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Iterative-Weighted Thresholding Method for
Group-Sparsity-Constrained Optimization

with Applications
Lanfan Jiang, Zilin Huang, Yu Chen, and Wenxing Zhu

Abstract—Taking advantage of the natural grouping structure
inside data, group sparse optimization can effectively improve
the efficiency and stability of high-dimensional data analysis, and
it has wide applications in a variety of fields such as machine
learning, signal processing, and bioinformatics. Although there
has been a lot of progress, it is still a challenge to construct
a group sparse inducing function with good properties and
to identify significant groups. This paper aims to address the
group sparsity constrained minimization problem. We convert the
problem to an equivalent weighted ℓp,q-norm (p > 0, 0 < q ≤ 1)
constrained optimization model, instead of its relaxation or
approximation problem. Then by applying the proximal gradient
method, a solution method with theoretical convergence analysis
is developed. Moreover, based on the properties proved in
the Lagrangian dual framework, the homotopy technique is
employed to cope with the parameter tuning task and to ensure
that the output of the proposed homotopy algorithm is an L-
stationary point of the original problem. The proposed weighted
framework, with the central idea of identifying important groups,
is compatible with a wide range of support set identification
strategies, which can better meet the needs of different applica-
tions and improve the robustness of the model in practice. Both
simulated and real data experiments demonstrate the superiority
of the proposed method in terms of group feature selection
accuracy and computational efficiency. Extensive experimental
results in application areas such as compressed sensing, image
recognition, and classifier design show that our method has great
potential in a wide range of applications. Our codes will be
available at https://github.com/jianglanfan/HIWT-GSC.

Index Terms—Group sparse, sparse optimization, iterative
weighted thresholding, homotopy, proximal gradient, non-convex
optimization.

I. INTRODUCTION

In an increasingly digitized world, the rapid growth of fea-
ture dimensions brings new challenges to data processing and
analysis. Sparse structure, as an important low-dimensional
structure in high-dimensional data, is widely available in
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a large number of practical applications. By utilizing the
sparse structure of data, sparse optimization models perform
dimension reduction and feature selection, thereby achieving
the purpose of reducing complexity, enhancing interpretabil-
ity, and improving efficiency of the task. Therefore, sparse
optimization models have become a popular modeling tool in
the context of high-dimensional data, and have demonstrated
their power in many fields such as image processing [1], [2],
computer vision [3], [4], and machine learning [5], [6].

In recent years, optimization problems emerging from many
application areas have data with more structural information
than just sparsity. For example, in gene expression analysis,
genes belonging to the same biological pathway can be
considered as a group [7]. In image processing, the color
space representation of a pixel can be thought of as a group
[8]. In deep neural network compression, all of the output
weights of a neuron in a network can be considered as a group
[9], [10]. Some literature in statistics and machine learning
[11]–[15] has shown that when data have a certain group
structure, group sparse optimization models reduce the degrees
of freedom in problem-solving, leading to better solutions with
fewer measurement requirements and lower computational
complexity compared to standard sparse optimization models.
Therefore, group sparsity, as an important constraint, has been
widely studied and applied in the past decade[16]–[20].

Given a function f : Rn → R, in this work, we aim to op-
timize the following group-sparsity constrained minimization
problem with non-overlapping groups:

x̂ = argmin
x∈Rn

f(x) s.t. ∥x∥p,0 ≤ s, (1)

where x ∈ Rn is a coefficient vector of features with group
structure which is to be estimated, and ∥x∥p,0(p > 0) counts
the number of non-zero groups in x.

The group structure partitions n features into N groups
with a pre-determined non-overlapping index set G =
{G1, . . . ,GN}, hence in problem (1), 0 < s ≤ N . The ℓp,q
(p > 0) norm of x is defined as

∥x∥p,q =


(∑N

i=1 ∥xGi∥qp
) 1

q

, q > 0;

|{i : ∥xGi
∥p ̸= 0}|, q = 0;

maxi{∥xGi∥p}, q =∞.

(2)

Actually, not all features are informative. Problem (1) aims
to identify at most s relevant and informative groups of
features in the model with respect to minimizing the function
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f(x). Since ∥·∥p,0 is a non-convex and discontinuous function,
the optimization problem associated with the ℓp,0-norm is
generally hard to solve. To this end, many plausible methods
have been proposed for ℓp,0-norm based problems. We briefly
review the methods that directly motivated our research as
follows.

Relaxation is a widely used technique in sparse optimiza-
tion. This technique relaxes the discontinuous ℓp,0 function
into a more tractable convex or non-convex group sparsity-
inducing function, denoted by ψ(x). A common approach is
the convex relaxation of the ℓp,0 regularization to the ℓ2,1
regularization, often referred to as group least absolute shrink-
age and selection operator (GLASSO) [21]. The regularization
term of the GLASSO is defined by

ψλ(x) = λ

N∑
i=1

∥xGi
∥2 , (3)

where λ > 0 is the regularization parameter. As can be seen
from (3), similar to LASSO, GLASSO imposes the same
degree of penalty on all groups, resulting in a biased solution.

To overcome this drawback, some non-convex methods,
such as group smoothly clipped absolute deviation (GSCAD)
[22] and group minimax concave penalty (GMCP) [7], [23],
employ piecewise sparsity-inducing functions to penalize dif-
ferent groups with varying degrees according to their mag-
nitude, and consequently possess good consistency in group
selection [23]. In a similar vein, researchers have proposed the
idea of partial regularization [24]–[26]. Based on such an idea,
Feng et al. [27] addressed the block sparse recovery problem
by using a less biased group sparsity-inducing function

ψλ(x) = λ

N∑
i=s+1

∥∥∥x↓
Gi

∥∥∥
2
, (4)

where
∥∥∥x↓

G1

∥∥∥
2
≥

∥∥∥x↓
G2

∥∥∥
2
≥ · · · ≥

∥∥∥x↓
GN

∥∥∥
2

are arranged in
descending order according to the ℓ2-norm magnitude of each
group. Equation (4) implies that the leading s group entries
with the largest magnitude are not penalized, which effectively
neutralizes the solution bias in group LASSO. Similar work
in recent years can be found in [28]–[30].

The above analyses of the relaxation methods suggest that
different groups should be penalized to different degrees. In
light of this, it is of great importance to construct surrogate
functions with good properties, such as group selection
consistent, for the ℓp,0 function.

Another common approach is to solve the original problem
directly, where the key issue is identifying the correct support
set. During the identification process, different methods favor
different strategies, resulting in different support sets. For ex-
ample, for the purpose of residual reduction, greedy methods,
such as the group orthogonal matching pursuit (GOMP) [31],
usually identify contributing features step by step and finally
construct the support set of the solution. On the other hand,
methods such as iterative hard thresholding (IHT) iteratively
perform a gradient descent operation, and then project the
resulting vector onto the feasibility set, or take a hard thresh-
olding step to determine the support set. A representative is

the group primal-dual active set with continuation (GPDASC)
method [32], which solves group sparse regularization prob-
lems based on the ℓ2,0-norm. Another recent analogous study
can be referred to the subspace Newton method for sparse
group ℓ0 optimization problem (SNSG) [33], which identifies
a support set after two-step projection in each iteration and
applies the Newton method within this subspace to search for
an improved iteration point.

In general, it is crucial but not straightforward to identify
a right support set. In fact, the best support set identification
strategies for different applications are often different. For this
reason, a unified framework that is compatible with a wide
range of identification strategies is worth studying.

In summary, there are two major challenges of the group-
sparsity optimization problem (1). The first issue is to con-
struct appropriate surrogate functions for the ℓp,0-norm based
constraints, and the other issue is to identify “informative”
groups in real-world problems. Therefore, a general and ef-
fective model is required, which not only ensures an accurate
solution but also encompasses a wider range of strategies for
identifying supporting sets.

This paper aims to address the above issues by proposing
a more general group-sparsity framework, referred to as IWT-
GSC (Iterative Weighted Thresholding method for Group-
Sparsity Constrained problem). It extends the work in [34],
[35]. The method proposed in [34] is for variable selection
based on the ℓ1-norm and uses a monotone line search. While,
this work is for group selection based on the more general ℓp,q-
norm and uses a non-monotone line search. The considered
problem is more general, moreover, the proposed algorithm is
more efficient due to the non-monotone line search [36]. In
addition, the method in [35] focuses on group sparse recovery
from underdetermined linear systems, and introduces an adap-
tively updated group threshold hyperparameter into the model
to assist in support set detection. In comparison, this work aims
to optimize a general group-sparsity constrained problem and
allows for a wide range of support set identification strategies,
which means we can customize the support set identification
strategies to better meet the needs of different applications and
to improve the robustness of the model.

The main contributions are summarized as follows:
(i) We convert the original group-sparsity constrained prob-

lem (1) to an equivalent weighted ℓp,q-norm (p > 0, 0 <
q ≤ 1) constrained optimization model instead of its
relaxation or approximation problem. In the proposed
weighted model, we assign “0-1” weights to different
groups to cope with the “biased solution” issue. More-
over, moving beyond single fixed support group identifi-
cation strategy, our weighted framework actually allows
for a wide range of strategies to better fit in different
applications. Dualizing the ℓp,q-norm constraint, we prove
that problem (1) has the strong duality property. Applying
the proximal gradient method to approximately solve the
Lagrangian problem, we present closed-form solutions of
a sub-problem for some specific values of p and q.

(ii) We design an efficient and effective IWT-GSC algorith-
mic framework for solving the proposed Lagrangian prob-
lem. The marriage of the Barzilai-Borwein (BB) method
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and non-monotone line search produces iteratively up-
dated step-sizes which help to speed up the convergence
of the IWT-GSC algorithm. Furthermore, to get rid of
the tedious but crucial task of parameter tuning and to
further enhance the proposed algorithm, we apply the
homotopy technique to the IWT-GSC algorithm, which
is called HIWT-GSC.

(iii) We demonstrate that the solution sequence {xk} gener-
ated by IWT-GSC converges under some mild conditions,
and the output of the HIWT-GSC algorithm is an L-
stationary point of problem (1).

(iv) In addition to a series of experiments on simulated
data, we apply the algorithm to application areas such
as compressed sensing, image classification, and clas-
sifier design. Extensive experimental results show that
our algorithm is reliable in achieving superior selection
accuracy of features and provides an accurate solution
with high efficiency, compared to state-of-the-art group
sparse optimization methods.

The rest of this paper is organized as follows. Section
II provides the preliminaries. Section III reformulates the
proposed equivalent problem into a problem with a simple
constraint via the Lagrangian relaxation, and derives closed-
form solutions for some specific values of p and q when
applying the proximal gradient method. Section IV explores
the IWT-GSC framework and provides convergence analysis.
Section V gives the homotopy algorithm HIWT-GSC and
elaborates some implementation details. Section VI exhibits a
series of experimental results. Finally, Section VII concludes
this paper. Due to space limitations, the proofs of the lemmas
and theorems are not presented in the main body of this paper,
but are provided in the Supplementary Material.

II. PRELIMINARIES

In this section, we provide preliminaries, including nota-
tions, definitions, and assumptions.

A. Notations

Throughout this paper, we denote vectors, matrices and
sets by lowercase bold letters x, uppercase bold letters A,
and blackboard bold uppercase letters S, respectively. We use
xi (respectively Ai) to represent the i-th entry (respectively
column) of x (respectively A). Unless otherwise stated, we
assume that all vectors are column vectors.

Suppose x ∈ Rn has a pre-specified non-overlapping group
structure with partition G = {G1, . . . ,GN}, where Gi denote
the index set corresponding to the i-th group. Then xGi

=
(xj , j ∈ Gi)

T is the subvector of x indexed by Gi, x =
(xT

G1
, . . . ,xT

GN
)T and xGi

∩ xGj
= ∅, where 1 ≤ |Gi| =

Ni ≤ n and
∑N

i=1 |Gi| = n. Likewise, AGi = (Aj , j ∈ Gi)
is the submatrix of A indexed by Gi. For convenience, we
give the other notations in TABLE I.

B. The definition of soft-thresholding operator

Definition 1: Given parameters λ and L, the soft-
thresholding operator soft λ

L ,p(·) is defined as:

TABLE I
NOTATIONS USED IN THIS PAPER

Notation Description

S(x) S(x) = {i : xi ̸= 0}
Sc(x) Complement of S(x), i.e., Sc(x) = {i : xi = 0}
SG(x) SG(x) = {i : xGi

̸= 0}
ScG(x) Complement of SG(x), i.e., ScG(x) = {i : xGi

= 0}
Cs Cs = {x ∈ Rn : ∥x∥p,0 ≤ s}
|G| Cardinality of G
∥ · ∥ The Euclidean norm

[xG]p,q [xG]p,q =
(∥∥xG1

∥∥q
p
,
∥∥xG2

∥∥q
p
, . . . ,

∥∥xGN

∥∥q
p

)T

[xG]
↓
p,q Elements in [xG]p,q arranged in nonincreasing order

([xG]
↓
p,q)r The r-th element of [xG]

↓
p,q

xk An estimate of x after k iterations
⟨x,y⟩ The Euclidean inner product between x and y

(i) If p = 1, then for each element zj in vector z:

soft λ
L ,1(zj) = sign(zj)max(|zj | −

λ

L
, 0). (5)

(ii) If p = 2, then

soft λ
L ,2(z) =

{
(∥z∥ − λ

L )
z

∥z∥ if ∥z∥ > λ
L ;

0 if ∥z∥ ≤ λ
L .

(6)

C. Assumptions

Assume that f is a non-negative real-valued function,
representing, for example, the difference between a model’s
predicted value and the actual observed value. Throughout this
paper, we make the following assumptions:

(A1) f is assumed to be continuously differentiable, and ∇f
is Lipschitz continuous with Lipschitz constant Lf .

(A2) f is bounded below.

III. PROBLEM REFORMULATION AND CLOSED-FORM
SOLUTION

In this section, we first propose an equivalent weighted
reformulation of the group-sparsity constraint in problem (1).
We then reformulate the proposed equivalent problem into a
problem with a simple constraint via the Lagrangian relax-
ation. By approximating the objective function with a sep-
arable quadratic function, the unconstrained problem admits
closed-form solutions for some specific values of p and q,
which can be used to develop iterative weighted thresholding
methods.

A. Equivalent problem reformulation

Lemma 1: x ∈ Cs is equivalent to that there exists w ∈
{0, 1}N such that {

⟨w, [xG]p,q⟩ ≤ 0;

∥1−w∥0 ≤ s,
(7)

where x ∈ Rn, p > 0 and 0 < q ≤ 1.
Note that the equivalence also holds for any q > 0 in

Lemma 1. The reason why we mainly consider the case
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0 < q ≤ 1 is that we are interested in designing a sparse
induced function that can shrink small elements of a solution
towards 0. In addition, we require that the first inequality in
(7) be less than or equal to 0, not just equal to 0, to ensure that
the Lagrange multiplier is greater than or equal to 0, which
facilitates the subsequent analysis and design of our algorithm.

Obviously, the variable w in (7) can be set as{
wi = 0 if i ∈ SG(x);
wi = 1 otherwise.

In this way, no matter what strategy we use, the selected
groups in SG(x) are not penalized, which helps our method
to finally identify the correct support set.

Next, based on Lemma 1, we reformulate problem (1) into
the following equivalent minimization problem

x̂ = argmin
x∈Rn,w∈{0,1}N

f(x) s.t.

{
⟨w, [xG]p,q⟩ ≤ 0;

∥1−w∥0 ≤ s,
(8)

where p > 0, 0 < q ≤ 1.
By defining Ω = {(x,w) : x ∈ Rn,w ∈ {0, 1}N ,

∥1−w∥0 ≤ s}, we consider the Lagrangian L associated
with problem (8):

Lp,q(x,w, λ) = f(x) + λψp,q(x,w), (9)

where (x,w) ∈ Ω, λ ≥ 0 is the Lagrange multiplier and

ψp,q(x,w) = ⟨w, [xG]p,q⟩ =

N∑
i=1

(wi × ∥xGi
∥qp). (10)

Then we define the Lagrange dual function g : R→ R as the
minimum value of the Lagrangian L over (x,w):

g(λ) = min
(x,w)∈Ω

Lp,q(x,w, λ). (11)

And the Lagrange dual problem is

max
λ≥0

g(λ), (12)

which yields a lower bound on the optimal value of f(x) in
problem (8).

Let (x⋆
λ,w

⋆
λ) denote an optimal solution of the problem

involved in (11). That is, for a given λ, there holds

(x⋆
λ,w

⋆
λ) = argmin

(x,w)∈Ω

{f(x) + λψp,q(x,w)}. (13)

Then we analyze the strong duality property of the Lagrange
dual function g(λ).

Theorem 1: For any given λ (λ ≥ 0), let C⋆
λ = {x⋆

λ}. In
the cases of 0 < p ≤ 1, 0 < q ≤ 1 or p = 2, q = 1, suppose
C⋆

λ and {∇f(x) : x ∈ C⋆
λ} are bounded, then there exists

0 < λ̄ ̸=∞ such that ψp,q(x
⋆
λ̄
,w⋆

λ̄
) = 0, and problem (1) has

the strong duality property:

min
x∈Cs

f(x) = max
λ≥0

g(λ) = max
λ≥0

min
(x,w)∈Ω

Lp,q(x,w, λ).

Benefiting from the strong duality property, we can obtain
a solution of problem (1) by solving the Lagrange dual prob-
lem (12). Therefore, we first consider how to approximately
solve problem (11).

B. The subproblem and its optimal solution

Applying the proximal gradient method, we can approxi-
mately solve problem (11) by iteratively solving the following
sub-problem:

(xk+1,wk+1) = argmin
(x,w)∈Ω

YLk,λ,p,q,xk(x,w)

= argmin
(x,w)∈Ω

Lk

2
∥x− zk∥2 + λψp,q(x,w),

(14)

where Lk > 0 is an iteratively updated step-size factor and
zk = xk − 1

Lk
∇f(xk).

Next, we discuss how to solve the sub-problem (14) effi-
ciently.

For each group Gi (i = 1, . . . , N), we consider the
following low dimensional sub-problem of problem (14):

min
xGi

∈RNi ,wi∈{0,1}

{Lk

2
∥xGi − zk

Gi
∥2 + λwi ∥xGi∥

q
p

}
. (15)

Obviously, the value of (p, q) can have many choices. In
the rest of this paper, in the view of the simplicity of the
closed-form solution as well as the widespread applications of
LASSO and group LASSO, we focus on the case of p ∈ {1, 2}
and q = 1.

Lemma 2: The solution of problem (15) in the case p ∈
{1, 2} and q = 1 is given by the following weighted group
thresholding operator:

(TLk,λ,p(x
k))i =

{
(zk

Gi
, 0) if i ∈ Sk+1

G ;

(soft λ
Lk

,p(z
k
Gi
), 1) otherwise,

(16)

where i = 1, . . . , N , Sk+1
G is the selected group support set at

the (k+1)-th iteration, and soft λ
Lk

,p(·) is the soft-thresholding
operator defined in (5) and (6).

It can be seen from (16) that, for the selected support
groups, we only perform the gradient descent step while for
the other unselected groups, we subsequently perform the soft
thresholding operation to shrink their magnitudes towards 0.

However, whether TLk,λ,p(x
k) is a solution to problem (14)

depends on the choice of Sk+1
G . Therefore, a key issue in

solving problem (14) is the identification of group support set.
Although our weighted framework has compatibility feature
for a wide range of strategies, in this work, between all
Cs

N possible combinations of group choices, we evaluate the
importance of different groups from the perspective of sub-
problem minimization and consequently identify the group
support set. More specifically, in order to obtain the optimal
solution of sub-problem (14), we remark that the following two
strategies, i.e., top-s groups and best-s groups, are preferable
to serve the purpose.

Definition 2 (Top-s groups): Let z ∈ Rn be a given vector
and [zG]

↓
p be the non-increasing arrangement of ∥zGi∥p, i =

1, . . . , N . Top-s groups strategy picks at most s-largest non-
zero magnitudes of [zG]

↓
p. The detected indices form the group

support set denoted by As(z), i.e.,

As(z) = {i : ([zG]
↓
p)i > 0, s.t. i ∈ [1, s]}. (17)
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Definition 3 (Best-s groups): We define y(z) ∈ RN as

(y(z))i = YL,λ,p,1,zGi
(soft λ

L ,p(zGi), 1)−
YL,λ,p,1,zGi

(zGi
, 0),

where p ∈ {1, 2}, i = 1, . . . , N . Let y(z)↓ be the non-
increasing arrangement of |(y(z))i|, i = 1, . . . , N . Best-s
groups strategy picks at most s-largest non-zero elements
of y(z)↓. The detected indices form the group support set
denoted by Bs(z), i.e.,

Bs(z) = {i : (y(z)↓)i > 0, s.t. i ∈ [1, s]}. (18)

From the above two definitions, it is clear that |As(z)| ≤ s
and |Bs(z)| ≤ s. Compounding the problem is that, when
|As(z)| = s and |Bs(z)| = s, As(z) and Bs(z) may not
be unique. For problem (14), if the identified set Sk+1

G is not
unique, then by Lemma 2, wk+1 is not unique. Next, we show
that if we set Sk+1

G = As(z
k) or Sk+1

G = Bs(z
k) in (16), then

TLk,λ,p(x
k) is an optimal solution of problem (14) in some

cases, whether Sk+1
G is unique or not.

Theorem 2: In (16), let Sk+1
G = As(z

k), then TLk,λ,p(x
k)

is an optimal solution of problem (14) in the following cases:
(i) p = 2, q = 1; or
(ii) p = 1, q = 1 and there is only one element in each

group.
Theorem 3: In (16), let Sk+1

G = Bs(z
k), then in the case

p ∈ {1, 2}, q = 1, TLk,λ,p(x
k) is an optimal solution of

problem (14).
Based on Theorems 2 and 3, we give the following defini-

tion.
Definition 4 (Optimal setting): We define each of the

following settings as an optimal setting.
(i) Sk+1

G = As(z
k) and p = 2, q = 1.

(ii) Sk+1
G = As(z

k), p = 1, q = 1, and there is only one
element in each group.

(iii) Sk+1
G = Bs(z

k) and p ∈ {1, 2}, q = 1.
It follows from Theorems 2 and 3 that, TLk,λ,p(x

k) is an
optimal solution to problem (14) if (Sk+1

G , p, q) matches any
of the optimal settings.

IV. THE IWT-GSC FRAMEWORK

This section presents an iterative weighted thresholding
(IWT) framework for problem (11) based on the solution of
problem (14), and establishes its convergence. In addition, we
analyze some important factors that affect the performance of
the framework.

A. Algorithm description

Based on the solution in Section III-B, we propose an
iterative weighted thresholding (IWT-GSC) algorithm (Algo-
rithm 1) for approximately solving problem (11).

IWT-GSC is an iterative algorithm. At each iteration, IWT-
GSC performs gradient descent with a selected step-size,
followed by a soft thresholding operation applied only to
unselected groups. In Algorithm 1, lines 4–8 use a line search
method to find an appropriate step-size 1/Lk, which controls

Algorithm 1: (x,w) ← IWT-GSC(x0, w0, s, λ, ϵ):
Iterative Weighted Thresholding Algorithm for Group
Sparsity-Constrained Optimization

1: choose factor η > 1, Lmin and Lmax

(0 < Lmin < Lmax), p ∈ {1, 2}, q ← 1, k ← 0;
2: repeat
3: choose Lk ∈ [Lmin, Lmax];
4: repeat
5: identify Sk+1

G under the maximum group-sparsity
constraint s;

6: (xk+1,wk+1)← TLk,λ,p(x
k);

7: Lk ← min{Lmax, ηLk};
8: until non-monotone line search stopping criterion

satisfied;
9: k ← k + 1;

10: until ∥xk+1−xk∥
∥xk∥ < ϵ;

11: (x,w) ← (xk,wk).

how far the iterate moves along the gradient direction at
iteration k.

Then, IWT-GSC updates the estimation (xk,wk) by check-
ing a line search condition. For each accepted solution, we use
the inequality

∥xk+1 − xk∥
∥xk∥

< ϵ

as a measure of accuracy, which numerically means that more
iterations are not worthwhile for small improvements.

Next, we consider some factors that affect both the per-
formance and the reliability of the algorithm, including the
selection of step-size and the analysis of convergence.

B. Selection of step-size

For the proximal gradient method, the selection of step-size
is an important factor in determining the sequence generated
by Algorithm 1, and thus has a significant impact on the
quality and efficiency of the algorithm. In Algorithm 1, a
combination of the Barzilai-Borwein (BB) method [37] and a
non-monotone line search strategy is used to find appropriate
step-sizes, which are allowed to vary across iterations.

By letting ∆xk = xk − xk−1 and ∆gk = ▽f(xk) −
▽f(xk−1), the BB method initializes the line search step size
as

τkBB = argmin
τ

∥τ−1∆xk −∆gk∥ = ⟨∆xk,∆xk⟩
⟨∆gk,∆xk⟩

.

Then in line 3 of Algorithm 1, we use the following rule to
initialize Lk:

Lk = max{Lmin,min{Lmax, 1/τ
k
BB}}.

In line 8 of Algorithm 1, the non-monotone line search
criterion is used to further validate the feasibility of the current
step-size. Rather than insisting on a monotonically decreasing
objective at every iteration, the non-monotone line search
criterion allows for temporary increases, but ensures overall
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descent of the objective. To this end, similar to [36], we define
ck as a relaxation of Lp,q(x

k,wk, λ), i.e.,

ck =

∑k
j=0 γ

k−jLp,q(x
j ,wj , λ)∑k

j=0 γ
k−j

, (19)

where γ ∈ (0, 1) controls the degree of nonmonotonic-
ity. Specifically, at the k-th iteration of Algorithm 1, non-
monotone line search selects a suitable step-size according to
the following acceptance test

Lp,q(x
k+1,wk+1, λ) ≤ ck −

ς

2
Lk∥xk+1 − xk∥2, (20)

where ς ∈ (0, 1) is a small positive constant.
If criterion (20) is not satisfied, then backtracking is per-

formed, decreasing the current step-size by a factor of η (line 7
of Algorithm 1), and the inner iteration of Algorithm 1 is
repeated until criterion (20) is satisfied.

C. Convergence analysis

In this subsection, we analyze the convergence property of
IWT-GSC under some mild conditions.

The IWT-GSC algorithm is designed to approximately solve
problem (11), which is a mixed-integer programming problem
involving both continuous variables x and discrete choices w.
Therefore, we give the following definition, which involves
not only the gradient of the objective function, but also the
combinatorial nature of the binary vector w.

Definition 5 (Partial first-order stationary point ): (x̂, ŵ) ∈
Ω is a partial first-order stationary point of (11) with respect
to x if

0 ∈ ∇f(x̂) + λ∂xψp,q(x̂, ŵ).

Lemma 3: Assume that Assumption A1 holds, and (Sk+1
G , p,

q) matches one of the optimal settings defined in Definition 4.
Given ς ∈ (0, 1), the following statements hold:

(i) the non-monotone line search stopping criterion (20) is
satisfied whenever Lk ≥ Lf

1−ς ;
(ii) there exists a number c⋆ such that lim

k→∞
ck = c⋆, and

the sequence {xk} generated by Algorithm 1 with acceptance
test (20) has lim

k→∞
∥xk+1 − xk∥ = 0.

According to Lemma 3(i), the value of Lmax in Algorithm 1
should satisfy Lmax ≥ Lf

1−ς to ensure that the line search can
be terminated.

Under Lemma 3, we have
Theorem 4: Let {(xk,wk)} be the sequence generated by

Algorithm 1. Suppose the sequence {xk} is bounded, then the
following results hold:

(i) {xk} is convergent.
(ii) {wk} has a convergent subsequence, denoted as {wik}.
(iii) Let {xik} be the subsequence corresponding to {wik}.

Then any accumulation point (say (x̂, ŵ)) of {(xik ,wik)} is
a partial first-order stationary point of (11) with respect to x.

V. HOMOTOPY METHOD

Section IV has presented an iterative weighted thresholding
(IWT) framework for problem (11), which is the inner problem
of the Lagrange dual problem (12). In this section, we first
analyze some properties of the Lagrange dual function, and
then resort to the homotopy algorithm based on Algorithm 1
to produce an estimation of problem (1).

A. Properties of the Lagrange dual function

By Theorem 1, there exists 0 < λ̄ ̸=∞ such that (x⋆
λ̄
,w⋆

λ̄
)

is also an optimal solution of problem (1). Unfortunately how-
ever, such a λ̄ is unknown. Next, we analyze the relationship
between g(λ) and λ, which will be used for the subsequent
homotopy algorithm.

Definition 6: Define λ⋆ as the smallest value in the set J =
{λ : λ ∈ argmaxλ≥0 g(λ)}.

Theorem 5: The Lagrange dual function g(λ) is a non-
decreasing function with respect to λ.

Since g(λ) is a non-decreasing function with respect to λ,
we can reach the maximum value of g(λ) by continuously
increasing λ. One problem then is that we have to check
whether the extreme point has been reached.

Theorem 6: For any λ > 0, once ψp,q(x
⋆
λ,w

⋆
λ) = 0, then

λ ∈ J = {λ : λ ∈ argmaxλ≥0 g(λ)}.
Theorem 5 and Theorem 6 tell that, in order to solve prob-

lem (12), we can gradually increase λ and solve problem (11)
for each λ until the condition ψp,q(x

⋆
λ,w

⋆
λ) = 0 is satisfied.

According to the strong duality property stated in Theorem 1,
the solution at this point is also the solution of problem (1).

Based on the above analysis, we next resort to the homotopy
technique to find such a suitable λ.

B. HIWT-GSC algorithm

In this subsection, based on the IWT-GSC, we present the
main framework of our Lagrangian method for problem (12),
which is called the HIWT-GSC algorithm.

Algorithm 2: x← HIWT-GSC(x0, w0, s): Homotopy
algorithm based on IWT-GSC

1: initialize k ← 0, select ε, λ0, ϵ0, s0;
2: choose factor ρ > 1, ϱ < 1;
3: repeat
4: (xk+1,wk+1)← IWT-GSC(xk,wk, sk, λk, ϵk);
5: λk+1 ← ρλk, ϵk+1 ← ϱϵk;
6: update sk to sk+1 until reaching the desired s;
7: k ← k + 1;
8: until ψp,q(x

k,wk) = 0 and ∥∇f(xk)∥∞/λk < ε;
9: debias xk over Sc(wk);

10: x← xk.

A key idea of our homotopy method is to solve problem (12)
with a sequence of λ. For a fixed value of λ, we run
the algorithm IWT-GSC to find an approximate solution to
problem (11), and then use this solution as the starting point
for IWT-GSC in the next iteration. This “warm start” strategy
results in fewer iterations of IWT-GSC and gets a better
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solution than if we just run IWT-GSC once with a desired
value of λ from a random initial solution [38].

Next, we discuss some implementation details in Algo-
rithm 2, such as guidelines for tuning the parameters, termi-
nation criteria etc., so as to obtain satisfactory results.

1) Guidelines for parameter tuning: According to Theo-
rem 5, Algorithm 2 searches for the optimal multiplier by
starting with λ0 and then increasing it by a constant factor
ρ > 1, until the desired stopping conditions are satisfied. And
in line 5 of Algorithm 2, we gradually increase the accuracy
requirement of IWT-GSC, i.e., we decrease ϵk as the iteration
progresses.

Moreover, if we know the exact value of s in advance, we
can directly set sk = s (for all k) in line 6 of Algorithm 2.
Otherwise, we give an estimate of the upper bound on s and
search for an appropriate s by gradually increasing sk.

Next, we provide an optimality analysis for the solution of
Algorithm 2, and then design the halting criteria.

2) Optimality analysis: First, we introduce the definition of
L-stationary point.

Definition 7: The orthogonal projection operator P (·) onto
Cs is defined as

PCs
(y) = argmin

x∈Cs

∥x− y∥2. (21)

Definition 8 (L-stationarity [39]): A vector x ∈ Cs is called
an L-stationary point of problem (1) if there exists L > 0 such
that

x ∈ PCs
(x− 1

L
∇f(x)). (22)

Theorem 7: Let (x⋆,w⋆) be an accumulation point of any
convergent subsequence generated by Algorithm 1 using the
top-s or best-s strategy. If ψp,1(x

⋆,w⋆) = 0 (p ∈ {1, 2}),
then the following statements hold:

(i) {
(∇f(x⋆))Gi = 0 if i ∈ Sc(w⋆);

|(∇f(x⋆))j | ≤ λ if i ∈ S(w⋆),∀j ∈ Gi.
(23)

(ii) x⋆ is an L-stationary point of problem (1).
3) Termination criteria: By Lemma 1, if there exists w ∈

{0, 1}N such that {
⟨w, [xG]p,q⟩ = 0;

∥1−w∥0 ≤ s,

then x ∈ Cs. Algorithm 1 identifies the group support set
SG under the maximum group-sparsity constraint s, which to-
gether with operator TLk,λ,p(·) guarantee that ∥1−w∥0 ≤ s.
Therefore, for any solution (x,w) generated by Algorithm 1,
⟨w, [xG]p,q⟩ = 0 is a sufficient condition for x to be a feasible
solution of problem (1).

Furthermore, by Theorem 7, for any accumulation point
(x⋆,w⋆) of the convergent subsequence generated by Algo-
rithm 1, ψp,q(x

⋆,w⋆) = ⟨w⋆, [x⋆
G]p,q⟩ = 0 is a sufficient

condition for x⋆ to be an L-stationary point of problem (1).
Therefore, we use ⟨wk, [xk

G]p,q⟩ = 0 as a stopping criterion
in Algorithm 2. In addition, by (23) in Theorem 7, we add
another criterion ∥∇f(xk)∥∞/λk < ε as a measure of the
accuracy.

In summary, in line 8 of Algorithm 2, we use
ψp,q(x

k,wk) = 0 and ∥∇f(xk)∥∞/λk < ε as stopping
criteria to guarantee an acceptable estimation to problem (1).

4) Debiasing: In fact, our algorithm can be roughly divided
into two stages. In the first stage, i.e., lines 3-8 in Algorithm 2,
we use the first-order method to identify the support set. In
the second stage, i.e., line 9 in Algorithm 2, we consider using
more efficient method (such as the second-order method) to
implement subspace minimization, which is called debiasing
in Algorithm 2. It is worth mentioning that, the support set
identification is an iterative process while the debiasing step
can be executed only once in the algorithm.

More specifically, once an approximate solution has been
obtained in the first stage, we optionally perform a debiasing
step, which attempts to improve the solution quality by mini-
mizing f(x) over the chosen group support set Sc(wk). That
is

x⋆ = argmin{f(x) : xGi
= 0,∀i ∈ S(wk)}.

Either a restricted newton step or a conjugate gradient proce-
dure [38, Sec. II.I], [40, Sec. 11.3] can be used in the debiasing
step.

VI. EXPERIMENTS

Many formulations in machine learning, such as the least
squares and logistic loss functions, typically satisfy Assump-
tion A1. Due to space limitations, in this section, we focus
only on the widely used sparse least squares regression and
sparse logistic regression problems.

We provide experimental results on simulated and real
data to evaluate the accuracy, sparsity, and computational
efficiency of our algorithm. All experiments were performed
on a workstation with Dual Intel Xeon Processor E5-2665 (up
to 3.1 GHz, 16 cores and 32 threads) and 32GB memory.

Unless otherwise specified, the experimental settings are
as follows. In Algorithm 1, we set Lmax = 1

Lmin
= 1010,

η = 2. For non-monotone acceptance test, we set γ = 0.7,
c0 = Lp,q(x

0,w0, λ) in (19), and ς = 10−20 in (20). In
Algorithm 2, we chose zero vectors for (x0,w0) and set
ε = 10−3. Unless otherwise stated, we set s0 = s/4 and
exponentially increased sk by sk+1 = 2sk until reaching the
desired value s. The number of homotopy iterations was set
to 10. For simplicity, we set λ0 = 0.1, ϵ0 = 10−2. And the
default increasing factor of the sequence {λk} was set as ρ = 2
and the decreasing factor of the sequence {ϵk} was set as
ϱ = 0.2, i.e., λk+1 = 2λk, ϵk+1 = 0.2ϵk. In addition to the
halting criterion outlined in Algorithm 2, we also set the upper
bound on the total number of iterations to 10000.

The true signal and the recovered data are denoted by x†

and x⋆, respectively. The tuple (m,n,N, s, σ) represents the
parameters of data generation. These parameters in turn are the
number of samples, the dimension of the signal, the number
of groups, the number of non-zero groups and the standard
deviation of the noise. When a parameter is an arithmetic
progression, the notation m1 : ∆m : m2 is used to denote
the sequence of numbers starting at m1 and ending at m2,
where each number differs from the previous one by a constant
amount ∆m.
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We use HIWT-GSC-Bi (respectively HIWT-GSC-Ti) to de-
note our HIWT-GSC algorithm under the “best-s” (respec-
tively “top-s”) strategy along with p = i.

A. Sparse least squares regression

By setting f(x) in problem (1) as the least squares function,
problems such as signal recovery aim at finding an s-group-
sparse solution of the underdetermined linear system. That is

x̂ = argmin
x

1

2
∥Ax− b∥22 s.t. ∥x∥p,0 ≤ s, (24)

where A ∈ Rm×n is a measurement matrix and b ∈ Rm is
observations.

In the numerical experiments on simulated data, the data
were generated as follows. First, we randomly generated an
m × n matrix A, whose entries followed an i.i.d. standard
normal distribution, and each column of the matrix was
normalized by the ℓ2-norm. Then we generated a group sparse
solution x† ∈ Rn which was partitioned into N groups of
equal size. We randomly picked s of the N groups as active
ones, whose entries were i.i.d. random Gaussian variables,
while the remaining groups were set to zero.

In the noiseless case, we generated the observation data by
b = Ax†. In the noise case, we generated the data b by b =
Ax† +v, where v was an additive zero-mean Gaussian noise
with standard deviation σ and was generated by the MATLAB
script v = σ×randn(m, 1). In this subsection, pseudo-inverse
solution was used in the debiasing step and HIWT-GSC was
implemented in MATLAB R2017b.

1) Convergence analysis under noiseless observation:
In this experiment, the data generation setting was
(500, 2000, 500, 50, 0). We randomly selected the positions of
the 50 non-zero groups, whose entries had the magnitudes
of ±5. We set λ0 = ∥∇f(0)∥∞ and s0 = s. The number
of homotopy iterations was set to 30. Fig. 1 depicts the
unbiased solution trajectories that demonstrate the convergence
performance of Algorithm 2. From the figure, it can be
seen that as the number of iterations increases, x gradually
converges to 5, −5 and 0, which are the true values of the
original signal.

2) Performance analysis under noiseless observation: In
order to more comprehensively analyze the performance of
the proposed HIWT-GSC algorithm under different strategies
and settings, we conducted a phase diagram study. In this
experiment, we fixed the group size at t = 4. And for each
fixed m, we varied the sparsity level from 1/N to m/(Nt).
Then, we increased m from t to n. The recovery is considered
as a success when the relative error

∥∥x⋆ − x†
∥∥ / ∥∥x†

∥∥ is less
than 10−5, and the pixel is colored with blue; otherwise, it is
regarded as a failure and the pixel is colored with red. In this
way, we plotted the phase diagrams in Fig. 2. As shown in
Fig. 2, overall, the proposed HIWT-GSC algorithm performs
well under different strategies and settings.

In addition, we calculated the differences between the
successful recovery rates of different phase diagrams in Fig. 2,
and presented the results in Fig. 3. As can be seen from
Fig. 3a and Fig. 3b that, for more difficult examples, the
successful recovery rates are higher with p = 2 than with

0 5 10 15 20 25 30

-10

-8

-6

-4

-2

0

2

4

6

8

10

(a)
0 5 10 15 20 25 30

-10

-8

-6

-4

-2

0

2

4

6

8

10

(b)

0 5 10 15 20 25 30

-10

-8

-6

-4

-2

0

2

4

6

8

10

(c)
0 5 10 15 20 25 30

-10

-8

-6

-4

-2

0

2

4

6

8

10

(d)
Fig. 1. Solution trajectory of the HIWT-GSC algorithm. The horizontal
axis represents the number of iterations, and the vertical axis represents the
magnitude of each component in x to be restored. (a) HIWT-GSC-B1, (b)
HIWT-GSC-B2, (c) HIWT-GSC-T1, (d) HIWT-GSC-T2.

(a) (b)

(c) (d)
Fig. 2. Phase diagram study of the HIWT-GSC algorithm. The success cases
are colored with blue and the failure cases are colored with red. The detail
colors corresponding to different relative errors are marked in the color bars.
The horizontal axis (m/n) represents the undersampling ratio. The vertical
axis ((ts)/m) is the sparsity fraction. (a) HIWT-GSC-B1, (b) HIWT-GSC-
B2, (c) HIWT-GSC-T1, (d) HIWT-GSC-T2.

p = 1 under the same group support set selection strategy.
Meanwhile, Fig. 3c and Fig. 3d indicate that, the successful
recovery rates are higher under the “best-s” strategy than under
the “top-s” strategy, regardless of whether p = 1 or p = 2.
Therefore, we can conclude from the experimental results that,
the HIWT-GSC algorithm is more robust with p = 2 under
the “best-s” strategy.
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(a) (b)

(c) (d)
Fig. 3. The differences between successful recovery rates based on the
phase diagram of the HIWT-GSC algorithm, which are characterized by the
sign function (sign(·)) in MATLAB. The colors corresponding to the different
results of the sign(·) function are marked in the color bars. The horizontal axis
(m/n) represents the undersampling ratio. The vertical axis ((ts)/m) is the
sparsity fraction. (a) sign(Fig. 2a-Fig. 2b): difference between HIWT-GSC-
B1 and HIWT-GSC-B2, (b) sign(Fig. 2c-Fig. 2d): difference between HIWT-
GSC-T1 and HIWT-GSC-T2, (c) sign(Fig. 2a-Fig. 2c): difference between
HIWT-GSC-B1 and HIWT-GSC-T1, (d) sign(Fig. 2b-Fig. 2d): difference
between HIWT-GSC-B2 and HIWT-GSC-T2.

3) Comparison of experimental results on synthetic data:
This subsection presents numerical experiments on noisy ob-
servations to compare the performance of the HIWT-GSC
algorithm with several state-of-the-art group sparse recov-
ery algorithms, including homotopy iterative weighted group
thresholding method [35] with p = 1 (HIWGT1), GPDASC
[32] , GOMP [31], group spectral projected gradient for L1
minimization (SPGL1)1[41] (solves GLASSO model), SNSG
[33], and GCD2 [7] (solves group MCP model by a Group
Coordinate Descent method). GSCAD [22] is not included in
the comparison since the experimental results in [23] showed
that GMCP outperforms GSCAD. These models or algorithms
have been introduced in Section I. All downloaded codes
were executed with the default settings. Given the sensitivity
of SNSG to certain parameters, these parameters were set
differently according to the experimental data. Our HIWT-
GSC algorithm used the “best-s” strategy with p = 2, since
it was shown in Subsection VI-A2 that it is more robust with
this setting.

To evaluate the performance, we introduce three metrics,
namely probability of exact support recovery (PSR), relative
error, and CPU time (measured in seconds), respectively. Exact
support recovery represents the ability to detect the true non-
zero groups and is measured by SG(x⋆) = SG(x†).

Varying the group cardinality s, we generated two sets of

1MATLAB codes were downloaded from http://www.cs.ubc.ca/mpf/spgl1/.
2MATLAB codes of GPDASC, GOMP and GCD were downloaded from

http://www0.cs.ucl.ac.uk/staff/b.jin/software/gpdasc.zip.

data with data generation setting (200, 800, 200, 20:2:36,
10−1) and (2000, 10000, 2500, 200:25:400, 10−2). The ran-
domly chosen non-zero groups had i.i.d. elements whose
absolute values were drawn from the uniform distribution over
[1, 10]. In this test, we set λ0 = 100, µ0 = 10, γ0 = 1 in
SNSG. For a fair comparison, all algorithms in this test used
the same halting condition, which is ∥Ax− b∥ ≤ ∥v∥. The
average results of all test algorithms over 100 replications are
plotted in Fig. 4.

First, with respect to the accuracy of group support set
identification, the proposed algorithm outperforms other com-
peting algorithms as the sparsity level ( s

N ) increased, indicat-
ing that our algorithm has good group selection consistency.
Specifically, Fig. 4a and Fig. 4b show that GPDASC and
GCD achieve great group selection accuracy under relatively
low sparsity levels, e.g., sampling rate m

n = 1
4 , sparsity

level s
N < 12%. However, as s increases, the PSRs of

these two algorithms gradually decrease and decay more
rapidly than our algorithm. Similarly, the PSR of GOMP
also deteriorates significantly in a less sparse context, e.g.,
sampling rate= 1

4 , sparsity level s
N > 10%. In comparison,

the HIWGT1 algorithm outperforms the GPDASC, GOMP,
SNSG, and GCD algorithms in terms of PSR. Meanwhile,
GSPGL1 performs poorly most of the time. These results
validate that non-convex surrogates, such as those used in
HIWT-GSC, HIWGT1, GPDASC, and GMCP, have a superior
approximation of the ℓ2,0-norm than the ℓ2,1-norm, resulting
in more accurate detection of the group support set [6].

Next, in terms of the reconstruction error, as shown in
Fig. 4c and Fig. 4d, the performance of the competing al-
gorithms gradually becomes worse as their PSR decrease. It
is worth noting that, although GSPGL1 performs poorly in
terms of the exact recovery probability, its relative error is not
too large in less sparse cases. As expected, benefiting from
higher group selection accuracy, our algorithm obtains more
accurate estimations in most cases.

Finally, we compare computing times. Fig. 4e and Fig. 4f
show that GOMP has a speed advantage on small-scale data,
while this advantage gradually disappears as the size of data
gets bigger. Combining convexity with continuation strategy,
GSPGL1 is also computationally attractive [32], especially in
less sparse cases. Due to the need to compute the subspace
Newton direction, SNSG is less efficient as the data dimen-
sions become large and the data becomes denser. Our HIWT-
GSC is more speedy than GPDASC, HIWGT1, SNSG, and
GCD, and do have speed advantage over GOMP and GSPGL1
on large-scale data.

In summary, from these quantitative comparisons, the supe-
riority of the proposed algorithm can be observed. Next, we
apply our HIWT-GSC algorithm to some practical applications
to further validate its effectiveness and robustness.

4) Application to magnetic resonance (MR) image recon-
struction: The goal of this experiment is to demonstrate
the effectiveness of our framework for applications involving
group sparse optimization problems, such as the reconstruction
of multi-contrast MR images. The experiment was carried out
on multi-contrast MR images extracted from the SRI24 atlas.
SRI24 is an MRI-based atlas of normal adult human brain

http: //www.cs.ubc.ca/∼mpf/spgl1/
http://www0.cs.ucl.ac.uk/staff/b.jin/software/gpdasc.zip
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Fig. 4. Comparison of the probability of exact support recovery (PSR),
sensitivity, and running time on instances with different sparsity levels. (a),
(b) Average PSR. (c), (d) Average relative error. (e), (f) Average running time.

anatomy, created using template-free population registration
from high-resolution images in a group of 24 normal control
subjects [42]. The tested multi-contrast MR images were
acquired by multichannel-coil acquisition at a 3.0T GE scanner
with three different contrast settings:

• For T1-weighted structural images: 3D axial IR-prep
SPoiled Gradient Recalled (SPGR), TR = 6.5 ms, TE =
1.54 ms, slice thickness = 1.25 mm, number of slices =
124, FOV = 240×240 mm, resolution = 256×256 pixels.

• For T2-weighted and proton density-weighted images: 2D
axial dual-echo fast spin echo (FSE), TR = 10,000ms,
TE=14/98 ms, slice thickness = 2.5 mm, number of slices
= 62, FOV = 240×240 mm, resolution = 256×256 pixels.

The MRI inverse problem can be formulated as

b = Fx+ υ = FΦα+ υ, (25)

where b is the undersampled k-space data, x is the MR image
to be reconstructed, F is the undersampled Fourier transform,
υ is a noise perturbation vector, Φ is wavelet basis, and

α is the wavelet coefficient vector, which is assumed to be
approximately s-sparse.

We evaluate the reconstruction accuracy in terms of the
normalized mean square error (NMSE) and the Peak Signal-
to-Noise Ratio (PSNR) which is measured in dB. NMSE=∥∥x⋆ − x†

∥∥2
2
/
∥∥x†

∥∥2
2
, where x⋆ denote the reconstructed im-

age and x† denote the reference image. PSNR = 10 ·
log10

MAX2

MSE , where MAX is the maximum possible pixel value
of the image. The higher the PSNR, the lower the distortion.

First, since explicit storage of the sensing matrix A = FΦ
(a requirement of GPDASC) is not practical at the high
resolution of 256×256, we downsampled the atlas images
to size 64×64 before undersampling. The selected reference
images are presented in the left-hand side of Fig. 5a. Next,
we undersampled the MR images using a Gaussian random
sampling mask with variable density, which samples more
at low frequencies and samples less at higher frequencies.
The reduction factors were R = 4. Representative sampling
masks are presented in the right-hand side of Fig. 5a. In
addition, we generated υ as Gaussian white noise with 0.01
standard deviation. In this way, we repeatedly performed
random downsampling to test the average performance of
different algorithms. Then, utilizing the correlation among
multi-contrast images of the same anatomical cross-section,
we combined the same positions of the wavelet coefficients
of different images into one group [43]. Thus, we had a
total of 4096 groups. Finally, we applied group sparse recovery
algorithms to jointly reconstruct T1/T2-weighted MR images
from their partially sampled k-space data. For fairness, in ad-
dition to the limitation of the maximum number of iterations,
all group sparse recovery algorithms in this experiment used∥∥Aαk − b

∥∥ ≤ ∥υ∥ as the stopping criterion.
By setting the upper bound of the sparsity level ( s

N%) to
1%, setting the number of homotopy iterations to 3, and using
“best-s” strategy with p = 2, we compare our method with all
baseline methods. For SNSG, we set λ0 = 10000, µ0 = 1000,
γ0 = 0.5. The results are shown in TABLE II, each of which is
an average over 5 experiments. In addition, Fig. 5 depicts the
representative reconstruction results. For better visualization,
we highlight the reconstruction errors by magnifying them
with a factor of two, i.e., E = 2 × |x⋆ − x†|, and display
them in the right column of Fig. 5b-Fig. 5h.

From TABLE II, it can be seen that our algorithm outper-
forms the other competing ones in terms of both reconstruction
accuracy and reconstruction time. In this test, |SG(α†)| =
1588, which implies α is not that sparse. In such a harder case,
most sparse recovery algorithms fail to achieve the desired
recovery quality, such as GPDASC, GOMP, GCD, and SNSG.
Meanwhile, the reconstruction error of HIWGT1 and GSPGL1
is relatively small in this case, which is consistent with our
experimental findings in Section VI-A3. Also, as can be seen
from Fig. 5, the reconstruction result of HIWGT1 has more
background noise compared to GSPGL1.

5) Image classification application with small training data
: Solving image classification tasks with small training data
remains an open challenge for modern computer vision [44]. In
this subsection, we apply the proposed HIWT-GSC algorithm
to the problem of object categorization with small training
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(a) Reference images and sampling masks (b) HIWT-GSC: PSNR=36.4115, NMSE=0.0019.

(c) HIWGT1: PSNR=33.1371, NMSE=0.0041. (d) GPDASC: PSNR=28.5584, NMSE=0.0118.

(e) GOMP: PSNR=28.7272, NMSE=0.0114. (f) GCD: PSNR=28.7021, NMSE=0.0114.

(g) GSPGL1: PSNR=35.7022, NMSE=0.0023. (h) SNSG: PSNR=30.5622, NMSE=0.0075.
Fig. 5. Representative reconstruction results for multi-contrast MR images from SRI24 atlas. (a) Atlas images at Nyquist rate sampling (left) and the sampling
masks (right). (b), (c), (d), (e), (f), (g), (h) The reconstruction results (left) and the magnified absolute errors (right) of the proposed HIWT-GSC algorithm,
HIWGT1 [35], GPDASC [32], GOMP [31], GCD [7], GSPGL1 [41], and SNSG [33] respectively.

TABLE II
AVERAGE RECONSTRUCTION PERFORMANCE FOR A SET OF

MULTI-CONTRAST MR IMAGES FROM SRI24 ATLAS BY DIFFERENT
METHODS. N=4096, |SG(α†)| = 1588, υ = 1e− 2.

Algorithm Time (sec.) PNSR NMSE

HIWT-GSC 26.24 36.60 0.0019
HIWGT1 [35] 47.46 33.31 0.0040
GPDASC [32] 200.24 28.91 0.0111

GOMP [31] 102.21 28.44 0.0122
GCD [7] 922.98 28.99 0.0107

GSPGL1 [41] 51.12 35.81 0.0022
SNSG [33] 310.49 30.79 0.0071

data and design a new support set identification strategy for
the application. Several image databases, including the Olivetti
Research Laboratory (ORL) database [45], the Extended Yale
B (ExYaleB) database [46] and the Columbia Object Image
Library (COIL20) database [47], are selected for evaluation.

The ORL database3 contains a set of face images from 40
distinct subjects, each with ten different images. For some
subjects, the images were taken at different times, varying the
lighting, facial expressions, and facial details. All the images
were taken against a dark homogeneous background with the
subjects in an upright, frontal position. The size of each image
is 92 × 112 pixels, with 256 gray levels per pixel. In our
experiment, each image was downsampled to a size of 46×56
pixels.

3ORL database can be downloaded from https://cam-orl.co.uk/facedatabase.
html.

The ExYaleB database4 contains 2414 frontal-face images
of size 168× 192 from 38 human subjects. There are approx-
imately 64 images for each subject. The images were taken
under different illuminations and various facial expressions. In
our experiment, each image was resized to 32× 32.

The COIL-20 database5 contains 1,440 normalized gray-
scale images of 20 objects. Each object has 72 images which
were taken at pose intervals of 5 degrees in a 360 rotation
with a size of 32× 32.

We employed the sparse representation based classification
(SRC) [48] method to construct dictionaries whose base el-
ements (features) are the training samples themselves. The
SRC method assumes that a test sample can be sufficiently
represented by those training samples from the same subject
[48]. Therefore, it is natural to stack the training samples
of a subject by grouping them according to their classes.

Obviously, a critical issue in this experiment is the dimen-
sion of the feature space. First, similar to the experiment in
[49], the principle component analysis (PCA) algorithm was
used as a preprocessing step to extract face features. Then, we
measured the robustness of the different methods by varying
the dimension of the extracted features in the dictionary, which
was set to be one less than the number of training samples. For
each fixed number of training samples, we applied sparse op-
timization algorithms to explore the coefficients that represent
the test sample as a linear combination of training samples.

4ExYaleB database can be downloaded from https://www.kaggle.com/
datasets/tbourton/extyalebcroppedpng.

5COIL-20 database can be downloaded from https://www.cs.columbia.edu/
CAVE/software/softlib/coil-20.php.

https://cam-orl.co.uk/facedatabase.html
https://cam-orl.co.uk/facedatabase.html
https://www.kaggle.com/datasets/tbourton/extyalebcroppedpng
https://www.kaggle.com/datasets/tbourton/extyalebcroppedpng
https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
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After that, we calculated the reconstruction residuals of each
class according to the representation coefficients. Finally, a
test sample was classified into the object class that minimizes
the reconstruction residual.

As mentioned above, our weighted model is compatible
with a diversity of strategies so as to better fit in different
applications. With this in mind, we adopt a hybrid strategy
to identify the group support set in this test. Specifically, in
line 5 of Algorithm 1, we set

S = Bs(z) ∪ Ās(z)

where Ās(z) = {i : (|z|↓)j > 0, s.t. j ∈ [1, s], j ∈ Gi} select
the groups with the s-largest non-zero individual coefficients.
Besides, the other parameters in this test were set as follows.
p = 2. For the ORL database and COIL20 database, ( s

N%)
was set to 10% while for the ExYaleB database, ( s

N%) was
set to 60%. s0 = ∆s = s

10 , and sk was linearly increased by
sk+1 = sk+∆s. For SNSG, we set λ0 = 1, µ0 = 1, γ0 = 0.1.
The stopping tolerance ϵ in Algorithm 1 was set as ϵ = 1e−2.
All group sparse recovery algorithms used

∥∥Axk − b
∥∥ ≤ υ as

a stopping criterion. Considering the trade-off between speed
and accuracy, υ was set to 0.2.

For all databases, we randomly selected several samples
per category as training samples and the rest as testing
samples. And for each fixed number of training samples, the
experiments were repeated 10 times with random splitting of
the datasets. The average results are summarized in Fig. 6.

As can be seen from Fig. 6, there does not exist one
extraordinary algorithm that can achieve the best classification
accuracy on all databases, which is consistent with the conclu-
sion in [49]. For example, the GOMP and GCD algorithms,
which achieve better classification accuracy on the ExYaleB
database, do not perform well on the COIL20 database. On
the other hand, SNSG considers both element and group
sparsity together and performs well on the COIL20 database
but poorly on the ExYaleB database. Although the HIWGT1

algorithm performs well on simulated data, in practice it is
not so easy to obtain optimal results unless the value of the
hyperparameter ε is adjusted for each data set. Thanks to the
flexibility to customize the support set identification strategy,
our HIWT-GSC algorithm generally performs well in most
cases, especially on the COIL20 database.

B. Sparse logistic regression

Logistic regression (LR) is a popular classifier for many
applications [50]. Suppose we have a training data set of
length m, i.e., D = {(a1, y1), (a2, y2), . . . , (am, ym)}, where
ai = (ai1, ai2, . . . , ain) is the i-th input pattern containing n
features and yi is the corresponding label taking the value of
0 or 1. Then the sigmoid function calculates the probability
that ai belongs to the class yi by

p(yi|ai,x, c) =
exp(yi(⟨ai,x⟩+ c))

1 + exp(⟨ai,x⟩+ c)
, (26)

where x ∈ Rn is the model parameter to be learned and c ∈ R
is an intercept.

Replacing f(x) in (1) with a log-likelihood function, the
group sparse logistic regression (LR) problem is defined as

x̂ = argmin
x

L(x) s.t. ∥x∥p,0 ≤ s, (27)

where L(x) is the average logistic loss function which is
defined as

L(x) = − 1

m

m∑
i=1

log p(yi|ai,x, c).

We next conduct experiments to show the performance of
our HIWT-GSC algorithm in solving problem (27). In this
part, HIWT-GSC has been mixed-programmed by R and C
languages using R version 3.5.3. Using the “best-s” strategy
with p = 2, we compared our implementation (without
debiasing step) with a publicly available R package grpreg6

[23]. In this package, group selection methods for logistic
regression, such as group LASSO (GLASSO), group MCP
(GMCP), and group SCAD (GSCAD), are solved using group
descent algorithms. All the codes in the grpreg package were
run with default settings and their regularization parameters λ
were selected along the regularization path of a fitted object
according to the BIC criteria.

1) Performance on Synthetic Data: Using simulated data,
we evaluate the performance of these methods in terms of
group selection accuracy. As a measure we introduce the F1-
score, which is computed as follows with respect to Precision
(P ) and Recall (R):

F1 =
2PR

P +R
,P =

|SG(x
⋆) ∩ SG(x

†)|
|SG(x⋆)| , R =

|SG(x
⋆) ∩ SG(x

†)|
|SG(x†)| .

A sample size of m = 5000 was fixed throughout this test,
while the number of features and groups were varied. We
generated two sets of data with data generation settings (5000,
1000, 200, 10:2:30, 0) and (5000, 10000, 1000, 50:10:150, 0).
Each element in the randomly picked non-zero groups was
drawn independently in the standard Gaussian distribution. In
addition, independent of the sparse parameter x, an intercept
c ∈ R was also taken into account, which was generated
following the distribution N (0, 0.52). And each data sample
was an independent instance of random vector ai ∈ N (0, 1).
Then the corresponding label y ∈ {0, 1}m was randomly
generated according to the Bernoulli distribution as defined
in Equation (26).

Fig. 7 reports the average results of 100 simulation runs.
We can observe that as we increase s, our method achieves
higher identification accuracy of active groups, which means
our method correctly identifies significant groups and features.

2) Performance on Real Data: To further evaluate the
performance of our method on the tasks of feature selection
as well as classifier design, we report experimental results on
real datasets. We evaluate the performance of all the tested
algorithms in terms of the L(x), training time (measured in
seconds), the number of selected groups (♯Groups) and the

6grpreg-3.3.1 codes can be downloaded from https://github.com/pbreheny/
grpreg.

https://github.com/pbreheny/grpreg
https://github.com/pbreheny/grpreg
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Fig. 6. Comparison of average classification accuracy with different numbers of training samples in image classification experiment. By customizing the new
support set identification strategy, the HIWT-GSC algorithm performs well in classification tasks on tested datasets. (a) ORL database, (b) ExYaleB database,
(c) COIL-20 database.
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Fig. 7. Comparison of group selection accuracy on synthetic data with
different sparsity levels.

error rate (ER) on out-of-sample test set. The ER is calculated
by

ER =

m∑
i=1

∥sign(⟨ai,x⟩+ c)− yi∥0 /m× 100%,

where c ∈ R is an intercept and sign(·) is the sign function
defined as

sign(t) =

{
1 if t > 0;

0 otherwise.

This experiment considers the problem of splice site detec-
tion, which plays an important role in gene finding algorithms.
Splice sites are the regions between introns (non-coding re-
gion) and exons (coding region) DNA segments. The 5′ end
and the 3′ end of an intron are called the donor splice site
and the acceptor splice site, respectively. The canonical donor
splice sites are characterized by the presence of ‘GT’ at the
first two intron positions, whereas the canonical acceptor site
have ‘AG’ present at the end of the intron.

The MEMset Donor dataset7 [51] has a training set con-
taining 8415 true (encoded as y=1) and 179438 false (encoded
as y=0) human donor sites, and has an additional testing set

7MEMset Donor dataset can be downloaded from http://hollywood.mit.edu/
burgelab/maxent/ssdata/.

containing 4208 true and 89717 false donor sites. The original
MEMset dataset was used to build a smaller balanced training
set with 6396 true and 6404 false donor sites, and a smaller
testing set with 1604 true and 1596 false donor sites. In our
case, the expression levels of 939 genes were recorded, which
were divided into 64 groups.

Our goal is to choose the right set of genes to design a
classifier that correctly classifies unseen examples, i.e., true
from decoy splice sites. In this experiment, for a fair compar-
ison, we set s = 24, which is the minimum number of feature
groups selected by the competing algorithms. The results of
the respective algorithms on the MEMset are reported in
TABLE III.

TABLE III
COMPARISON OF PERFORMANCE ON MEMSET DATA SET

Algorithm HIWT-GSC GLASSO GMCP GSCAD

ER 1.08e-1 9.82e-2 1.10e-1 1.11e-1

L(x) 2.38e-1 2.14e-1 2.42e-1 2.43e-1

Training Time (sec.) 5.21 43.49 63.49 72.10

♯ Groups 24 51 24 27

We can observe that the group LASSO produced the largest
models with about 80% selected features while the other three
algorithms produced more sparse models with about 40%
selected features. Although a smaller model may lead to a
larger prediction error, it makes the prediction model more
interpretable and less costly to use. Therefore, considering the
advantage of producing models of reasonable size, prediction
performance measured in terms of the out-of-sample error rate
was best for HIWT-GSC, followed by the group MCP and the
group SCAD. Moreover, HIWT-GSC achieved lower logistic
loss on the training set and required less training time than
the group MCP and the group SCAD. These results provide
additional evidence for the effectiveness of the proposed
algorithm in solving feature selection problems.

VII. CONCLUSIONS

In this work, we have proposed and analyzed a general and
effective framework for solving the group-sparsity constrained

http://hollywood.mit.edu/burgelab/maxent/ssdata/
http://hollywood.mit.edu/burgelab/maxent/ssdata/
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optimization problem, which not only ensures accurate so-
lutions but also allows for a wide range of support set
identification strategies. By reformulating the group-sparsity
constrained optimization problem as an equivalent mixed-
integer programming problem, we introduced a Lagrange dual
framework for the reformulated problem, and proposed an
efficient weighted group thresholding algorithm with homo-
topy. Theoretically, we have established the convergence of
the proposed IWT-GSC algorithm under some mild conditions.
Meanwhile, we have provided a guarantee that the solution
of our HIWT-GSC algorithm is an L-stationary point of the
original problem.

Comprehensive numerical simulations have been performed
to evaluate the performance of our algorithm. In addition,
extensive experiments on publicly available data sets have been
conducted in comparison with several state-of-the-art group
sparse optimization approaches. The experimental results val-
idate the effectiveness and efficiency of our algorithm and
indicate that our approach has great potential in broad data
processing.

Finally, it would be interesting in future work to evaluate
our method on more applications. For example, we can intro-
duce our weighted group sparse regularization term into deep
neural networks (DNN) to learn a compact structure. We can
also combine our method with some other image processing
methods, such as the total variation (TV) method, and apply
the composite model to MR image reconstruction.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to the
esteemed editors and the dedicated anonymous reviewers for
their insightful suggestions and constructive feedback. Their
contributions have been instrumental in enhancing the rigor
and clarity of this manuscript.

REFERENCES

[1] M. Elad, M. A. T. Figueiredo, and Y. Ma, “On the role of sparse and
redundant representations in image processing,” Proc. IEEE, vol. 98,
no. 6, pp. 972–982, Jun. 2010.

[2] M. Scetbon, M. Elad, and P. Milanfar, “Deep k-SVD denoising,” IEEE
Trans. Image Process., vol. 30, pp. 5944–5955, 2021.

[3] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan,
“Sparse representation for computer vision and pattern recognition,”
Proc. IEEE, vol. 98, no. 6, pp. 1031–1044, Jun. 2010.

[4] M. Yamac, M. Ahishali, A. Degerli, S. Kiranyaz, M. E. H. Chowd-
hury, and M. Gabbouj, “Convolutional sparse support estimator-based
COVID-19 recognition from x-ray images,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 5, pp. 1810–1820, May 2021.

[5] M.-G. Gong, J. Liu, H. Li, Q. Cai, and L.-Z. Su, “A multiobjective
sparse feature learning model for deep neural networks,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 26, no. 12, pp. 3263–3277, Dec. 2015.

[6] X. Zhang, J. Zheng, D. Wang, G. Tang, Z. Zhou, and Z. Lin,
“Structured sparsity optimization with non-convex surrogates of ℓ2,0-
norm: A unified algorithmic framework,” IEEE Trans. Pattern Anal.
Mach. Intell., pp. 1–18, 2022.

[7] J. Huang, P. Breheny, and S. Ma, “A selective review of group
selection in high-dimensional models,” Stat. Sci., vol. 27, no. 4,
pp. 481–499, Nov. 2012.

[8] M. Cheng, C. Wang, and J. Li, “Single-image super-resolution in RGB
space via group sparse representation,” IET Image Process., vol. 9,
no. 6, pp. 461–467, Jun. 2015.

[9] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini, “Group
sparse regularization for deep neural networks,” Neurocomputing,
vol. 241, pp. 81–89, 2017.

[10] T. Chen, B. Ji, T. Ding, et al., “Only train once: A one-shot neural
network training and pruning framework,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 34, 2021, pp. 19 637–19 651.

[11] Y. Nardi and A. Rinaldo, “On the asymptotic properties of the group
lasso estimator for linear models,” Electron. J. Stat., vol. 2, pp. 605–
633, 2008.

[12] R. Jenatton, J.-Y. Audibert, and F. Bach, “Structured variable selec-
tion with sparsity-inducing norms,” J. Mach. Learn. Res., vol. 12,
pp. 2777–2824, 2011.

[13] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, “Structured sparsity
through convex optimization,” Stat. Sci., vol. 27, no. 4, pp. 450–468,
Nov. 2012.

[14] M. Stojnic, F. Parvaresh, and B. Hassibi, “On the reconstruction of
block-sparse signals with an optimal number of measurements,” IEEE
Trans. Signal Process., vol. 57, no. 8, pp. 3075–3085, 2009.

[15] Y. C. Eldar and M. Mishali, “Robust recovery of signals from a
structured union of subspaces,” IEEE Trans. Inf. Theory, vol. 55,
no. 11, pp. 5302–5316, 2009.

[16] X. Xu and M. Ghosh, “Bayesian variable selection and estimation for
group lasso,” Bayesian Analysis, vol. 10, no. 4, Dec. 1, 2015.

[17] A. Beck and N. Hallak, “Optimization problems involving group
sparsity terms,” Math. Program., vol. 178, no. 1, pp. 39–67, Nov.
2019.

[18] F. E. Curtis, Y. Dai, and D. P. Robinson, “A subspace acceleration
method for minimization involving a group sparsity-inducing regular-
izer,” SIAM J. Optim., vol. 32, no. 2, pp. 545–572, Jun. 2022.

[19] Z. Zha, B. Wen, X. Yuan, J. Zhou, and A. C. Kot, “Low-rankness
guided group sparse representation for image restoration,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 34, no. 10, pp. 7593–7607,
2023.

[20] R. Wang, J. Bian, F. Nie, and X. Li, “Nonlinear feature selection
neural network via structured sparse regularization,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 34, no. 11, pp. 9493–9505, 2023.

[21] M. Yuan and Y. Lin, “Model selection and estimation in regression
with grouped variables,” J. R. Stat. Soc. Ser. B-Stat. Methodol., vol. 68,
no. 1, pp. 49–67, Feb. 2006.

[22] L.-F. Wang, H.-Z. Li, and J.-H. Z. Huang, “Variable selection in
nonparametric varying-coefficient models for analysis of repeated
measurements,” J. Am. Stat. Assoc., vol. 103, no. 484, pp. 1556–1569,
Dec. 2008.

[23] P. Breheny and J. Huang, “Group descent algorithms for nonconvex
penalized linear and logistic regression models with grouped predic-
tors,” Stat. Comput., vol. 25, no. 2, pp. 173–187, Mar. 2015.

[24] Y. Wang and W. Yin, “Sparse signal reconstruction via iterative
support detection,” SIAM J. Imaging Sci., vol. 3, no. 3, pp. 462–491,
Jan. 2010.

[25] Y. Hu, D.-B. Zhang, J.-P. Ye, X.-L. Li, and X.-F. He, “Fast and ac-
curate matrix completion via truncated nuclear norm regularization,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 9, pp. 2117–2130,
Sep. 2013.

[26] Z. Lu and X. Li, “Sparse recovery via partial regularization: Models,
theory, and algorithms,” Math. Oper. Res., vol. 43, no. 4, pp. 1290–
1316, Nov. 2018.

[27] Q. Feng, J. Wang, and F. Zhang, “Block-sparse signal recovery based
on truncated ℓ1 minimisation in non-gaussian noise,” IET Commun.,
vol. 13, no. 2, pp. 251–258, Jan. 2019.

[28] L. Pan and X. Chen, “Group sparse optimization for images recovery
using capped folded concave functions,” SIAM J. Imaging Sci.,
vol. 14, no. 1, pp. 1–25, Jan. 2021.

[29] X. Zhang and D. Peng, “Solving constrained nonsmooth group sparse
optimization via group capped-ℓ1 relaxation and group smoothing
proximal gradient algorithm,” Comput. Optim. Appl., vol. 83, no. 3,
pp. 801–844, Dec. 2022.

[30] Y. Cao, L. Kang, X. Li, Y. Liu, Y. Luo, and Y. Shi, “Newton-raphson
meets sparsity: Sparse learning via a novel penalty and a fast solver,”
IEEE Trans. Neural Netw. Learn. Syst., early access, Mar. 9, 2023,
doi:10.1109/TNNLS.2023.3251748.

[31] Z. Ben-Haim and Y. C. Eldar, “Near-oracle performance of greedy
block-sparse estimation techniques from noisy measurements,” IEEE
J. Sel. Topics Signal Process., vol. 5, no. 5, pp. 1032–1047, Sep. 2011.

[32] Y.-L. Jiao, B.-T. Jin, and X.-L. Lu, “Group sparse recovery via the
ℓ0(ℓ2) penalty: Theory and algorithm,” IEEE Trans. Signal Process.,
vol. 65, no. 4, pp. 998–1012, Feb. 2017.

[33] S. Liao, C. Han, T. Guo, and B. Li, “Subspace newton method for
sparse group ℓ0 optimization problem,” J. Global Optim., early access,
Apr. 29, 2024, doi:10.1007/s10898-024-01396-y.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 15

[34] W.-X. Zhu, H.-T. Huang, L.-F. Jiang, and J.-L. Chen, “Weighted
thresholding homotopy method for sparsity constrained optimization,”
J. Comb. Optim., vol. 44, no. 3, pp. 1924–1952, 2022.

[35] L.-F. Jiang and W.-X. Zhu, “Iterative weighted group thresholding
method for group sparse recovery,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 32, no. 1, pp. 63–76, 2021.

[36] H. Li and Z.-C. Lin, “Accelerated proximal gradient methods for
nonconvex programming,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 28, 2015, pp. 379–387.

[37] J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,”
IMA J. Numer. Anal., vol. 8, no. 1, pp. 141–148, Jan. 1988.

[38] S. Wright, R. Nowak, and M. Figueiredo, “Sparse reconstruction by
separable approximation,” IEEE Trans. Signal Process., vol. 57, no. 7,
pp. 2479–2493, Jul. 2009.

[39] A. Beck and Y. C. Eldar, “Sparsity constrained nonlinear optimization:
Optimality conditions and algorithms,” SIAM J. Optim., vol. 23, no. 3,
pp. 1480–1509, Jan. 2013.

[40] G. H. Golub and C. F. Van Loan, Matrix computations, Fourth edition.
Baltimore: The Johns Hopkins University Press, 2013, 756 pp.

[41] E. van den Berg and M. P. Friedlander, “Probing the pareto frontier
for basis pursuit solutions,” SIAM J. Sci. Comput., vol. 31, no. 2,
pp. 890–912, Jan. 2009.

[42] T. Rohlfing, N. M. Zahr, E. V. Sullivan, and A. Pfefferbaum, “The
SRI24 multichannel atlas of normal adult human brain structure,”
Human Brain Mapping, vol. 31, no. 5, pp. 798–819, May 2010.

[43] J. Huang, C. Chen, and L. Axel, “Fast multi-contrast MRI reconstruc-
tion,” Magn. Reson. Imaging, vol. 32, no. 10, pp. 1344–1352, Dec.
2014.

[44] L. Brigato and S. Mougiakakou, “No data augmentation? alternative
regularizations for effective training on small datasets,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. Workshops, 2023, pp. 139–148.

[45] F. Samaria and A. Harter, “Parameterisation of a stochastic model
for human face identification,” in Proc. 2nd IEEE Workshop Appl.
Comput. Vis., 1994, pp. 138–142.

[46] A. Georghiades, P. Belhumeur, and D. Kriegman, “From few to many:
Illumination cone models for face recognition under variable lighting
and pose,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 6,
pp. 643–660, Jun. 2001.

[47] S. A. Nene, S. K. Nayar, and H. Murase, “Columbia object image
library (coil-20),” Dept. Comput. Sci., Columbia Univ., Tech. Rep.
CUCS-005-96, Feb. 1996.

[48] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Yi Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[49] Z. Zhang, Y. Xu, J. Yang, X.-L. Li, and D. Zhang, “A survey of sparse
representation: Algorithms and applications,” IEEE Access, vol. 3,
pp. 490–530, May 2015.

[50] D. W. Hosmer, S. Lemeshow, and R. X. Sturdivant, Applied logistic
regression (Wiley series in probability and statistics), third edition.
Hoboken, NJ: Wiley, 2013, pp. 227–376.

[51] G. Yeo and C. B. Burge, “Maximum entropy modeling of short se-
quence motifs with applications to RNA splicing signals,” J. Comput.
Biol., vol. 11, no. 2, pp. 377–394, Mar. 2004.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

APPENDICES

In this supplementary file, we present the proofs of lemmas
and theorems in the paper.
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APPENDIX A
PROOF OF LEMMA 1

Proof: We set the value of each element in w as{
wi = 0 if i ∈ SG(x);
wi = 1 otherwise.

(28)

Combinding (28) with x ∈ Cs, we have that there exists w ∈
{0, 1}N such that < w, [xG]p,q >= 0 and ∥1−w∥0 ≤ s.
Hence Equation (7) holds.

Conversely, if there exists w ∈ {0, 1}N such that
∥1−w∥0 ≤ s, then the number of zero components in w
is no more than s. By < w, [xG]p,q >≤ 0, we have wi = 0 if
i ∈ SG(x). These indicate that the number of nonzero groups
in x is no more than s, i.e., x ∈ Cs.

APPENDIX B
PROOF OF THEOREM 1

First, we introduce some lemmas.
Lemma 4: Let (x⋆

λ,w
⋆
λ) be an optimal solution of g(λ),

then (x⋆
λ,w

⋆
λ) satisfies the following expression

(i)

(x⋆
λ,w

⋆
λ) = argmin

(x,w)∈Ω

{L
2
∥x− z⋆

λ∥2 + λψp,q(x,w)
}
, (29)

where z⋆
λ = x⋆

λ − 1
L∇f(x

⋆
λ), L ≥ Lf .

(ii) In the case of p ∈ {1, 2} and q = 1,

((x⋆
λ)Gi

, (w⋆
λ)i) ={

((z⋆
λ)Gi , 0) if i ∈ Sc(w⋆

λ);

(soft λ
L ,p((z

⋆
λ)Gi

), 1) otherwise,
(30)

where the soft λ
L ,p(·) is the soft-thresholding operators defined

in (5) and (6).
Proof: (i) According to the definition of (x⋆

λ,w
⋆
λ) in (13),

for any feasible solution (x,w) of problem (9), we have

f(x⋆
λ) + λψp,q(x

⋆
λ,w

⋆
λ) ≤ f(x) + λψp,q(x,w).

Since ∇f(x) is Lipschitz continuous, for L ≥ Lf it holds that

f(x) ≤ f(x⋆
λ) + ⟨∇f(x⋆

λ),x− x⋆
λ⟩+

L

2
∥x− x⋆

λ∥2.

The above two inequalities imply that

⟨∇f(x⋆
λ),x− x⋆

λ⟩+
L

2
∥x− x⋆

λ∥2 + λψp,q(x,w)

≥⟨∇f(x⋆
λ),x

⋆
λ − x⋆

λ⟩+
L

2
∥x⋆

λ − x⋆
λ∥2 + λψp,q(x

⋆
λ,w

⋆
λ),

which means

(x⋆
λ,w

⋆
λ) = argmin

(x,w)∈Ω

{
⟨f(x⋆

λ),x− x⋆
λ⟩+

L

2
∥x− x⋆

λ∥2 + λψp,q(x,w)
}
.

By noting that

∥x− (x⋆
λ −

1

L
∇f(x⋆

λ))∥2

=
( 1

L2
∥∇f(x⋆

λ)∥2 −
2

L
⟨∇f(x⋆

λ),x
⋆
λ⟩
)

+
2

L

(
⟨∇f(x⋆

λ),x⟩+
L

2
∥x− x⋆

λ∥2
)
,

we obtain

(x⋆
λ,w

⋆
λ)

= argmin
(x,w)∈Ω

{L
2
∥x− (x⋆

λ −
1

L
∇f(x⋆

λ))∥2 + λψp,q(x,w)
}
,

which indicates (29) holds.
(ii) In the case of (w⋆

λ)i = 0, any (x⋆
λ)Gi

should satisfy the
optimality condition of problem (29) with respect to x

L((x⋆
λ)Gi

− (z⋆
λ)Gi

) = 0.

Since L > 0, the solution of the above equation is (x⋆
λ)Gi =

(z⋆
λ)Gi

.
In the case of (w⋆

λ)i = 1, according to the first-order
optimality condition of problem (29) with respect to x, any
non-zero element (x⋆

λ)j ∈ (x⋆
λ)Gi satisfies

L((x⋆
λ)j − (z⋆

λ)j)+ (31)

λq(∥(x⋆
λ)Gi
∥)q−p

p |(x⋆
λ)j |p−1sign((x⋆

λ)j) = 0,

Hence, in the case of p ∈ {1, 2} and q = 1, (x⋆
λ,w

⋆
λ) satisfies

(30).

Lemma 5: For any given λ (λ ≥ 0), let C⋆
λ = {x⋆

λ}.
In the case of 0 < p ≤ 1, 0 < q ≤ 1, suppose
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C⋆
λ is bounded. Let λf = maxx∈C⋆

λ
∥∇f(x)∥∞, and let

α = maxi∈{1,...,N},j∈Gi

1
q∥(x

⋆
λ)Gi∥p−q

p |(x⋆
λ)j |1−p, where

(x⋆
λ)Gi

̸= 0. Then in the case of 0 < p ≤ 1, 0 < q ≤ 1,
the following statements hold:

(i) α ̸=∞.
(ii) For any λ > αλf , ψp,q(x

⋆
λ,w

⋆
λ) = 0.

Proof: (i) For a non-zero group (x⋆
λ)Gi

, let imax =
argmaxj∈Gi

|(x⋆
λ)j |, then we have

|(x⋆
λ)imax

| ≤ ∥(x⋆
λ)Gi
∥p ≤ (Ni)

1
p |(x⋆

λ)imax
|,

where Ni = |Gi| ≥ 1. Therefore, for any non-zero group
(x⋆

λ)Gi ,∀j ∈ Gi, there holds
∥(x⋆

λ)Gi
∥p−q
p |(x⋆

λ)j |1−p ≤ |Ni|
p−q
p |(x⋆

λ)imax
|1−q,

if 0 < q ≤ p ≤ 1;

∥(x⋆
λ)Gi
∥p−q
p |(x⋆

λ)j |1−p ≤ |(x⋆
λ)imax

|1−q,

if 0 < p < q ≤ 1.

(32)

According to the assumption that C⋆
λ is bounded, we have

|(x⋆
λ)imax

| ≠∞. This together with (32) indicate that α ̸=∞.
(ii) According to (31), we obtain

|(∇f(x⋆
λ))j | = λq∥(x⋆

λ)Gi
∥q−p
p |(x⋆

λ)j |p−1. (33)

Next we prove by contradiction. Suppose that there exists λ >
αλf such that ψp,q(x

⋆
λ,w

⋆
λ) = ⟨w⋆

λ, [x
⋆
λ]p,q⟩ ≠ 0. That means

there exists i ∈ S(w⋆
λ) and L ≥ Lf such that (x⋆

λ)Gi
̸= 0. By

(31), ∀(x⋆
λ)j ̸= 0(j ∈ Gi), there holds that

|(∇f(x⋆
λ))j | = λq∥(x⋆

λ)Gi
∥q−p
p |(x⋆

λ)j |p−1 >
λ

α
, j ∈ Gi.

This implies that

|(∇f(x⋆
λ))j | >

λ

α
> λf = max

x∈C⋆
λ

∥∇f(x)∥∞ ,

which contradicts the definition of ∥∇f(x)∥∞.

Lemma 6: Let Nmax = max{Ni, i = 1, . . . , N},
λf = maxx∈C⋆

λ
∥∇f(x)∥∞. Then for any λ >

√
Nmaxλf ,

ψ2,1(x
⋆
λ,w

⋆
λ) = 0.

Proof: We prove by contradiction. Suppose that there
exists λ >

√
Nmaxλf such that ψ2,1(x

⋆
λ,w

⋆
λ) =<

w⋆
λ, [x

⋆
λ]2,1 > ̸= 0. That is, by (30), there exists i ∈ S(w⋆

λ)
such that (x⋆

λ)Gi
= soft((z⋆

λ)Gi
) ̸= 0, i.e.,

(x⋆
λ)Gi

= (∥(z⋆
λ)Gi
∥ − λ

L
)

(z⋆
λ)Gi

∥(z⋆
λ)Gi∥

̸= 0.

In such a case, it holds that

∥(x⋆
λ)Gi
∥ = ∥(z⋆

λ)Gi
∥− λ

L
= ∥(x⋆

λ)Gi
− 1

L
(∇f(x⋆

λ))Gi
∥− λ

L
.

Then we obtain

∥(x⋆
λ)Gi∥ ≤ ∥(x⋆

λ)Gi∥+
1

L
∥(∇f(x⋆

λ))Gi∥ −
λ

L
,

from which we can get that

∥(∇f(x⋆
λ))Gi

∥ ≥ λ >
√
Nmaxλf .

According to the definition of λf , there exists j ∈ Gi such
that |(∇f(x⋆

λ))j | > maxx∈C⋆
λ
∥∇f(x)∥∞, which contradicts

the definition of ∥∇f(x)∥∞.

Next, we prove Theorem 1.
Proof: According to the assumption, {∇f(x) : x ∈ C⋆

λ}
is bounded, we have λf = maxx∈C⋆

λ
∥∇f(x)∥∞ ̸= ∞. Then

by Lemma 5 and Lemma 6, in the case of 0 < p ≤ 1, 0 <
q ≤ 1, or p = 2, q = 1, there exists λ̄ ̸= ∞ such that
ψp,q(x

⋆
λ̄
,w⋆

λ̄
) = 0, where (x⋆

λ̄
,w⋆

λ̄
) is an optimal solution

of g(λ̄). Combining the above conclusion with Lemma 1, we
can get that x⋆

λ̄
is a feasible solution of problem (1). Then it

holds that

max
λ≥0

min
(x,w)∈Ω

{f(x) + λψp,q(x,w)} ≥ f(x⋆
λ̄) ≥ min

x∈Cs

f(x).

Further, according to the weak duality theorem, it holds

min
x∈Cs

f(x) ≥ max
λ≥0

min
(x,w)∈Ω

{f(x) + λψp,q(x,w)}.

So the strong duality property holds.

APPENDIX C
PROOF OF LEMMA 2

Proof: According to (28), we set wi = 0,∀i ∈ SG(x).
In the case of wi = 0, any xGi which is a minimizer of
problem (15) should satisfy the optimality condition with
respect to x:

Lk(xGi
− zk

Gi
) = 0. (34)

Since Lk > 0, the solution of the above equation is xGi =
zk
Gi

and consequently the minimum value of problem (15) is
YLk,λ,p,q,zk

Gi

(zk
Gi
, 0) = 0.

In the case of wi = 1, according to the first-order optimality
condition of problem (15) with respect to x, any non-zero
element in solution should satisfy

Lk(xj−zk
j )+λq(∥xGi∥)q−p

p |xj |p−1 sign(xj) = 0, ∀j ∈ Gi.

Hence, in the case of p ∈ {1, 2} and q = 1, we obtain the
solution xGi = soft λ

Lk
,p(z

k
Gi
).

APPENDIX D
PROOF OF THEOREM 2

First, we introduce a lemma.
Lemma 7: Given scalars y1 and y2. If |y1| ≥ |y2|, then
| soft λ

L ,1(y1) − y1| ≥ | soft λ
L ,1(y2) − y2|, where soft λ

L ,1(·) is
the soft-thresholding operator defined as (5).

Proof: For simplicity, we let soft(·) be the abbreviation
of soft λ

L ,1(·) in the following proof, i.e., for a given λ and L,
the soft-thresholding operator for a scalar y can be written as:

soft(y) = sign(y)max(|y| − λ

L
, 0). (35)

Given |y1| ≥ |y2|, we prove Lemma 7 by considering the
following cases:

(i) soft(y1) = soft(y2) = 0. Obviously, in this situation,
| soft(y1)− y1| = |y1| ≥ |y2| = | soft(y2)− y2|.

(ii) soft(y1) = 0, soft(y2) ̸= 0. According to the definition
of soft(·) in (35), there does not exist such a case.

(iii) soft(y1) ̸= 0, soft(y2) ̸= 0. According to (35), we have
| soft(y1)− y1| = | soft(y2)− y2| = λ

L .



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

(iv) soft(y1) ̸= 0, soft(y2) = 0. According to (35), we have
| soft(y1) − y1| = λ

L and | soft(y2) − y2| ≤ λ
L , which means

| soft(y1)− y1| ≥ | soft(y2)− y2|.
By the above analysis, we have Lemma 7 holds.
Next, we prove Theorem 2. For simplicity, we

let Yp(xGi ,wi), softp(·) be the abbreviation of
YLk,λ,p,1,zk

Gi

(xGi ,wi), soft λ
Lk

,p(·) in the following proof,
respectively.

Proof: According to (16), in this proof we define
(x⋆,w⋆) as

(x⋆
Gi
,w⋆

i ) =

{
(zk

Gi
, 0) if i ∈ As(z

k);

(softp(z
k
Gi
), 1) otherwise.

Then we can obtain that

∥zk
Gi
∥ ≥ ∥zk

Gj
∥ ∀i ∈ Sc(w⋆),∀j ∈ S(w⋆). (36)

Also, we denote a feasible solution of problem (14) by (x,w).
(i) By (6) we have

Y2(soft2(zk
Gi
), 1) =

{
λ(∥zk

Gi
∥ − λ

2Lk
) if ∥zk

Gi
∥ > λ

Lk
;

Lk

2 ∥z
k
Gi
∥2 if ∥zk

Gi
∥ ≤ λ

Lk
.

Hence we can get the following analyses:
1) If ∥zk

Gi
∥ = 0, then Y2(soft2(zk

Gi
), 1) = 0.

2) If ∥zk
Gi
∥ ≥ ∥zk

Gj
∥ (∀i, j ∈ 1, . . . , N), then

Y2(soft2(zk
Gi
), 1) ≥ Y2(soft2(zk

Gj
), 1).

3) If |Sc(w⋆)| < s, then ∀j ∈ S(w⋆), ∥zk
Gj
∥ = 0 and

Y2(soft2(zk
Gj
), 1) = 0.

4) If |Sc(w⋆)| = s, then |Sc(w)| ≤ s = |Sc(w⋆)| implies
that

|Sc(w⋆) ∩ S(w)| = |Sc(w⋆)| − |Sc(w⋆) ∩ Sc(w)|
≥ |Sc(w)| − |Sc(w) ∩ Sc(w⋆)|
= |Sc(w) ∩ S(w⋆)|. (37)

Combining the above analyses and inequalities (36) and
(37), the following inequality holds:∑

i∈Sc(w⋆)∩S(w)

Y2(soft2(zk
Gi
), 1) ≥

∑
i∈S(w⋆)∩Sc(w)

Y2(soft2(zk
Gi
), 1). (38)

Then,

Y2(x,w)− Y2(x⋆,w⋆)

=
( ∑

i∈Sc(w⋆)∩Sc(w)

+
∑

i∈Sc(w⋆)∩S(w)

+
∑

i∈S(w⋆)∩Sc(w)

+

∑
i∈S(w⋆)∩S(w)

)
(Y2(xGi ,wi)− Y2(x⋆

Gi
,w⋆

i ))

=
∑

i∈Sc(w⋆)∩Sc(w)

(Y2(xGi
, 0)− Y2(zk

Gi
, 0)) +

∑
i∈Sc(w⋆)∩S(w)

(Y2(xGi
, 1)− Y2(zk

Gi
, 0)) +

∑
i∈S(w⋆)∩Sc(w)

(Y2(xGi , 0)− Y2(soft2(zk
Gi
), 1)) +

∑
i∈S(w⋆)∩S(w)

(Y2(xGi , 1)− Y2(soft2(zk
Gi
), 1))

≥
∑

i∈Sc(w⋆)∩S(w)

(Y2(xGi
, 1)− Y2(zk

Gi
, 0)) +

∑
i∈S(w⋆)∩Sc(w)

(Y2(xGi
, 0)− Y2(soft2(zk

Gi
), 1))

≥
∑

i∈Sc(w⋆)∩S(w)

(Y2(soft2(zk
Gi
), 1)− Y2(zk

Gi
, 0)) +

∑
i∈S(w⋆)∩Sc(w)

(Y2(zk
Gi
, 0)− Y2(soft2(zk

Gi
), 1))

=
∑

i∈Sc(w⋆)∩S(w)

Y2(soft2(zk
Gi
), 1)−

∑
i∈S(w⋆)∩Sc(w)

Y2(soft2(zk
Gi
), 1)

≥0 (39)

where the last inequality comes from the definition of Sc(w⋆)
and inequality (38). Hence, (x⋆,w⋆) is an optimal solution of
problem (14).

(ii) If there is only one element in each group, then xGi
=

xi, zGi = zi, N = n, and we have

Y1(xGi
,wi) =

Lk

2
∥xGi − zk

Gi
∥2 + λ(wi × ∥xGi∥1)

=
Lk

2
∥xi − zk

i ∥2 + λ(wi × |xi|).

For any i, j ∈ {1, 2, . . . , N}), if |zi| ≥ |zj |, by Lemma 7
we have | soft1(zi) − zi| ≥ | soft1(zj) − zj |. Hence there
holds

Lk

2
∥soft1(zk

i )− zk
i ∥2 + λ| soft1(zk

i )|

≥ Lk

2
∥soft1(zk

j )− zk
j ∥2 + λ| soft1(zk

j )|,

i.e., Y1(soft(zk
i ), 1) ≥ Y1(soft(zk

j ), 1).
Similar to the proof in inequality (39), we can get
Y1(x,w) − Y1(x⋆,w⋆) ≥ 0. Hence, (x⋆,w⋆) is an optimal
solution of problem (14).

APPENDIX E
PROOF OF THEOREM 3

Proof: Problem (14) can be decomposed into prob-
lem (15), which has a closed-form solution under specific
(p, q) values. For simplicity, here we let Yp(xGi

,wi), softp(·)
be the abbreviation of YLk,λ,p,1,zk

Gi

(xGi
,wi), soft λ

Lk
,p(·)(p ∈

{1, 2}) respectively.
For (p, q) = (1, 1) and (p, q) = (2, 1), we denote the

solution by (x⋆
Gi
,w⋆

i ), i.e.,

(x⋆
Gi
,w⋆

i ) =

{
(zk

Gi
, 0) if i ∈ Bs(z

k);

(softp(z
k
Gi
), 1) otherwise.

According to the definition of Bs(z
k), we have

Yp(soft2(zk
Gi
), 1) ≥ Yp(soft2(zk

Gj
), 1),

∀i ∈ Sc(w⋆),∀j ∈ S(w⋆). (40)
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Then we can get the following results:
1) If |Sc(w⋆)| < s, then ∀j ∈ S(w⋆), Y2(soft2(zk

Gj
), 1) =

0.
2) If |Sc(w⋆)| = s, then (37) holds.
Suppose that (x,w) is a feasible solution of problem (14).

Then we have

Yp(x,w)− Yp(x⋆,w⋆)

=(
∑

i∈Sc(w⋆)∩Sc(w)

+
∑

i∈Sc(w⋆)∩S(w)

+
∑

i∈S(w⋆)∩Sc(w)

+

∑
i∈S(w⋆)∩S(w)

)(Yp(xGi
,wi)− Yp(x⋆

Gi
,w⋆

i ))

=
∑

i∈Sc(w⋆)∩Sc(w)

(Yp(xGi , 0)− Yp(zk
Gi
, 0))+

∑
i∈Sc(w⋆)∩S(w)

(Yp(xGi
, 1)− Yp(zk

Gi
, 0))+

∑
i∈S(w⋆)∩Sc(w)

(Yp(xGi
, 0)− Yp(softp(zk

Gi
), 1))+

∑
i∈S(w⋆)∩S(w)

(Yp(xGi , 1)− Yp(softp(zk
Gi
), 1))

≥
∑

i∈Sc(w⋆)∩S(w)

(Yp(xGi
, 1)− Yp(zk

Gi
, 0))+

∑
i∈S(w⋆)∩Sc(w)

(Yp(xGi
, 0)− Yp(softp(zk

Gi
), 1))

≥
∑

i∈Sc(w⋆)∩S(w)

(Yp(softp(zk
Gi
), 1)− Yp(zk

Gi
, 0)) +

∑
i∈S(w⋆)∩Sc(w)

(Yp(zk
Gi
, 0)− Yp(softp(zk

Gi
), 1))

=
∑

i∈Sc(w⋆)∩S(w)

(Y(softp(zk
Gi
), 1)− Yp(zk

Gi
, 0)) −

∑
i∈S(w⋆)∩Sc(w)

(Yp(softp(zk
Gi
), 1)− Yp(zk

Gi
, 0))

=
∑

i∈Sc(w⋆)∩S(w)

Yp(softp(zk
Gi
), 1)−

∑
i∈S(w⋆)∩Sc(w)

Yp(softp(zk
Gi
), 1)

≥0,

where the last inequality comes from inequalities (37) and
(40). Hence, (x⋆,w⋆) is an optimal solution of problem (14).

APPENDIX F
PROOF OF LEMMA 3

Inspired by [1], we have the following proof.
Proof: (i) In the following proof, ς ∈ (0, 1) is a small

positive constant. And for simplicity, we let L, ψ be the
abbreviation of Lp,q, ψp,q (p ∈ {1, 2}, q = 1) respectively.

If (Sk+1
G , p, q) matches any of the optimal settings in

Definition 4, according to line 6 of Algorithm 1, there holds

(xk+1,wk+1) = TLk,λ,p(x
k) = argmin

(x,w)∈Ω

PLk,λ,p,q,xk(x,w),

which means (xk+1,wk+1) achieves a better value of
PLk,λ,p,q,xk(x,w) than (xk,wk). So we get the inequality

PLk,λ,p,q,xk(xk+1,wk+1) ≤ PLk,λ,p,q,xk(xk,wk),

i.e.,(
⟨∇f(xk),xk+1 − xk⟩+ Lk

2
∥xk+1 − xk∥2

)
+ λψ(xk+1,wk+1) ≤ λψ(xk,wk). (41)

Further, since ∇f(x) is Lipschitz continuous with constant
Lf , it holds that

L(xk+1,wk+1, λ) = f(xk+1) + λψ(xk+1,wk+1)

≤ (f(xk) + ⟨∇f(xk),xk+1 − xk⟩+ Lf

2
∥xk+1 − xk∥2)

+ λψ(xk+1,wk+1). (42)

Combining (41) with (42), we obtain

L(xk+1,wk+1, λ) ≤ L(xk,wk, λ)−Lk − Lf

2
∥xk+1 − xk∥2.

Therefore, the monotone line search stopping criterion, i.e.,

L(xk+1,wk+1, λ) ≤ L(xk,wk, λ)− ς

2
Lk∥xk+1 − xk∥2,

(43)
is satisfied whenever Lk−Lf

2 ≥ ςLk

2 , i.e., Lk ≥ Lf

1−ς .
Next, using the induction method we prove that the non-

monotone line search stopping criterion (20) is also satisfied
for all k ≥ 0 whenever Lk ≥ Lf

1−ς .
According to the definition of ck in (19), setting θ0 = 1

and c0 = L(x0,w0, λ), ck can be efficiently computed by the
following recursion:

θk+1 = γθk + 1, (44)

ck+1 =
γθkck + L(xk+1,wk+1, λ)

θk+1
, (45)

where γ ∈ (0, 1) is a given constant. Then for k = 0, by (43)
we have that whenever L0 ≥ Lf

1−ς there holds

L(x1,w1, λ) ≤ c0 −
ς

2
L0∥x1 − x0∥2.

Assume that (20) holds for all k = 0, 1, . . . , j, then we
consider k = j + 1. Define

Dj+1(t) =
tcj + L(xj+1,wj+1, λ)

t+ 1
,

then
d

dt
Dj+1(t) =

cj − L(xj+1,wj+1, λ)

(t+ 1)2
.

According to the inductive hypothesis, it holds that

L(xj+1,wj+1, λ) ≤ cj .

Then we have
d

dt
Dj+1(t) ≥ 0.

which means that Dj+1(t) is non-decreasing. Hence

L(xj+1,wj+1, λ) = Dj+1(0) ≤ Dj+1(γθj) = cj+1, (46)
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where γ ∈ (0, 1) and θj is defined as (44). Combining (46)
with (43), whenever Lj+1 ≥ Lf

1−ς , there holds

L(xj+2,wj+2, λ)

≤L(xj+1,wj+1, λ)− ς

2
Lj+1∥xj+2 − xj+1∥2

≤cj+1 −
ς

2
Lj+1∥xj+2 − xj+1∥2,

which implies that (20) holds for k = j + 1.
(ii) By (20), (44) and (45), for k ≥ 0 we have

ck+1 =
γθkck + Lp,q(x

k+1,wk+1, λ)

θk+1

≤
γθkck + ck − ς

2Lk∥xk+1 − xk∥2

θk+1

= ck −
ςLk

2θk+1
∥xk+1 − xk∥2. (47)

Hence ck is monotonically decreasing. By Assumption A2

and the definition of L, ψ in (9), (10), we obtain that L
is bounded below. This together with line search stopping
criterion (20) imply that ck is bounded below. So there exists
a number c⋆ such that

lim
k→∞

ck = c⋆. (48)

Furthermore, from the definition of θk in (44) we get

θk+1 = 1 +

k+1∑
j=1

γj =

k+1∑
j=0

γj ≤
∞∑
j=0

γj =
1

1− γ
,

which together with (47) indicate that

ςLk

2
(1− γ)∥xk+1 − xk∥2 ≤ ςLk

2θk+1
∥xk+1 − xk∥2

≤ ck − ck+1.

Combining the above inequality with (48) leads to

lim
k→∞

∥xk+1 − xk∥ = 0. (49)

APPENDIX G
PROOF OF THEOREM 4

Proof: (i) By Lemma 3, we have lim
k→∞

∥xk+1 − xk∥ =
0, which together with the boundness assumption of {xk}
indicate that the sequence {xk} converges.

(ii) For the sequence {wk}, since w ∈ {0, 1}n is bounded,
{wk} has a subsequence {wik} which is convergent, say
converges to w⋆.

(iii) By Lemma 2 and the first-order optimality condition
with respect to x, in line 6 of Algorithm 1, each estimation
(xk+1,wk+1) should satisfy:

Lk(x
k+1 − zk) + λ∂xψp,q(x

k+1,wk+1)

=Lk(x
k+1 − xk +

1

Lk
∇f(xk)) + λ∂xψp,q(x

k+1,wk+1)

=0.

Since {xk} is convergent, {xik} is convergent. For any
accumulation point (x̂, ŵ) of {(xik ,wik)}, the above equation
indicates that

∇f(x̂) + λ∂xψp,q(x̂, ŵ) = ∂xLp,q(x̂, ŵ, λ) = 0. (50)

In addition, Algorithm 1 identifies the group support set
SG under the maximum group-sparsity constraint s, which
together with operator TLk,λ,p(·) guarantee (x̂, ŵ) ∈ Ω.
Then according to Definition 5, (x̂, ŵ) is a partial first-order
stationary point of (11) with respect to x.

APPENDIX H
PROOF OF THEOREM 5

Proof: We prove by contradiction. Suppose there exists a
λ > λ⋆ such that g(λ) < g(λ⋆), i.e.,

f(x⋆
λ) + λψp,q(x

⋆
λ,w

⋆
λ) < f(x⋆

λ⋆) + λ⋆ψp,q(x
⋆
λ⋆ ,w⋆

λ⋆).

According to the definition of (x⋆
λ⋆ ,w⋆

λ⋆), we have

f(x⋆
λ⋆) + λ⋆ψp,q(x

⋆
λ⋆ ,w⋆

λ⋆) ≤ f(x⋆
λ) + λ⋆ψp,q(x

⋆
λ,w

⋆
λ).

The above two inequalities imply that

(λ− λ⋆)ψp,q(x
⋆
λ,w

⋆
λ) < 0.

Since λ > λ⋆, we have ψp,q(x
⋆
λ,w

⋆
λ) < 0, which contradicts

the definition of ψp,q , i.e., ψp,q(x,w) =< w, [xG]p,q >=∑N
i=1(wi × ∥xGi∥

q
p). Hence ∀λ > λ⋆, g(λ) ≥ g(λ⋆), which

together with the definition of λ⋆ indicate that ∀λ > λ⋆,
g(λ) = g(λ⋆).

In addition, it is well established that the Lagrange dual
function g(λ) is concave. This together with the above con-
clusion tells that g(λ) is a non-decreasing function with respect
to λ.

APPENDIX I
PROOF OF THEOREM 6

First, we introduce some lemmas.
Lemma 8: If λ2 > λ1 ≥ 0, then ψp,q(x

⋆
λ1
,w⋆

λ1
) ≥

ψp,q(x
⋆
λ2
,w⋆

λ2
) and f(x⋆

λ1
) ≤ f(x⋆

λ2
).

Proof: Since the following proof is independent of the
value of (p, q), we let ψ(·) be the abbreviation of ψp,q(·). We
prove the first inequality by contradiction. Suppose that there
exist λ2 > λ1 ≥ 0 such that ψ(x⋆

λ2
,w⋆

λ2
) > ψ(x⋆

λ1
,w⋆

λ1
),

which means that there exists δ > 0 such that ψ(x⋆
λ2
,w⋆

λ2
) =

ψ(x⋆
λ1
,w⋆

λ1
) + δ. Combining this assumption with (13), we

get

f(x⋆
λ2
) + λ2ψ(x

⋆
λ2
,w⋆

λ2
) = f(x⋆

λ2
) + λ2(ψ(x

⋆
λ1
,w⋆

λ1
) + δ)

≤ f(x⋆
λ1
) + λ2ψ(x

⋆
λ1
,w⋆

λ1
),

and

f(x⋆
λ1
) + λ1ψ(x

⋆
λ1
,w⋆

λ1
) ≤ f(x⋆

λ2
) + λ1ψ(x

⋆
λ2
,w⋆

λ2
)

= f(x⋆
λ2
) + λ1ψ(x

⋆
λ1
,w⋆

λ1
+ δ).

From the above two inequalities we can obtain that

f(x⋆
λ2
) + λ2δ ≤ f(x⋆

λ1
) ≤ f(x⋆

λ2
) + λ1δ,
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which implies λ2 ≤ λ1. This contradicts the assumption
that λ2 > λ1 ≥ 0. Hence, when λ2 > λ1 ≥ 0, we have
ψ(x⋆

λ1
,w⋆

λ1
) ≥ ψ(x⋆

λ2
,w⋆

λ2
).

Furthermore, by the definition of (x⋆
λ,w

⋆
λ) given in (13) we

have

f(x⋆
λ1
)− f(x⋆

λ2
) ≤ λ1(ψ(x⋆

λ2
,w⋆

λ2
)− ψ(x⋆

λ1
,w⋆

λ1
)).

Combining λ1 ≥ 0 with ψ(x⋆
λ1
,w⋆

λ1
) ≥ ψ(x⋆

λ2
,w⋆

λ2
), we get

f(x⋆
λ1
) ≤ f(x⋆

λ2
).

Lemma 9: Suppose for some λ1 ≥ 0, ψp,q(x
⋆
λ1
,w⋆

λ1
) = 0.

Then for any λ2 > λ1, ψp,q(x
⋆
λ2
,w⋆

λ2
) = 0 and f(x⋆

λ1
) =

f(x⋆
λ2
).

Proof: By Lemma 8, we obtain that for any λ2 > λ1,
ψp,q(x

⋆
λ2
,w⋆

λ2
) ≤ ψp,q(x

⋆
λ1
,w⋆

λ1
). Together with the defini-

tion of ψp,q(x,w) in (10), it holds that ψp,q(x
⋆
λ2
,w⋆

λ2
) = 0.

By (13), we have{
f(x⋆

λ2
) + λ2ψp,q(x

⋆
λ2
,w⋆

λ2
) ≤ f(x⋆

λ1
) + λ2ψp,q(x

⋆
λ1
,w⋆

λ1
);

f(x⋆
λ1
) + λ1ψp,q(x

⋆
λ1
,w⋆

λ1
) ≤ f(x⋆

λ2
) + λ1ψp,q(x

⋆
λ2
,w⋆

λ2
).

The above two inequalities together with ψp,q(x
⋆
λ1
,w⋆

λ1
) =

ψp,q(x
⋆
λ2
,w⋆

λ2
) = 0 imply that f(x⋆

λ1
) = f(x⋆

λ2
).

Next, we prove Theorem 6.
Proof: We prove this by contradiction. Suppose there

exists a λ1 /∈ J such that ψp,q(x
⋆
λ1
,w⋆

λ1
) = 0. Then by

Lemma 9, for any λ2 > λ1, ψp,q(x
⋆
λ2
,w⋆

λ2
) = 0 and

f(x⋆
λ1
) = f(x⋆

λ2
), which imply that g(λ1) = g(λ2). Combing

the above conclusion with Theorem 5, we have g(λ1) =
max{g(λ)}, i.e., λ1 ∈ J, which contradicts the assumption.

APPENDIX J
PROOF OF THEOREM 7

Proof: (i) Let z⋆ = x⋆− 1
L∇f(x

⋆) where 1/L (L > 0) is
the selected step-size. If ψp,1(x

⋆,w⋆) =< w⋆, [x⋆]p,1 >= 0,
which combined with (16) imply that{

x⋆
Gi

= z⋆
Gi

= x⋆
Gi
− 1

L (∇f(x
⋆))Gi if i ∈ Sc(w⋆);

x⋆
Gi

= softp(z
⋆
Gi
) = 0 if i ∈ S(w⋆).

(51)

Hence, if i ∈ Sc(w⋆), then (∇f(x⋆))Gi = 0. And by the
definition of softp(·) in (5), (6), if x⋆

Gi
= 0, then ∀j ∈ Gi, i ∈

S(w⋆), {
|z⋆

j | = | 1L (∇f(x
⋆))j | ≤ λ

L if p = 1;

∥z⋆
Gi
∥ = ∥ 1

L (∇f(x
⋆))Gi

∥ ≤ λ
L if p = 2.

This combined with (51) imply that the conclusion holds.
(ii) According to (51), we obtain

∥x⋆ − z⋆∥22 =
∑

i∈S(w⋆)

∥x⋆
Gi
− z⋆

Gi
∥22 =

∑
i∈S(w⋆)

∥z⋆
Gi
∥22.

If the top-s strategy is applied, i.e. Sc(w⋆) = As(z
⋆), then

for any feasible solution x ∈ Cs we have ∥x − z⋆∥22 ≥∑
i∈S(w⋆) ∥z⋆

Gi
∥22, i.e., x⋆ ∈ PCs

(x⋆ − 1
L∇f(x

⋆)).
If the best-s strategy is applied, i.e., Sc(w⋆) = Bs(z

⋆), then

Y(softp(z⋆
Gi
), 1)− Y(z⋆

Gi
, 0)

=Y(softp(z⋆
Gi
), 1) = Y(0, 1) = ∥z⋆

Gi
∥22,
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Fig. 8. Convergence behavior of HIWT-GSC along the homotopy path, the
setting of data generation is (1000, 4000, 1000, 50, 4, 0). (a) Number of inner
iterations. The blue line shows the total number of iterations containing all
line searches (failed and successful), and the red line gives the number of
iterations containing only successful line searches. (b) Data fidelity measured
by ∥Ax− b∥22.

where p ∈ {1, 2}. At this time, the effect of the best-s strategy
is the same as the top-s strategy. Then for any feasible solution
x we have ∥x−z⋆∥22 ≥

∑
i∈S(w⋆) ∥z⋆

Gi
∥22, i.e., x⋆ ∈ PCs

(x⋆−
1
L∇f(x

⋆)).

APPENDIX K
EMPIRICAL STUDY ON THE NUMBER OF INNER AND OUTER

ITERATIONS OF THE ALGORITHM

In this appendix, we conduct an empirical study on the num-
ber of inner and outer iterations of the HIWT-GSC algorithm
through experiments on noiseless data.

In practice, the number of outer iterations can be set
according to the needs of the application. For example, if we
need λ to be a large enough value and do not want the λ to
grow too fast, then the number of outer iterations can be set to
a larger value. However, the final number of outer iterations
depends on whether the termination conditions (see line 8 of
the HIWT-GSC algorithm ) can be satisfied in advance.

On the other hand, the number of inner iterations depends
strongly on the accuracy we need for the solution. For each
accepted solution, we use the inequality

∥xk+1 − xk∥
∥xk∥

< ϵ

as a measure of accuracy. In line 5 of the HIWT-GSC
algorithm, we gradually increase the accuracy requirement of
IWT-GSC, i.e., we decrease ϵk as the iteration progresses.

Next, we illustrate these with an example. In this test,
the experimental settings are the same as in the main text
(see page 7 for details). The data generation parameters were
(1000, 4000, 1000, 50, 4, 0), and the number of outer iterations
was set to 10. We set s0 = s/4 and exponentially increased
sk by sk+1 = 2sk until reaching the desired value s. We
set λ0 = 0.1, ϵ0 = 10−2. And the default increasing factor
of the sequence {λk} was set as ρ = 2 and the decreas-
ing factor of the sequence {ϵk} was set as ϱ = 0.2, i.e.,
λk+1 = 2λk, ϵk+1 = 0.2ϵk. The results are shown in Fig. 8.

As can be seen, the number of outer iterations performed is
not 10, but 5, since the termination condition was satisfied in
advance. We depict in Fig. 8a the number of inner iterations
at each fixed λ and s. In the second outer iteration, since
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our algorithm uses a tighter termination tolerance than in the
1st iteration (ϵ2 = 0.2ϵ1), and the value of sk has not yet
reached the desired s, the number of inner iterations increases
significantly. In the 3rd and 4th iterations, the value of sk
reaches the desired s and the IWT-GSC algorithm converges
faster, which benefits from the warmstart strategy. It can be
seen from Fig. 8b that, if the support set is correctly found
(at the 3rd iteration), then the quality of the solution can be
significantly improved, and in the final iteration, the quality
of the solution can also be significantly improved by the
debiasing step.

APPENDIX L
APPLICATION TO ELECTROENCEPHALOGRAPHY SIGNAL

RECONSTRUCTION

In this appendix, the physiological signal reconstruction
experiment is used to verify the performance of the proposed
HIWT-GSC algorithm in the less sparse case.

By recording the electrical activity of the brain, electroen-
cephalography (EEG) signals play an important role in the
diagnosis of neurological diseases or disorders. This test was
carried out on the EEGLab dataset [2]. The dataset contains 32
channels of EEG data, with each channel containing 80 epochs
and each epoch containing 384 time points. Fig. 9a shows
the EEG signals from the first epoch of the fifth channel in
“eeglab data.set” and Fig. 9b shows their DCT coefficients.
It can be seen that EEG signals may not be sparse even
in the transform domain, which can further complicate the
reconstruction process.

0 200 400
−45

0

45

(a)
0 200 400

−100

0

60

(b)
Fig. 9. EEG signals from the fifth epoch of the first channel in the
EEGLAB Dataset, and their DCT coefficients. (a) A segment of EEG, (b)
DCT coefficients

In this test, we apply group sparse optimization algorithms
to reconstruct EEG signals. These algorithms use a group
sparsity constraint to promote the sparsity of the EEG signals
in a group-wise manner, thus allowing the reconstruction of
EEG signals from a reduced set of electrodes.

Similar to [3], we can define a block partition with block
size d = 24 in each channel, i.e., the signal structure in
Fig. 10a can be viewed as

x = (x1, . . . ,x24︸ ︷︷ ︸
xT

G1

, . . . ,x361, . . . ,x384︸ ︷︷ ︸
xT

G16

)T .

We first linearly compressed x epoch by epoch with a
sensing matrix and then expanded x in an inverse DCT basis
Φ = (Φ1,Φ2, . . . ,Φ384), i.e.,

b = Ax = AΦα,

where α is the coefficient vector and A is the same 192×384
sparse binary matrix as in [3].

In such a compressed sensing application, algorithm per-
formance is usually measured in terms of the fidelity to
the original signals. Therefore, we measured recovery quality
using two metrics. One is the NMSE and the other is the
Structural Similarity Index (SSIM) [4][5] for 1-D signals.

By setting the upper bound of the sparsity level ( s
N%)

in HIWT-GSC to 10% and using the “best-s” strategy with
p = 2, the average results of the respective algorithms on the
whole data set are shown in TABLE IV. Since EEG signals
are not sparse in both the time and transformed domains [6],
many sparse recovery algorithms fail to achieve the desired
recovery quality, such as GOMP and GPDASC. In comparison,
GCD, SNSG and GSPGL1 perform better than GOMP and
GPDASC in this test. From TABLE IV, it can be seen that
our approach achieves better results than the other competing
ones in such a difficult case. In addition, the performance
of different algorithms varies at different group sizes. But
in general, grouping exploits the continuity of the signal in
the timing and provides better recovery quality than the case
without grouping. It is worth noting that since both element
and group sparsity are considered together in SNSG, it is not
sensitive to group size in this test.

To visually detail the recovery performance of all the
algorithms compared, we show in Fig. 10 the recovery quality
of each algorithm for the first epoch of the first channel with
group size d = 24. From the figure, it is easy to see that
our method performs better than other competing ones, and its
good reconstruction quality ensures subsequent signal analysis.
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TABLE IV
THE AVERAGE RECONSTRUCTION PERFORMANCE OF ONE EPOCH EEG SIGNAL IN ONE CHANNEL BY DIFFERENT METHODS WITH VARIED GROUP SIZE

Group size Metrics
results of different algorithms

HIWT-GSC-B2 HIWGT1 GPDASC GOMP GCD GSPGL1 SNSG

1
NMSE 0.1989 0.3075 493.6406 0.3856 0.3774 7.4639 0.4611
SSIM 0.7013 0.6333 0.4441 0.2999 0.5998 0.2034 0.4395

6
NMSE 0.0976 0.1671 19747.6877 136.2859 0.3254 7.1424 0.4424
SSIM 0.8134 0.7618 0.1251 0.2999 0.6559 0.2228 0.4348

12
NMSE 0.0904 0.1528 596481.0727 1290.5444 0.3278 7.0243 0.4424
SSIM 0.8227 0.7758 0.0797 0.2103 0.6587 0.2265 0.4348

16
NMSE 0.0870 0.1399 722780.7272 19545.6463 0.3014 6.9716 0.4424
SSIM 0.8233 0.7875 0.0705 0.1820 0.6785 0.2283 0.4348

24
NMSE 0.0904 0.1502 91642.7825 2725.3443 0.3169 6.8609 0.4424
SSIM 0.8238 0.7801 0.0553 0.1545 0.6654 0.2316 0.4348

32
NMSE 0.0916 0.1411 24699.7895 770.5234 0.2880 6.6968 0.4424
SSIM 0.8215 0.7857 0.0533 0.1446 0.6841 0.2346 0.4348

48
NMSE 0.1169 0.1390 61084.1496 255.5278 0.2676 6.4823 0.4424
SSIM 0.7864 0.7885 0.0620 0.1294 0.6980 0.2386 0.4348
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Fig. 10. Comparison of an original EEG epoch and the reconstructed results by different methods with a group size equal to 24. The horizontal axis:
time points. The vertical axis: signal amplitude. (a) The first 384 time points of the first channel in the “eeglab data.set”. (b) The reconstructed segment by
HIWT-GSC-B2, NMSE= 0.0228, SSIM= 0.8701. (c) The reconstructed segment by HIWGT1, NMSE= 0.0378, SSIM= 0.8196. (d) The reconstructed
segment by GPDASC, NMSE= 2.6379, SSIM= 0.0945. (e) The reconstructed segment by GOMP, NMSE= 2.9747, SSIM= 0.0724. (f) The reconstructed
segment by GCD, NMSE= 0.0767, SSIM= 0.7883. (g) The reconstructed segment by GSPGL1, NMSE= 8.2876, SSIM= 0.2276. (h) The reconstructed
segment by SNSG, NMSE= 0.3175, SSIM= 0.2625.
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