{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "1. Create a vector with values ranging from 10 to 49" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33\n", " 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49]\n" ] } ], "source": [ "x = np.arange(10, 50)\n", "print(x)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "2. Reverse a vector (first element becomes last)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33,\n", " 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16,\n", " 15, 14, 13, 12, 11, 10])" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.flip(x)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33,\n", " 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16,\n", " 15, 14, 13, 12, 11, 10])" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x[::-1]\n", "np.array(sorted(x.tolist(), reverse=True))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "3. Find indices of non-zero elements from [1,2,0,0,4,0]" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(array([0, 1, 4]),)" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x3 = np.array([1,2,0,0,4,0])\n", "np.nonzero(x3)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0, 1, 4])" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y = x3 > 0\n", "np.arange(x3.shape[0])[y]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "4. Create a 10x10 array with random values and find the minimum and maximum values " ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0.998333820021144\n", "0.029637167775761752\n" ] } ], "source": [ "a = np.random.rand(10, 10)\n", "print(a.max())\n", "print(a.min())" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(10, 10)" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a.shape" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "5. Create a random vector of size 30 and find the mean value" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0.5239838122398937" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.random.rand(30).mean()" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 0. , 0. , 0. , 0. , 0. ,\n", " 0. , 0. , 0. , 0. , 0. ],\n", " [ 3.01521561, 9.14164803, 0.68791109, 2.89815842, 3.15728656,\n", " 0.90899513, 9.86866755, 6.80097454, 0.84650805, 4.37712331],\n", " [ 8.39586685, 9.4721158 , 11.47671301, 9.98210744, 19.57495897,\n", " 18.98315206, 10.96557931, 19.17685266, 2.34494457, 15.07271328],\n", " [10.63894158, 18.78178247, 2.11627782, 18.8364192 , 27.86439724,\n", " 28.77513901, 3.00212305, 12.7432143 , 24.22477423, 5.126669 ],\n", " [ 8.01506109, 17.38200813, 16.83001306, 38.81288373, 27.20045135,\n", " 36.48203461, 39.25869368, 6.1629328 , 33.86671744, 12.76535218],\n", " [12.58241805, 25.83004732, 42.08704151, 7.98036465, 30.59215561,\n", " 47.90822083, 4.00450191, 17.97320344, 46.43838656, 37.61576568],\n", " [ 0.30392063, 34.98596739, 2.26471787, 39.25422566, 25.28928102,\n", " 19.45190256, 19.43995083, 13.79122425, 33.15481927, 14.5385231 ],\n", " [39.23274693, 31.45647923, 37.37418164, 26.55868052, 20.35728236,\n", " 1.82627947, 37.40446428, 36.32240979, 0.11695751, 43.2333394 ],\n", " [39.46145399, 14.49899384, 18.75064899, 55.59832686, 34.71155617,\n", " 25.22728419, 10.70105541, 55.67846468, 52.71682548, 57.88698127],\n", " [ 2.09842409, 68.3146222 , 19.55644611, 53.8228737 , 86.47861251,\n", " 56.04636399, 64.62943253, 17.43242805, 31.94168966, 61.49230741]])" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.array([np.random.uniform(0, 10*i, 10) for i in range(10)])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "6. Create a 2d array with 1 on the border and 0 inside" ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],\n", " [1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],\n", " [1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],\n", " [1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],\n", " [1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],\n", " [1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],\n", " [1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],\n", " [1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],\n", " [1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],\n", " [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]])" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bordermat = np.ones(shape=(10,10))\n", "bordermat[1:-1, 1:-1] = 0\n", "# bordermat[1:-1, 1:-1] = np.zeros(shape=(8, 8))\n", "bordermat\n", "# bordermat[0] = 1\n", "# bordermat[-1] = 1\n", "# bordermat[:, 0] = 1\n", "# bordermat[:, -1] = 1" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }