/** * Copyright (c) 2014 - 2019, Nordic Semiconductor ASA * * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form, except as embedded into a Nordic * Semiconductor ASA integrated circuit in a product or a software update for * such product, must reproduce the above copyright notice, this list of * conditions and the following disclaimer in the documentation and/or other * materials provided with the distribution. * * 3. Neither the name of Nordic Semiconductor ASA nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * 4. This software, with or without modification, must only be used with a * Nordic Semiconductor ASA integrated circuit. * * 5. Any software provided in binary form under this license must not be reverse * engineered, decompiled, modified and/or disassembled. * * THIS SOFTWARE IS PROVIDED BY NORDIC SEMICONDUCTOR ASA "AS IS" AND ANY EXPRESS * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NORDIC SEMICONDUCTOR ASA OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ /** @file * * @defgroup ble_sdk_uart_over_ble_main main.c * @{ * @ingroup ble_sdk_app_nus_eval * @brief UART over BLE application main file. * * This file contains the source code for a sample application that uses the Nordic UART service. * This application uses the @ref srvlib_conn_params module. */ #include #include #include "nordic_common.h" #include "nrf.h" #include "ble_hci.h" #include "ble_advdata.h" #include "ble_advertising.h" #include "ble_conn_params.h" #include "nrf_sdh.h" #include "nrf_sdh_soc.h" #include "nrf_sdh_ble.h" #include "nrf_ble_gatt.h" #include "nrf_ble_qwr.h" #include "app_timer.h" #include "ble_nus.h" #include "ble_bas.h" #include "ble_tcs.h" #include "app_uart.h" #include "app_util_platform.h" #include "bsp_btn_ble.h" #include "nrf_pwr_mgmt.h" #include "nrf_drv_saadc.h" #include "app_scheduler.h" #include "nrf_delay.h" #if defined (UART_PRESENT) #include "nrf_uart.h" #endif #if defined (UARTE_PRESENT) #include "nrf_uarte.h" #endif #include "nrf_log.h" #include "nrf_log_ctrl.h" #include "nrf_log_default_backends.h" #include "macros_common.h" #define USE_THINGY_ADVERTISING_PAYLOAD #define APP_BLE_CONN_CFG_TAG 1 /**< A tag identifying the SoftDevice BLE configuration. */ #define NRF_BL_CONNECT_MODE_BUTTON_PIN BSP_BUTTON_0 #define TX_POWER_BUTTON BSP_BUTTON_1 #define APP_STATE_BUTTON BSP_BUTTON_2 #define DEVICE_NAME "UART_ADV" /**< Name of device. Will be included in the advertising data. */ #define NORDIC_COMPANY_ID 0x0059 /**< Nordic Semiconductor ASA company identifier. */ #define BUTTON_DETECTION_DELAY APP_TIMER_TICKS(50) /**< Delay from a GPIOTE event until a button is reported as pushed (in number of timer ticks). */ #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN /**< UUID type for the Nordic UART Service (vendor specific). */ #define TCS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN+1 #define APP_BLE_OBSERVER_PRIO 3 /**< Application's BLE observer priority. You shouldn't need to modify this value. */ #define APP_SOC_OBSERVER_PRIO 1 #define APP_ADV_INTERVAL 160 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */ #define APP_ADV_DURATION 0 /**< The advertising duration (180 seconds) in units of 10 milliseconds. */ #define APP_ADV_INTERVAL_MS 1000//380 /**< The advertising interval in ms. */ #define APP_ADV_TIMEOUT_IN_SECONDS 180 /**< The advertising timeout in s. */ #define MIN_CONN_INTERVAL_MS 7.5 /**< Minimum acceptable connection interval in ms. */ #define MAX_CONN_INTERVAL_MS 30 /**< Maximum acceptable connection interval in ms. */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT_MS 5000 /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (1 second). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define NON_CONNECTABLE_ADV_INTERVAL MSEC_TO_UNITS(1000, UNIT_0_625_MS) /**< The advertising interval for non-connectable advertisement (100 ms). This value can vary between 100ms to 10.24s). */ #define APP_BEACON_INFO_LENGTH 0x17 /**< Total length of information advertised by the Beacon. */ #define APP_ADV_DATA_LENGTH 0x15 /**< Length of manufacturer specific data in the advertisement. */ #define APP_DEVICE_TYPE 0x02 /**< 0x02 refers to Beacon. */ #define APP_MEASURED_RSSI 0xC3 /**< The Beacon's measured RSSI at 1 meter distance in dBm. */ #define APP_COMPANY_IDENTIFIER 0x0059 /**< Company identifier for Nordic Semiconductor ASA. as per www.bluetooth.org. */ #define APP_MAJOR_VALUE 0x01, 0x02 /**< Major value used to identify Beacons. */ #define APP_MINOR_VALUE 0x03, 0x04 /**< Minor value used to identify Beacons. */ #define APP_BEACON_UUID 0x01, 0x12, 0x23, 0x34, \ 0x45, 0x56, 0x67, 0x78, \ 0x89, 0x9a, 0xab, 0xbc, \ 0xcd, 0xde, 0xef, 0xf0 #if defined(USE_THINGY_ADVERTISING_PAYLOAD) static uint8_t m_hardcode_enc_advdata[BLE_GAP_ADV_SET_DATA_SIZE_MAX] = { 0x02, 0x01, 0x04, //flags 0x1B, 0xFF, 0x59, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, }; #define ADV_PAYLOAD_WITH_BATTERY 0x07 #else /**< Proprietary UUID for Beacon. */ #if defined(USE_UICR_FOR_MAJ_MIN_VALUES) #define MAJ_VAL_OFFSET_IN_BEACON_INFO 18 /**< Position of the MSB of the Major Value in m_beacon_info array. */ #define UICR_ADDRESS 0x10001080 /**< Address of the UICR register used by this example. The major and minor versions to be encoded into the advertising data will be picked up from this location. */ #endif static uint8_t m_beacon_info[APP_BEACON_INFO_LENGTH] = /**< Information advertised by the Beacon. */ { APP_DEVICE_TYPE, // Manufacturer specific information. Specifies the device type in this // implementation. APP_ADV_DATA_LENGTH, // Manufacturer specific information. Specifies the length of the // manufacturer specific data in this implementation. APP_BEACON_UUID, // 128 bit UUID value. APP_MAJOR_VALUE, // Major arbitrary value that can be used to distinguish between Beacons. APP_MINOR_VALUE, // Minor arbitrary value that can be used to distinguish between Beacons. APP_MEASURED_RSSI // Manufacturer specific information. The Beacon's measured TX power in // this implementation. }; #endif #define BATTERY_LEVEL_MEAS_INTERVAL APP_TIMER_TICKS(2000) /**< Battery level measurement interval (ticks). */ #define MIN_BATTERY_LEVEL 81 /**< Minimum simulated battery level. */ #define MAX_BATTERY_LEVEL 100 /**< Maximum simulated 7battery level. */ #define BATTERY_LEVEL_INCREMENT 1 /**< Increment between each simulated battery level measurement. */ #define ADC_REF_VOLTAGE_IN_MILLIVOLTS 600 /**< Reference voltage (in milli volts) used by ADC while doing conversion. */ #define ADC_PRE_SCALING_COMPENSATION 6 /**< The ADC is configured to use VDD with 1/3 prescaling as input. And hence the result of conversion is to be multiplied by 3 to get the actual value of the battery voltage.*/ #define DIODE_FWD_VOLT_DROP_MILLIVOLTS 270 /**< Typical forward voltage drop of the diode . */ #define ADC_RES_10BIT 1024 /**< Maximum digital value for 10-bit ADC conversion. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */ #define SCHED_MAX_EVENT_DATA_SIZE APP_TIMER_SCHED_EVENT_DATA_SIZE /**< Maximum size of scheduler events. */ #ifdef SVCALL_AS_NORMAL_FUNCTION #define SCHED_QUEUE_SIZE 20 /**< Maximum number of events in the scheduler queue. More is needed in case of Serialization. */ #else #define SCHED_QUEUE_SIZE 10 /**< Maximum number of events in the scheduler queue. */ #endif #define TX_POWER_LEVEL (0) /**< TX Power Level value. This will be set both in the TX Power service, in the advertising data, and also used to set the radio transmit power. */ /**@brief Thingy default beacon configuration. Eddystone url */ #define THINGY_BEACON_ADV_INTERVAL 1000//60 /**< The Beacon's advertising interval, in milliseconds*/ #define THINGY_BEACON_URL_DEFAULT "\x03goo.gl/pIWdir" /**< https://goo.gl/pIWdir short for https://developer.nordicsemi.com/thingy/52/ */ #define THINGY_BEACON_URL_LEN 14 #define THINGY_DEFAULT_PASSWORD "1111" #define THINGY_ADV_PAYLOAD_DEFAULT { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \ 0x00, 0x00, 0x00, 0x00 } #define THINGY_ADV_PAYLOAD_LEN 24 /**@brief Thingy FW version. * 0xFF indicates a custom build from source. Version numbers are changed for releases. */ #define THINGY_FW_VERSION_MAJOR (0xFF) #define THINGY_FW_VERSION_MINOR (0xFF) #define THINGY_FW_VERSION_PATCH (0xFF) /**@brief Thingy default configuration. */ #define THINGY_CONFIG_DEFAULT \ { \ .dev_name = \ { \ .name = DEVICE_NAME, \ .len = 10 \ }, \ .adv_params = \ { \ .interval = MSEC_TO_UNITS(APP_ADV_INTERVAL_MS, UNIT_0_625_MS), \ .timeout = APP_ADV_TIMEOUT_IN_SECONDS \ }, \ .conn_params = \ { \ .min_conn_int = (uint16_t)MSEC_TO_UNITS(MIN_CONN_INTERVAL_MS, UNIT_1_25_MS), \ .max_conn_int = MSEC_TO_UNITS(MAX_CONN_INTERVAL_MS, UNIT_1_25_MS), \ .slave_latency = SLAVE_LATENCY, \ .sup_timeout = MSEC_TO_UNITS(CONN_SUP_TIMEOUT_MS, UNIT_10_MS) \ }, \ .eddystone_url = \ { \ .data = THINGY_BEACON_URL_DEFAULT, \ .len = THINGY_BEACON_URL_LEN \ }, \ .fw_version = \ { \ .major = THINGY_FW_VERSION_MAJOR, \ .minor = THINGY_FW_VERSION_MINOR, \ .patch = THINGY_FW_VERSION_PATCH \ }, \ .mtu = \ { \ .req = 0x00, \ .size = 23 \ }, \ .tx_power = \ { \ .tx_power = TX_POWER_LEVEL, \ }, \ .pwd = \ { \ .data = THINGY_DEFAULT_PASSWORD, \ }, \ .adv_payload = \ { \ .data = THINGY_ADV_PAYLOAD_DEFAULT, \ .len = THINGY_ADV_PAYLOAD_LEN \ }, \ } #ifdef NRF_PWD_BLE_ENABLED APP_TIMER_DEF(m_pwd_timer_id); /**< Battery timer. */ #define PASSWORD_TIMEOUT_INTERVAL APP_TIMER_TICKS(NRF_PWD_TIMEOUT_PERIOD) /**< Battery level measurement interval (ticks). */ static bool m_pwd_is_verified = false; #endif #define SUPPORT_FUNC_MAC_ADDR_STR_LEN 6 static uint8_t m_percentage_batt_lvl; static ble_gap_adv_params_t m_adv_params; /**< Parameters to be passed to the stack when starting advertising. */ static uint8_t m_adv_handle = BLE_GAP_ADV_SET_HANDLE_NOT_SET; /**< Advertising handle used to identify an advertising set. */ //static uint8_t m_enc_advdata[BLE_GAP_ADV_SET_DATA_SIZE_MAX]; /**< Buffer for storing an encoded advertising set. */ static int8_t m_tx_power = TX_POWER_LEVEL; BLE_BAS_DEF(m_bas); /**< Structure used to identify the battery service. */ BLE_NUS_DEF(m_nus, NRF_SDH_BLE_TOTAL_LINK_COUNT); /**< BLE NUS service instance. */ BLE_TCS_DEF(m_tcs); NRF_BLE_GATT_DEF(m_gatt); /**< GATT module instance. */ NRF_BLE_QWR_DEF(m_qwr); /**< Context for the Queued Write module.*/ BLE_ADVERTISING_DEF(m_advertising); /**< Advertising module instance. */ APP_TIMER_DEF(m_battery_timer_id); /**< Battery timer. */ /* Battery detection service */ static nrf_saadc_value_t adc_buf[2]; static void on_bas_evt(ble_bas_t * p_bas, ble_bas_evt_t * p_evt); /* Thingy Configure Service */ static ble_tcs_params_t * m_ble_config; static const ble_tcs_params_t m_ble_default_config = THINGY_CONFIG_DEFAULT; static ble_tcs_mtu_t m_mtu; static bool m_flash_disconnect = false; static bool m_major_minor_fw_ver_changed = false; static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */ static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */ static ble_uuid_t m_adv_uuids[] = /**< Universally unique service identifier. */ { {BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE} }; /**@brief Macro to convert the result of ADC conversion in millivolts. * * @param[in] ADC_VALUE ADC result. * * @retval Result converted to millivolts. */ #define ADC_RESULT_IN_MILLI_VOLTS(ADC_VALUE) \ ((((ADC_VALUE) *ADC_REF_VOLTAGE_IN_MILLIVOLTS) / ADC_RES_10BIT) * ADC_PRE_SCALING_COMPENSATION) static uint8_t m_enc_advdata[BLE_GAP_ADV_SET_DATA_SIZE_MAX] = { 02, 0x01, 0x04, //flags 0x11, 0xFF, 0x59, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x00, 0x01, 0x02, 0x03, }; /**@brief Struct that contains pointers to the encoded advertising data. */ static ble_gap_adv_data_t m_adv_data = { .adv_data = { .p_data = m_enc_advdata, .len = BLE_GAP_ADV_SET_DATA_SIZE_MAX }, .scan_rsp_data = { .p_data = NULL, .len = 0 } }; /**@brief Function for initializing button used to enter DFU mode. */ static void enter_button_init(void) { nrf_gpio_cfg_sense_input(NRF_BL_CONNECT_MODE_BUTTON_PIN, BUTTON_PULL, NRF_GPIO_PIN_SENSE_LOW); } /**@brief Function for checking whether to enter DFU mode or not. */ static bool connect_adv_enter_check(void) { if (nrf_gpio_pin_read(NRF_BL_CONNECT_MODE_BUTTON_PIN) == 0) { //NRF_LOG_DEBUG("DFU mode requested via button."); return true; } return false; } /**@brief Function for handling the ADC interrupt. * * @details This function will fetch the conversion result from the ADC, convert the value into * percentage and send it to peer. */ void saadc_event_handler(nrf_drv_saadc_evt_t const * p_event) { if (p_event->type == NRF_DRV_SAADC_EVT_DONE) { nrf_saadc_value_t adc_result; uint16_t batt_lvl_in_milli_volts; // uint8_t percentage_batt_lvl; uint32_t err_code = NRF_SUCCESS; adc_result = p_event->data.done.p_buffer[0]; err_code = nrf_drv_saadc_buffer_convert(p_event->data.done.p_buffer, 1); APP_ERROR_CHECK(err_code); batt_lvl_in_milli_volts = ADC_RESULT_IN_MILLI_VOLTS(adc_result) + DIODE_FWD_VOLT_DROP_MILLIVOLTS; m_percentage_batt_lvl = battery_level_in_percent(batt_lvl_in_milli_volts); #if defined(USE_THINGY_ADVERTISING_PAYLOAD) m_hardcode_enc_advdata[ADV_PAYLOAD_WITH_BATTERY] = m_percentage_batt_lvl; #endif NRF_LOG_INFO("Battery service value : %03d %%", m_percentage_batt_lvl); if (m_conn_handle != BLE_CONN_HANDLE_INVALID) { err_code = ble_bas_battery_level_update(&m_bas, m_percentage_batt_lvl, BLE_CONN_HANDLE_ALL); if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_RESOURCES) && (err_code != NRF_ERROR_BUSY) && (err_code != BLE_ERROR_GATTS_SYS_ATTR_MISSING) ) { APP_ERROR_HANDLER(err_code); } } // uninit the SAADC after it finishs. nrfx_saadc_uninit(); } } /**@brief Function for configuring ADC to do battery level conversion. */ static void adc_configure(void) { ret_code_t err_code = nrf_drv_saadc_init(NULL, saadc_event_handler); APP_ERROR_CHECK(err_code); nrf_saadc_channel_config_t config = NRF_DRV_SAADC_DEFAULT_CHANNEL_CONFIG_SE(NRF_SAADC_INPUT_VDD); err_code = nrf_drv_saadc_channel_init(0, &config); APP_ERROR_CHECK(err_code); err_code = nrf_drv_saadc_buffer_convert(&adc_buf[0], 1); APP_ERROR_CHECK(err_code); err_code = nrf_drv_saadc_buffer_convert(&adc_buf[1], 1); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the Battery measurement timer timeout. * * @details This function will be called each time the battery level measurement timer expires. * This function will start the ADC. * * @param[in] p_context Pointer used for passing some arbitrary information (context) from the * app_start_timer() call to the timeout handler. */ static void battery_level_meas_timeout_handler(void * p_context) { UNUSED_PARAMETER(p_context); ret_code_t err_code; // Enable the SADDC to measure the battery on every 2s battery timer. adc_configure(); err_code = nrf_drv_saadc_sample(); APP_ERROR_CHECK(err_code); } static void password_timeout_handler(void *p_context) { UNUSED_PARAMETER(p_context); if (m_pwd_is_verified == false && m_conn_handle != BLE_CONN_HANDLE_INVALID) { NRF_LOG_INFO("Verify the password failure!! Disconnect the LINK!!!"); /* Disconnect from the peer. */ ret_code_t err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); VERIFY_SUCCESS(err_code); } } /**@brief Check if flash is currently being accessed. */ static bool flash_access_ongoing(void) { if (nrf_fstorage_is_busy(NULL)) { NRF_LOG_INFO("Waiting until all flash operations are completed."); return true; } else return false; } /**@brief Function for assert macro callback. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyse * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] p_file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } /**@brief Function for initializing the timer module. */ static void timers_init(void) { ret_code_t err_code = app_timer_init(); APP_ERROR_CHECK(err_code); // Create battery timer. err_code = app_timer_create(&m_battery_timer_id, APP_TIMER_MODE_REPEATED, battery_level_meas_timeout_handler); APP_ERROR_CHECK(err_code); #ifdef NRF_PWD_BLE_ENABLED // Create battery timer. err_code = app_timer_create(&m_pwd_timer_id, APP_TIMER_MODE_SINGLE_SHOT, password_timeout_handler); APP_ERROR_CHECK(err_code); #endif } static void application_timer_start(void) { // Start battery timer ret_code_t err_code =app_timer_start(m_battery_timer_id, BATTERY_LEVEL_MEAS_INTERVAL, NULL); APP_ERROR_CHECK(err_code); } /**@brief Function for changing the tx power. */ static void tx_power_set(void) { int tx_power = m_ble_config->tx_power.tx_power; NRF_LOG_INFO("TX Power set = %d", tx_power); ret_code_t err_code = sd_ble_gap_tx_power_set(BLE_GAP_TX_POWER_ROLE_ADV, m_adv_handle, tx_power); APP_ERROR_CHECK(err_code); } /**@brief Checks the current version of the FW against the previous version stored in flash. * If a major or minor FW change is detected, modules must reinitialize their flash storage. * * @note: If the FW version is changed while erasing all flash, a FW change cannot be detected. */ static uint32_t device_config_verify(void) { bool update_flash = false; uint32_t err_code; bool fw_version_major_changed = ( m_ble_config->fw_version.major != m_ble_default_config.fw_version.major ); bool fw_version_minor_changed = ( m_ble_config->fw_version.minor != m_ble_default_config.fw_version.minor ); bool fw_version_patch_changed = ( m_ble_config->fw_version.patch != m_ble_default_config.fw_version.patch ); ble_tcs_fw_version_t prev_fw_version = m_ble_config->fw_version; if ( fw_version_major_changed || fw_version_minor_changed || fw_version_patch_changed) { m_ble_config->fw_version.major = m_ble_default_config.fw_version.major; m_ble_config->fw_version.minor = m_ble_default_config.fw_version.minor; m_ble_config->fw_version.patch = m_ble_default_config.fw_version.patch; update_flash = true; if(fw_version_major_changed || fw_version_minor_changed) { update_flash = false; m_major_minor_fw_ver_changed = true; err_code = m_ble_flash_config_store(&m_ble_default_config); APP_ERROR_CHECK(err_code); } } NRF_LOG_INFO("m_ble: Current FW: v%d.%d.%d \r\n", m_ble_default_config.fw_version.major, m_ble_default_config.fw_version.minor, m_ble_default_config.fw_version.patch); if(m_major_minor_fw_ver_changed) { NRF_LOG_INFO("m_ble: Major or minor FW version changed. Prev. FW (from flash): v%d.%d.%d \r\n", prev_fw_version.major, prev_fw_version.minor, prev_fw_version.patch); } NRF_LOG_INFO("m_ble: TX Power = %d", m_ble_config->tx_power.tx_power); NRF_LOG_INFO("Password %c%c%c%c", m_ble_config->pwd.data[0], m_ble_config->pwd.data[1], m_ble_config->pwd.data[2], m_ble_config->pwd.data[3]); // Check Eddystone URL length. if (m_ble_config->eddystone_url.len > 17) { memcpy(m_ble_config->eddystone_url.data, m_ble_default_config.eddystone_url.data, m_ble_default_config.eddystone_url.len); m_ble_config->eddystone_url.len = m_ble_default_config.eddystone_url.len; update_flash = true; } if (update_flash) { err_code = m_ble_flash_config_store(m_ble_config, true); APP_ERROR_CHECK(err_code); } return NRF_SUCCESS; } /**@brief Function for the GAP initialization. * * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of * the device. It also sets the permissions and appearance. */ static void gap_params_init(bool load_setting) { uint32_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); if (load_setting) { if (m_ble_config) { err_code = sd_ble_gap_device_name_set(&sec_mode, m_ble_config->dev_name.name, strlen((const char *)m_ble_config->dev_name.name)); APP_ERROR_CHECK(err_code); NRF_LOG_INFO("gap_params device name = %s", m_ble_config->dev_name.name); } } else { err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *) DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); } memset(&gap_conn_params, 0, sizeof(gap_conn_params)); if (load_setting) { gap_conn_params.min_conn_interval = m_ble_config->conn_params.min_conn_int; gap_conn_params.max_conn_interval = m_ble_config->conn_params.max_conn_int; gap_conn_params.slave_latency = m_ble_config->conn_params.slave_latency; gap_conn_params.conn_sup_timeout = m_ble_config->conn_params.sup_timeout; } else { gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL_MS; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL_MS; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT_MS; } err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); // ble_gap_addr_t ble_address = {.addr_type = BLE_GAP_ADDR_TYPE_RANDOM_STATIC, // .addr_id_peer = 0, // .addr = {0xC3,0x11,0x99,0x33,0x44,0xFF}}; // err_code = sd_ble_gap_addr_set(&ble_address); } /**@brief Function for handling Queued Write Module errors. * * @details A pointer to this function will be passed to each service which may need to inform the * application about an error. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void nrf_qwr_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for handling the data from the Nordic UART Service. * * @details This function will process the data received from the Nordic UART BLE Service and send * it to the UART module. * * @param[in] p_evt Nordic UART Service event. */ /**@snippet [Handling the data received over BLE] */ static void nus_data_handler(ble_nus_evt_t * p_evt) { if (p_evt->type == BLE_NUS_EVT_RX_DATA) { uint32_t err_code; NRF_LOG_INFO("Received data from BLE NUS. Writing data on UART."); NRF_LOG_HEXDUMP_INFO(p_evt->params.rx_data.p_data, p_evt->params.rx_data.length); for (uint32_t i = 0; i < p_evt->params.rx_data.length; i++) { do { err_code = app_uart_put(p_evt->params.rx_data.p_data[i]); if ((err_code != NRF_SUCCESS) && (err_code != NRF_ERROR_BUSY)) { NRF_LOG_ERROR("Failed receiving NUS message. Error 0x%x. ", err_code); APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_BUSY); } if (p_evt->params.rx_data.p_data[p_evt->params.rx_data.length - 1] == '\r') { while (app_uart_put('\n') == NRF_ERROR_BUSY); } } } /**@snippet [Handling the data received over BLE] */ static void ble_on_sys_evt(uint32_t sys_evt, void *p_context) { switch(sys_evt) { case NRF_EVT_FLASH_OPERATION_ERROR: case NRF_EVT_FLASH_OPERATION_SUCCESS: //if (s_waiting_for_flash) { if (!nrf_fstorage_is_busy(NULL)) { uint32_t err_code; NRF_LOG_DEBUG("Flash Ready."); if (m_conn_handle != BLE_CONN_HANDLE_INVALID) { // Disconnect on GATT Server timeout event. err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); } nrf_delay_ms(1000); nrf_pwr_mgmt_shutdown(NRF_PWR_MGMT_SHUTDOWN_RESET); } } break; default: /* Ignore */ break; } } NRF_SDH_SOC_OBSERVER(ble_soc_observer, APP_SOC_OBSERVER_PRIO, ble_on_sys_evt, NULL); /**@brief Function for handling thingy configuration events. */ static void tcs_evt_handler (ble_tcs_t * p_tcs, ble_tcs_evt_type_t evt_type, uint8_t * p_data, uint16_t length) { bool update_flash = false; if (evt_type == BLE_TCS_EVT_PWD_VERIFY) { if (strncmp(p_data, m_ble_config->pwd.data, length)==0) { m_pwd_is_verified = true; NRF_LOG_INFO("Verification Pass!!"); } } if (m_pwd_is_verified) { switch (evt_type) { case BLE_TCS_EVT_DEV_NAME: if (length <= BLE_TCS_DEVICE_NAME_LEN_MAX) { memcpy(m_ble_config->dev_name.name, p_data, length); m_ble_config->dev_name.name[length] = 0; m_ble_config->dev_name.len = length; update_flash = true; NRF_LOG_INFO("Change the Name: %s", m_ble_config->dev_name.name) } break; case BLE_TCS_EVT_ADV_PARAM: if (length == sizeof(ble_tcs_adv_params_t)) { NRF_LOG_INFO("Update the Advertising parameter!"); NRF_LOG_HEXDUMP_INFO(p_data, length); memcpy(&m_ble_config->adv_params, p_data, length); update_flash = true; } break; case BLE_TCS_EVT_CONN_PARAM: if (length == sizeof(ble_tcs_conn_params_t)) { uint32_t err_code; ble_gap_conn_params_t gap_conn_params; memcpy(&m_ble_config->conn_params, p_data, length); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = m_ble_config->conn_params.min_conn_int; gap_conn_params.max_conn_interval = m_ble_config->conn_params.max_conn_int; gap_conn_params.slave_latency = m_ble_config->conn_params.slave_latency; gap_conn_params.conn_sup_timeout = m_ble_config->conn_params.sup_timeout; err_code = ble_conn_params_change_conn_params(m_conn_handle, &gap_conn_params); APP_ERROR_CHECK(err_code); update_flash = true; } break; case BLE_TCS_EVT_BEACON: if (length <= BLE_TCS_BEACON_LEN_MAX) { uint32_t err_code; memcpy(m_ble_config->eddystone_url.data, p_data, length); m_ble_config->eddystone_url.len = length; update_flash = true; // err_code = timeslot_init(); // APP_ERROR_CHECK(err_code); } break; case BLE_TCS_EVT_MTU: if (length == sizeof(ble_tcs_mtu_t)) { uint32_t err_code; ble_tcs_mtu_t * p_mtu = (ble_tcs_mtu_t *)p_data; if (p_mtu->req == TCS_MTU_REQ_EXCHANGE) { NRF_LOG_INFO("tcs_evt_handler: TCS_MTU_REQ_EXCHANGE - %d\r\n", p_mtu->size); err_code = sd_ble_gattc_exchange_mtu_request(m_conn_handle, p_mtu->size); if (err_code == NRF_SUCCESS) { memcpy(&m_mtu, p_data, length); } else { err_code = ble_tcs_mtu_set(&m_tcs, &m_mtu); APP_ERROR_CHECK(err_code); } } else { err_code = ble_tcs_mtu_set(&m_tcs, &m_mtu); APP_ERROR_CHECK(err_code); } } break; case BLE_TCS_EVT_TX_POWER: NRF_LOG_INFO("BLE_TCS_EVT_TX_POWER %d", sizeof(ble_tcs_tx_power_t)); if (length == sizeof(ble_tcs_tx_power_t)) { uint32_t err_code; memcpy(&m_ble_config->tx_power.tx_power, p_data, length); NRF_LOG_INFO("Store TX Power"); NRF_LOG_HEXDUMP_INFO(p_data, length); update_flash = true; } break; case BLE_TCS_EVT_PWD: NRF_LOG_INFO("BLE_TCS_EVT_PWD %d", sizeof(ble_tcs_pwd_t)); if (length == sizeof(ble_tcs_pwd_t)) { // uint32_t err_code; memcpy(m_ble_config->pwd.data, p_data, length); // ble_tcs_pwd_t * p_tx_power = (ble_tcs_pwd_t *)p_data; // m_ble_config->tx_power.tx_power = *p_tx_power; NRF_LOG_HEXDUMP_INFO(p_data, length); update_flash = true; } break; case BLE_TCS_EVT_ADV_PAYLOAD: NRF_LOG_INFO("BLE_TCS_EVT_ADV_PAYLOAD"); if (length <= BLE_TCS_ADV_PAYLOAD_LEN_MAX) { uint32_t err_code; memcpy(m_ble_config->adv_payload.data, p_data, length); m_ble_config->adv_payload.len = length; NRF_LOG_HEXDUMP_INFO(p_data, length); update_flash = true; } break; } } if (update_flash) { uint32_t err_code; err_code = m_ble_flash_config_store(m_ble_config, false); APP_ERROR_CHECK(err_code); } } /**@brief Function for initializing the Battery Service. */ static void bas_init(void) { ret_code_t err_code; ble_bas_init_t bas_init_obj; memset(&bas_init_obj, 0, sizeof(bas_init_obj)); bas_init_obj.evt_handler = on_bas_evt; bas_init_obj.support_notification = true; bas_init_obj.p_report_ref = NULL; bas_init_obj.initial_batt_level = 100; bas_init_obj.bl_rd_sec = SEC_OPEN; bas_init_obj.bl_cccd_wr_sec = SEC_OPEN; bas_init_obj.bl_report_rd_sec = SEC_OPEN; err_code = ble_bas_init(&m_bas, &bas_init_obj); APP_ERROR_CHECK(err_code); } static void nus_init(void) { uint32_t err_code; ble_nus_init_t nus_init; memset(&nus_init, 0, sizeof(nus_init)); nus_init.data_handler = nus_data_handler; err_code = ble_nus_init(&m_nus, &nus_init); APP_ERROR_CHECK(err_code); } static void tcs_init(void) { ble_tcs_init_t tcs_init; uint32_t err_code; tcs_init.p_init_vals = m_ble_config; tcs_init.evt_handler = tcs_evt_handler; err_code = ble_tcs_init(&m_tcs, &tcs_init); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing services that will be used by the application. */ static void services_init(void) { uint32_t err_code; nrf_ble_qwr_init_t qwr_init = {0}; // Initialize Queued Write Module. qwr_init.error_handler = nrf_qwr_error_handler; err_code = nrf_ble_qwr_init(&m_qwr, &qwr_init); APP_ERROR_CHECK(err_code); tcs_init(); // Initialize NUS. nus_init(); bas_init(); } /**@brief Function for handling an event from the Connection Parameters Module. * * @details This function will be called for all events in the Connection Parameters Module * which are passed to the application. * * @note All this function does is to disconnect. This could have been done by simply setting * the disconnect_on_fail config parameter, but instead we use the event handler * mechanism to demonstrate its use. * * @param[in] p_evt Event received from the Connection Parameters Module. */ static void on_conn_params_evt(ble_conn_params_evt_t * p_evt) { uint32_t err_code; if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); APP_ERROR_CHECK(err_code); } } /**@brief Function for handling errors from the Connection Parameters module. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Connection Parameters module. */ static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = on_conn_params_evt; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } /**@brief Function for putting the chip into sleep mode. * * @note This function will not return. */ static void sleep_mode_enter(void) { uint32_t err_code = bsp_indication_set(BSP_INDICATE_IDLE); APP_ERROR_CHECK(err_code); // Prepare wakeup buttons. err_code = bsp_btn_ble_sleep_mode_prepare(); APP_ERROR_CHECK(err_code); // Go to system-off mode (this function will not return; wakeup will cause a reset). err_code = sd_power_system_off(); APP_ERROR_CHECK(err_code); } /**@brief Function for handling advertising events. * * @details This function will be called for advertising events which are passed to the application. * * @param[in] ble_adv_evt Advertising event. */ static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { uint32_t err_code; switch (ble_adv_evt) { case BLE_ADV_EVT_FAST: err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); APP_ERROR_CHECK(err_code); break; case BLE_ADV_EVT_IDLE: // sleep_mode_enter(); break; default: break; } } /**@brief Function for handling the Battery Service events. * * @details This function will be called for all Battery Service events which are passed to the | application. * * @param[in] p_bas Battery Service structure. * @param[in] p_evt Event received from the Battery Service. */ static void on_bas_evt(ble_bas_t * p_bas, ble_bas_evt_t * p_evt) { ret_code_t err_code; switch (p_evt->evt_type) { case BLE_BAS_EVT_NOTIFICATION_ENABLED: // // Start battery timer // err_code = app_timer_start(m_battery_timer_id, BATTERY_LEVEL_MEAS_INTERVAL, NULL); // APP_ERROR_CHECK(err_code); break; // BLE_BAS_EVT_NOTIFICATION_ENABLED case BLE_BAS_EVT_NOTIFICATION_DISABLED: err_code = app_timer_stop(m_battery_timer_id); APP_ERROR_CHECK(err_code); break; // BLE_BAS_EVT_NOTIFICATION_DISABLED default: // No implementation needed. break; } } /**@brief Function for handling BLE events. * * @param[in] p_ble_evt Bluetooth stack event. * @param[in] p_context Unused. */ static void ble_evt_handler(ble_evt_t const * p_ble_evt, void * p_context) { uint32_t err_code; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: NRF_LOG_INFO("Connected"); err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; err_code = nrf_ble_qwr_conn_handle_assign(&m_qwr, m_conn_handle); APP_ERROR_CHECK(err_code); #ifdef NRF_PWD_BLE_ENABLED m_pwd_is_verified = false; ret_code_t err_code =app_timer_start(m_pwd_timer_id, PASSWORD_TIMEOUT_INTERVAL, NULL); APP_ERROR_CHECK(err_code); #endif break; case BLE_GAP_EVT_DISCONNECTED: NRF_LOG_INFO("Disconnected"); // LED indication will be changed when advertising starts. m_conn_handle = BLE_CONN_HANDLE_INVALID; break; case BLE_GAP_EVT_PHY_UPDATE_REQUEST: { NRF_LOG_DEBUG("PHY update request."); ble_gap_phys_t const phys = { .rx_phys = BLE_GAP_PHY_AUTO, .tx_phys = BLE_GAP_PHY_AUTO, }; err_code = sd_ble_gap_phy_update(p_ble_evt->evt.gap_evt.conn_handle, &phys); APP_ERROR_CHECK(err_code); } break; case BLE_GAP_EVT_SEC_PARAMS_REQUEST: // Pairing not supported err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_SYS_ATTR_MISSING: // No system attributes have been stored. err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0); APP_ERROR_CHECK(err_code); break; case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; default: // No implementation needed. break; } } /**@brief Function for the Event Scheduler initialization. */ static void scheduler_init(void) { APP_SCHED_INIT(SCHED_MAX_EVENT_DATA_SIZE, SCHED_QUEUE_SIZE); } /**@brief Function for the SoftDevice initialization. * * @details This function initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { ret_code_t err_code; err_code = nrf_sdh_enable_request(); APP_ERROR_CHECK(err_code); // Configure the BLE stack using the default settings. // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = nrf_sdh_ble_default_cfg_set(APP_BLE_CONN_CFG_TAG, &ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = nrf_sdh_ble_enable(&ram_start); APP_ERROR_CHECK(err_code); err_code = sd_power_mode_set(NRF_POWER_MODE_LOWPWR); APP_ERROR_CHECK(err_code); err_code = sd_power_dcdc_mode_set(NRF_POWER_DCDC_DISABLE);//NRF_POWER_DCDC_ENABLE); APP_ERROR_CHECK(err_code); // Register a handler for BLE events. NRF_SDH_BLE_OBSERVER(m_ble_observer, APP_BLE_OBSERVER_PRIO, ble_evt_handler, NULL); } /**@brief Function for handling events from the GATT library. */ void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, nrf_ble_gatt_evt_t const * p_evt) { uint32_t data_length; if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)) { data_length = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH; NRF_LOG_INFO("Data len is set to 0x%X(%d)", m_ble_nus_max_data_len, m_ble_nus_max_data_len); m_ble_nus_max_data_len = data_length; } else if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_DATA_LENGTH_UPDATED)) { data_length = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH - 4; NRF_LOG_INFO("gatt_event: Data len is set to 0x%X (%d)", data_length, data_length); m_ble_nus_max_data_len = data_length; } NRF_LOG_DEBUG("ATT MTU exchange completed. central 0x%x peripheral 0x%x", p_gatt->att_mtu_desired_central, p_gatt->att_mtu_desired_periph); } /**@brief Function for initializing the GATT library. */ void gatt_init(void) { ret_code_t err_code; err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler); APP_ERROR_CHECK(err_code); err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, NRF_SDH_BLE_GATT_MAX_MTU_SIZE); APP_ERROR_CHECK(err_code); } /**@brief Function for handling app_uart events. * * @details This function will receive a single character from the app_uart module and append it to * a string. The string will be be sent over BLE when the last character received was a * 'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length. */ /**@snippet [Handling the data received over UART] */ void uart_event_handle(app_uart_evt_t * p_event) { static uint8_t data_array[BLE_NUS_MAX_DATA_LEN]; static uint8_t index = 0; uint32_t err_code; switch (p_event->evt_type) { case APP_UART_DATA_READY: UNUSED_VARIABLE(app_uart_get(&data_array[index])); index++; if ((data_array[index - 1] == '\n') || (data_array[index - 1] == '\r') || (index >= m_ble_nus_max_data_len)) { if (index > 1) { NRF_LOG_DEBUG("Ready to send data over BLE NUS"); NRF_LOG_HEXDUMP_DEBUG(data_array, index); do { uint16_t length = (uint16_t)index; err_code = ble_nus_data_send(&m_nus, data_array, &length, m_conn_handle); if ((err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_RESOURCES) && (err_code != NRF_ERROR_NOT_FOUND)) { APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_RESOURCES); } index = 0; } break; case APP_UART_COMMUNICATION_ERROR: APP_ERROR_HANDLER(p_event->data.error_communication); break; case APP_UART_FIFO_ERROR: APP_ERROR_HANDLER(p_event->data.error_code); break; default: break; } } /**@snippet [Handling the data received over UART] */ /**@brief Function for initializing the UART module. */ /**@snippet [UART Initialization] */ static void uart_init(void) { uint32_t err_code; app_uart_comm_params_t const comm_params = { .rx_pin_no = RX_PIN_NUMBER, .tx_pin_no = TX_PIN_NUMBER, .rts_pin_no = RTS_PIN_NUMBER, .cts_pin_no = CTS_PIN_NUMBER, .flow_control = APP_UART_FLOW_CONTROL_DISABLED, .use_parity = false, #if defined (UART_PRESENT) .baud_rate = NRF_UART_BAUDRATE_115200 #else .baud_rate = NRF_UARTE_BAUDRATE_115200 #endif }; APP_UART_FIFO_INIT(&comm_params, UART_RX_BUF_SIZE, UART_TX_BUF_SIZE, uart_event_handle, APP_IRQ_PRIORITY_LOWEST, err_code); APP_ERROR_CHECK(err_code); } /**@snippet [UART Initialization] */ /**@brief Function for initializing the Advertising functionality. * * @details Encodes the required advertising data and passes it to the stack. * Also builds a structure to be passed to the stack when starting advertising. */ static void non_connectable_advertising_init(void) { uint32_t err_code; ble_advdata_t advdata; uint8_t flags = BLE_GAP_ADV_FLAG_BR_EDR_NOT_SUPPORTED; ble_advdata_manuf_data_t manuf_specific_data; manuf_specific_data.company_identifier = APP_COMPANY_IDENTIFIER; #if defined(USE_UICR_FOR_MAJ_MIN_VALUES) // If USE_UICR_FOR_MAJ_MIN_VALUES is defined, the major and minor values will be read from the // UICR instead of using the default values. The major and minor values obtained from the UICR // are encoded into advertising data in big endian order (MSB First). // To set the UICR used by this example to a desired value, write to the address 0x10001080 // using the nrfjprog tool. The command to be used is as follows. // nrfjprog --snr --memwr 0x10001080 --val // For example, for a major value and minor value of 0xabcd and 0x0102 respectively, the // the following command should be used. // nrfjprog --snr --memwr 0x10001080 --val 0xabcd0102 uint16_t major_value = ((*(uint32_t *)UICR_ADDRESS) & 0xFFFF0000) >> 16; uint16_t minor_value = ((*(uint32_t *)UICR_ADDRESS) & 0x0000FFFF); uint8_t index = MAJ_VAL_OFFSET_IN_BEACON_INFO; m_beacon_info[index++] = MSB_16(major_value); m_beacon_info[index++] = LSB_16(major_value); m_beacon_info[index++] = MSB_16(minor_value); m_beacon_info[index++] = LSB_16(minor_value); #endif #if defined (USE_THINGY_ADVERTISING_PAYLOAD) m_adv_params.properties.type = BLE_GAP_ADV_TYPE_NONCONNECTABLE_NONSCANNABLE_UNDIRECTED; m_adv_params.p_peer_addr = NULL;// Undirected advertisement. m_adv_params.filter_policy = BLE_GAP_ADV_FP_ANY; m_adv_params.interval = NON_CONNECTABLE_ADV_INTERVAL; m_adv_params.duration = 0; // Never time out. NRF_LOG_DEBUG("non_connectable_advertising_init"); // NRF_LOG_HEXDUMP_INFO(m_ble_config->adv_payload.data, m_ble_config->adv_payload.len); uint8_t length = m_ble_config->adv_payload.len; for (uint8_t i=0; i < length ; i++) { m_hardcode_enc_advdata[ADV_PAYLOAD_WITH_BATTERY+1+i] = m_ble_config->adv_payload.data[i]; } //memcpy(*m_hardcode_enc_advdata+ADV_PAYLOAD_WITH_BATTERY+1, m_ble_config->adv_payload.data, m_ble_config->adv_payload.len); m_adv_data.adv_data.p_data = m_hardcode_enc_advdata; m_adv_data.adv_data.len = 0x1F; // hardcode to 31 bytes NRF_LOG_HEXDUMP_INFO(m_adv_data.adv_data.p_data, m_adv_data.adv_data.len); err_code = sd_ble_gap_adv_set_configure(&m_adv_handle, &m_adv_data, &m_adv_params); APP_ERROR_CHECK(err_code); #else manuf_specific_data.data.p_data = (uint8_t *) m_beacon_info; manuf_specific_data.data.size = APP_BEACON_INFO_LENGTH; // Build and set advertising data. memset(&advdata, 0, sizeof(advdata)); advdata.name_type = BLE_ADVDATA_NO_NAME; advdata.flags = flags; advdata.p_manuf_specific_data = &manuf_specific_data; // Initialize advertising parameters (used when starting advertising). memset(&m_adv_params, 0, sizeof(m_adv_params)); m_adv_params.properties.type = BLE_GAP_ADV_TYPE_NONCONNECTABLE_NONSCANNABLE_UNDIRECTED; m_adv_params.p_peer_addr = NULL;// Undirected advertisement. m_adv_params.filter_policy = BLE_GAP_ADV_FP_ANY; m_adv_params.interval = NON_CONNECTABLE_ADV_INTERVAL; m_adv_params.duration = 0;// Never time out. err_code = ble_advdata_encode(&advdata, m_adv_data.adv_data.p_data, &m_adv_data.adv_data.len); APP_ERROR_CHECK(err_code); err_code = sd_ble_gap_adv_set_configure(&m_adv_handle, &m_adv_data, &m_adv_params); APP_ERROR_CHECK(err_code); #endif } /**@brief Function for initializing the Advertising functionality. */ static void connectable_advertising_init(void) { uint32_t err_code; ble_advertising_init_t init; memset(&init, 0, sizeof(init)); init.advdata.name_type = BLE_ADVDATA_FULL_NAME; init.advdata.include_appearance = false; init.advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_GENERAL_DISC_MODE; init.srdata.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]); init.srdata.uuids_complete.p_uuids = m_adv_uuids; init.config.ble_adv_fast_enabled = false; init.config.ble_adv_fast_interval = APP_ADV_INTERVAL; init.config.ble_adv_fast_timeout = APP_ADV_DURATION; init.config.ble_adv_slow_enabled = true; init.config.ble_adv_slow_interval = APP_ADV_INTERVAL; init.config.ble_adv_slow_timeout = APP_ADV_DURATION; init.evt_handler = on_adv_evt; err_code = ble_advertising_init(&m_advertising, &init); APP_ERROR_CHECK(err_code); ble_advertising_conn_cfg_tag_set(&m_advertising, APP_BLE_CONN_CFG_TAG); } /**@brief Function for handling events from the button handler module. * * @param[in] pin_no The pin that the event applies to. * @param[in] button_action The button action (press/release). */ static void button_event_handler(uint8_t pin_no, uint8_t button_action) { ret_code_t err_code; static uint8_t count = 0; switch (pin_no) { case TX_POWER_BUTTON: if (button_action == APP_BUTTON_PUSH) { { err_code = sd_ble_gap_tx_power_set(BLE_GAP_TX_POWER_ROLE_ADV, m_adv_handle, m_tx_power); APP_ERROR_CHECK(err_code); } } break; case APP_STATE_BUTTON: break; default: APP_ERROR_HANDLER(pin_no); break; } } /**@brief Function for initializing the button handler module. */ static void buttons_init(void) { ret_code_t err_code; //The array must be static because a pointer to it will be saved in the button handler module. static app_button_cfg_t buttons[] = { {TX_POWER_BUTTON, false, BUTTON_PULL, button_event_handler}, {APP_STATE_BUTTON, false, BUTTON_PULL, button_event_handler}, }; err_code = app_button_init(buttons, ARRAY_SIZE(buttons), BUTTON_DETECTION_DELAY); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the nrf log module. */ static void log_init(void) { ret_code_t err_code = NRF_LOG_INIT(NULL); APP_ERROR_CHECK(err_code); NRF_LOG_DEFAULT_BACKENDS_INIT(); } /**@brief Function for initializing power management. */ static void power_management_init(void) { ret_code_t err_code; err_code = nrf_pwr_mgmt_init(); APP_ERROR_CHECK(err_code); } /**@brief Function for placing the application in low power state while waiting for events. */ #define FPU_EXCEPTION_MASK 0x0000009F /**@brief Function for handling the idle state (main loop). * * @details If there is no pending log operation, then sleep until next the next event occurs. */ static void idle_state_handle(void) { __set_FPSCR(__get_FPSCR() & ~(FPU_EXCEPTION_MASK)); (void) __get_FPSCR(); NVIC_ClearPendingIRQ(FPU_IRQn); app_sched_execute(); while(NRF_LOG_PROCESS()); //UNUSED_RETURN_VALUE(NRF_LOG_PROCESS()); nrf_pwr_mgmt_run(); } /**@brief Function for starting advertising. */ static void connect_advertising_start(void) { uint32_t err_code = ble_advertising_start(&m_advertising, BLE_ADV_MODE_FAST); APP_ERROR_CHECK(err_code); } /**@brief Function for starting advertising. */ static void non_connect_advertising_start(void) { ret_code_t err_code; tx_power_set(); err_code = sd_ble_gap_adv_start(m_adv_handle, APP_BLE_CONN_CFG_TAG); APP_ERROR_CHECK(err_code); err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); APP_ERROR_CHECK(err_code); } /**@brief Application main function. */ int main(void) { bool erase_bonds; bool connect_mode_enter = false; uint32_t err_code = NRF_SUCCESS; // /* enable instruction cache */ // NRF_NVMC->ICACHECNF = (NVMC_ICACHECNF_CACHEEN_Enabled << NVMC_ICACHECNF_CACHEEN_Pos) + // (NVMC_ICACHECNF_CACHEPROFEN_Disabled << NVMC_ICACHECNF_CACHEPROFEN_Pos); // Initialize. // uart_init(); log_init(); timers_init(); /**@brief Load configuration from flash. */ err_code = m_ble_flash_init(&m_ble_default_config, &m_ble_config); if (err_code != NRF_SUCCESS) { //jimmy NRF_LOG_ERROR(" m_ble_flash_init failed - %d\r\n", err_code); APP_ERROR_CHECK(err_code); } err_code = device_config_verify(); if (err_code != NRF_SUCCESS) { NRF_LOG_ERROR("Thingy_config_verify failed - %d\r\n", err_code); APP_ERROR_CHECK(err_code); } enter_button_init(); connect_mode_enter = connect_adv_enter_check(); //buttons_init(); power_management_init(); ble_stack_init(); scheduler_init(); application_timer_start(); if (connect_mode_enter) { gap_params_init(true); gatt_init(); services_init(); connectable_advertising_init(); conn_params_init(); connect_advertising_start(); NRF_LOG_INFO("Connected Advertising!"); } else { gap_params_init(true); non_connectable_advertising_init(); non_connect_advertising_start(); NRF_LOG_INFO("Non-Connected Advertising!"); } // err_code = app_button_enable(); // APP_ERROR_CHECK(err_code); // Enter main loop. for (;;) { idle_state_handle(); } } /** * @} */