{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "1. Create a vector with values ranging from 10 to 49"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33\n",
      " 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49]\n"
     ]
    }
   ],
   "source": [
    "x = np.arange(10, 50)\n",
    "print(x)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "2. Reverse a vector (first element becomes last)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33,\n",
       "       32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16,\n",
       "       15, 14, 13, 12, 11, 10])"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.flip(x)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33,\n",
       "       32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16,\n",
       "       15, 14, 13, 12, 11, 10])"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x[::-1]\n",
    "np.array(sorted(x.tolist(), reverse=True))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "3. Find indices of non-zero elements from [1,2,0,0,4,0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(array([0, 1, 4]),)"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x3 = np.array([1,2,0,0,4,0])\n",
    "np.nonzero(x3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([0, 1, 4])"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "y = x3 > 0\n",
    "np.arange(x3.shape[0])[y]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "4. Create a 10x10 array with random values and find the minimum and maximum values "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.998333820021144\n",
      "0.029637167775761752\n"
     ]
    }
   ],
   "source": [
    "a = np.random.rand(10, 10)\n",
    "print(a.max())\n",
    "print(a.min())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(10, 10)"
      ]
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "a.shape"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "5. Create a random vector of size 30 and find the mean value"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.5239838122398937"
      ]
     },
     "execution_count": 33,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.random.rand(30).mean()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,\n",
       "         0.        ,  0.        ,  0.        ,  0.        ,  0.        ],\n",
       "       [ 3.01521561,  9.14164803,  0.68791109,  2.89815842,  3.15728656,\n",
       "         0.90899513,  9.86866755,  6.80097454,  0.84650805,  4.37712331],\n",
       "       [ 8.39586685,  9.4721158 , 11.47671301,  9.98210744, 19.57495897,\n",
       "        18.98315206, 10.96557931, 19.17685266,  2.34494457, 15.07271328],\n",
       "       [10.63894158, 18.78178247,  2.11627782, 18.8364192 , 27.86439724,\n",
       "        28.77513901,  3.00212305, 12.7432143 , 24.22477423,  5.126669  ],\n",
       "       [ 8.01506109, 17.38200813, 16.83001306, 38.81288373, 27.20045135,\n",
       "        36.48203461, 39.25869368,  6.1629328 , 33.86671744, 12.76535218],\n",
       "       [12.58241805, 25.83004732, 42.08704151,  7.98036465, 30.59215561,\n",
       "        47.90822083,  4.00450191, 17.97320344, 46.43838656, 37.61576568],\n",
       "       [ 0.30392063, 34.98596739,  2.26471787, 39.25422566, 25.28928102,\n",
       "        19.45190256, 19.43995083, 13.79122425, 33.15481927, 14.5385231 ],\n",
       "       [39.23274693, 31.45647923, 37.37418164, 26.55868052, 20.35728236,\n",
       "         1.82627947, 37.40446428, 36.32240979,  0.11695751, 43.2333394 ],\n",
       "       [39.46145399, 14.49899384, 18.75064899, 55.59832686, 34.71155617,\n",
       "        25.22728419, 10.70105541, 55.67846468, 52.71682548, 57.88698127],\n",
       "       [ 2.09842409, 68.3146222 , 19.55644611, 53.8228737 , 86.47861251,\n",
       "        56.04636399, 64.62943253, 17.43242805, 31.94168966, 61.49230741]])"
      ]
     },
     "execution_count": 34,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.array([np.random.uniform(0, 10*i, 10) for i in range(10)])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "6. Create a 2d array with 1 on the border and 0 inside"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.],\n",
       "       [1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],\n",
       "       [1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],\n",
       "       [1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],\n",
       "       [1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],\n",
       "       [1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],\n",
       "       [1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],\n",
       "       [1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],\n",
       "       [1., 0., 0., 0., 0., 0., 0., 0., 0., 1.],\n",
       "       [1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]])"
      ]
     },
     "execution_count": 46,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "bordermat = np.ones(shape=(10,10))\n",
    "bordermat[1:-1, 1:-1] = 0\n",
    "# bordermat[1:-1, 1:-1] = np.zeros(shape=(8, 8))\n",
    "bordermat\n",
    "# bordermat[0] = 1\n",
    "# bordermat[-1] = 1\n",
    "# bordermat[:, 0] = 1\n",
    "# bordermat[:, -1] = 1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "version": "3.6.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}