 2.5.2. let f be an object in Sets→ then an injective congruence
of f is a pair (P, Q) for whom the quotient f

(P,Q) is injective.

Theorem 2.5.1. let f : A→ B then the injective congruences of f are all
congruences of the form (f−1(Q), Q) for some Q in Part(b).
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Proof. every function preserves equality a = b⇒ f(a) = f(b). An injective
function also reflects equality so that f(a) = f(b)⇒ a = b. Taken together
this means that a = b ⇔ f(a) = f(b). If we take this approach to defini-
tion two of a functional congruence relation then a =P b ⇒ f(a) =Q f(b)
becomes a =P b ⇔ f(a) =Q f(b). Then in that case a =P b is equal to the
relation {(a, b) : f(a) =Q f(b) which is precisely f−1(Q).

Definition 2.5.3. let f be an object of Sets→ then a surjective congruence
of f is a pair (P, Q) for which the quotient f

(P,Q) is surjective.

The property that a given congruence is surjective has its own special
characterisation. It is clear from this alternate definition that a congruence
(P, Q) is a surjective congruence if and only if its Q partition equalizes non-
images with images.

Proposition 2.5.1. let f : A → B be a function and let (P, Q) be a
congruence of f . Let X = B − Im(f) be the non-image of the function f
consisting of all elements of B with empty inverse images. Then (P, Q) is a
surjective congruence provided that for every equivalence class C in Q we
have C ̸⊆ X.

Theorem 2.5.2. let f : A→ B be a surjective function and let (P, Q) be a
congruence of f then f

(P,Q) is surjective.

Proof. let C be an equivalence class in Q then as f is surjective every element
in B has fibers. Let c be a choice of an element in C then it has a fiber
f−1(c) in A. This fiber has at least one element x that maps to c, so given
that x we can construct a fiber for Q in f

(P,Q) of the form πP (x). As every
element of Q has a fiber in P , the quotient function is surjective.

Theorem 2.5.3. let f : A → B be a function and let (P, Q) be a surjec-
tive congruence of f . Let (R, S) be another congruence of f that is more
equal then (P, Q) so that P ⊆ R and Q ⊆ S. Then (R, S) is a surjective
congruence.

Proof. let X be the set of all elements of B with empty fibers. Then by
proposition 2.5.1 we have that for each equivalence class C in Q it is the
case that C ̸⊆ X. We also have that Q ⊆ S which implies that for each
equivalence class D in Q it is the case that there exists some C in Q such
that C ⊆ D. Now since C ̸⊆ X and C ⊆ D we have that D ̸⊆ X.

2.5.2 Composition

Functional dataflow relations in Sets→ can be composed with one another.

Theorem 2.5.4. let f : A→ B and g : B → C be functions with (P, Q) a
functional dataflow relation on f and (Q, R) a functional dataflow relation
on g. Then (P, R) is a functional dataflow relation on g ◦ f .
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Proof. let a, b ∈ A and suppose that a = Pb then since f maps P equal
terms to Q equal ones this implies that f(a) =Q f(b). Now since g maps Q
equal terms to R equal ones this implies that g(f(a)) =R g(f(b)). It follows
that a =P b ⇒ g(f(a)) =R g(f(b)) so that (P, R) is a functional dataflow
relation for g ◦ f .

This leads to a form of categorical semantics for functional dataflow
relations, wherein they are morphisms in the category Setoids.
Theorem 2.5.5. let f : A→ B and g : B → C be functions with (P, Q) a
functional dataflow relation of f and (Q, R) a functional dataflow relation
on g. Then quotients preserve composition g

(Q,R) ◦
f

(P,Q) = g◦f
(P,R) .

Proof. let C be an equivalence class of P and let c ∈ C be a choice of
C then g◦f

(P,R)(C) = πR(g(f(c)). By comparison, f
(P,Q) = πQ(f(c)) so then

applying g
(Q,R) to it will require us to take a value d that is Q equal to f(c)

and then computing πR(d) but g maps Q equal terms to R equal ones so
πR(d) = πR(g(f(c))) and the two values coincide.

Let C be a category then if C is Setoids-enriched this is equivalent to
C having an arrow congruence defined on it. In that case, C is associated
with a quotient category Quot(C). It happens that Setoid is self-enriched
by componentwise comparisons.
Definition 2.5.4. let Setoid be the category of setoids. Then it is self-
enriched with equivalence relation on Hom(P, Q), P ⊆ A2, Q ⊆ B2 defined
by equating f : P → Q and g : P → Q provided that ∀x ∈ A : f(x) =Q g(x).

Then the equivalence relations on the hom classes of Setoid are equivalent
to quotient equivalence. In other words, f and g are equal in Hom(P, Q)
provided that f

(P,Q) = f
(P,Q) . With this construction, we see that the quotient

category of the category of setoids enriched in itself is simply the category
of Sets which is defined by the quotient functor. The quotient functor takes
any setoid to its quotient set and any morphism of setoids to its quotient
function.

Quot : Setoid→ Sets

This quotient functor is inherently associated to the category of setoids
by its self-enrichment.
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2.5.3 Meet and join

Functional dataflow relations form a lattice by its meet and join operations.
The meet operation has an intuitive interpretation: if the data in memory
location A determines the data in location B and the data in location C
determines the data in location D, then the combined data in both A and
C determines the combined data in B plus D.

Theorem 2.5.6. let f : A→ B be a function and let (P1, Q1) and (P2, Q2)
be congruences of f then (P1 ∩ P2, Q1 ∩Q2) is a congruence of f .

Proof. suppose that a =P1∩P2 b then a =P1 b and a =P2 b. Then by the
fact that a =P1 b and (P1, Q1) is a congruence we have that f(a) =Q1

f(b). Furthermore, since a =P2 b and (P2, Q2) is a congruence we have that
f(a) =Q2 f(b).Now by combination f(a) =Q1∩Q2 f(b). So (P1∩P2, Q1∩Q2)
is a congruence of f .

The join operation on function congruences states the data in common
between A and B produces the data in common between C and D when
(A, C) and (B, D) are congruences.

Theorem 2.5.7. let f : A→ B be a function and let (P1, Q1) and (P2, Q2)
be congruences of f then (P1 ∨ P2, Q1 ∨Q2) is a congruence of f .

Proof. by the third definition of functional dataflow relations, the condi-
tion that (P1 ∨ P2, Q1 ∨ Q2) is a congruence is equivalent to the condition
that f(P1 ∨ P2) ⊆ (Q1 ∨ Q2). By the fact that partition images are join
homomorphisms f(P1 ∨ P2) = f(P1) ∨ f(P2).

We can use the third definition of functional dataflow relations to express
that (P1, Q1) and (P2, Q2) are congruences as f(P1) ⊆ Q1 and f(P2) ⊆ Q2.
The join operation is monotone and increasing so f(P1) ⊆ Q1 ∨ Q2 and
f(P2) ⊆ Q1 ∨Q2.

It follows that Q1∨Q2 is an upper bound of f(P1) and f(P2). Now since
f(P1)∨f(P2) is the least upper bound of f(P1) and f(P2) it must be the case
that f(P1)∨f(P2) ⊆ Q1∨Q2. By the third definition of functional dataflow
relations this implies that (P1 ∨ P2, Q1 ∨Q2) is a function congruence.

Using these two join and meet operations, we can construct a congruence
lattice for a function f denoted Con(f).

Definition 2.5.5. let f : A → B be a function and let Con(f) be the set
of congruences of f . Define the join and meet on Con(f) by:

• (P1, Q1) ∩ (P2, Q2) = (P1 ∩ P2, Q1 ∩Q2).

• (P1, Q1) ∨ (P2, Q2) = (P1 ∨ P2, Q1 ∨Q2).

Then (Con(f),∩,∨) forms a lattice: the lattice of congruences of the
function f .
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Theorems 2.5.3 and 2.5.4 demonstrate that the meet and join operations
of Con(f) for a function f : A → B are inherited from the componentwise
meet and join operations in the lattice of partitions Part(A) and Part(B).

Corollary 2.5.1. let f : A → B be a function then Con(f) is a sublattice
of Part(A)× Part(B).

The category-theoretic dual statement to this is that the lattice of sub-
objects of a function f : A → B is a sublattice of ℘(A)× ℘(B) by which it
follows that ℘(A) × ℘(B) is distributive. The fact that Con(f) is embed-
ded in a partition lattice doesn’t produce any similarly interesting results
because the generality of partition lattices [5].

As Con(f) is a sublattice of Part(A) × Part(B) it is associated with
dual closure and interior operators. These operators can be constructed by
using the adjunction between partition images and inverse images.

• the interior of (P, Q) is (P ∩ f−1(Q), Q).

• the closure of (P, Q) is (P, Q ∨ f(P ).

For small functions f : A→ B, it is possible to generate all congruences
of the function Con(f) by enumerating partitions and using partition images
or inverse images.

• let f : A→ B be a function then in order to enumerate all the congru-
ences of f we can first get all partitions of A then for each partition
P in Part(A) generate the list of all partitions greater than f(P ) in
Part(B). Apply concatenate to all these lists to get Con(f).

• let (P, Q) be a congruence of f : A → B then the congruences (R, S)
that cover (P, Q) are precisely all congruences generated by equating
a pair in Q or by equating a pair in P to get a new partition P ′ with
the property that the new partition image f(P ′) is still contained in
Q. Applying this to each congruence in Con(f) generates the covering
relation for Con(f).

(a) Con(f) (b) Con(f)

Figure 2.1: Congruence lattices of small functions

The join irreducibles and the meet irreducibles in Con(f) have been
extensively studied.
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Proposition 2.5.2. let f : A→ B be a function then the join irreducibles
in Con(f) are those partitions (P, Q) that belong in one of three classes:

1. partitions defined by equating a single pair of elements b1, b2 in B so
that (A0, {b1, b2}).

2. partitions defined by equating a pair of elements a1, a2 in A that are
already equalized by f of the form {(a1, a2), B0}.

3. partitions defined by the equating a pair of elements a1, a2 in A that
are not equalized by f of the form {(a1, a2), (f(a1), f(a2)).

Of these join irreducibles (1) and (2) are atomic, and (3) depends on a
single atom of type (1). The main property of join irreducibles in Con(f) is
that they describe how equal pairs in the input transfer into equal pairs in
the output.

The meet irreducibles in Con(f) are called functional bitflow relations
because they describe how bits of data in the input of a function flow to bits
of data in the output. All other functional dataflow relations representing
how some set of bits produces another set of bits can be produced from
describing how individual bits of information in the input produce bits of
information in the output.

Definition 2.5.6. let S be a set then a bit of information on S is an equiv-
alence relation on S with two equivalence classes.

Proposition 2.5.3. let f : A→ B be a function then the meet irreducibles
in Con(f) are those partitions (P, Q) that belong in one of three classes:

1. partitions defined by a bit of information of A and no information on
B

2. partitions defined by a bit of information of B that has no information
on the image of f and a partition with no information on A

3. partitions defined by a bit of information of B and the bit of informa-
tion on A which is its partition inverse image.

Of these meet irreducibles (1) and (2) are coatomic. Partitions of type (3)
depend upon a single partition of type (1) which is the bit of information
in the input that determines the bit of information in the output. The
classification of join and meet irreducibles allows us to describe the sort of
posets they form in Con(f).

Proposition 2.5.4. let f : A→ B be a function and Con(f) its congruence
lattice

• the join irreducibles in Con(f) form a maximum height two lower
forest
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• the meet irreducibles in Con(f) form a maximum height two upper
forest

Of these two the functional bitflow relations are more useful for our
model of computation in information systems because they describe how
input bits of information determine output bits of information. All other
dataflow relations are described as the meet of dataflow relations between
bits.

If f is surjective no meet irreducible congruences of type (2) exist and all
coatomic congruences are of type (1) and they have no information about
the input. All bits of information in the output then reflect back to bits
of information in the input, so that bits flow to bits. Our general purpose
dataflow model will capture everything from how bits flow to bits to how
entire large memory regions flow into other regions.

Next, we can study suborders of the congruence lattices Con(f) of a
function f . In particular, we can study the suborder of injective congruences
in Con(f) and its properties.

Theorem 2.5.8. let f : A→ B be a function and let (P, Q) and (R, S) be
injective congruences of f . Then (P ∩R, Q ∩ S) is an injective congruence.

Proof. by theorem 2.5.1 we can express (P, Q) as (f−1(Q), Q) and (R, S)
as (f−1(S), S). If we now take the intersection of these we get (f−1(Q) ∩
f−1(S), Q ∩ S). Now by the fact that partition inverse images form a meet
homomorphism we have that this is equal to (f−1(Q ∩ S), Q ∩ S). This
implies that (P ∩R, Q ∩ S) is an injective congruence.

Corollary 2.5.2. let f : A → B be a function then injective congruences
form a meet subsemilattice of Con(f).

Theorem 2.5.9. let f : A→ B be a surjective function and let (P, Q) and
(R, S) be injective congruences of f . Then (P ∨ R, Q ∨ S) is an injective
congruence.

Proof. by theorem 2.5.1 we can express (P, Q) as (f−1(Q), Q) and (R, S) as
(f−1(S), S). We have that Con(f) is a sublattice of Part(A)× Part(B) so
the join of these congruence relations is (f−1(Q) ∨ f−1(S), Q ∨ S). By the
fact that f is surjective the partition inverse image is a join homomorphism
so this equals (f−1(Q ∨ S), Q ∨ S). This implies that (P ∨ R, Q ∨ S) is an
injective congruence.

Corollary 2.5.3. let f : A → B be a surjective function then injective
congruences form a sublattice of Con(f)

This demonstrates the unique role that the injective congruences lattice
play within the lattice of congruences of a function. We also have a full
characterization of its structure.

25



Corollary 2.5.4. let f : A→ B then the lattice of injective congruences of
f is isomorphic to Part(B)

On the other hand, the surjective congruences have the special property
that they are upper closed as demonstrated by theorem 2.5.3.

Corollary 2.5.5. let f : A → B be a function then the surjective congru-
ences of f form an upper set of Con(f)

The fact that surjective congruences of f form an upper set means they
form a join subsemilattice. Furthermore, that injective congruences form a
sublattice when f is surjective means that they form a join subsemilattice
too. The intersection of join subsemilattices is a join subsemilattice, so
that it follows that bijective congruences form join subsemilattices in the
congruence lattices of surjective functions.

Corollary 2.5.6. let f : A→ B be a function then the bijective congruences
of f form an upper subsemilattice of Con(f).

Aside from the classification of congruences by their quotients, we con-
sidered congruences of the form (P, f(P )) as special cases formed by the
partition adjunction so we can further examine the role these congruences
play in congruence lattices.

Theorem 2.5.10. let f : A → B be a function and let (P1, f(P1)) and
(P2, f(P2)) be congruences of f then (P1∨P2, f(P1)∨f(P2)) is a congruence
of f

Proof. the partition image function is a join homomorphism so that f(P1)∨
f(P2) = f(P1 ∨ P2). Plug this new value for f(P1) ∨ f(P2) into the above
equation to get (P1 ∨P2, f(P1 ∨P2)) and you can infer that (P1 ∨P2, f(P1 ∨
P2)) is a full congruence.

It follows that the full congruences of the form (P, f(P )) form a join
subsemilattice of Con(f). As the lower bound (A0, B0) is a full congruence
the set of full congruences themselves form a lattice embedded in Con(f).

Theorem 2.5.11. let f : A→ B be a function then the full congruences of
f form a join subsemilattice of Con(f)

With this we have studied all the most important types of congruences
in Con(f) for a function f in the topos Sets→.

2.5.4 Products and coproducts

The products and coproducts of function congruences can be defined from
the products and coproducts of partitions.
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Definition 2.5.7. let P and Q be equivalence relations then P +Q is equal
to P ∪Q if P and Q are disjoint.

Definition 2.5.8. let P be an equivalence relation on A and Q an equiv-
alence relation on B then P ×Q is the equivalence relation on A× B with
((a1, a2), (b1, b2)) ∈ P ×Q provided that (a1, b1) ∈ P and (a2, b2) ∈ Q.

The topos Sets→ has all limits and colimits. It follows that it has all
products and coproducts. To define products and coproducts of dataflow re-
lations we will use the products and coproducts of Sets→ on their underlying
functions.

Theorem 2.5.12. let f : A → B and g : C → D be functions with (P, Q)
a congruence of f and (R, S) a congruence of g. Then (P × R, Q × S) is a
congruence of f × g.

Proof. let (a1, c1) and (a2, c2) be equal with respect to P ×R then a1 =P a2
and c1 =R c2. Then since (P, Q) is a congruence of f we have that f(a1) =Q

f(a2) and since (R, S) is a congruence of g we have g(c1) =S g(c2). If we
combine f(a1) =Q f(a2) and g(c1) =S g(c2) then we get (f(a1), f(a2)) and
(g(c1), g(c2)) are equal with respect to Q× S.

Theorem 2.5.13. let f : A → B and g : C → D be functions with (P, Q)
a congruence of f and (R, S) a congruence of g. Then (P + R, Q + S) is a
congruence of f + g.

Proof. let x and y be equal with respect to P + R then either x and y are
both in A and P equal in which case they translate to Q equal since (P, Q)
is a congruence or they both belong to C and are R equal in which case they
translate to S equal values since (R, S) is a congruence. So P + R equal
values always produces Q + S equal values with respect to f + g.

These theorems define products and coproducts of function congruences
in terms of the topos Sets→. We can further define empty products and
coproducts to get the initial and terminal functional dataflow relations.

• the empty coproduct congruence is the unique congruence on the initial
function f : ∅ → ∅

• the empty product congruence is the unique congruence on the termi-
nal function f : 1→ 1

The initial object in Sets→ is the function f : ∅ → ∅ and the terminal
object is the function f : 1 → 1. In both cases, the initial or terminal con-
gruence can be defined by the unique congruence on the initial or terminal
function.
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2.5.5 Preservation and reflection

Let d : (f : A → B) → (g : C → D) : (i : A → C), (o : B → D) be a
morphism in the topos Sets→. Then it can be shown that d preserves and
reflects function congruences.

Lemma 2.5.1. let m : (A, R)→ (B, S) be a morphism of directed graphs.
Then m preserves transitive closures.

Proof. let (x, y) ∈ cl(R) then there exists a sequence (x, c1, ...cn, y) in R.
Now since m is a homomorphism of directed graphs this produces a sequence
(f(x), f(c1), ...f(cn), f(y)) in S. It follows that (f(x), f(y)) is in cl(S). So
m is a homomorphism of digraphs from (A, cl(R)) to (B, cl(S))

Corollary 2.5.7. the transitive closure operation cl : Digraph→ Digraph
is an endofunctor on the category of digraphs.

Lemma 2.5.2. let d : (f : A → B) → (g : C → D) : i : A → C, o : B → D
be a morphism of functions. Then d preserves homomorphisms of binary
relations.

Proof. let R be a binary relation on A and S a binary relation on B with
f : R → S a homomorphism of binary relations. Then for all (a, b) ∈ R
it holds that (f(a), f(b)) ∈ S. We want to show that g : i(R) → o(S) is a
homomorphism of binary relations.

Suppose that (a, b) is in i(R) this means that there exists (x, y) in R
with i(x) = a and i(y) = b. We want to show that (g(a), g(b)) ∈ o(S) which
means there exists some (n, m) in S such that o(n) = g(a) and o(m) = g(b).
By the fact that (x, y) is in R we have that (f(x), f(y)) is in S.

As (f(x), f(y)) is in S, we can use it as a candidate solution for (n, m).
Plugging these values in form (n, m) yeilds that o(f(x)) = g(a) and o(f(y)) =
g(b). By the fact that d is a morphism in Sets→, it holds that o ◦ f = g ◦ i,
so this can be replaced with g(i(x)) = g(a) and g(i(y)) = g(b). As i(x) = a
and i(y) = b by supposition, this always holds true. So g : i(R)→ o(S) is a
homomorphism of binary relations. This leads to the following diagram in
the category of directed graphs:

This diagram is a presheaf of directed graphs with d as its underlying
presheaf, which was generated by a binary relation on f . As a result, it can
be inferred that morphisms in Sets→ preserve homomorphisms of binary
relations.
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Theorem 2.5.14. let d : (f : A→ B)→ (g : C → D) : i : A→ C, o : B →
D be a morphism of functions then d preserves function congruences.

Proof. let (P, Q) be a function congruence of f then by lemma 2.5.2 the
binary relation images for P and Q form a binary relation homomorphism
on g of the form (i(P ), o(Q)). By lemma 2.5.1 the transitive closures of
i(P ) and o(Q) again form a homomorphism of binary relations on Q, so the
partition images (i(P ), o(Q)) form a function congruence of g. This leads to
the following presheaf of setoids:

It follows that morphisms in Sets→ preserve function congruences so
that congruences on f can be mapped to congruences on g.

Theorem 2.5.15. let d : (f : A→ B)→ (g : C → D) : i : A→ C, o : B →
D be a morphism of functions then d reflects function congruences.

Proof. let (P, Q) be a congruence of d then by theorem 2.2.2 we can form a
morphism π(P,Q) in Sets→ from the congruence (P, Q) which in turn can be
composed with d:

Then by theorem 2.2.1 the kernel of the composite ker(π(P,Q) ◦ d) is
a functional dataflow relation of f , but this kernel is precisely equal to
(i−1(P ), o−1(Q)) which is the partition inverse image of (P, Q) by d. So the
morphism d in the topos Sets→ reflects function congruences on g back to
function congruences on f .
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Definition 2.5.9. let d : (f : A→ B)→ (g : C → D) : i : A→ C, o : B →
D be a morphism in Sets→ then

1. the function congruence image of (P, Q) is (f(P ), f(Q))

2. the function congruence inverse image of (P, Q) is (f−1(P ), f−1(Q))

The function congruence image / inverse image extends to an adjunction
for any morphism d : f → g. The function congruence image is a functor
d : Con(f) → Con(g), and the function congruence inverse image is a
functor d−1 : Con(g) → Con(f). Together d, d−1 make up an adjunction
that generalizes the adjunction between partition images and inverse images
to function congruences.

Definition 2.5.10. let Sets→ be the topos of functions then

1. Con : Sets→ → Sets is the covariant congruence functor on Sets→

2. Con−1 : Sets→ → Sets is the contravariant congruence functor on
Sets→

We saw by theorem 2.5.14 and 2.5.15 that congruence images and inverse
images are defined componentwise. It follows that they inherit the limit and
colimit preserving properties of their partition counterparts.

Corollary 2.5.8. let d : (f : A → B) → (g : C → D) : i : A → C, o :
B → D be a morphism in Sets→ then Con(d) : Con(f)→ Con(g) is a join
homomorphism and Con−1 : Con(g)→ Con(f) is a meet homomorphism

The partition adjunction defines two special types of congruences: full
congruences (P, f(P )) and injective congruences (f−1(Q), Q). These are
the two types of congruences that have special behaviour under the congru-
ence adjunction. Full congruences are generated by partition images and
preserved by congruence images. Injective congruences are generated by
partition inverse images and reflected by congruence inverse images.

Theorem 2.5.16. let d : (f : A→ B)→ (g : C → D) : i : A→ C, o : B →
D be a morphism in Sets→ then d preserves full congruences.

Proof. let (P, f(P )) be a full congruence of f : A→ B. Then the congruence
image of (P, Q) under d is (i(P ), o(f(P ))). The fact that d is a morphism
in Sets→ implies that o ◦ f = g ◦ i. Plugging this in to (i(P ), o(f(P )))
yields (i(P ), g(i(P )). This implies that (i(P ), g(i(P )) is the full congruence
generated by i(P ). As the congruence image of a general full congruence
(P, f(P )) is again a full congruence it follows that the morphism d preserves
full congruences.
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Theorem 2.5.17. let d : (f : A→ B)→ (g : C → D) : i : A→ C, o : B →
D be a morphism in Sets→ then d reflects injective congruences.

Proof. let (f−1(Q), Q) be an injective congruence of g. Then the congru-
ence inverse image of (f−1(Q), Q) is (i−1(f−1(Q)), o−1(Q)). Recall that the
partition image is a contravariant functor on the topos Sets. This implies
that i−1(f−1(Q)) is equal to (f ◦ i)−1(Q) but we know by the fact that d is
a morphism in Sets→ that f ◦ i = o ◦ g.

Plugging this alternative value back in for (f ◦ i) we get (o ◦ g)−1(Q).
Expanding this yields g−1(o−1(Q)) by contravariance. At this point we
have (g−1(o−1(Q)), o−1(Q)) as a congruence of f . Then this is precisely the
injective congruence generated by o−1(Q). As every injective congruence
generated by Q reflects to an injective congruence generated by o−1(Q) we
have that d reflects injective congruences.

Let d be a morphism in Sets→. In general d always reflects and preserves
congruences. Additionally, d preserves full congruences and reflects injective
ones. On the other hand, d has no special preserving or reflecting effect on
surjective congruences.

2.5.6 Restriction

Let f be a function with (S, T ) a subalgebra of f . Then there exists a
restriction function f(S,T ) : S → T that maps S values to T values. Given a
functional dataflow relation (P, Q) of f it can be restricted to (S, T ) by the
general process of restricting function congruences.

Definition 2.5.11. let f : A → B be a function with (P, Q) a congruence
of f and (S, T ) a subfunction of f then the restriction of (P, Q) to (S, T ) is
the function congruence (P ∩ S2, Q ∩ T 2) on the subfunctionf : S → T .

The process by which we can get a subobject of a function congruence
is twofold: (1) we can get a subobject from the restriction of f : P → Q
to a subfunction (S, T ) or (2) we can reduce (P, Q) to a subcongruence
Con(f). In this manner, a general congruence restriction is formed by any
combination of taking restrictions or subcongruences.

Definition 2.5.12. let f : A → B be a function with (P, Q) a congruence
then a general reduction of f is formed by taking a subcongruence of the
restriction congruence (P ∩S2, Q∩T 2) of a subfunction (S, T ) in the lattice
Con(f(S,T ).

This is the most general process by which we can speak of subobjects of
functional dataflow relations because it combines both restriction and the
taking of subcongruences.
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2.5.7 Partitioning

The dual concept of restricting a functional dataflow relation is partitioning
it. This reflects the category-theoretic duality between monomorphisms and
epimorphisms.

Definition 2.5.13. let X be a set and let P be a partition of X and suppose
that Q is another partition with P ⊆ Q. Then there exists a partition of X

P

by Q denoted Q
P which equates two equivalence classes of P provided that

they belong in the same Q class.

Definition 2.5.14. let f : A → B be a function and let (P, Q) be a
congruence of f . Then suppose that (R, S) is another congruence of f .
Then the quotient of (P, Q) by (R, S) is the partition on (R, S) defined by
(P ∨R, Q ∨ S) with the condition that R ⊆ P ∨R and S ⊆ Q ∨ S which is
denoted ( R

P ∨R , S
S∨Q). Then this is the partition of (P, Q) by the functional

dataflow relation (R, S).

In other words, what this does is it takes an epimorphism in Sets→,
which can always be defined by a partition like (R, S), then it takes the
congruence image of (P, Q) to get the congruence on (R, S) induced by
(P, Q). So this produces the quotient of a partition by an epimorphism.

Congruence images and inverse images form an adjunction, so given
f : P → Q and a partition (R, S) we can further get a quotient object by
taking any parent congruence in the lattice Con(g) of the partition image.
This leads to the general formula for quotient objects of functional dataflow
relations.

Definition 2.5.15. let f : A → B be a function with congruence (P, Q).
Let d : (f : A→ B)→ (g : C → D) be a epimorphism with source in f such
as an epimorphism π(R,S) defined by the projection of a functional congru-
ence (R, S). Then a general quotient object is any functional congruence in
Con(g) that is a parent of the congruence ( R

P ∨R , S
S∨Q).

This definition of general quotients produces the category-theoretic dual
concept of restrictions of functional dataflow relations. In both cases, the key
concept was to take a monomorphism or an epimorphism in Sets→ and then
considering the relationship between that epimorphism or monomorphism
and the functional congruence image or inverse image of the function congru-
ence. Restrictions allow for subcongruences to be formed under monomor-
phisms, and epimorphisms allow for parent congruences to be formed from
quotients.
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2.5.8 Morphisms

Functional dataflow relations form a category Setoid→, which is an arrow
category for the category of Setoid.

Definition 2.5.16. the category of functional dataflow relations is the cat-
egory Setoid→ whose objects are functional dataflow relations and whose
morphisms are those of an arrow category

As an arrow category, morphisms of functional dataflow relations are
defined by ordered pairs of morphism (i, o) with i being an input morphism
from the inputs of the source object to the inputs of the target object and
o being an output morphism from the outputs of the source object to the
outputs of the target object. The data of these functions can be accessed
by the functor to Sets→.

Definition 2.5.17. let Setoids→ be the category of functional dataflow
relations then there is a forgetful functor from the category of functional
dataflow relations to Sets→:

F : Setoids→ → Sets→

This functor maps any function congruence to its underlying function
and any morphism of functional dataflow relations to its underlying mor-
phism of functions.

The previous definitions of restriction and partitioning of functional
dataflow relations are dual mechanisms for constructing morphisms in Setoids→.

• let (P, Q) be a function congruence of f then any general subobject of
(P, Q) is a monomorphism of Setoids→.

• let (P, Q) be a function congruence of f then any general quotient of
(P, Q) is an epimorphism of Setoids→.

So, for example, if we take a function congruence (P, Q) on f : A → B
and then we restrict it to a subfunction (S, T ) with (P, Q)(S,T ) then there
is a naturally defined embedding map d : (f : P → Q) → (f(S,T ) : P

S →
Q
T )

which embeds the restriction congruence into its parent.
Morphisms in Setoids→ can also be formed by the adjunction between

congruence images and inverse images. Let (P, Q) be a function congruence
and d a morphism in Sets→ then (P, Q) and (f(P ), f(Q)) form a mor-
phism in Setoids→. Dually if (R, S) is a congruence and d a morphism
then (R, S) and (f−1(R), f−1(S)) forms a morphism in Setoids→. Subob-
jects and quoteints can be formed in general by the congruence image and
inverse image adjunction.
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2.6 Dataflow properties of lenses
We seek to model memory using partition lattices. The critical element that
makes this possible is the algebraic theory of the elementary topos Sets→.
A distinguishing factor of the partition lattice approach is that partitions
can be used to model any data region in an information space, even if it is
not editable.

Another tool used to model memory is a lens. Lenses form a category
Lens by which they are composable, just like functions. Lenses have three
aspects: (1) the information that they describe within an information space,
(2) the method they provide for editing that information, and (3) their
representation of that information.

Definition 2.6.1. two different lenses L1 : A → B and L2 : A → C are
isomorphic provided that there exists an intermediate bijection from B to
C by which L1 ∼ L2. Then L1 and L2 describe the same ways of editing
the same piece of information.

We are only interested in the properties of lenses that are not depen-
dent upon their representations or that can be defined up to isomorphism.
These properties can be described using partition lattices and our functional
dataflow analysis framework.

Definition 2.6.2. the information that a lens l : A→ B with setter function
s : A×B → A contains is in the partition ker(l) = {(x, y) : l(x) = l(y)}.

To describe the way that a lens makes a given piece of information ed-
itable, we need to use our functional dataflow analysis framework. Before
we do that, there are some more preliminary definitions related to the key
components of lenses.

Definition 2.6.3. the setter partition of the lens l : A → B with setter
function s : A×B → A is setter(l) = {(x, y) : ∃b ∈ B : s(x, b) = y}.

Lenses define local effects so that transformations can be applied locally
to lenses. This takes any transformation of the output set B, and it maps
it to a transformation on A.

Definition 2.6.4. let l : A→ B be a lens with setter s : A×B → A and let
t : B → B be a transformation. Then the local effect of the transformation
t on the lens is the function tf (a) = s(a, t(l(a)).

The local effects mapping ml : TB → TA takes any transformation on B,
and it promotes it to a local transformation on A using the lens l. The local
effects mapping still depends upon the definition of the representation set
B, so in order to define how a lens describes local transformations, we need
to describe the transformations of the lens l on A without reference to B.
We can do that now using functional dataflow.
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This is how we will describe local effects using functional dataflow.

Definition 2.6.5. let l : A→ B and s : A×B → A form a lens on A. Let
(P, Q) be the getter and setter partition of the lens. Then the local effects
on A relative to l are the transformations t : A→ A in TX with the following
properties:

• the getter partition P forms a functional dataflow relation (P, P ) of
the transformation t.

• the setter partition Q forms a functional dataflow relation (Q, Q) of
the transformation t with the property that the quotient function t

(Q,Q)
is the identity on Q.

It is not hard to see, using the theorems that we have already proven,
that the local effects in definition 2.6.5 are composable.

Theorem 2.6.1. local effects are composable

Proof. by theorem 2.5.4 all transformations with a given congruence are
composable and by theorem 2.5.5 their quotients are also composable func-
torially. Identity functions are composition closed, so identity quotients are
preserved by composition.

We can use this to define the full transformation monoid on a lens.

Definition 2.6.6. let l : A → B be a lens with setter s : A× B → A then
the full transformation monoid Tl of the lens l is is the monoid of all local
effects on l.

The local transformation monoid of the lens l : A → B is a submonoid
of the full transformation monoid TA on the set A, which is isomorphic to
TB. This now describes the local effects of a lens without reference to the
representation of their components. The logic of lenses now has two parts:

• the information in the lens l is described by the partition ker(l)

• the way that the lens l makes its information editable is defined by
the full transformation monoid Tl of all local effects on l.

With these two formalisms, the later of which is defined by functional
dataflow, we can define lenses without regard for the representation of their
data. Instead, they describe an aspect of local dataflow, wherein for a
given information region represented by a partition it can be the case that
local effects exist for that given partition whereby information about that
partition flows back to itself.
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Chapter 3

Polymorphic images

Partition images are the category-theoretic dual concept of set images. To
unify the two concepts under a single interface, we suggest the use of mul-
timethods. Multimethods are available in a number of programming lan-
guages. For example, Julia, Common Lisp, and Clojure have built-in sup-
port for multimethods. Furthermore, they can be added to Java using the
MultiJava library.

Set theory might suggest that equivalence relations are the same data
type as sets, but this fails to effectively utilize the advantages that modern
developer platforms have for defining new types and for implementation
polymorphism.

As an alternative, we suggest that sets, partitions, and a number of other
data types are defined and the image and inverse image methods should be
overloaded based upon type. The same process can be extended to a number
of other types beyond these.

• sets

• partitions

• preorders

• graphs

• digraph

• hypergraphs

• topologies

In topology, the concept of an initial and a final topology of a function
f : X → Y with a topology on either the input or the output is familiar. In
fact, this defines the concept of a topological image: given a topology on the
input, we can map that to a topology on the output using the final topology.
The initial topology, in turn, defines an inverse image. So it makes sense to
define these concepts using overloaded images and inverse images.

36



Each of these different mathematical objects: sets, partitions, preorders,
graphs, digraphs, hypergraphs, hyperdigraphs, topologies, etc, can be imple-
mented by their own data types. Then the image multimethod will produce
an object of the same data type it is given. Beyond that, the type hierarchy
can be further nested so there are special classes of sets and partitions.

In addition to the overloading of images and inverse images based upon
the type of a mathematical object, they can be overloaded based upon dif-
ferent implementations of the same mathematical object. For example, par-
titions might be represented based using equivalence relations or sets of
equivalence classes.

The approach we will be developing is to overload images by type [11].
For example, it is often expedient to represent equivalence relations simply
by generating sets of ordered pairs, with the full transitive closure of the re-
lation implied. Then by theorem 2.4.1 we know that the partition image can
produce a corresponding generating set in the output produced by mapping
the function over each ordered pair. This then maps equivalence relations
represented of the generating systems type back to themselves.

This is a good way to dispatch images and inverse images based upon
their argument data types, but the point of our use of multiple dispatch
is that there needs to be more that that. Consider that we cannot always
compute partition images and inverse images by brute force computations
on sets of equivalent pairs. Some equivalence relations might be infinitely
large or not have any easy combinatorial interpretation.

To be practical, partitions and equivalence relations may need to be
represented using symbolic information. Then the type system needs to be
extended to handle special types of symbolic partitions, and to overload
images for them. To overload images for symbolic partitions, there need
to be special types of functions that correspond to them. This leads us to
consider the implementation of partition images by multiple dispatch.

We suggest defining special types of functions: product functions, co-
product functions, and so on and then using them to produce overloaded
images and inverse images on special types of partitions like product par-
titions and coproduct partitions. This will greatly expand the number of
possible partitions that we can apply partition images and inverse images
to in a computer algebra system.

The idea of functional dataflow can be used to rework our understand-
ing of functional programming on a basic level and to motivate the design
of programming languages based upon topos theory. However, it is expe-
dient to find ways to integrate this mathematical formalism into existing
programming languages and technologies. The use of an implementation
based upon multiple dispatch in an existing type system is one way of doing
that. It remains to create the right collection of data types and overloaded
algorithms on them for this theory to be implemented by the machine.
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3.0.1 Coproduct functions

We will demonstrate that coproduct functions distribute over coproduct
partitions when taking images or inverse images. Then this can simplify the
calls to image for coproduct partitions by coproduct functions.
Theorem 3.0.1. coproduct functions distribute over coproduct sets by im-
ages
Proof. let f : A→ B and g : C → D be functions. Then their coproduct is
the function f + g : A + C → B + D. Let S + T be a subset of A + C with
S ⊆ A and T ⊆ C. Then (f + g)(S + T ) = (f + g)(S) ∪ (f + g)(T ) because
set images form a union homomorphism. Then since S ⊆ A we have that
(f + g)(S) = f(S) and since T ⊆ C we have that (f + g)(T ) = g(T ) since
(f + g) is only defined on A by f and on C by g. Plugging this into the
previous equation yields that (f + g)(S + T ) = f(S) + f(T ).

Theorem 3.0.2. coproduct functions distribute over coproduct sets by in-
verse images
Proof. let f : A→ B and g : C → D be functions. Then their coproduct is
the function f+g : A+C → B+D. Let S+T be a subset of B+D with S ⊆ B
and T ⊆ D. Then consider the inverse image (f+g)−1(S+T ). Then since set
images form a union homomorphism this equals (f +g)−1(S)+(f +g)−1(T ).
Then since S ⊆ B and the inverse image is defined on B only by f and since
T ⊆ D and the inverse image is defined on D only by g we can simplify
this to f−1(T ) + g−1(T ). Finally, this means that (f + g)−1(S + T ) =
f−1(S) + f−1(T ) which is what we wanted to show.

To apply the theorems on the distribution of set images, we first need
to prove that transitive closures distribute over coproducts. Then partition
images will distribute over coproducts.
Theorem 3.0.3. the transitive closure distributes over coproducts cl(R +
S) = cl(R) + cl(S).
Proof. consider the coproduct to be the disjoint union of its two sets R and
S. Then since cl is monotone we have that cl(A) + cl(B) ⊆ cl(A + B). So
suppose on the other hand that there exists (a, c1, ...cn, b) with each term
in either R or S. Then all terms must be in R or S by the definition
of the disjoint union, for if a ∈ R and (a, b) ∈ R ∪ S then b ∈ R and
dually if a ∈ S and (a, b) ∈ R ∪ S then b ∈ S. If all terms are in R then
this sequence belongs to cl(R) and if all terms are in S then it belongs
to cl(S). Therefore if (a, b) ∈ cl(R + S) then it is in either cl(R) + cl(S)
so that cl(R + S) ⊆ cl(R) + cl(S). As cl(R + S) ⊆ cl(R) + cl(S) and
cl(R) + cl(S) ⊆ cl(R + S) we have that cl(R + S) = cl(R) + cl(S). It follows
that the transitive closure operation distributes over disjoint unions such as
coproducts.
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These proven theorems can be combined to demonstrate that coproduct
functions distribute over coproduct partitions by images and inverse images.

Corollary 3.0.1. let f be a coproduct function then f distributes over
coproduct partitions by images and inverse images

Proof. by theorem 3.0.2 f distributes over coproducts by set inverse images,
so by representing partitions by equivalence relations the rest follows. On
the other hand, for partition images, the proof is twofold. First, by theorem
3.0.1 f distributes over coproduct partitions during its set images stage,
and then by theorem 3.0.2 f further distributes over coproduct partitions
by transitive closure.

The implementation of images by multiple dispatch can now identify
when an image is called with a coproduct function type on an object of a
coproduct partition type, and it can distribute making for more efficient
computations.

3.0.2 Product functions

We will demonstrate that product functions also distribute over product sets
by taking images and inverse images. This will further aid in our computa-
tions of images and inverse images.

Theorem 3.0.4. product functions distribute over product sets by images

Proof. let f : A → B and g : C → D be functions then their product is
f ×g : A×C → B×D. Consider (f ×g)(S×T ) then we can expand (f ×g)
over S × T to get {(f(s), g(t)) : s ∈ S, t ∈ T}. Then this can equivalently
be written as {(x, y) : x ∈ {(f(s)) : s ∈ S}, y ∈ {(g(t)) : t ∈ T}. This is
equivalent to the expression {(x, y) : x ∈ f(S), y ∈ g(T )}. Then by applying
the definition of the product relation to this again, we get f(S)× g(S).

Theorem 3.0.5. product functions distribute over product sets by inverse
images

Proof. let f : A → B and g : C → D be functions then their product is
f × g : A × C → B × D. Consider (f × g)−1(S × T ) then this is equal
to {(x, y) ∈ A × B : (f(x), g(y)) ∈ S × T . Then this can be rewritten as
{(x, y) ∈ A×B : f(x) ∈ S, g(y) ∈ T}. Then by the definition of the product
of set relations this is equal to {x ∈ A : f(x) ∈ S} × {y ∈ B : g(y) ∈ T}.
Finally, we can rewrite this is a product to get f−1(S)× g−1(T ). It follows
that (f × g)−1(S × T ) = f−1(S)× g−1(T ).

This demonstrates that product functions distribute over product sets by
images and inverse images. Determining the behaviour of product partitions
under the images and inverse images of product functions requires a different
approach.
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To begin with, we can prove that partition inverse images distribute over
products by reducing them to set images.

Theorem 3.0.6. product functions distribute over product partitions by
inverse images

Proof. let f : A → B and g : C → D be functions with product f × g :
A× C → B ×D. Let P be a partition of B and Q a partition of D. Then
we can equivalently represent P and Q by equivalence relations =P and =Q.
With this equivalence relation representation we have that f−1(=P × =Q)
reduces to a set image, which by theorem 3.0.5 distributes over products so
this equals f−1(P )× f−1(Q).

The failure of partition images to distribute over product partitions will
be important later on in our treatment of universal algebra. This means
expressions like f×g(P×Q) cannot be separated into its components f(P )×
g(Q). This makes it necessary to create systems of special reasoning to deal
with the product structures that are ubiquitously in universal algebra. The
one case where this is not an issue is when both functions are bijective.

Theorem 3.0.7. bijective product functions distribute over product parti-
tions by images

Proof. let f : A → B and g : C → D be functions with product f × g :
A × C → B × D. Let P be a partition of A and Q a partition of C and
consider P × Q. Then we can rewrite this as P × 1B ∩ 1A × Q. So that
f × g(P ×Q) = f × g(P × 1B ∩ 1A×Q). As this is injective this distributes
over intersections to become f(P×1B)∩f(1A×Q). As f and g are surjective
these both map to f(P )× 1D ∩ 1C × f(Q) which can be intersected to yield
f(P )× f(Q).

Even though we cannot prove that product functions distribute over
product partitions, we can prove an ordering theorem for them.

Theorem 3.0.8. let f : A→ B and g : C → D be functions then f×g(P ×
Q) ⊆ f(P )× g(Q).

Proof. suppose that ((x1, y1), (xn, yn)) is in f × g(P × Q). Then there
is a sequence of consecutive P and Q equal terms ((a1, b1), ..., (an, bn))
with f(a1) = x1, f(xn) = an and g(y1) = b1, g(yn) = bn. Then this can
be separated into componentwise sequences (a1...an) and (b1...bn) so that
(x1, xn) ∈ f(P ) and (y1, yn) ∈ g(Q).

Although it is the case that f × g(P ×Q) ⊆ f(P )× g(Q) the reverse is
generally not true. We will have to work around that fact in our algebraic
treatment of congruences.
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3.0.3 Universal algebra

Classical abstract algebra is focused on groups, rings, and fields. It formed
around the study of the antitone Galois connection between groups and fields
that is at the heart of Galois theory. It was used to study the solutions of
univariate polynomial equations. The theory of groups, rings, and fields
produced a special kind of algebraic theory.

In a group, a congruence is determined if we know a single congruence
class, the congruence class of the identity which forms a normal subgroup.
Similarly, in a ring, we know that a congruence is formed by the single
congruence class containing zero, which forms an ideal. Then the study of
congruences can be avoided in group theory and ring theory. This reduced
the need to study congruences for a long time.

The theory of semigroups has no corresponding notion, and forcing us to
create a theory of congruences as such. It is here in the study of semigroups
that congruences got their first treatment. Following, this congruences were
generalized to algebras of arbitrary type in treatments of universal algebra
in the literature.

We will now take this to the next step using topos theory and the funda-
mental topos Sets→ in demonstrating that congruences are simply special
cases of dataflow relations. This follows a pattern of generalisation from ide-
als and normal subgroups, to congruences of algebras, to functional dataflow
relations. Unlike the prior notions, dataflow relations in the topos Sets→

capture any dataflow relation describing the flow of information from one
region to another.

Definition 3.0.1. the basic objects of universal algebra are defined as fol-
lows:

1. let A be a set then a n-ary operation on the set A is a Sets→ object
of the form ∗ : An → A.

2. let A and B be sets with n-ary operations ∗ : An → A and ∗ : Bn → B.
Then a function f : A → B is an algebraic homomorphism provided
that f(a1 ∗ ... ∗ an) = f(a1) ∗ ... ∗ f(an).

3. let n be a fixed non-negative integer then the category n-ary operations
is the category with objects of the form provided by definition (1) and
whose morphisms are those of the form defined by definition (2)

Our focus is on the theory of the elementary presheaf topos Sets→. Using
this topos, we have defined general-purpose dataflow relations. So as a first
step to applying this theory to universal algebra, we need to construct Sets→

valued functors on categories of algebras. The congruences of algebras will
be defined by dataflow relations in Sets→.
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Homomorphisms of algebras in universal algebra are defined componen-
twise using a product function fn for the input function and an ordinary
function f for the output function.

Theorem 3.0.9. let f : A → B be a homomorphism of n-ary operations.
Then (fn, f) forms a morphism of functions in Sets→ between the nary
operations ∗ : An → A and ∗ : Bn → B.

Proof. the morphism (fn, f) forms a commutative diagram of the following
form:

then the condition that this diagram commutes is equivalent to the ex-
pression that f(a1 ∗ ...∗an) = f(a1)∗ ...∗f(an) which is part of the definition
of homomorphisms of nary operations.

We can use this theorem to define the induced Sets→ morphism for a
homomorphism of nary operations.

Definition 3.0.2. let f : A → B be a homomorphism of nary operations.
Then the induced morphism of d(f) is the morphism (fn, f) in Sets→ from
∗A : An → A to ∗B : Bn → B

It follows that the induced Sets→ morphism forms a functor from the
category of algebras to Sets→. Every single nary operation corresponds to
an object of the topos Sets→. On the other hand, in the more general context
of universal algebra, an algebra is defined by a family of nary operations.
This necessitates that we define a family of functors to Sets→ for each type
of operation on an algebra.

Definition 3.0.3. let C be the category of algebras with signature (n1, ...ni).
Then for any morphism m : A → B in C there exists an induced Sets→

morphism for each operation in C indexed by i of the form (fni , f) from
∗i : Ani → A to ∗i : Bni → B yielding an indexed family of functors
Fi : C → Sets→.

The key property of this representation is that we can use it to reason
about algebras of an arbitrary signature by using the topos Sets→. If there
is some property that is apparent to some operation of an algebra that can
be inferred from its representation in Sets→, then that can probably be
generalized from that operation to all other operations in the algebra.
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Every morphism of algebras induces a morphism in Sets→ of the form
(fn, f). Given such a morphism, we can form its kernel (ker(f)n, ker(f)) in
Sets→, which is a functional dataflow relation. These always yield dataflow
relations of the form (Cn, C).
Definition 3.0.4. let ∗ : An → A be a nary operation and let C be a
partition of A. Then a componentwise dataflow relation is any dataflow
relation of the form (Cn, C) associated to the function ∗.

These componentwise dataflow relations (Cn, C) are precisely the alge-
braic congruences of any nary operation. Dataflow relations describe how
data flows from one place to another. This means that congruences (Cn, C)
can be interpreted as saying that the combined C information of all elements
in an input tuple determines C information in the output. So algebraic con-
gruences are ways of describing the flow of information from one region to
another, which makes them dataflow relations.
Definition 3.0.5. let f : An → A be a nary operation then we have the
following correspondence:

• let C be a congruence then the dataflow relation defined by C is the
relation (Cn, C).

• let (Cn, C) be a componentwise dataflow relation then the algebraic
congruence associated with (Cn, C) is the component partition C

Then this correspondence between congruences and componentwise dataflow
relations leads to a lattice embedding from the lattice of congruences of A
represented as an algebra to the lattice of dataflow relations on the Sets→

object f , whose image is the set of all componentwise dataflow relations.

i : Con(A)→ Con(f)
Although all congruences in algebra are treatable as special types of

dataflow relations, the converse is not true. There exist dataflow relations
beyond those in classical algebra that are defined componentwise, which
can be used to describe other ways that input maps to output by algebraic
functions.

For example, let f : M2 →M be a magma then we can form a partition
Sym on M2 of the form (a, b) = (b, a) that equates two ordered pairs pro-
vided that they are equal up to transposition. This is not a componentwise
congruence. Nonetheless, by taking partition images, we can still form the
dataflow relation (Sym, f(Sym)) from it. The partition image equates x
and y provided that there exists a, b with f(ab) = x and f(ba) = y. Then
this dataflow relation describes the bits of information that we can infer
from the output from a pair of arguments x, y without knowing the order
the arguments are in. This opens up the possibility of considering more
types of dataflow relations.
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In classical algebra and the context of ring theory, there exists an ad-
junction between ideal lattices associated with any ring map f : R → S.
These are defined by the ideal extension and contraction of an ideal under
a ring map.

• let f : R→ S be a ring map then the extension of I is the ideal closure
of f(I)

• let f : R → S be a ring map then the contraction of I is the inverse
image f−1(I).

Then these define a dual pair of functors Ideals and Ideals−1 that define
the adjunction between the lattices of ideals of the two rings.

Ideals(F ) : Ideals(R)→ Ideals(S)

Ideals−1(F ) : Ideals(S)→ Ideals(R)

These concepts are addressed in the literature under the terms ideal ex-
tension and contraction. However, much as with initial and final topologies,
we can define these by overloaded images and inverse images. In particular,
given an object of the ring map data type and another object of ideal type,
then the correct type of mapping can be defined by them by the image and
inverse image multimethods.

This integrates the familiar concepts of ideal extension and contraction
into our framework of polymorphic images. Having reviewed this concept
of ideal extension and contraction, we would like to see if similar concepts
arise for algebraic congruences under partition images and inverse images.
In fact, as we will see, the situation is much the same.

• let f : A→ B be a map of algebras then the congruence image f(C) of
a congruence C is the congruence closure of the partition image f(C)
in B.

• let f : A→ B be a map of algebras then the congruence inverse image
f−1(C) and the partition inverse image coincide.

Then there exists an adjunction between congruence lattices Con(f) :
Con(A) → Con(B) and Con−1(f) : Con(B) → Con(A) induced by the
morphism of algebras f . In the special case of rings, there is a mapping
m : Ideals(R)→ Con(R) from the ideal lattice of R to its congruence lattice.
Then this generalized definition of congruence extension and contraction is
a direct generalisation of that concept of extension and contraction from
the context of ideals of rings only now applied to congruences. We will now
investigate the properties of these congruence images and inverse images
using dataflow relations.
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We will now proceed to examine the preservation and reflection of con-
gruences using the theory of functional dataflow relations. Let f : A→ B be
a homomorphism of algebras, and let C be a congruence. Then (Cn, C) is a
dataflow relation of A and by the preservation of congruences (fn(Cn), f(C))
is a congruence of B.

The problem with this is the failure of the partition image fn(P n) to
distribute over products. This leads to the following inequality, which was
explained in the section on product functions:

fn(P n) ̸= (f(P ))n

Then this means that for any dataflow relation (Cn, C), its image (fn(Cn), f(C))
is a dataflow relation but it is not a componentwise dataflow relation of any
congruence. Instead, it always describes something about how a different
collection of information in fn(Cn) can produce f(C). The failure of the
partition image of a congruence to again be a congruence is the reason we
have to define the congruence extension.

The image of an ideal under a ring map may always be a subring, but
it is not an ideal except under the image extension. By the same token, we
apply the congruence extension method to ensure that the partition images
of congruences are always again congruences.

The situation for partition inverse images is a different story. Here in
fact, we have that partition inverse images preserve congruences of alge-
bras. Given any dataflow relation (P n, P ) then the dataflow inverse image
of (P n, P ) is the pair (f−1(P n), P ).

Then it can be shown that ((fn)−1(P n), f−1(P )) can equivalently be
expressed as ((f−1(P ))n, f−1(P )). From this, it implies that partition in-
verse images reflect algebraic congruences. This leads to our definition of
the contraction of congruences.

The two concepts of congruence extension and contraction generalize
another concept from the classical algebraic setting of groups, rings, and
fields to the setting of universal algebra. At the same time, this demonstrates
that this is part of the more general theory of dataflow relations.
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We will now proceed to determine the inner workings of the contraction
of congruences.

Theorem 3.0.10. let d : (∗A : An → A) → (∗B : Bn → B) be a ho-
momorphism of nary operations with components (fn, f). Then d reflects
componentwise dataflow relations.

Proof. let (Cn, C) be a dataflow relation on ∗B : Bn → B. Then by theo-
rem 2.5.15 d reflects the congurence (Cn, C) on ∗B : Bn → B back to the
congruence ((fn)−1(Cn), f−1(C)) is a dataflow relation of ∗A : An → A.
By the fact that product functions distribute over product partitions by in-
verse images, this is equal to ((f−1(C)n, f−1(C)), which is a componentwise
dataflow relation.

The fact that the induced Sets→ morphisms of homomorphisms of nary
operations reflect componentwise dataflow relations demonstrates that those
homomorphisms themselves reflect congruences.

Corollary 3.0.2. let f : A → B be a homomorphism of algebras then f
reflects congruences

The reflection of congruences can itself be defined by taking the kernel
of the composite map with the projection morphism of the output set along
the congruence C. There is no similar method for defining the preservation
of congruences along algebraic mappings, so congruences are not generally
preserved.

As a consequence, congruence extension is defined by taking the con-
gruence closure of the partition image, while congruence contraction and
partition inverse images coincide. Then for any category of algebras, we
have a dual pair of functors Con and Con−1 that can be applied to any
morphism f : A→ B:

Con(f) : Con(A)→ Con(B)

Con−1(f) : Con(B)→ Con(A)

The congruence extension Con(f) : Con(A)→ Con(B) and the congru-
ence contraction Con−1(f) : Con(B)→ Con(A) operators form adjoints of
a monotone Galois connection. These congruence extension and contraction
operators directly generalize the partition adjunction

In the special case of our polymorphic images implementation, we can
define special datatypes for algebras, algebra homomorphisms, and congru-
ences. Then the image of a congruence under a homomorphism will be a
congruence determined by congruence extension, and the inverse image will
again be a congruence as determined by congruence contraction. In each
case, the image and inverse image multimethods will be overloaded based
upon data type so that they produce results of the same type.
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3.0.4 Symbolic addresses

In most computer applications, it is convenient to refer to symbolic addresses
rather than referencing partitions directly.

• in a list, the parts of the list might be addressed by indices like
0,1,2,3,... and stored using an integer data type.

• in a matrix, the parts of the matrix might be addressed by ordered
pairs of integers (0,0),(0,1),(1,0),(1,1), representing the data at some
position in the matrix.

• in a hash table, the memory in the table may be referenced by keys of
an arbitrary data type

• in a complex number, the real and imaginary parts can be treated as
symbolic addresses to information locations of the complex number

• in a quaternion, a set of four different keys: h,i,j, and k can be used
as symbolic addresses to the information locations of the quaternion

• in a conventional computer, an address space is a means of translating
symbolic or numeric addresses into data

The point of symbolic addresses is that they should represent the canon-
ical units of information located in a data structure. Then composite loca-
tions can be constructed from the meet operation of the partition lattice.

Definition 3.0.6. let S be a structure with a, b, c symbolic addresses to
parts of S. Then a composite structure containing {a, b, c} is defined by the
meet of the partitions referenced by the symbols in {a, b, c}.

As an example, let S be the class of 3x3 matrices. Then {(0, 0), (0, 1), (0, 2)}
refers to the first row in the structure and {(0, 0), (1, 0), (2, 0)} refers to the
first column. In both cases, the row and column are constructed from the
partition meet of the partitions referred to by these symbolic addresses.
The information in common between the first column and the first row is
the single point {(0, 0)}.

In the case of a conventional computer, sets of memory addresses are
combined to form files, processes, and so on. These sets of memory addresses
are the partition meet of all the partitions referred to by their components.
In any case, regardless of rather you are dealing with a matrix, an address
space, a list, or a hash table, composite locations can be formed from smaller
ones.

In a concrete computer implementation of symbolic addressing, compos-
ite types like the rows and columns of matrices can be represented as sets
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of symbolic addresses under the hood while still being members of a par-
tition data type. Membership in the partition type ensures that they will
have partition images overloaded on them so that symbolic addresses can
be mapped back to symbolic addresses.

Symbolic addresses are frequently how we want to interact with and
define the places of structures in programs. In turn, these allow us to make
more practical use of data flow relations.

• let f(x, y) = (y, x) be the function that takes an ordered pair and
produces its transposition. Then with respect to symbolic addresses
f : 0 → 1 and f : 1 → 0 so that f maps the first index to the second
and the second one back to the first.

• let M and N be matrices then in the matrix product MN each coor-
dinate (i, j) in the matrix product MN is dependent upon the ith row
of M and the jth column of N . Then each of these data dependencies
form data flow relations on the matrix multiplication operation.

• let u and v be vectors then the dot product u · v has that each compo-
nent (u · v)i is functionally dependent upon ui and vi. Each of these
functional dependencies form dataflow relations in the topos Sets→.

• let C be the complex numbers and consider complex conjugation f(a+
bi) = a − bi. Then the real part maps back to the real part, and the
imaginary part maps back to the imaginary part. Both of these condi-
tions form dataflow relations on the complex conjugation of complex
numbers.

In a conventional computing system, a computation can be specified by a
statement like a← b+ c. The assumption is that in any given statement, all
memory locations aside from the ones explicitly handled by the computation
like a are left alone. It follows that a transformation of memory can be
specified only by a set of computations that change given memory locations.

Then in a computation like a ← b + c we have that ({a}, {b, c}) is a
dataflow relation describing the movement of {b, c} data in to {a}. The
composability of data flow relations is a generalisation of the composition
of data dependencies on this level. So if we took a ← b + c and d ← e + f
and then composed them with g ← a+d. Then g would be dependent upon
both the components of a and d, so it would be dependent upon b, c, e and
f and so on.

It is possible to capture the movement of data between memory addresses
using the theory of dataflow relations in Sets→. However, this theory is
much more general than that as it allows us to capture the movement of
data from any one location to another by a function. This new formulation
gives dataflow analysis the highest level of applicability.

48



Chapter 4

Concluding remarks

The theory of dataflow relations has been extensively studied [8]. Applica-
tions of this theory have been realised in the analysis of parallel programs
[9] [10]. In particular, the realisation of the increasing need for the auto-
matic parallelisation of software programs has led to an explosion in need
for dataflow analysis and related forms of program analyis.

With this explosion of work in dataflow analysis and program analysis,
it is desirable that mathematical foundations should be created for this
field of study. These foundations should work on the appropriate level of
generality and abstraction so that dataflow analysis has the highest level of
applicability.

Previous work on the mathematical foundations of dataflow made us
of lattices [8]. We believe that by furthering these models with the use of
the topos theory, and in particular the topos Sets→, the field of dataflow
analysis can be given firm mathematical foundations.
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