{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "cell_style": "center",
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "![CDS 411 logo](../../img/cds-411-logo.png)\n",
    "\n",
    "# Class 10: System dynamics models: Drug dosage II\n",
    "\n",
    "---\n",
    "\n",
    "![CC BY-SA 4.0 license](../../img/cc-by-sa.png)\n",
    "\n",
    "This notebook is licensed under a [Creative Commons Attribution-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-sa/4.0/)."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "cell_style": "center",
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "## Load packages"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "cell_style": "center",
    "slideshow": {
     "cell_style": "split",
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "### System dynamics diagram\n",
    "\n",
    "<center><img width=\"50%\" src=\"../../img/dilantin_system_dynamics_model.png\"></center>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "### Model constants"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "sim_time = 168  # hours\n",
    "delta_t = 0.01  # hours\n",
    "sim_steps = int(sim_time / delta_t)\n",
    "half_life = 22  # hours\n",
    "dose_interval = 8  # hours\n",
    "dose_steps = int(dose_interval / delta_t)\n",
    "absorption_constant = 0.12\n",
    "serum_volume = 3000  # milliliters\n",
    "dosage = 100 * 1000  # micrograms\n",
    "elimination_constant = -np.log(2) / half_life  # inverse hours\n",
    "mec = 10  # micrograms per milliliter\n",
    "mtc = 20  # micrograms per milliliter"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "### Simulation trace"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "serum_concentration = [[0, 0]]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "### Finite difference equation"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Standard `for` loop for unconstrained decay with time impulse modification"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "dilantin_in_system = absorption_constant * dosage\n",
    "for step_index in range(1, sim_steps + 1):\n",
    "    if step_index % dose_steps == 0:\n",
    "        dilantin_in_system += absorption_constant * dosage\n",
    "    \n",
    "    elimination = elimination_constant * dilantin_in_system\n",
    "    dilantin_in_system += elimination * delta_t\n",
    "    serum_concentration.append([step_index, dilantin_in_system / serum_volume])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "fragment"
    }
   },
   "source": [
    "Don't forget to convert your results to a data frame!"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "slideshow": {
     "slide_type": "-"
    }
   },
   "outputs": [],
   "source": [
    "simulation_df = pd.DataFrame({\n",
    "    \"step\": [x[0] for x in serum_concentration],\n",
    "    \"serum\": [x[1] for x in serum_concentration],\n",
    "})\n",
    "simulation_df[\"time\"] = simulation_df[\"step\"] * delta_t"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "### Visualization"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAApMAAAG4CAYAAAAZlWyVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAASdAAAEnQB3mYfeAAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsnXd4Fde5r98lbRUkJCFAEogqOkh0DNiAwcYFDO7dsWOn2nFu7k1OysmxkzjJSeKUk5zETnPiOHZc4oJtjHHDiA4WvUl0ECCKUAMhJNTX/WP2zB7JqnvPEgh/7/PsR9Iua82aGe35zVeV1hpBEARBEARBCIawC70BgiAIgiAIQudFxKQgCIIgCIIQNCImBUEQBEEQhKARMSkIgiAIgiAEjYhJQRAEQRAEIWhETAqCIAiCIAhBI2JSEARBEARBCBoRk4IgCIIgCELQiJgUBEEQBEEQgkbEpCAIgiAIghA0IiYFQRAEQRCEoBExKQiCIAiCIASNiElBEARBEAQhaHwXegMuBZRSCcBMIA+ovsCbIwiCIAiC0BKRQD9gpda6NNTBREx6w0zgnQu9EYIgCIIgCO3gZmBRqIOImPSGPICFCxcyZMiQC70tgiAIgiAIzXLgwAFuueUW8OuXUBEx6Q3VAEOGDCE9Pf1Cb4sgCIIgCEJb8CQ0TxJwBEEQBEEQhKARMSkIgiAIgiAEjYhJQRAEQRAEIWhETAqCIAiCIAhBI2JSEARBEARBCBoRk4IgCIIgCELQiJgUBEEQBEEQgkbEpCAIgiAIghA0IiYFQRAEQRCEoOkUYlIpNUsp9a5SqkgpdUgp9aRSKtr1enel1MtKqZNKqT1KqZ8rpVQbxv2WUmqbf9x3lFIDzK5EEARBEATh0uKiF5NKqbnAEqAQ+CLwLPBd4Cn/6z4gE5gB/AfwDPA94PetjPsd4HdYDc4fBgYBK5VSiUYWIgiCIAiCcAnSGXpzLwPu0Vq/5f97kVJqDPAFpdQ3gOuAccB8rfV7AEqpvsDXlVI/1lqfbjygX4B+B1igtf6R/7l9wA7gXuDPphclCIIgCIJwKXDRWya11lUuIWlzDEsI9wBuB6qwrJM27wFRwI3NDDsdSAEWu+bZCeQBd3iz5YIgCIIgCJc+ncEy2RTpQBlwEugPnNBaV7peP+T/2b+Zz9vP5zZ6/lALnwFAKZUMJDV6ejDAQw89RGxsbLOfHTduHL//fcD7vm3bNr75zW+2NB0AK1asaPD3rFmzWv3M73//e8aNG+f8/c1vfpNt27a1+JmHHnqIhx56yPn7+eef5/nnn2/xM7KmALImC1mThazJQtYUQNZkIWuyuJBrcs/rBZ1OTCqlRmG5tp/SWmulVApQ2uhtZ/w/ezUzTIr/Z1Ofm9TKJjwKPNHUC5s2bWrxg+Xl5WRmWgbU4cOHk5eXx8qVK1uZDuczycnJjB49us2fKS4uJjIykhkzZrBmzRo2b97c4mfS0tLo168fAFOmTGHr1q2tziVrkjXJmmRNsiZZk6ypc62pNb3SXjqVmFRKRWIl2BQBT/qf1i18pLnXgvmMzZ+BNxo9Nxh4Z9KkSa1aJmfPnu38XVRUxMyZM1uZjgafAdr8Gfdd0vTp0+natWuLn5k5c2aDucaPH9/qXLKmhtvXeO62fEbWJGuykTU13L7Gc7flM7ImWZONrKnh9rmZNGmSp4JSad2adrp4UEo9B9wDzNJab/A/twwYqLUe5HrfQCwX9g+01j9vYpzPAy8AM7XWq1zPrwD6aK2HtnO70oHs7Oxs0tPT27ssQRAEQRCEDiMnJ4eMjAyADK11TqjjXfQJODZKqf8AHgTut4Wkn6NAb3fdSawyP/ZrTWE/n9bo+UEtfEYQBEEQBEFoRKcQk/5ak78GvttEZvcCIBq42vXcPKwMbydbWynVzfX6GuCU/33266OBfv7xBEEQBEEQhDZw0YtJpdQw4FXgE2CDUmqa69EL+BDYBvxFKXWPUuqbwP8FnrFrTCqlHgFOK6WeBNBa1wK/Ae5USv1EKXUb8BJwxD+XIAiCIAiC0AYuejEJXA7EY9WGXI1lVbQfk/3CcDawDqvrzdewhOK3XGPk+x+OC1tr/Vvg28CtwN+whOSspoqcX2zU1dURFhaGUor333+/wWtLlixBKYVSirKyMq666irn76YeTz/9tPPZ0tJSvv71rzNq1Cji4+OZOHEiv/3tb6mpqenoJQqCIAiC0Em46LO5tdYvYCXLtPSeEqzONc29vhBY2MTzv8NqqdipKC4uRmuNz+fjo48+4oYbbnBey8zMJDw8nLq6OoqKinj66acpLbUqID333HM899xzvPzyywwYYLUhHz58OADHjh1j5syZ1NbW8thjj9G/f38++eQTnnrqKW699VYGDRr06Q0RBEEQBOEzz0UvJoVPU1hYCFiFVJcsWdLgtczMTGbOnMmyZcsoKirisssuc15bunQpABMnTnREpM1jjz1GcXEx+/btIzk5GYC5c+fyxBNPEB4ebnI5giAIgiB0YjqDm1toRFFREQC33347e/bs4ciRIwCUlJSwdetWbrvtNiAgOlsjLy+Pl156iYcfftgRkjYiJAVBEARBaAkRk50QW0zedNNNREREONbJ5cuXExERwdy5cxu8rzWys7PRWjNlyhQzGywIgiAIwiWLiMlOiG1xTE5OZsaMGY6YXLp0KTNnzqRnz55A28Xk/v37AZy2ToIgCIIgCG1FxGQnpKioiPDwcHw+H/PmzWPp0qXU1dWRmZnJ3LlziYmJAdru5hYEQRAEQQgWEZOdkKKiIhITEwGYP38+Z86cYcGCBezfv585c+bg8/lISEhos2Vy8ODBgJXRLQiCIAiC0B5ETHZCCgsLHVf2sGHDGDp0KI8//jgDBw5kxIgRACQlJbVZTKanp6OU4pNPPjG2zYIgCIIgXJqImOyEFBUV0aNHD+fv+fPnc/DgQSfxBqx4yra6uQcOHMjdd9/N3//+dwoKChq8dvbsWW82WhAEQRCESxIRk52QoqIixzIJ8LnPfY7777+f+++/33muPZZJgF/84hfEx8czefJknnnmGd577z1+9KMf0b9/fz7++GNPt18QBEEQhEsHKVreCSkqKmLcuHHO3xMnTuTFF19s8J7k5GRWr17d5jHT0tLYunUr3//+9/n973/PiRMnyMjI4LHHHmPWrFlebbogCIIgCJcYSmt9obeh06OUSgeys7OzSU9Pv9CbIwiCIAiC0Cw5OTlkZGQAZGitc0IdT9zcgiAIgiAIQtCImBQEQRAEQRCCRsSkIAiCIAiCEDQiJgVBEARBEISgETEpCIIgCIIgBI2ISUEQBEEQBCFoREwKgiAIgiAIQSNiUhAEQRAEQQgaEZOCIAiCIAhC0IiYFARBEARBEIJGxKQgCIIgCIIQNCImBUEQBEEQhKARMSkIgiAIgiAEjYhJQRAEQRAEIWhETAqCIAiCIAhBI2JSEARBEARBCBrfhd4AQRAEQRCEzoDWmuzjZ+nfI4aELhGej796fyGvbcwD4Oe3jjYyhwnEMikIgiAIQodQVVvHzmOl1NdrI+OvPVDEbX9ey0c5+UbGf31THjf+cQ33P7serb1fw+HiChbvOMniHSeprq33fHxTiJgUBEEQBAGAjYdLeG5NLjV1ZoTM/3llKzf+cQ1/XXXQyPjfW7CDLUfP8PCLm42IvT8tt7Z75/FS9p4q83z8zkqnFZNKqW5KqX8qpbRS6kH/QzfzGNDE5wc0895VF2I9giAIgtAab205xgvrDhsRSnX1mgef28BPF+/i5+/t9nx8gI93nQLg1x/uNbKG42fOO79nHz/r+fhDkrs6v3+Ybcb62RnplGJSKTUPyAHucj39ATC90eNt4AxQ0MJwv2j0mS8b2GRBEAThM8DWo6c5UGDGYnXizHn+4/XtPLEohxezjng+fk1dPRXVdQA8v+6w5+M3Zk++9/vJLfZMuLr7d49xfhcxGaDTiUml1FhgMbAOuMp+XmtdoLVeaz+AzcAM4AWt9fmmRwNgn/tzWut9RhcgCIIgXJLsPFbKrX9ex/W/X93AQuYV+Wcrnd9/8b4Zy6EbE2twY0KM9U6IDoxvKG7SZk9+GUeKy43O0VnodGJSa70dmKa1vhM41cJb7wZ6As90yIYJgiAIFzUnS8/zlX9t4gVDVrdV+wsBy1381xXexwRG+QKX7Mqaeqpq6zyfw80SA2KsT7cuzu+mkmRsDhScM2YltjG9hs5CpxOTAFrrdW1429eBFVprT2/flFLJSql09wMY7OUcgiAIgvc8uzqXj3ed4olFORS4rHxe0TcxIJRMW8XAylw2iWk37p78MnKLzFr2PsppyeYUOuLqtrgk60wqpS4DLsOyTrbGw0qpx4AU4GPgG1rrls6OR4EnmnohKyuL/Px8+vbtS1paGqtXr3Zemz17Njt37qSgwArfHD58OLGxsWzZsgWA2NhYpk6dSlZWFuXl1j/XhAkTKC8vZ+/evQAkJyczevRoMjMznXFnzJhBbm4ux44dAyAtLY3k5GTWr18PQGRkJDNmzGDLli2cPn0agIyMDACys7MBSExMZMKECaxevZrq6moApkyZQkFBAbm5uQCyJlmTrEnWZHxNeWX1LC+KZe7wBJKq8z1fU3ZesTPGsx9u5LG7Zni6ppz8gKWwsKyKhR8sJS5SeXacug8eg5u3Nx4mPdG743T8ZEPhtSG3hLc/WErvxK6enXtaN8wS/ygnn8lxpZ6deyUl1Q3Gf33dPkbUH/Hs/6m+PqnB+FuOniH3ZDGHdm1zjlMo/0979+x3xq6pqSYzc82njpMX3xFZWVl4iTKRTdVR+LO0DwMPaa1fcD3/PDAH6Ke1rmnms4nAY1jJOZuBYcBvgQ1a66ua+oz/c8lAUqOnBwPvZGdnk56eHvR6BEEQPsvc/+x61vitbQd/cQPhYcrT8X+3ZC9PLTsAwLQhPXj5y1M9HX/R9hP8339vdf5+8rbR3Du5v2fj55woZd5TAXGRGBPBxsevwRfujZOxsqaOET/8sMFzv7xtNPd4uIZpv1zWIBZzfP9uvP3oNM/Gf+Af61m9v6HFdu33r27gXg+FHy/K+VRy0n/fksEDUz9VNCYoXsw6wg8XWqJz4+PXkBQX5cm4jcnJybFFbobWOifU8Tqlm7sllFI9sSySzzYnJAG01qe11t/VWv9Ga71Ma/1X4FlgllIqtYXPFWitc9wPwEzBLEEQhIsIrTUFZZVGSroAjpAEq96h1ygVEKdZh0o4XV7dwrtDx7QL9HRFDRtyvd9Pbky767cePUN+qfchB5Gu+NKPDByHuCgfKfFR3o/fSQ18l5yYBL4ERAJ/C+Kzdq2F3t5tjiAIwqXBz97bzeSfZ/LXlYeMjD99SE/n9w92njQyh01dvXZqHppi3cEiSs83a9PwhA8MC9a1B8ysYairhM+SXd6vYVTveCeG1YQgVgquT+8FQNahYs5UeH9jorw1zBvlkhKTSqkw4BHgfa310SZe7+b6PUIpFdPoLVOAWmCP0Q0VBEHohPxjjRWj9qsP9xhph9ctJtCH+IPsfGMt9wJzmBWsNXWazN1mBetHOWb20xWDewDWGpbvaalUc3CM6dvNKeNjwoKrFMzxi72Nh0soOlfl8fjKGb+2XpO52/t91Jm4pMQkcDUwEPhL4xf8hc6LlFL/9j/1G2CbUuphpdT1SqnfAncCv9JaS+EoQRCEFtiad9ro+AVlVWw5anaONYasbm68tBy6PaAzh1mh+wVlVWzNO+PZHDaXD+pBfLSVo2tK7NmWvfW5JZR4HHKggOszrPG1hqUGrNCT07o7N0Cf9RJBl5SY1FovBUYDHzbxcjFWXUrbP/NfwEKsEkJvArOxMrV/ZH5LBUEQvOfFTw7zwD/Wk1dSYWR8dzLAezvMXzxNu3Br6jTL9ngnMtyxpBP6W46wVfsKKa+q9WwOm+vSUxw36IcGLKy+8DCuGZUCwIp9BZyv9r6m5Ry/2Kur1yw1YMGd0D+Rnl2tc9aEq9sXHsY1I619tHJfIRXV3h/nzkKnFpNa6yNaa+XO5NZaZ+vGtQes57O01n201o/7/z6vtf6e1nqM1rqr1nqc1vqvTX1WEAShM/DDd3JYvb+IW/601sj49oUZLBexcTf0zpPGkn0SukT45zAjWOdmWKH3VbX1rNhb6Pn4SV2jmDQgEbCEkon9ZLtxK2vqWbnP+zVcNrA7PWIjATNJMuFhiuvSLbG39kARZyu9t0Lb+6iqtp6VBo5zZ6FTi0lBEATh0xSXVxvvjnKytJJtx7x3r7o5UVrJ9mOlno3nlltui5IJy+G0IT3pGmW5iU3FZs7xC9a8kvPsOnnW8/GvHJZEl4hwwIwbNzxMca3f+rl6fxHnDBwHW+yZiv2cPrQnMZHWPuqIQvUXKyImBUEQLkFMd0cBcxnXtggDc0JsbkbAomTCchgVEcZVI5IBWL6ngMoa78X99X6rG5iJa4yOCOeqEVZs5tLdp6iu9d5xZ8c1VtfVs8yA2Jvqiv1838D5au0j6zhn7jZznDsDRsSkUiqsiUxpQRCEzzTrDhbx5uZjxly3bhbvMJupDPD+Tm/dq/ZIyfFRTPS7cD/weA6b6UPNWw5twVpeXcea/d6L+76JMYzukwCYq2lpJ8mUVday9qD3a7hicA/i7ONgQOxF+sK4dpS1hhV7C41YP+eNtizE56pqWWUgHKAz4ImYVEpFK6UeUkq9oZQ6AVQDZUqpCqXUJqXUr5VSY72YSxAEoTNSVlnD5/+xgW+/sZ1/rj1sZA53oeaPd50y7uo+fuY8Ozx0Q9soAkLsaEkFOSe8d+FGR4RztWHL4azhSURHWMfEVDKRncSyv+AcBwrKPB//6hHJznn1voEblChfONf6LazL9hQYCTmYPyYQv2qiVNNVw5OdcID3DNdHvVgJSUwqpboopZ4ATgD/AEYBmcAfgF8CL2BlUX8F2KKUWq2Uujy0TRYEQeh8nC6vodafsPLTxbuMz1dWWeu5q9u2EI7tm+A8Z8J1CDB3dKB3REdYDk1YlGIifU4JH1NuYnsNELo1uikDcFx0BLP8a/goJz/kNTRlZXaLPRNZ3dOG9HRc3e8ZEMRdIsOZPdK6MVm661RINyads/9N6JbJ/cB9wM+AVK11utb6Aa31t7XWj2utv6a1vh7oDlyL1Ud7uVLqyyHOKwiC0Klo3M3CRMeMxphydafERzuZxO9nm8m47tOtC2P7WeV1TLm6Z7osh6bcxDf4RXHp+RojcayDkroyqnc8YB1vr/aT+3yd5xd7ZytrWXPAG9Ht/neYPiSJOINiL9IX5rjrV+wrpCyErO7m9q8tiMur6zzLfO9EDXBCFpM/AkZprX+ntW72dkJbLNNaP4BlvTwQ4ryCIAidmiU5ZjujgFlXt205zCs5b8QNDQGr26GicvadOuf5+DGRPq4ablmUTO2r2SNTiPK7id/dccKzcd19xuePtY7FgYJzRvaTew0mblC8FXtNP28L4uraek+61TS+OZw1PNnJ6jYhiC92QhKTWuvntNat/vf5Yyr7+z9zSGu9IpR5BUEQOjteCovG2D2JyyprjSR+QEP3qqk4Mfccptzptsgoq6pl1T7v91XXKJdgzQnNBdoc80enOr8vNnBedY3yOfGlptbgvdhrqPamDenp1BY1IYijI8KZ7S83tXS3mX10MdNRpYHmAbkdNJcgCEK7qaiu5eY/reXev2UZ6fbRmHUHiyn2uF+wzdUjkh1Lkimhl9qtC+P7225oM67uAT1iSU+1XbgnQp+jic9fPSKQPPHudg8th67fbcthmaFs3/49Yhjjj2P10tXtxi26Vxu4QZluWOxFhIc5NSdX7Ss0UsDczuquqK5jxd7PVq9uqTMpCIKAdYHZnneGTw4V89Sy/cbnq6vXfOS1q9uvIWIiG1qSTLm67Yvn4eIKI0WzAeaPsaxuBwvL2ZPvTbay22gVE+lz2gYu3X3KyI2EW7CaimO1Y/Zyi8qNHAv3Gt4zYP3sELFnWz/r6o306p41PInYSLPH+WJFxKQgCALWxczm5awjHTKnCZckWGLJTvwoqzLn6p7jdnV7cfFswqBmiyTw1nLY1BwV1XVGCmfHRPoC2b6GBOsNrux3E0ImJtLH1SMD8aVGXd2GxN7lg3uQGGNZP03ENUZHhDs3Jpm7zfQzv1gRMSkIgoDV2s3mbGWtMRc04GSuZh0qprCsA1zdhqwkfRNjGOfPuPY2kzhwLPp1j3Hc6e964epugpnDkpzC2aYEvm1hraiuY7kBF2jfxMB+es+Qq3v+6EDGsomuQW6xZ8zV7b8BWrW/kNLz5lzd52vMHOeLFRGTgiAITWCqyDQELGH12lwNxVh30oTBrO4bx1oi6WhJhad9tBvM4RdieSXnjcwRHdGwcLaJLimzhic5HXdMC9ajJRXsPO79frpqhCtjOchY3JYkrlvsrd5fSGmFCbFn7aOaOs3HBqyfVw4LHOfPUlZ3qEXLJ7TlAQzyaHsFQRA6hEWGXKoA4/snkpoQDZiNrXK7uk1kKoMljG1D4qJtZvbZPNccplzdtmCtqjXjYo2OCOfaUWY7vdwwOrQC5rqVktnREeFcM9J244bmrm9cWsfGLfaW7PL+hm7qoO50j40EzMR+Nj7OFdXeH+eLkVAtk5uAjW14/CrEeQRBEDqUjYdLOFl63sjYYUo58WEbD5dw6mylkXmMZSq7hEBKfDRT03oAlsWtrt5792pKfDRT0ro7c9QbmGPakJ50c1yshkSxX9xX1gTX6aU1z3XvhC5cNtAqJh+qq7u5gtnzXPGlJty4Uwd1p4ct9gxUIvA1sH4WGbF+3uB2de9pXziAgeiEDiFUMfkF4ItteNjvEwRBCIrCsiq+9PxG/vfjfR0yn9Zm3VS2S9LkPLFRgUzlj3edMmYluWmctZaCsirW5xYbmcN2p586W8XGwyWejx/pC2QTr9wXnIu1NSEwY1hPJ142VIt0s2LPL2SOnznP1rwzIc3RFDOHmXXXu8Xemv1F7e4U1Zp1FQKxn7X1mo9y2mf9bIvWmzG0pxODu2j78XaN76ZxrcyLmVCLlr/QnodXGy0IwmeP1zflkbmngD9k7mfr0dMdMqcplyrAmL4J9OtuFRc3VQsS4Ga/CDtfU2ckRgxgTnovfP4EJlP7bG5GbydJylTBd1uw1tRpPgrRxdqUEIjyhTudXlbuNVP+5obRgZCAxdvNZCybdtfb1s/aeh107HJLMmxyWnd6do0Cgg9naWn86IhwrvcL4uV7zCT6XGxIAo4gCJ0Cd9bzG5uPGZ1r2hDLbbv9WClHisuNzKGUcuLDNh85zfEzZlzqVw5LcopBm4ppTIyN5MphSYCVuFRdW+/5HN1jI5k+pCcA7+/Mp7au/XO0ZlWaktadnl0tF6vpMkTVdfV8bKClZrIrJOC9nWbCDuw1VNbUG7lBmZLWg+Q4S+wt3Bq8Za85fOFhzhrWHSyiwECYyc1+a311XT0fGUzmu1jwVEwqpW5RSr2hlNqglNrR6LHdy7kEQfhs0b97jPP7om3ex825R7tprLs9nTmr4Y1jzddQjPSFOYkZK/cVcrq8fW7DtmLvszMVNaw54H3ZGAhYDkvKq1l3MHh3enNWJV94GHMzbJFhpkPRtCE9XeVvzGZ1nzprJuxgxtAkJ7504TbvxV54mHLOpw2HSzhh4EbLFnv1Gt418D9+xeCejvXznRBc3Z0Fz8SkUuq7wFvAlUANUNzo4X2QiyAIn0nOVdWy2aCre2hKHMNT4gBz1jyAUb3jGZLcFfDGAtNcvNhNY/sAltvwfUOliK4ZleLUtQx2n7UW73ZdegqR/uLyxrK6/SKmLgQXa0tY5W8swbpqf5ERwTpvdG8n7OCdrd7vp0hfmBObuXp/EUUG1nDzOOuc1drMsR7XrxsDelg3qIsMCWL7ZnHdwWIj1s+LCS8tk48CzwGpWutpWuurGj88nEsQhM84JtxfNoqA1XDvqTL2etTG71PzKMUtfgvJnvwy9uR70wavseVtclp3esVbpYhMieOuUT6nbMySXSGWjWnm+fjoCGYNt9zpH+bkG6mdOWlAYmBfGRKs9jGvq9dG4mUTYyOd/fR+9kkj3WpuGW+Jvbp6bSSBLKNPPIOSYgF4x8A5q5Ry4om3Hyslt8j7cJYGgvgSrznppZjsAbyitf7s9A8SBOGC8d7Ok0Zi82xudLm6vbCMNJfpa19wABYasCJBQytJKG7D1rKV7X1mqi2he46yylpWGujCEhamnOz0DbklHDtd4fkclw3sTp9uVvKVqZsi+7wqq6xlhYESPhP7JzpreKcdlr22lr6xxJ61hl0nz7L/lPc3dDe5/vfas4a2MrZvglHr58WEl2JyLTDSw/EEQRCa5UxFDav3m4nNAxjQI5axfRMAc238wGoXOHGAVRtw0bbjRmooQsDVrXXosXqqGdvhrOFJnpREaYnZIwO1M98xZjl0iwzv53AL1i1HzxhJ8rpmZAqx/m41bb1Jac8pHhamnLjDLUfPcLS4faK7uXPIjT0+mDkOQ5K7ktEnHrAs9l7/jyulHFFvyvp5seClmPwm8HWl1E1KqUgPxxUEQWiShQbjGSFgBTtSXME2AzX7bGy354nSSiM1FMHvNuxpzm0IVkmU6/ylb5YbKn0TE+nj+vRA7UwTc4zsHYiZfXvrcSM3EsEI1rbUULTpEhkoT7NsT0G7y9O0pcThzYYtewN7xjLW3/v9ne1mjoNt/TxUVG6kBaU7mc/EPrpY8FJMHgCWAm8DFUqps40eZpq2CoJwUVBwtpKfLd5F1iEzRavdzPSXofl4V76RPso2N45NxZ/HwNseuiMbX6fnjUl1EiZMCWSlAtawnBNnOVBwzsg89hzVtfV8uNNMSZRbJ/Q1OodSyokJPFBwjpwTbYtlbY/YG94rjpG9LavYwiAEa1vE3q3+NVTX1fOhgcSr4b3iGNHLEt0Lt5kS3YG+7FsMJN3dODbV2ZcXg/XTlAfENF6KyV8D/wfYDrwGvNno8ZaHcwmCcJHxjzW5PLsml3v+lmUkMcL9FXvLeOsCY9W5M1fDLSU+mmn+2obvbj9hLEazu6tO43s7ThjZf9DQSmIquWTa4B5OSZS3tpqpBzptcA+S4to/R3uu0w2axmkCAAAgAElEQVRdrO2/kWhL7xJbKJmyil0xuKezn0zF49qi+2BheZtFd3uYPyZwQ9cWsddeLdYrIdAO9N3trdflDEbrua2f2cfbvo86T/8bb8XkQ8CvtNYTtNaf01p/ofHDw7kEQbjI+PeGo87vyw0lX9hcOTTJqdVn6iJpY1t3TlfUsHKfuRhNW7ycraxlhYHEEoBBSV0Z448DXWTIkuQLD3NEa9ahEiPF2EOdoy1t6lK7dWHqIKv49zvbzBT/vmlcwCpm4jwOD1Pc6K85mZVbTH6p9+Vpbmpg2fPejZsUF+Xc0C3ecZKaNharb08nwptd7UDb6llpT6vDGw3vo4sBL8VkOPCxh+MJgtCJuHZUL+f3N7eY/cL0hYc5LdfWHPCozl0zWuH69F5OwsfbhixtANeOSiHGnzBh8oJji7DDBuNAb5vgzlD3PtMXAiIfzO0vO66xoKyKT0Iokt4cvRO6OFaxRdtPBNXVpzVsK77WZpKiUrt1YfJAS3QvaoNlLxjs41BSXs2aA0Wejz83o7dTv9TEueS2fpraRxcaL8XkEmCqh+MJgtCJiI4IfJ0s31NAiaFOKzZ28H9dvWaxwR7asVE+5vgTGZbubn8iQ1uJifQxJz0wTzCJJW0RYze54kDfMiT601PjGZbS1T/HMSPxgOmp8Qz1F3x/e4sZK+vc0QGR4WXMrBtbFBedqwqpq09zjO6T4CRembLi2/+LpjruXJceKIj/joHjkBATqF/6QXa+kbqcwVg/OxNeisn/Bu5XSv0/pdQQpVT3xg8P5xIE4SKmtl4b61Bi465z53XSSmMXlpPIUFvPBwaKTNvc7JrnwxC6r7QkxpLjo5kx1LpwvmsoPlMpxa3jrSSZg4Vm4gGVUtzqt4Dub0eSTHtI6BLB7JHJAHyYfTKkQuzNMWd0LyL9QslEa0J3eRpT9RpvGN2LiHBzHXfioiO4ZlSgIH65gaQ7d13OzN3eh+m4rZ9vbjHn4bhQeCkmtwMjgN8Be4HCJh4ho5TqppT6p1JKK6Ue9D9n/934cXUrY31LKbVNKVWklHpHKTXAi20UBAHeMtihBhrWuduWd4ZDhWayk8Hqp5zsJHwEt662ZPpayStWZTWTrm7bDX2mooble9r+1dyebOVbxgfixExZQBsWfDfk6vYL/PLqOj7efcrz8eOjI7jGL1g/ys43IljdyUQtCdZgbbvdYiKZNdxaw/s7W+64055zyI3t6q6orgvpRqs5Zo9MJj7aqpFqQuwlxERwzSj7xiTfiCC+kHgpJn8K/MT/s7lHSCil5gE5wF1NvJwPTG/0WNfCWN/BEr6LgIeBQcBKpVRiqNspCAJszztjrPyMzW3+EjFgTrCAlchws6srSl6J911RwIoFne9PmFh3sJiTpd4nr4AVB2oXFw/mwtkWN3TvhC5cMTiQJdvWxIn20MedJGMo5nDW8CQSutjJXmZFcXl1HUtaqE4QrCd/YM9YxvnrNS7ceqJNhfHbUlTczW1+0V1WVcuSXa2L7vYkyIB1HHrEWjdaJsRedEQ48/3xxCv3FVJY5n2/8dv931cV1XVG+r5fSDwTk1rrH2utf9LSI5TxlVJjgcVYArGpPt+VWuu1jR5Npq4ppXzAd4AFWusfaa3fBO4DBgD3hrKdgiAEMJmwAlYNN/si+daWY8a6xwCO2xbMWg3tC47W5gRydEQ4N4y2EphMxrfa+6y4vJpVhjLh7RCEwjIzMYdRvnAn2WvVvkKKW0j2ClbsuQVrW2Mz2yvGbp9oHYvjZ84bidm7emQy3fwVFhZs9v7/PiI8zBHdnxwqNtLm0v7fq6vXRv7HrxyW5Hge3jSwjy4kIYlJf3xk39bfGTpa6+3ANK31nUCovobpQAqWOLXH3wnkAXeEOLYgfKbp2TXSEXhvbzHXHtDGvkieKK3kE4OB7aNS450CzW8Z6ooCVqcaO3nlzSCSV9qK7eo2Gd86J6OXk5hlKuxh7ujeTnKG6SSZ9uyr9oi9KF+40zt91b5CTp01UMJnTKoTs2dC7EX5wp1KAWv2m1nD7RMDLUHfNnCjNaF/N9L8yUqdVRBfKEK1TD4GHFFKrVdKfVcpNdiLjWoOrXWzbut20t//M7fR84dcrzWJUipZKZXufgBG1y0InQG35LndL1ROlFaS5VF2p1tUuS/UN45xBbYbvtu3RcWhwnJ2HAs+qaQloaGU4g6/QD5UWM5WQ+V7LhvYnX7drQQmUwkBXaMCGeof7zplJBM+3pWc0VosWrDxehP7Jzr7aoGhfXXHxH4A1GszojghJoJr/fvpg2wznaPs89bUGtJTE4ze0CmlnO+uPfll5JzwPnHsdldoTlOCuLMWDfKF+PnewEzgdqze3L9USu0EFgBvaa13hTh+e+ihlPoQmAacAH6utf5XM+9N8f9sfKacASa1Ms+jwBNNvZCVlUV+fj59+/YlLS2N1atXO6/Nnj2bnTt3UlBgZYkNHz6c2NhYtmzZAkBsbCxTp04lKyuL8nKrGfyECRMoLy9n7969ACQnJzN69GgyMzOdcWfMmEFubi7HjllfcGlpaSQnJ7N+/XoAIiMjmTFjBlu2bOH0aasVVUZGBgDZ2dkAJCYmMmHCBFavXk11teXumjJlCgUFBeTmWnpb1iRram1NZWejAaiurib+zAHCFdRpePbjHZw/rENe0/79+3HjXtO0tDiWHyhl8fbjXN2tiJ4JXdu9ph2FgaSBjRs3Urwv7FPHqVe9D6Usy8hTi7K4b0REm9d0NC8gQk6ePEl1dXKzx6lHlXb23x/eWc/nR0W06TjZF9fDhw+TmXm8yePkXtO4bjXklcCOY6W8s3w9XevPtXicysstS0pBQQHnzp1r07k3PrGGhVgZ6q+s2sU9k/s3e+4VFFj7q6am1jkubTn3Lu/dk/d2wPmaOn73+jJmDezS5P+Tvd/Qmi1btrTr/2lCt1rySiD7+FkWrdpMbI0l8t3/TzknAufQ1m3bOEBlm849gOnTp9M/IYKjpTW8sGov1/aFlJSUBt8R8QNHO+/ftm076Ylj23Tu2WsaEm5t3/maOn77WibT+/ganHtHTgScfhXnK5zta/N3REYGqbGKE+WaF1bt5QtT+3L48OEG5559jh4/cYLVq0vb/b03Jr6WPfmQW1TO395aypBuYQ2OU0lJIGQjmO+9qb3DUVii7pkl23nqoSsbHKe6OquAenV1NZmZmUF9lw9I8HGktJaX1x1gpD6CUso5Tvv2Bb7nampqyMw0812elZWFlygvlb1SahqWm/hWoB+wD387Ra31Vg/nGQAcBh7SWr+glLobGAfsAAqA7wLXA1dprVc08fnvAL8Bxvnd5/bzC4HZWuu4FuZOBpIaPT0YeCc7O5v09PRQliYIxlizv4inl+3na7MGO5mXXvLY2zt5Zf1RenaNYtMPruHhFzfxUc4pYiPD2fSDa+niL8gdLM+uPsTP3tsNwI4fX0d8dITz2rI9p/ji85sA+PUdY7hrUr92j+8eY+HXpzmu+sbc/+x61hwoontsJFn/Ndsp69IaR4rLmfmbFQD87q6xDZKHmuKLz29k2Z4C4qJ9bHz8GqIjWt9/Qx57n9p6zdevGsx3rx/Rrm362qzB/Oeclj9z3f+uZN+pc8zN6MVf7p/Y6vgAtXX1XP7LZRSWVTE5rTuvP3x5s+995MXNfJiTz7CUriz51sw2jQ9QU1fP5U9mUnSumqmDuvPqV5ue4zcf7eFPyw/iC1Mc+MUNbR4fIK+kghm/Xg7Al6an8cP5oz71nre2HOM/XrcuKSu/O4sBPWLbNcczKw/y5Ad7gKbPwe15Z7j5T2sBeO6hSVw9IuVTY7REa8fiXFUtGU98BMDjN4zkK1cOatf4AH9deZBf+tfwztenMbbRGqb8YimnzlZxz2X9+OXtY9o9fmFZFVOfzKSuXnPv5P48edvoBq/f+7csPjlUzOSB3Xn9kebPtZa47+9ZrDtYTI/YSLIem01EeOB//AcLd/JS1lF6xEay+YfXBjW++7vsza9dwcQBgbzff67N5SfvWna4bT+6lm4xkUHN0Ro5OTm2yM3QWueEOp6X2dz4k16+pbUeCFyOlSl9N7BJKXVIKfVrL+dzzfua1vq/tNb/1lpnYiXTaP/PprCLSCU0er4bVlZ4S3MVaK1z3A/gYCjbLwgdwY/eyWZ9bgkP/XOj8ThGCCRftJah6gVXDk1y+kGbdnXbcVsl5dUs2+N9qRgb22VYVtm27NhgGNAjlkn+C9nbW44b6czhCw9zelC3NRO+vZnEEeFhTumYrEMlHC32PhatX/cYJzt94dbjRrLTbx3fxykov2Bznufj+8LDnFCNDblm9lPDNXj/v5gUF8Usfx/7xTtOGCkwbruii8urWWmgtenN4/oQ7t9Jl0rNSU/FpBut9Qat9X9qrYcCE4GXgXmm5ms0dwlwDssN3xR2E+G0Rs8Pcr0mCJcUh4rKnd87ogPDVSOSjGZ3unELlvUGS/cAzEnv7ZTVeWOTuXXNHpnsZPi2VSAHIwVtC2n+2UojLQMhkCQF8Iahc+FOlzXahBCDgMAvLq820n8+OT6amX6htGibWaEEZoRMiqso/qLtny6K74Uz9HbXjdbHBm605mT0clqbmthHSXFRznFevN3Mce5oPBOTSqmdSqnnlFKPKqUuU0o5tlmt9Tat9Q+11kZ8wEqphEZ/jwTigJ2u59y29jVYGeHzXK+PxnLNLzCxjYJwobED1wFe32TmYuumQXbngSJOnDFTM9HGLVhCvQC0ZBfrEhnOjX7hunxvQZuzVtt7EXXvv9X7C8kvbXt2bHsse/PG9HZc9a3tt2CFwIhe8Yzpa31NL9iUZ8QCOrxXHGP9c7xpqIrAnIxedLVvJAyJYjsR52xlLUsNFEkf3ivOORZvNiqn5VXYmy26S8/XsKyZbjLtLW3kxn2jZeJGNTbKx9wMyxaVubuAMxXel86yRb2p49zReGmZ3AlcAzwNZAFlSqlNSqm/KqW+aKq7jFKqH3BUKfVnpdRNSqn7gLeAYuAp/3seAU4rpZ4E0FrXYsVM3qmU+olS6jbgJeAI8KqJ7RSEC41tJQQrm9NUj2k3duyi1uatkyN7x5OeGg9Y9RlNldQBuNOVtWqyWLrp7FiwWgYGsnxPUtaGnuDBCAHbcniitJJ1B4vaP0AbuMM/x/Ez543UnIyJ9DHPVZ+zqIWak8HiFkqNLd9endH2eXXs9HnW55Y0+Z5QxN61o1KI83eTMVWGyC6ltNpwGaLqunojpbMadNy5BGpOeikmXwSisLrgfA74AXAa+Crwd+CQUuo9pdRAD+dEa50H3Ijlon4W+B8gG5istbYDtfL9j6Ouz/0W+DZWstDfsITkLK31aS+3TxAuRqpqzXxBNiY9NZ6RvS2B9/qmPPM1J/13+0dLKth42Ny/8rh+3RiabNWCfGNznjHhOqZvgjPPAoPz2OK4sqaed7eb6T1+09hUpx7k64bCAxrOYcb6fucka1/V1utPdcTx4vBER7TNIt3euFI3N45JdXppmxB70RHh3OhfwwrD3WTqtZnORFPTetCnm78clKF9ZHfcWbW/iAIDgrgj8VJM/gp4Qmv9U631q1rr32itr8VyJR8FvgQkAmuVUu1LQWuE1vqI1lpprV/w/71Kaz1Ha52stU7VWt+ptT7kev9CrXVvrfVfGo3zO631GK11T631TVrrw6FslyB0Jt7oAFe3Uoq7JwWsIKZjNW8el4rPH9hucn1KKcfqeqiwnC1HzQhXd83Jg4XlbDNUc3LG0CRSE6zSTq8Z2m8JXSKYk2HVnPwoJ9+I6zChSwTXpwfmMGF9nzggsUFh6+YEfihiz7RFOjE2kmtGBqzRJvpEm+4mM65fNwYltX4cgiUsTDmF/bcfK2Vvfpmn40PgONfVa2P1SzsKL8XkUOBA4ye11h9gWSZnAFdjuZ9/4OG8giAEwfZjpezJP+vZePZ3eWP32C3j+zhFxb0SKs1dpnt0jeLqEVbZo/d2njRSmNnmlvGBjMzXN5q7EJjOjgWr97h9Ydued8bT88LN3X4BXl1bzzvbzFjGbcthU9Z3L/SGW+Bbha2931cdYZG211BRXcf7O723Rk/o341BftH9+ibv1+C+odtfcI4tR72/0bpzYiCp67WN3t9kje/Xzel29fpGc56HjsBLMXmIpntmA6wF5vl7Zf+RDsrqFgTh09gWKDCbjWzTLSaS69IDnTdKK8zGat59mXUBqKiuY7FBV35SXEC4Lt5xgorqtgvX9sSjJcdHc+WwQHbs+WozmZ/ubGgTF06AqYN60DfRch2ackNfMbinc443lyQTSjwgWALfHsOEBbyxRdpEFySrT7RVTsvEsVBKOefUvlPnjKzhtgl9HE/Eaxu9L8TSv0cM04ZY5aDe2nrsU5npoeIWxIeLK1ifW+LJDc+FwEsx+Rfg20qpzzXxWjrQxf/7XiDVw3kFQWgHfV318t7eepzqWu/r5TXGFnjVtfUs2m4uYQVg5rAkUuKti+Sr7RBFwXyJ2xeC8uo63t9prpambdErq6w1YkUCq46ifeF8e+txzy+cYLkObWtPzomzZB9v2IQs2HaHbhpbWfed8t49mdqtC9OHWJ1Q3mmi/I0X3NrA8u292IsID3OSTDYePs2BgnOez3H7RJfY2+D9GpLjopk90rqhe3e7lTzmxTnk5u7LrA7LZypqWJJzynOxd9uEvk78auObuFBCJToaz8Sk1vqPwPPAi0qpVUqpbyil7lBK/Qj4BVY5HrBK9pitESIIwqdwfwnaIqikvJrMDihLMW1wTyeY3VTyhY0vPMxZ3zaDLluAWcOT6NnVqoJmstzS7JEpzjyvGrDA2LgvnCbq94ElMFQrbvtQLYd3uNyTpmJnbcFqiwyvSY6P5ip/p6pF208YCdm4x3+8wYxlr4HY22F2Dedr6li8w3Wj5ZEOu25UilMJwy32Qj1HbbrHRnKdP873/Z0nOduGagoXI153wHkEuAvoCvwBeB34MbAH+Jr/bdNoIrZSEISOQWHVy7NLd3REzckwl7Vo5/FSdhmIM3Pjbqf4qgGLiE1EeJhT9HtDbgmHXYXhvSTSF+YkNJiyIoF14bTL0jTl6vbCKNM3Mcax6r299biRgs39e8QwJa27M4eJbjXXp/dy9pUpgX/flEDIhonqC2k9Y5k6yNpPb24x46WwxZ69Bq+9uFcOS6JXvBXW0B5PRFuJjgh3ugatOVBE3mnvbWH3+D03VbX1LDIUS2wazzvgaK0XaK0nYHWfuQwYoLWeqrW2/9sWAN/xel5BENqOu/zIyn3tK4gdLHdM7OvczZsWsP26mxcsNnc26O7S/LpCvYjaoQLQvBUp1AD+xhfOY6eb7iQUqvvNjqUrPV9jrGCzfUNRdM6M9T06ItwR+GsPFHOk2PsbiZnDkuntj//894ajRhI0bLFXUl5txBp95bAkZw0NxZ43pr3wMMVdk9zJY96HNbj/91bt8769ottzc8jQDalpTLZTPKW13uyvA+l+frPWeqWpeQVBaBv2xbZed0x/2H7dY5g22BJ4C7eZiclzY18ASs/X8FFO++IZ2+PCGpoSx/j+VoOtNzYdM2IFAxiU1NWxtr25peX9F4oLzl1o3lSCVmsWUC+4YXRvx/r+iiHr9L2TXRZwA+sIDwsksew4Vsquky6Lvkdu1jkZAQvrvw2vYXveGSM1J++c1M85588YSPAb0Suesf26tf7GIAkLUw28KZ0RL9spLldK/UYpda9Salij10YppaZ4NZcgCKEzpm8Cw1OsFouvbTRfUBzgLr/AMxVn5ua69BQSm4h1MsG9futOQVkVywz0bHbmmWzWigQwKjXQ+vANQ60PoyPCnV7qaw4UGeml3iUyYDlcvb/QyBxDU+KYNCARsPaViRuJuyYFLPomQjbc1ujthuqY3unySpjA7YkwxT2XmRV7d04yu49M46VlUgNfBl4GdiulSpVSK5RSvwX+C3jTw7kE4ZJj0+ESfvH+booNtGhrCqWUY1k5WlLBmgNmWty5cVukQokzU2341o3yhTvxjOsOmnFD2swf25s4f8/mV9abS5CZk9HLacFmUiDf5Wp9aOq8uMcvjLU2F3N4z+SAlfXVjUc9j9eDgMAvOlfdwGXvlTDomxjDlUOt0lA7G2W/e8U9k80KpY4Qe3cbFns3jk0lJjLc2Pip3bow018CrDPiZTb31VrrRGA4VjvFv2Ml4nwLuA/onIEAgtBBfG/BDv626hB3PfNJh81564S+REdYXwMvrz8S4mjWpbqla2h0RLjTVWLtgWJy2xEfFEy4WMM4Q3PiKybSx63+da0yZAUDe//Z1jYzFj2Am8alOueFiSxfsHqpT/CHB7y20Ux4wIhegTle33SMWv8cXpZccbvTl+42Y5W+17DYG9ErnnEG3bjQMHPcBNeOCngiTNA1ysf8Mb2dv4vOed/BybT10yQmEnD2+9spfkdrPQmrkHkBlsAUBKEZ7MDrg4XlFHWQdTKhSwQ3jrHcjUt3F3CqA/rDfm5K4KLy7w3mrHgAw1LiHDHxxuaAmDDBve2wtIUiZjpCIMdHR3DDaOvCuSTnFAVlZs6L+6YMAKDoXBUf7/K+hh8EjkthWRWZBkIQukSGc5vfTWwKqzRUlNE5TAuZa0el0D020tj4bk8EwNFi72+07jYsiK8eEVKn6QuKsQQcG3+yzZ+wencLgtAGOqIzjc19fnFXV6+NFEduzJDkOCb7E0ne2JRnNNMaAu7UwlbiGUMVMiN7xzuJOK8bTMQZ2TuQDPDG5jxjAvlzfqFXW6+NnY/zx/R23PamwgPmj0l1LIeHCs04yO6dYlZkRISHOaW1THHjWLO9RKzyVgHRbaKMlvtGK9/AjbF9Y2qKSF+Yk2QHEOHrPEGUxsWkn23A1A6aSxA6JW7LwysbjnieEGOP1jiWa1y/bozsHQ9YGakmEi4aY1snT1e0P9O6vcwf05uu/nhG05bQ+9xWMIPF4O/1XzRPna1ixV7vS5WAdeEc0ctK0Hpl/VFjiTi2NWnNgSKOGLAmdYTlsGPcxGYth7FRPua53LgFBrKu3WKvrMr7rOthKXHO//rcjF6ej6+U4o/3jQcCXam85m8PTOLmcak8fsNIYiJ9RuYwgZfZ3P9USj2qlJqilGpsjx8CmG+zIQidGLfIyys5z+oOSIix5lWOdfL4mfNG6qg1Zk5GL8fl9XKWWYEXE+njlvGW1WXFPnPxjNDQCvaywUScG8emEutPBgg91rVplFLcP9WyTh4/c56V+wqM1Dl0hz3sNdD6EMxbDiFwI2GKgT1j6RIRSACpqvHeIv2A/3gDTkKZlwxJjmP+mN6EKXh01hDPxwf48Jsz+Pa1w3h83kgj488fk8qun17PL28fbWT8hJgI/nDPeL5y5SAj45vCS8vkLOCPwDrgrFJqq1LqH0qpZ4AfIYXKBaFdvJxlRiQ0xS3jApmKJkWQTZQv3Cn2veFwCfsNiQgbWxRpbXZ9bivY6v1FDeK2vBRisVE+bvbPY1Ig3zK+T0C0ukW/h963oSlxTB7YvfU3hsCIXoEQBICaeu+F2PyxvVt/U4h8Y3ZAgHUxkFk8Ja07X5mRxpS07twxyYxb/el7x7PtieucmFyv6ZsYwzdmD6VvYoyR8cG6QW1LRYnPEl5mc6cBPYG5wE+Bw8B1wFeAbsC/lVKblFJ/Vko96NW8gnCpsnT3KU6Wdkwb+7joCKcjzrI9pzhxxvy897osOaYF7Ihe8Vw20KoH+PqmPKMF0+2kEjDbR/v+KQGB/Irffe+13bCrS7Qu21vAcUPnxX0dbDk0kegTE+lzupiY4qszBnHv5P7cNDbVaYPoJUopHp83itcevpzeCWbWopQiPtpc1rVwYfC6N3eJ1nqJ1vrnWutbtdb9sNoq3gQ8ieXqvg14zst5BeFSYnQfq2B0vTbbV7oxdsJFvTZf5Bsst92MoVbtuTe3HON8tdlEHNs6WVJezQc7W47TDCXbenivOCYOsIWruUScUanxTsHs1zY2FMhe2kzcorXSgGsVrLAHk2VdwHJPmuaVr0whOS6KiQMSjQhLX3gYT942mqfuHU+Uz1zNQ0FoLx2RzX1Ka71Ya/1jrfU8rXUvYKDpeQWhs5LRJ8HpQPLqxqNGy9m4Gd03wRGyr200lyXsxrYWlVXWsnjHiTZ/LhixNCejFz38cZovGQ4hCBSyrjLWqQbggcvbLpCDZVRqQxexCdx9rsFMf+IukeFcPqgHgLESNQN6xLL+sdkseORywsLEDSp8dghJTCqlspVSt7bj/b2VUk8hNScF4VO4XW+2NejUWTO18ZrDdjfmn61sd1tAe/vbE0p0zagUkuKsfL3WXN06RCdulC/caee46chpdrv7HHuMu+TNi5+YE65ugfyiQYH8OZfr3hTuJJnqWjM3Mn9/cBKPzhrMU/eMNzI+WG5ciacTPmuEapl8HfiXUuqoUupJpdT1Sqkk5f9PUkp1UUplKKW+rJR6FzgCTAQWhTivIFyyKOVvz+cXI6ataG5uGpvqlNYwKU5sIsLDnJIn2/LOkHPCTLs4m/sm93fErsn9Gh0R7rQk/ORQMfsMJRhF+cKdciubj5w2EgsIlji222CaYnBSV6J81iXJdt97TdcoH9+bM4LpQ8229hOEzxohiUmt9U+BYcC/sfpyfwDkAzVKqfPAOWA78DcgHrhHaz1Na70rpK0WhEucmEif4/Zbvb/IaF9pN7FRPqc48ur9RRwsPGd8znsm98f2CJq04oHVI/iq4ckAvL31OGWVgVp3Xuuw+6cOcITrvz453OA1Lw1X903p7+l4TREdEd6gaLap4t9L/2MmD10xkCduTDcyviAIZgg5ZlJrfVJr/Z9AKnAl8H3gaeAFrKSbB4H+WuuZWuu3Qp1PED4ruOvveZLtbLuhW4k4tOPwwLy4A+jTrYvTRmzhtuOcqfC+562b+6da+7Wiuo6FW48bm2dgz1hmDUsC4K0txxOnwK4AACAASURBVCmrrDUyT9/EGGaPSDYytht3xvXx02ZKEfXrHsOPb0pntD9mWBCEzoGXpYFqtNZrtNa/0Vp/S2v9iNb6B1rrl7TWHdcbThAuEYamxDnlP17dcJSKajNipDGDk7o6WdYLNh/jXJX5eR+6YiBgZQubziSfOSzZybR9MeuIkULcNp/3r6uiuo43t5j7Grx/qvmYxsFJXZmTbnUV+fpVZgpOC4LQOemodoqCIASBLbLOVtaycGvbs51D5cHLrXnPVdXylkERZDNtSA+GJHcFLIFnsqVjeJjic37r5L5T59iQW2JsrplDkxjYwyqe/OZmc/vxyqFJ9O8eKNJsau/94d5xfPytK/lqJ+vOIQiCWURMCsJFzDUjUxwr2vPrco1a0dxcNSKZft2teV9Yd9j4vEopHvS714+dPm+0rzXAXZP6ERluff298MlhY/OEhSke8AvzcoN1NMPClOO+ByuZyQRRvnCGpsRJtrIgCA0QMSkIFzG+8DDHhbnv1Dk+OVjcIfOGhymnT+/BwnLWHjA/720T+jr9gE0KPICeXaOc9ncf5Zwy1tkF4I6JfRv0VDbFnRP7Ob/bSUaCIAgdgYhJQbjIueeyfk7JlOfXHe6wee+a1I/oiPZb74LtHhMb5XP6Aa89UNxiv24vDGNfnJYGQF29/lSikZeGt4QuEdw6oY93AzZDYmwkr3x5Ct+6Zhh3GuqrLAiC0BQiJgWhjWitqTcYy2dHujXWMYmxkdzq74+8dPcp8krMZNI2pltMJLeMs+bNbMO8XnjCP+93CcOnBazXnvaMPglOv+5/bzjK+RpzbujPX24+QQbgiiE9+X/XDCVOeh8LgtCBiJgUhDby4D83MvYnS8g+brawdpNz+xNx6nXHFBO3scVdvYaX1pufN61nLLOGB8rplJ6vaeUTofEFv3Wy9HyN0TJBI3rFMyWtu7HxBUEQLiSeikmlVKxSapJSakZTDy/nEoSOpKyyhlX7CimrqmX+02s6fP6RvQNiJNQyQe1x4Y5KjWfyQGve1zbmUWnQemfzoKuczhubzJYJum5UCqkJ0QDtbh/ZXux1AfjC5D5eEIRLB8++0ZRS84FjwHpgRaPHSv9PQeiUNPawHuqAzjCN+cK0gUDwZYKC7W1ti6AzFTW8bdB6ZzNzaBJpPWMBywprMrTAFx7mZFub5rpRKdw0NpXJA7szbUiPDplTEAShI/Dy9vi3wG7gFuCqRo9Z/p+eoJTqppT6p1JKK6Ue9D/XTyn1klIqVylVoJR6VSnVbNS7Umqm//ONH//yajuFS5fn1uZ2+JzXjAxY0TqyTNB16YF5/7HG/LxhrkzyI8UVxi2G904OJBqZxBcexlP3juf1Ry6nW0yk8fkEQRA6Ci+/QROB/9Fav6u1XtXUw4tJlFLzgBzgLtdzfYGNQD/gMeC7WOL1I6VUa9/a3wCmux4/9GI7hUubBZuPGW/71xi3FW3fqXOs66AyQRHhYTzkt4oeKDjHyn2Fxue8c1JfuvrLBD275pDRubrFRHLreMl+FgRBCBYvxWQmMMHD8T6FUmossBhYh8vS6W/X+Chwrdb631rrF4AngHQsgdgSO7XWa12PjstuEDotlTX13vTLbif3XBawoj272qzIcnP3Zf2JjbRqJf5jjXmrbFx0BPdcZtVNzDpUYjzpyQ4hEARBENqPl2LyG8A8pdSDfpfzpx6hTqC13g5M01rfCZxq9NpbWmu3qcjuXdYr1HndKKWSlVLp7gcw2Ms5hM7BC+sOU11b36FzJsZGcsdEy4q2fG9hi7UYvSShSwR3+cXd6v1F7D551vicD00bSHiYlS3UWDgHW8uyOYalxDF9SE9PxxQEQfis4PNwrINAHPBPmm8NG3IbCK31uja+Nd3/c2+oczbiUSyr56fIysoiPz+fvn37kpaWxurVq53XZs+ezc6dOykosOK/hg8fTmxsLFu2bAEgNjaWqVOnkpWVRXl5OQATJkygvLycvXutJSQnJzN69GgyMzOdcWfMmEFubi7HjlnaOS0tjeTkZNavXw9AZGQkM2bMYMuWLZw+fRqAjIwMALKzswFITExkwoQJrF69mupqS49PmTKFgoICcnMtK9RnfU1r1m923jOiVxx78ssoKKvi168u5evzLvNkTTbHjx8nM7Og2TWNjS7mZax/sr8s38f/mZzYpjWdOWO12KuqquL06dPtPk5fuGIwz689jAZ+9sY6/vnI1Q3WVFYW5R+/kszMTE+O04QkxcZTmsU7TlJW3LDFotfn3qS4OtZg1fncu30jp/aoi+LcuxT/n2RNsiZZ04VdU1ZWFl6ivAqmV0p9vrX3aK09S25RSg0ADgMP+d3a7tcigX1ACTBRN7FIpdRMrAzz5cAQoAuwEPi21rpZs4tSKhlIavT0YOCd7Oxs0tPTm/iU0Nk5W1nDmB8vAeB7c4bz3JrDFJ2rIj01nsXfmO5Jr+JJP/uYonPV3D+1Pz+7ZXSL7/3qvzaxZNcpIsPDWPP9q0iOi251/Dv/uo6Nh09zxeAevPKVqUFt49de2swH2flEhCvW/ufVJMcH5v3egu28vukYvROi+eS/Zgc1fmO2553h5j+tBSAuykdZlVUSafdP59Al0vsWhcv3FtAlIpypgyTbWhCES5ecnBxb5GZorXNCHc8zy6SXQtEDfg70Bb7YlJD0kwf8j//nDmAK8CTWPvlCcwNrrQuABumlXggJofMQGR7GA1MH8L9L95Fz4izrc0s8ER/tua/7ypWDWLLrFNV19bz4yRG+fd3wkOdvC1+ekcYH2fnU1GlezDI/79h+3Zg8sDsbDpc4QtIk0tNaEASh/XhdtDxBKfUTpdRHSqlspdSHSqnHlVJdvZynlW34PPAd4Fta62XNvU9rfUhr/V2t9VNa6xVa618B7wL3KqW8N3kInRq30FNKcf/U/kT67ESYji8TNGlAImP7dQPgpawjnK9uezHxUO59JvRPZFyQ8wbLl2akGZ9DEARBCB4vi5b3wXIt/xAYAVQBo4D/Bnb53cNGUUpdDvwN+L3W+ukghjgCRAHdPN0w4ZKjR9cobvP3y87cc4rcovIOnV8pxVdnDALgdEUNC7Yca+UT3vS2VkrxZb+4O11Rw1tbW583VK4ZmcLAHjHG5xEEQRCCw0vL5P8Cp4F0rfUArfVErXV/YDRQgVXU3Bj+bPG3gQ+Bbzfznm6u32OVUo3d/JOBfK11xxTwEzo1X5puiSqt4e8dWKbH5vr0FPomdgHgH6sPUWewU4ybOem96NPNP++aXKMdagDCw5SzrwVBEISLDy/F5OXAE1rr3e4n/YGdPwGu9HCuBiilooBFWImYfwYuV0pN8z+G+9/zCHBaKfWk/2MvA+v8pYzmKqWex4qblKLlQpsYmhLH1SMsg/uCzccoKKvs0Pl94WGOyDpcXMHS3ada+YR389p1GQ8VlpNpuEMNwO0T+5LQJcL4PIIgCEL78VJM+rBc201RieU+NkUvYByQDHwErHE9Hva/J9//sCtNfxHYCvwX8BowErhTa/2swe0ULjEemWmVGK2ureefaw93+Px3TepHfLS/U0yHFjEPzPvnFQeMt1iMifQ5LRZjI8PxhUvSmyAIwsWCl3UmNwD/qZRaqbU+bT+plErEam+4ycO58HeqcV9RWry6aK0XYpX+sf8uISA0BSEoLhuYyMQBiWw+cpqXso7w6KzBxEV3nAUtNsrHfVMG8NeVB9l4+DSbj5xm4oBE4/PGRUfwwOUD+NPyg2w9eoYNuSXOa6Zk3jdmDyHKF0ZGnwQiws330hYEQRDahpffyN/GSrg5ppRaoZRaoJRajlV6ZzRWhrUgXFIopRzrZFllLa9cgBaLX5g2kEi/uPrLigMdNu9DV6QR5c9o/8vKg8bni/KF843ZQ7lqhJTvEQRBuJjwTExqrQ8AY4DXgVTgBqxaj28D47XWe7yaSxAuJmaPSGZoslX96h9rcqmqDa1cTntbBabER3P7RCuzfOnuAvbmd0yLxaS4KO6aZLVYXLG3kF0d0GJREARBuPjw1FektT6itf6C1nqY1jpGaz1Ua/2AX2gKwiVJWJjiYb91sqCsire3HA9qnFCiDh++cjD+NtYdap386pWDnP7Z2cdFTAqCIHwWkcAjQWgL7qLlTbx809hUeidYrQWfWdVxZXpsBvaMZd6YVAAWbT/B0eKKZt/bXstnS/TrHsP8Mb09G08QBEHofAQlJpVSPqXUNUqpLq7n+rX28G6zBeHiItIXxpf9RcRzi8pZkpPf4dvwNb91tF7DM6s+HcNoSt7aMaOCIAjCZ5NgLZMPYJXg+ZbruSPA4VYegnDJcs9l/ZxaiH9ZedB4uZzGjEqNd+pevrH5GAVnO6bu5cje8Vw1PKlD5hIEQRAuPoIVkyuxajO+73ruC214CB5QV1dHWFgYSinef//9Bq8tWbIEpRRKKcrKrESMF154wXnO/Rg9evSnxn7uuee48v+3d99xUlXnH8c/zwILuPSyqHRBUGEtgIIKgmKJYIslxliwJbHGEjXFJJZETdQo0fxsiWKLGqPGFitrAUREmgICCixNhGUpgouwlOf3x51dhmFmy+ydnd3Z7/v1uq/ZueWc514uy8O595xzxBG0aNGCnj17MmrUKBYtWlQTp1Xn5TRuyKjDugHw+bJv+Wh+zU+kdNmwHeNePjqh5uYMv3RYzxqrS0REapekkkl3X+juP3H3GVHrnnD3J8tbwgu7flu9ejXuTsOGDXn77bd32pafn0+DBg0AKCoq2mnb3XffzYQJE8qWZ599dqftP/vZz/jpT3/KIYccwrPPPstvfvMbpk6dymuvvZbaE8og5x/WjaaNgut/33tf1Xj9A7q14ZBubQB4etJivt24pUbqLR1vE6BJ5PxFRKR+CG3QcjMbBnzi7t/H2XYmcIK7nxtWffXZqlWrABg2bBjvvPPOTtvy8/MZOnQo7733HkVFRXTvvmNO4759+3L44YfHLfO9997jH//4Bw899BA///mOsdzPP//8suRUKtYmJ5tzD+3KI+MWMrlgDZMWrmbQXm1rNIbLjuzB5DFrKC7ZxpMfL+LK4XunvE4z48+n5nHbG3M4o79ejxYRqU/C7M2dTzClYTxbgBNCrKteK21xPO2005g7dy6LFy8GYM2aNUyfPp1TTz0V2JF0VsYdd9xBx44dufDCC3daX1cSyW3bnUuemsoFYyazYVPNtMYlcvGQHYN5359E66RVs7P10F7t6bNnCwAe+6iA4s1bq1dgJe3doTmPX3AII9W7W0SkXqlWMmlmTcxsiJkNIRgx5cDS71HLcQQddhKPVSJVUppMnnTSSTRq1KisdfL999+nUaNGHH/88TvtVxmff/45/fr1o1GjmpsKMExfLF/PW7NX8P68Vfzy+c/SGktu8yb8ZGAXAD6av5qpi9dUcES4zIzLIu8wrt24hacnLa7R+kVEpH6pbstkU4LOOB8QjDzy98jP0cubBLPh/KGadUlEaYtjbm4uQ4YMKUsmx44dy9ChQ2nXrh2wazK5bdu2nZZS69evp7CwkM6d6+7jyS3bt5f9/M4XK1m3sSSN0QTD5WRHWifvy6/cIOJh9v4+vu/uZbPyPDJuIRtLdrROVrflU0REJFq1kkl3XwsMA44iaJn8BXBkzDIY6OTuj1YrUilTVFREgwYNaNiwISNHjmTs2LFs27aN/Px8jj/+eHbbbTdg18fcI0eOpGHDhmXLggWpn0+5psTmR4+F3JPZo0ZprEwy1qFFE86MTDX44ZermLF0XajxVCQry/hF5F3J1cUlap0UEZGUqfY7k+4+zt0/BGYA4yPfo5eJ7l75l/ekQkVFRbRuHfScPeGEE1i3bh0vvPACX331FT/4wQ9o2LAhLVu23KVl8r777mPKlCllS6dOnQBo0aIF7dq1Y9myZTV+Lqky5qNF6W+dHNaDRg2CzPP+/Jrv2T0ib4+y1smHP1zIxpLqzRkuIiIST2gdcNy9n7t/Hm+bme1mZs3Dqqu+W7VqVdmj7F69erH33ntz44030q1bN/bZZx8A2rdvv0sy2atXL/r371+2NG7cuGxbXl4eU6ZMYcuW9HZeCcuGzVtDb52sqo6tmnJ6pGdz/txCZn39bY3W3yDLynpyry4uYc43mjtbRETCF+rc3GZ2kJldZWa/j1puBt4FJoZZV31WVFRE27Y7hps54YQTWLBgQVnHGwjep6xKb+5f/epXLF++nDFjxuy0ftu2bWzcWDf7TtWG1snLhvWgQVakdTIN406OzNuDnpHWSRERkVQIc5zJ84AxBK+vOTu/xrYU+HFYddV3RUVFO3WWOfvss1m1ahXnnHNO2br27dszd+7cnY6bNWsWzZrtnFgceuihZGVlcdxxx3Huuedy2WWXMX/+fIYOHcrSpUt59NFH6d27N08//XRqTypEow7tyhMfLy5rnbz22N5pi6Vzm9049aCO/GfqMt6evZIvlq9nv8iwPTWhQZZx5VE9ueq5GRXvLCIikoQwWyZvIEgmmxEkkv3dPQs4CNgMNAmxrnottmWyf//+PPXUUxx22GFl6+K1TF533XUMHjx4p+X773eMMf/kk09y//33M3HiRM466yz+9re/0bdvX2677bbUn1SIhvXO5YDOrYDa0Tp5+ZE9y1on73n3yxqv/4T996RH+5war1dEROqHMJPJvYBX3H0jsBXIAXD3z4C7gdtDrKteW7x4MY8+Wn7n+EceeYTVq4O5oUeNGoW7x11ycnZOMi699FImTJjA+vXrmTNnDmPGjKFr164pO5eUMLj66OBdwdrw7mS3djmc0T/o7DR2zkqmL1lb7v5hj9zTIKpnt4iISNjCTCbXsuOx+VJgUNS2bcB+IdYlspPoERoNGNarfVnr5GO1oHXyyuF7k90g+OuW7tbJlk3r5sD0IiJSO4WZTH4O9Ir8/Dpwi5ndYWa3AbcAM0OsS6RcZlbWOvnd5q08PG5heGUncUzHVk0565DgPdfxXxUxaeHqXfYJb8jyXTXIMh45bwCXDO3BDcftk8KaRESkvgkzmbwbeCvy863ANOBXwG8IWiYvD7EukQoN69Wefl1K350soHD9prTGc/mRPWnSKPgr99d35oU6401l9GjfjF8fvw9d2u5Wo/WKiEhmC3OcyfzI+5G4+2p3H0LwHuWBQM/SbSI1xcy44QdBK9ymLdu5/73KTWsYTxh5X26LJow6tBsAny5ay7ivKj93uoiISG0VWjJpZruMv+Lui9z9c3fPjJGwpc4ZtFdbjujVHoBnJy9hyer0jpn586E9yMluAKSndVJERCRsYT7mnmJmx4ZYnkgoro+MM7l1uzN6bM13fonWJiebiwZ3B+DzZd/y7hcr0xqPiIhIdYWZTI4H+oZYnkgo8jq1ZETe7gD8d8bXzFuxIa3xXDRkr7Ie1fe8+yXbt6t1UkRE6q4wk8mLgRPN7HEzO8LMOscuIdYlUiXXHtObLAvefbz7nXlpjaVl00b87Ii9AJi7YgMvz/h6p+1mYY80KSIikjphJpNzgKHAecD7wKI4i0ha9MxtxumRgcPf/WIl0yoYODzVLji8G7nNGwPw13e+ZNOWbWmNR0REJFmhzc0N/ILUDpUnklB0P5ZELXtXHd2Ll6cvp2Tbdu56ax7P/HRg2loBd8tuyNVH9+K3/53J1+u+56mPF6clDhERkeoKLZl09yfCKkskFTq2aso5g7ry2EcFfLxwNR9+uYphvXOrXE5YCeiPBnTi0QkLWbCqmL+/P5+SrdtDKVdERKQmhTk00DAza5pg25lm9lQIdbQyszFm5mY2Kmp9GzP7l5l9Y2Zzzew2q8S/+GZ2jZnNMLMiM3vFzOrYJNRSVZcf2YNmjYP/Q93xxly2pbHzS8MGWWXjYH77/Ra+16NuERGpg8J8ZzKfYIDyeLYAJ1SncDMbCcwGfhSzvmGk7iHAtcDDwA3A6ArKuw64B3gV+DnBAOsfmlnr6sQptVvbZo25dFgPAOat3MCLU5dV6rhUpZzH7teB/l11y4mISN1VrWTSzJqY2RAzG0IwZfGBpd+jluOAc4GkR4s2swMI5vueCBwZs/l4giT2Und/1t3vBe4Dfp4oMYwkoNcBL7j7H9z9ReAnQFfgrGTjlLrhosHd2aNlEyDo2b2xZGvaYjEzfnO85soWEZG6q7otk02BD4EPCBpv/h75OXp5ExgB/CHZSiJTMR7u7mcAsaM8nwZsJmidLPU/oDFwYoIiBwMdCBLU0jpmAkuB05ONU+qGJo0acP1xwUDmhRs2849xBWmNZ0C3NhyzX4e0xiAiIpIsq+50bmZ2BEGr5PvAlcDMmF22Al+5+6pqVbSjvq4Ewwyd7+5PmNl7QDd33ytqn25AAfB7d/9TnDLOA54Ahrr7uKj1HwCd3L1nOfXnAu1jVvcAXhkwYAA5OTkJYz/wwAMZPXrH0/cZM2Zw9dVXJ9y/1AcffLDT92HDhlV4zOjRoznwwB1vHVx99dXMmDGj3GPOP/98zj///LLvjz/+OI8//ni5x9SWc9rUbE9W9D0bgA5z/kPTbxcBic/JgW/yzqMkpwO2rYSOM/5Jwy3FCc/pyut+w9IBVwDQpmAsLVZOD/Wc5hdu4Nh7x7HdocXyybRZ8mHCY+ryn1MiOqeAzmkHnVNA5xTQOQXCOqeDDz6YKVOmAPR199kVFlCBavfmLk3GzGwGMN7dP69umVXUAfg2Zt26yOfu5RxDguMGVFDfZcBN8TZE/mASKi4uJj8/aEDt3bs3S5cu5cMPEycNpUqPyc3NJS8vr9LHrF69muzsbIYMGcKECROYOnVqucd0796dzp2DseUHDhzI9OnTK6yrtpxT9p77sEckmfx85kw2FUyr8JyaFKylw1m34w2ymdNgL9aM/XvCc5o4cSKdI8nk/Pnz2TBt13ire05/PKUvN//zZeb87zG2rkn8Lmdd/nPSOemcdE46J51T+s+ponylqsIcGqifmeWY2QCCx9/x9hkfVn3RxSaxLZljSj0A/CdmXaVbJocPH172vaioiKFDh1ZQHTsdA1T6mOj/JQ0ePJhmzZqVe8zQoUN3quuggw6qsK7ack6bmu3Jisj6/fPyaNqleVm55Z3TyrUL+L51D5ofcCy97Ruyvy+Ke06HHXYYSyPfe/bsSYvmu8Ybxjl9+mwBM/J6ENxS8dXlP6dEdE4BndPO8cXWXZljdE46p1I6p53jizZgwIBQE8pqP+YuKyjobf000CLeZsDdvUEI9VTlMffv3P22OGWU95i7o7vvXcWY+gCzZs2aRZ8+fap8TlJ9Uxev5bQHJwLw5IWHcESv2DcR4vtq5QaOGx08Xh7Wuz2PX3BI3P3WFJfQ74/vAnDryX0479BuocQtIiJS02bPnk3fvn0hpMfcYQ4NdA/BlIqnEPS4jl6GsWsv7LAsAfYwsyZR6/aK2pboGIDuMev3KucYqdWS+0/R3h2a8+NDugDwwbxVfDCvMMygREREMl6YyWRr4G53f83dx8VbQqwr2gtAE+CoqHUjCXp4l/XWNrNWUdsnEPQKHxm1PQ/oHClP6pFrju5F88hA5re+/oVmohEREamCsAct7xdieZX1FjADeNDMfmxmVxPME/6wu68FMLNLgLVmdgeAu28F7gLOMLNbzOxUgkf0i4Hn0nAOkkbtmzfmF8ODNxsWrirmiYmLdtknrNdBREREMk2YyeSVwEgzG2VmneMtIdZVJpIYDicY0Hw0cClBonhN1G4rIsuSqOP+CvwS+CHwCEEiOaw0AZVwbd/uvDz9ayYuKEp3KHGNOqwbe7UPOk/dl/8VqzZsTnNEIiIidUNovbmBBUBzYAyJX2Crdgccd19M0KEnet0aypm5xt1fBl6Os/4egnc9JcXGzy/i6n8HY27955JDObhbmzRHtLPshln84YT9OH/Mp2zYvJW73p7LnacfkO6wREREar0wk8krQyxLMsySNTtm07zkqal8euPRZGVZOUfUvGG9czl631zGzink+SnLOHtgVw7o3KriA0VEROqxMMeZfDKssiTzNG20o1F6dXEJz09ZWtaLujb53cj9GPdlESXbtnPza7N58ZLDal3SKyIiUpuE+c4kAGaWZWZdzewwM9st7PIlM/zlrbms21iSkrKtGrlft3Y5XDQkGDFq+pJ1/Hf61yFFJSIikplCTSbN7AaCIXcWAuOB3pH190cG9hYBYO3GLdz19rx0hxHX5Uf2JLd5YwD+/NZcNmzastN2tVOKiIjsEFoyGRmS52bgUeB0dv43dysJ5rOW+qdr26DB+pnJS5i5LHZ69OSEOXJPs8YN+c2IfQBYtWEz97z7ZXiFi4iIZJgwWyYvBG5y918Dr8RsywcGhViX1GE3n9SHRg0Md/j9K7PYvr32jeF4yoEdOaR70OP8iYmLmL18fZojEhERqZ3CTCY7A5+XU0/TEOuSOqxn+2ZcNDiY8XLG0nX8Z+rSNEe0KzPjT6f0pWGWsd3h5lerPXWpiIhIRgozmZwKnGdm0WV6pBPONZHtIgBceVRP9mgZTKf+l7fmpawzTnX06tC8rDPOwqLiNEcjIiJSO4WZTF4PnEwwk8yrBAOX30vQGWcgcEOIdUkdl9O4Ib8buR8Aa4pLuP2NOWmOKL6rhu9Nx1ZqVBcREUkktGTS3acTzM39LrA3sBnoAnwA9Hf3RI/ApR6IN7f1iLzdGdqrPQDPT1nGxwtW13RYFdotuyE3nbhfusMQERGptUIdGsjdv3T3C929t7vv5u493P3H7l47m50krUrfS2zSKLgNb/zvTDZt2ZbmqHZ1zH4dGL5PbrrDEBERqZXCHBpoTzPrlmDbXma2Z1h1Sebo3GY3rj2mFxC8l/jABwuqXaaFPBKkmXHzSX3IyQ5m8enURmPxi4iIlAqzZfLPwN0Jtt0D3BpiXZJBLjy8O/vt0QKABz+Yz1crN6Q5ol11brMbr105mGd+OpAje6uVUkREpFSYyeRRwLMJtj0D9TdWQwAAIABJREFUHBNiXZJBGjbI4s+n5ZFlsGWb85uXZlZ57MmaGKlyr/bNOKxHuxqoSUREpO4IM5lsAiR64W0T0CzEuiTD7N+pFecfFgzDM2XxWp77tPaNPSkiIiK7CjOZ/AT4rZnt1HRjZi2B69A4k1KBXx7bq2wYnjvenMPK9ZvSHJGIiIhUJMxk8pfAPsBSMxtnZi+Y2XvAUuBgNM6kVCCncUNuPbkPABs2beXG/86MO6SQiIiI1B5hjjM5F9if4P3IXGAE0BV4A+jn7jPCqkvqNiuns/XwfTtw8oFBx/+xcwp5ecbXNRSViIiIJKNhmIW5+yLgojDLlMxQlfbFm0/sw0fzV1P03WZufvULDu/RjtwWTVIWm4iIiCQv1EHLRcLQOieb237YF4Bvv9/Cb/87S4+7RUREaqlQWybNLAfYF4g7mbG7jw+zPslcx/XZnZMO2JNXP1vO2DkreWXGck45qGOlji3vMbqIiIiEK7Rk0sxOAJ4CWsTbTPCks0FY9Unmu+WkPkxcUETRdyXc9OpsDuvZltzmetwtIiJSm4T5mPuvwBzgFODImGVY5FOk0lrnZPOnU/KA4HH3jXrcLSIiUuuE+Zi7NfAbd38txDKlnvtB3x2Pu9/9YiUvTfua0/p32mU/5ZgiIiLpEWbLZD7QL8TyRAC4+aQ+tGvWGICbXp3N0jUb0xyRiIiIlAozmbwSGGlmo8ysc7wlxLqkHmmTk81dp+8PwHebt3Lt8zPYVsW5u0VERCQ1wkwmFwAHAGOARQkWESyJ7tZH7pPLOYO6APDporU8PG5B2GGJiIhIEsJ8Z/LKEMsS2cWNI/Zj4oLVLFxVzD3vfMkRe7enb8eW6Q5LRESkXgstmXT3J8MqSzJQCE+lm2Y3YPSZB3LqAxPZut256rnpvH7lEJpm7zzilIaZFBERqTmaAUfqlP07teLqo/cGYMGqYu54c06aIxIREanfQk0mzaylmd1iZm+b2Swze8vMbjSzZmHWU079Y8zM4ywFcfYdlWDfW2siVknepcN6MqBrawCe/Hgx788tTHNEIiIi9VdoyaSZdQTmAb8H9gE2A/sBfwS+MLPcsOoqx+3A4JhlUSSuRM6I2f//UhuiVFeDLOPeMw8kJ/J4+5f/+YyV6zelOSoREZH6KcyWyXuBdUAfd+/q7v3dvQuQB2wkmCEnpdz9K3f/qHQBNgHdgIfKOezT6GPcfWWq45Tq69xmN277YTA7zpriEm557Ys0RyQiIlI/hZlMHgrc5O47vcTm7rOBW4AjQqyrsq4AvgZeT0PdkmKnHNSR0yOz4RR9tznN0YiIiNRPYQ4N1JDg0XY8m4DGIdZVITNrA/wY+LO7bw2x3FygfczqHmGVL1Vz68l9mLZkLQtXFac7FBERkXopzGRyMvArM/vQ3deWrjSz1sD1wJQQ66qMiwjO758V7PegmfUHtgJPA79395Jy9r8MuCnehkmTJrFixQo6depE9+7dGT9+fNm24cOHM3PmTAoLg84ivXv3Jicnh2nTpgGQk5PDoEGDmDRpEsXFQWLUr18/iouLmTcveOUzNzeXvLw88vPzy8odMmQIBQUFLFu2DIDu3buTm5vLJ598AkB2djZDhgxh2rRprF0b/LH07dsXgFmzZgHQunVr+vXrx/jx4ykpCU594MCBFBYWUlAQ9F2q7jl98eW3Zcet+OYb5k4tCO2czuuxndvXGCXbgvGHpk2fRpP17VJ+Tpn456Rz0jnpnHROOqfMP6dJkyYRJnMPZ1o6M+sJTCVI4D4FioC2wMEEowwe7O5zQ6ms4liygPnAdHc/LcE+A4AzI/vNBU4Efgnc7O63lFN2opbJV2bNmkWfPn1COIPM8/ynS7nhxc8BmPjro9izVdNQy39q0mJ+/3LwF3XstUfQM7d5qOWLiIhkitmzZ5cmuX0jryNWS5iDls83s/2Bm4HDgUMI3lf8L3CLu88Pq65KGAF0B36WaAd3n8LOraUfmtkxwNkE73gmOq4Q2GksmmSmB6xvPIxRy8txzsAutGraCECJpIiISA0K8zE37r4YuCDMMpN0OUGLY35FO8ZYDBwZfjiSambGiQfsme4wRERE6p0wx5nc08y6Jdi2l5nVyL/0ZtYDOA54yGOe4ZtZq6ifW8RsywYOBGbWRJwiIiIimSDMoYH+DNydYNs9QE3NLHMBQa/yx6NXmtkdwBozu8TMGgDvR2bqOcvMTgReAjqRoHNNplu2diMXPv4pj07YZbIgERERkYTCTCaPAp5NsO0Z4JgQ6yrPTcAAd18ds34psBL4xt23AT8k6CR0O/AU0BwY7u7v1lCctcpL077mvbmF/PH1L3h28pJ0hyMiIiJ1RJjvTDYBtiXYtgmokfm5I4niLj2T3P0B4IGo70sIOtsIsGrDjiFC//DKLHp1aEb/rm3SGJGIiIjUBWG2TH4C/NbM2kWvNLOWwHUEwwZJLdWsyY7/V2zZ5lzy9LSUzXetzu8iIiKZI8xk8pfAPsBSMxtnZi+Y2XsEj5cPBm4IsS5JsVUbNnPJ01PZvDVRY7OIiIhIiMlkZEDy/Qnej8wlGOuxK/AG0M/dZ4RVl6ROdoMszjqkMwDTl6zjDy/PJqyB7UVERCTzhD3O5CKCaQylDrv5pD7MW7GBaUvW8e8pS+nbqSXnDuparTKVj4qIiGSmMB9zS4Zo3LABD53Tn9zmjQG45dXZfLwgtnO8iIiIiJJJSSC3RRMeOrc/2Q2y2LrdueTpqSxc9V26wxIREZFaRsmkJNSvS2v+cnoeAN9+v4WLnpjC2uKSNEclIiIitYmSSQESv9P4w4M68YujegJQUFTMJU9PpWTr9hqMTERERGozJZNSoWuO6cUJ++8BwCcFa/jNSzPVw1tEREQAJZMSK86A4mbG3WccwEFdWgHw4rRlPPDBgmpUoVHLRUREMkVoyaSZ5ZrZP81slpktiLPMD6suqXlNGjXgkXMH0LFVUwDuenser3++PM1RiYiISLqFOc7kk8DhwLvAuhDLlVqiffPGPHb+wZz24ES+27yVa//9GW1zGnNoj7bpDk1ERETSJMxkciBwtbs/GmKZUsv03r05D57TjwvGfErJtu387MkpPH/Joey7R4t0hyYiIiJpEOY7kx8DyijqgSF7t+fuMw4AYMPmrZw/ZjLL1m4s9xh11xEREclMYSaTvwIuMLPBIZYptdQpB3XkxhH7ArBy/WZGPTZZY1CKiIjUQ2Emk+uAjcCHZrYtzrI1xLqkFvjpEXtx8eDuACxYVcxFT3zK9yXb0hyViIiI1KQw35n8B9AF+BvqgFNv/HbEvhRu2Myrny1n2pJ1XPHMNB46tz+NGmjUKRERkfogzGSyP3CVuz8TYplSQzzJtxqzsoIxKNcUlzBhfhH5cwu59vnPGH3mgTTI0niSIiIimS7M5qMJwF4hlid1RHbDLB46tz8HdGoJwGufLefG/yaeJceUY4qIiGSMMJPJy4EzzOwcM+scbwmxLkmRZPO8Zo0b8sSFh7DP7s0BeO7Tpfzx9TmadlFERCTDhZlMzgHygCeARQkWyWCtdsvmqYsG0r1dDgCPfVTAve9+meaoREREJJXCfGfyyhDLkjqqffPGPH3xQH700Md8ve577ntvPrs1bkjLpo3SHZqIiIikQGjJpLs/GVZZUrd1bNWUf108kDMe/phVGzbz5zfn0q9Lq3SHJSIiIikQ2mPuRO9J6p3J+qlbuxyevmggrXcLWiSnLdFoUSIiIpkozMfci6l41rwGIdYntVzv3Zvz1EUDOfufn/Dt91vSHY6IiIikQJjJ5PkJ1g8GBgEXhFiX1BF9O7bkXxcP5Cf/mMT6TcEkSBp/UkREJHPUxDuTT5rZGODHwNSw6pO6I0goB3HDi5+z7+7NadescbpDEhERkZCE2TJZnueBvwPX11B9UlUpHg4yr1NL3rxqSGorERERkRqX8gmUzaw9cCrQPNV1SfVpdhoRERGpitBaJs1sO4nbtwy4Lay6RERERKR2CPMx9y3ETyY3AVPdPT/EunZhZgVAt5jVW4Fm7r45zv5NgHuBEQRxvwFcE29fEREREYkvzA44t4RVVjW8yc4toCXlJIcvAEOAawhaTu8FOgInpzRCERERkQwS5mPu3u4+L6zykrTS3T+qaCczywNGAle4+2ORdbsB95nZfu7+RYrjFBEREckIYXbAmWJmx4ZYXiqdFvl8PWrd/yKfp9dwLCIiIiJ1VpjvTI4H+gLvhFhmqnQBtgNLotYtInh3skt5B5pZLtA+ZnWPMIMTERERqSvCTCYvBv5lZvsDjwEFsTu4+9IQ64vncDP7hCCp/Qy42t0nx9mvA7De3cs6DLn7djNbD+xeQR2XATfF2zBp0iRWrFhBp06d6N69O+PHjy/bNnz4cGbOnElhYSEAvXv3Jicnh2nTpgGQk5PDoEGDmDRpEsXFxQD069eP4uJi5s0L3h7Izc0lLy+P/PwdfZmGDBlCQUEBy5YtA6B79+7k5ubyySefAJCdnc2QIUOYNm0aa9euBaBv374AzJo1C4DWrVsDTQHYvm07+fn5DBw4kMLCQgoKgj/GunhO/fr1Y/z48ZSUlADonHROOiedk85J56Rzystj0qRJhMmi8qnqFWT2LTvGkoxbqLunbG5uM/stkA18Gvm8E2gN9HL3NTH7vg4c7u6tY9avA8a7+4nl1JOoZfKVWbNm0adPn2qfSzrc/sYcHhm3kCaNspj7x+PTHY6IiIikyOzZs0uT3L7uPru65YXZMnlliGVVmbvfHv3dgtG3XwJ+ADwTs3sh0MLMrLR10syygBbAigrqKYwcH1uXiIiISL1TE3Nzp8viyOcecbYtIeh81CVqv24EQwQtibN/vWEoMRYREZHKC306RTPLMrOuZnZYZLidGmFmLWNWDYx8zoxsbxW17YXI58iodaU/vxh+dCIiIiKZKdRk0sxuAFYCCwl6d/eOrL/fzFL2MqGZnQIsMbMbzewHZnYVcEckhrFm9hxQZGYjANx9FsGwQLeb2flmdiHwJ+BVjTEpIiIiUnmhJZNmdjVwM/AowViN0c9Lt5KgB3QY3P1l4AaCqRGfB66IxDHS3bcTJLcrgNVRh50BPEcwDeRNBO9VnpmqGEVEREQyUZgdcC4EbnL3uyKdWaLlAw+EWNcu3P1h4OEE234L/DZm3SbgklTGJCIiIpLpwnzM3Rn4vJx6moZYl4iIiIjUAmEmk1OB82JaJT3SCeeayHYRERERySBhPua+nqDDy2KC2WccuBfYl2D8xkEh1iUiIiIitUBoLZPuPh3oB7wL7A1sJhjH8QOgv7snegQutUBYMyGJiIhI/RJmyyTu/iVBRxygbFaZdpFZY0REREQkw4Q5NNAAM7sj6vvBwHLgGzObYmYdwqpLUkczQ4qIiEhVhNkB5yagbdT3R4HvgNEEj7tvC7EuEREREakFwnzM3R+4FMDMDgD6Aj9w93fMbDlwbYh11UurNmymXbNsTM2HIiIiUkuE2TLZFCidi/s8YIm7vxP5PgtoHmJd9c4znyzh4NvGMvK+CXy5ckO6wxEREREBwk0mJwO3RN6bvJhgesJS+wLzQqyr3vl4YTAT5BffrOeE+yfw6IQCtm9XD2wRERFJrzCTyV8D7YBfEXS8+UvUtsuB/4VYV70TnTiWbN3OH1//gnMf+4Rvvv0+jVGJiIhIfRf2OJNdgAHAge7+bdTmq9k5uZQqysra8Z5k5zbBzJQfzV/NcfeO45UZX6crLBEREannwmyZxN2/c/dp7r45Zv3/3F1NaCHYq10Ob151BD8a0AmA9Zu2ctVzM7jimWms/m5zBUcnpjHLRUREJBmhJpNSM5o1bsidpx/Aw+f2p01ONgCvf/4Nx9w7jlc/W67ZbERERKTGKJmsw47rsztvX30Ex+wXjAe/priEXzw7nZ8+OZWV6zelOToRERGpD5RM1nHtmzfmkXP7c/9ZB9E20ko5ds5Kjr7nQ57/dGmVWyk1gqWIiIhUhZLJDGBmnHjAnrx77VBOPnBPADZs2soNL37OuY9OZlFRcZojFBERkUylZLKOqEwLY5ucbP7244P453kD6NCiMQAT5hdx7OhxjB77JZu2bEt1mCIiIlLPKJmsayrxHPro/TrwzjVDOeuQLkAwLuXosV/xg9HjGP/VqhQHKCIiIvWJkskM1bJpI+44NY+XLjuMffdoAcCi1Rs599HJXP7MNHXQERERkVAomcxw/bq05rUrDuf3J+xHTnYDAP73+TcM/+uH/GPcQkq2bk9zhCIiIlKXKZmsBxo2yOKiwd3J/+UwRubtAcB3m7dy2xtzOG70OMZ+sRKNTCkiIiLJaJjuAKTm7N6yCf93dj9+9OUqbnltNgtXFVNQVMzFT04pa7UUERERqQq1TNZDQ3u15+2rj+APJ+xHiybB/yeKS9TTW0RERKpOyWQ91ahBFhcO7s4H1x/JOYO6kBXpJd6iaaP0BiYiIiJ1ih5z13NtcrL50yl5nDOoK89NXspR++SmOyQRERGpQ5RM1hGp7iCzz+4tuPmkPimuRURERDKNHnPXMZo7W0RERGoTJZMiIiIikjQlkyIiIiKStIxKJs1smJm9ZmZFZrbQzO4wsyYJ9r3JzDzOcmFNxy0iIiJSV2VMBxwzOx54BXgauBDoC9wKtAV+Vs6hg2O+z05JgCIiIiIZKGOSSeA94Mfu/lLk+6tmtj9wgZld6e6b4x3k7h/VWIQiIiIiGSZjHnO7++aoRLLUMoKEuW0aQhIRERHJeJnUMhlPH2AD8E1YBZpZLtA+ZnWPsMpPKNUDTYqIiIgkIWOTSTPbDzgWuM/dE6ZiZvYyMBRYBzwA3F3e/sBlwE3xNkyaNIkVK1bQqVMnunfvzvjx48u2DR8+nJkzZ1JYWAhA7969ycnJYdq0aQDk5OQwaNAgJk2aRHFxMQD9+vWjuLiYefPmsbKwpDRe8vPzy8odMmQIBQUFLFu2DIDu3buTm5vLJ598AkB2djZDhgxh2rRprF27FoC+ffsCMGvWLABat25Nv379GD9+PCUlQT0DBw6ksLCQgoICgJScE0Bubi55eXk6J52TzknnpHPSOemcauicJk2aRJis/LypbjKzbCAf6AXkuXthnH2OAY4BvgAWARcB5wDnu/sT5ZSdqGXylVmzZtGnT2pmkbn8X9P438xv6JnbjLHXDk1JHSIiIpL5Zs+eXZrk9nX3anc8ztSWyYeA/sCweIkkgLu/C7xb+t3MPgKOB84GEiaTkfJ2KtNM89KIiIhI/ZRxyaSZXQuMAs5w98mVPc7dt5jZcmCPlAUnIiIikmEypjc3lI01eSdwfZye3ZhZq6ifW8Zsawv0BGamOk4RERGRTJExLZNm1gt4DvgYmGxmh0dtXgCMBk43s5OAccAsM5sAvAhsB64nSK5vr9HARUREROqwjEkmgUOBFgQz2oyP2XYysBBYAax29+/MbATwR+BvQDYwBTjU3WfVXMgiIiIidVvGJJORHtgJO84ArwK/jdp/JnBKquMSERERyWQZ9c5kJnONWi4iIiK1kJLJOkaDEImIiEhtomRSRERERJKmZFJEREREkqZkUkRERESSpmRSRERERJKmZFJEREREkqZkUkRERESSpmRSRERERJKmZLKOcI1ZLiIiIrWQksk6xjRquYiIiNQiSiZFREREJGlKJkVEREQkaUomRURERCRpSiZFREREJGlKJkVEREQkaUomRURERCRpSibrCI0zKSIiIrWRksk6xtBAkyIiIlJ7KJkUERERkaQpmRQRERGRpCmZFBEREZGkKZkUERERkaQpmRQRERGRpCmZFBEREZGkKZkUERERkaQpmawjHI1aLiIiIrWPksk6xjRmuYiIiNQiSiZFREREJGlKJkVEREQkaRmVTJpZPzN728zWmtkkM/tJBfs3MbMHzWyxmS0yswfMrHFNxSsiIiJS1zVMdwBhMbO9gXxgBnABcDzwlJltdvcXExz2AjAEuAYw4F6gI3By6iMWERERqfsyJpkELgF2A05z9zVm9grQH/gVsEsyaWZ5wEjgCnd/LLJuN+A+M9vP3b+oudBFRERE6qZMesx9GjDR3dcAuLsDbwAHm1mXBPsDvB617n+Rz9NTFqWIiIhIBsmIlkkzywI6Ae/FbFoY+ewCLInZ1gXYHrN+EeCRbYnqygXax6zeB2D+/PlVCbtK1ixbQMmq1XznOcye3TZl9YiIiEhmi8pXssMoLyOSSaAt0AD4Nmb9usjn7nGO6QCsj7RgAuDu281sfYL9S10G3BRvwymnnFLpgJP1DdD3zpRXIyIiIpmvMzC9uoVkSjJZ0fQw8baXd0x52x4A/hOzrhnQC5gFlFQQS3X0AF4h6CC0IIX1ZAJdq6rR9ao8Xauq0fWqPF2rytO1qprY65VNkEh+GEbhmZJMrgG2AS1j1reKfK6Ic0wh0MLMrLR1MvK4vEWC/QFw98LIsbE+qWrQVWU7pr9Z4O6zU11fXaZrVTW6XpWna1U1ul6Vp2tVebpWVZPgelW7RbJURnTAcfftwDKge8ymvSKfS+MctoTg/KPfj+xGMERQ7PuVIiIiIhJHRiSTES8Ah5lZ66h1I4DJ7r4EwMxaxewPwfBAxPycaFxKEREREYmSScnkQ8BG4EUzO9nMHgT6AXcCmNlzQJGZjQBw91kEwwLdbmbnm9mFwJ+AVzXGpIiIiEjlZEwy6e7zgaMJ3p18nGDA8nOjZr9ZSPAu5Oqow84AngNuIeih/QxwZg2FnIxVBLGuSncgdYCuVdXoelWerlXV6HpVnq5V5elaVU1Kr5dFjYwjIiIiIlIlGdMyKSIiIiI1T8mkiIiIiCRNyaSIiIiIJE3JpIiIiIgkTcmkiIiIiCRNyWQdYWb9zOxtM1trZpPM7Cfpjqk2MLNhZvaamRWZ2UIzu8PMmkS2jTEzj7Mcle6408HMCuJciy1m1jiyvY2Z/cvMvjGzuWZ2m0XNwVXflHP/FJjZTQm2XZjuuGuKmbWKukajotZXeB+ZWVZk/dzIfv+KmXAiI8W7ZmbW2cyejtxXhWb2nJl1jDpmVIJ77db0nUnqJbhWFf5O170VXK9y7hs3s65mNjTBtieTqT9T5ubOaGa2N5APzAAuAI4HnjKzzVHjaNY7ZnY8wcT1TwMXAn2BW4G2wM8iu60ATo85dGpNxVgLvQncFvW9xN03m1lDgnusLXAtsDvBgP/NgKtqPMra4XbgnzHrngbmRX0fHLO9XswRbGYjgUeAVjHrK3sf3Ufwd/QGYGVkn7Fmdoi7b0v5CaRBvGtmZp2ATwnuqd8C2QTX4m0z6+fuJVFFnAF8E/V9fsqDTpNE91dERb/TdW8F3mTX30+/BI4ECgmmjwa4kp3n6F6WVBDurqWWL8Bfgc1Am8h3A6YQTBWZ9vjSeF0aA6fGrHsO2BLZNgYoSHectWUBCoAxCbadCDgwMmrdX4FNQOt0x14bFoKJEBw4hWCSA093TGm6DgdErsN/gEMiP4+KbKvwPiJINDcDd0XtU3rciHSfXxqu2alAdtS+l0S2HxX5PiryvWu6z6MWXKtyf6fr3tr5esXs14RgwPLRke9DI/sODSMOPeauG04DJrr7Goj8CwZvAAebWZe0RpZG7r7Z3V+KWb2MoMW9bRpCqstOI/glnB+17n8ESfmJaYmo9rkC+JpgGtZ6y90/Aw539zMIWn6iVeY+OpGgBS76Oo6NHBfb4pQRyrtm7v6S79wCWdoytHtNxVebVHB/VUT3VmJnAu2Ah1MRh5LJWs7MsoBOBK1K0RZGPuttMplAH2ADOz8Okop1AZa7+6aodbrHIsysDfBj4B/uvjXd8aSbu09MsKky91HpZ9nvNHf/nuDxZcbea+Vcs1h9Ip/zyt0rg1XhWsXSvZXY5cAH7j4nFTEomaz92gINgG9j1q+LfNbL/73GY2b7AccCj0ZabwHamtlbZrbBzOaZ2XlpDLE2ONzMPjGzYjObaGaHRNZ3QPdYeS4iaPHe6R1KM3vZgk5xBWZ2fX3usBRRmfuoQ+Qz3n71+l4zs2zgUoJ32KbFbH7QzFaa2ddm9pfIvvVReb/TdW/FYWYHAwcDD8bZfJOZLTGzVWb2DzNrkUwd6oBT+1U0ebomV6fsl/DDQBFwR2T1WwT/I/0cuAu4HnjCzJa4+wfpiDPN/kHwCOhTdrzo/4aZ9aL8+6he32ORpwOXAq+6+9eR1RMJ7qkvgNEEyeadBC+2P5GOOGuJytxHutcSu43gSdSFUf8hng3cTdDh5i8Ej3JvADYCt6QjyDSq6He67q34Lid4BP7fqHVLCe6rpQTXcyDBv50NCTr6VomSydpvDbANaBmzvrTX1oqaDafWeoigg8Qwdy8EcPd/A/8u3cHMphMkmz8BPkhDjGnl7rdHf480or0E/ICde/eV0j0WGAF0Z8cIAbj7u8C7pd/N7COCURbOpn4nk5W5jwojny3ZuQWpFfBVyiKr5SItbNcBv3D390rXu/sUgg6XpT40s2MI7rV6lUxW4ne67q0YZtaO4H3Jv7r7ltL17r6QIBkv9YGZHQacZWYXexV7vusxdy3n7tsJXsjuHrNpr8jn0pqNqPYxs2sJejye4+6TE+0X6cD0HbBHTcVWyy2OfO4BLAH2sMgYnRGl99iSGo2q9rmcoFUoP9EOkV/Sy9G9VZn7qPSz7HeamTUleAxZL+81MzuUYGiX0e5+fyUOWYzutXi/03Vv7eoigidRj1Ri38UEneXiDclULiWTdcMLwGExA6+OIBgaqL7+BQHKxpq8E7g+tme3mbWM+b4v0ByYWXMR1h6x14PgsQYE1+MFgqEjogd0H0nQC7Le9l42sx7AccBDUY8d491bbYGe1NN7K0pl7qNXgZLI+lJHE/wj9kINxFirmFlngsePbxGMAxi7vUXM92zgQOrhvVaJ3+m6t6JEXtG5BHgjNlcws5zIuLDRDgFWuPvqqtalx9x1w0ME/7t40cz+RvCoRq3vAAAFxElEQVRYsh/BILb1VuRdv+eAj4HJZnZ41OYlwCwz+xfBL+lmwO+B1QSD2tYrZnYKwbtFdxIM8Nub4BHZeIKhM7IIBsV/0Mx+RfA/+V8AD7j72vREXStcQJAIPV66wsyaEdxbE4AXge0Ej4uyCAY6r8/eooL7yN3XmNkjwNVm9jXBu1x3EXQ6eSc9YaeHBbNPvUowdvADwKFRfbiKCFrE3zezIoJ78Dvg5wTvVV5U0/GmUyTpLvd3uu6tXRxF8NrJ5XG2/QvY08z+j+D1gDMJGhh+mlRN6R5wU0ulBybtT/CO1lpgMnB2umNK98KOwXzjLScBRxD80ikkeAT5H2CvdMedxuv1c+AjYD3B+0N/BZpHbW8DPEvwbts8gsQoK91xp/maNQD6xFmfB7xMMO7kKoLZJg5Kd7xpuD5diRkkuTL3ETsS7y8j+z1DZFKGTF+ir1nUz/GWeyL7dyH4h7+AoFfyh8CR6T6PdNxflfmdrntrl7+PfeP9Ho/8PX0YmBv5N+ET4PRk67ZIoSIiIiIiVaZ3JkVEREQkaUomRURERCRpSiZFREREJGlKJkVEREQkaUomRURERCRpSiZFREREJGlKJkVEREQkaUomRURERCRpSiZFROo4M2tQG8sSkfpByaSISBLMrIeZXWhm2WmO4wBgnpm1CaGs5sAcMxtQ/chEpL5QMikikpw/AY8Cw9IVgJk1BJ4CPnX3NZF1eWZ2dTLlufsG4GPgqXQnySJSdyiZFBGpgJm1MbOmMavvAn4PfJSGkEr9HOgNXBe17lTg3mqUeQPQDbiiGmWISD2iZFJEpBxmNhRYDRwSvd7dp7n7n9y9OE1xNQJuAp5296/DKtfdVwJjgN+ZWZOwyhWRzKVkUkSkbhoOtAeeT0HZzwOtgeNSULaIZBglkyIiCZjZdOCDyNcPzMzN7KjItlGR712j9n/fzO4zs9PN7FMzW25mf4lsu9TMZprZKjO7OU5dB5lZvpmti+x3TQXhnQRsBSYkiL2bmb0WKW+amQ2M2V4a64/MbJaZRT+u/xjYDJxYQQwiIjRMdwAiIrXYBcBg4H7gSmA6MKOCY04EDgf+BvQBbjCzfYBWwG0ErX03mdl77j4OwMx6ESSFrwFnAfsDt5tZY3f/c4J6ugOF5Txmfx14JrLcBDwL7BWzzxDgMOB3wJLSle6+2cy+idQhIlIuJZMiIgm4+wwzaxn5OtPdK9PZpikwIvLuIWb2U6AncLC7bzSzN4HzgUHAuMgxvwbWAee6+xbgzchQP9eb2d3uvjVOPXsAa8qJ40p3fz8SQ3vgb2aW6+6FUfscCBzt7vlxjl8dqUNEpFx6zC0iEq45pYlkxLfAZHffCODu30bWR/cOHwx8Bmw3swaRgcMnAW2AzgnqaQxsSRREaSIZFUNsnQAFwHsJiigB1AFHRCqklkkRkfTrDOxN8A5krI4ESV+sFQRD+FTHYnf3BNvaAt9Us3wRqQeUTIqIpN83wFLg2jjb5iU4ZjlwiJllufv2MIMxMwM6ELSWioiUS8mkiEj5SlsLd0thHZ8CRwLz3P27Sh7zHvAT4CBgasjx9AFakvgRuIhIGb0zKSJSvq8I3k28xMxOM7Mfp6COW4AWwOtmdrKZnWhmo83s/8o55mWCRHdECuIZAWwD/puCskUkwyiZFBEpR6T38+UEM+A8RgrGXnT3Lwh6d5dE6ngQ6AQ8VM4xq4F/ApeZWeOwYonMrHMF8HhMRyIRkbgs8bvXIiJSm5lZLvAlcLu73xlSmVcBfwR6u7s64IhIhZRMiojUYWZ2LkFLZhd3L2/cycqU1RxYBlzj7o+FEZ+IZD4lkyIidZyZHejuFc3MU+NliUj9oGRSRERERJKmDjgiIiIikjQlkyIiIiKSNCWTIiIiIpI0JZMiIiIikjQlkyIiIiKSNCWTIiIiIpI0JZMiIiIikjQlkyIiIiKSNCWTIiIiIpI0JZMiIiIikrT/BxdswSycjvhKAAAAAElFTkSuQmCC\n",
      "text/plain": [
       "<Figure size 720x480 with 1 Axes>"
      ]
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
   "source": [
    "fig, ax = plt.subplots(dpi=120)  # Use dpi to change figure size in notebooks\n",
    "ax.axhline(mec, color=\"k\", linestyle=\"--\")  # Plots MEC minimum line\n",
    "ax.axhline(mtc, color=\"k\", linestyle=\"--\")  # Plots MTC maximum line\n",
    "ax.plot(simulation_df[\"time\"], simulation_df[\"serum\"].values, \"-\")\n",
    "ax.text(0, mec + 1, \"MEC\")\n",
    "ax.text(0, mtc - 1, \"MTC\")\n",
    "ax.set_ylim(bottom=0)\n",
    "ax.set_xlabel(\"time (hr)\")\n",
    "ax.set_ylabel(r\"serum concentration $(\\mu{}g/\\mathrm{mL})$\");"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Homework problem\n",
    "\n",
    "Module 2.5, project 3, page 55\n",
    "\n",
    "> In an attempt to raise the concentration of a drug in the sytem to the minimum effective concentration quickly, sometimes doctors give a patient a **loading dose**, which is an initial dosage that is much higher than the maintenance dosage. A loading dose for Dilantin is three doses - 400 mg, 300 mg, and 300 mg two hours apart. Twenty-four hours after the loading dose, normal dosage of 100 mg every 8 hours begins. Develop a model for this dosage regime."
   ]
  }
 ],
 "metadata": {
  "celltoolbar": "Slideshow",
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.5"
  },
  "varInspector": {
   "cols": {
    "lenName": 16,
    "lenType": 16,
    "lenVar": 40
   },
   "kernels_config": {
    "python": {
     "delete_cmd_postfix": "",
     "delete_cmd_prefix": "del ",
     "library": "var_list.py",
     "varRefreshCmd": "print(var_dic_list())"
    },
    "r": {
     "delete_cmd_postfix": ") ",
     "delete_cmd_prefix": "rm(",
     "library": "var_list.r",
     "varRefreshCmd": "cat(var_dic_list()) "
    }
   },
   "types_to_exclude": [
    "module",
    "function",
    "builtin_function_or_method",
    "instance",
    "_Feature"
   ],
   "window_display": false
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}