{ "cells": [ { "cell_type": "markdown", "id": "7b6d6733-2932-4126-8a7e-84dca21ad7a0", "metadata": {}, "source": [ "# Broadcasting operations" ] }, { "cell_type": "markdown", "id": "02ff4579-0699-42f2-93cf-62eaefbefc9e", "metadata": {}, "source": [ "## General principle\n", "\n", "If you have an $(m, n)$ matrix $A$ and apply operations like sub(-), add(+), mul(*) or div(/) by a vector $v$ the shape of $v$ will be grow vertically or horizontally like:\n", "\n", "$(1,n)$ -> $(m,n)$\n", "\n", "$(m,1)$ -> $(m,n)$" ] }, { "cell_type": "markdown", "id": "36bec1be-7bfe-45ed-ab0c-c168ccce945d", "metadata": {}, "source": [ "## Examples\n", "\n", "\n", "1) First\n", "\n", "$v = [1,2,3,4], x = 100$\n", "\n", "$v + x = $ vector + escalar\n", "\n", "Python turns the 100 into a vector with the same shape of $v$, like:\n", "\n", "$v = [1,2,3,4] + [100, 100, 100, 100]$\n", "\n", "$v = [101, 102, 103, 104]$\n", "\n", "\n", "2) Second\n", "\n", "$v_1 = [[1,2,3],[4,5,6]]$ + $v_2 = [100, 200, 300]$\n", "\n", "$v_2$ will become like: $[[100, 200, 300], [100, 200, 300]]$\n", "\n", "3) Third\n", "\n", "$v_1 = [[1,2,3],[4,5,6]]$ + $v2 = [[100],[200]]$\n", "\n", "$v_2$ will become like: $[[100, 100, 100], [200, 200, 200]]$\n" ] }, { "cell_type": "markdown", "id": "7d7a0fd7-4f80-4317-b073-22d9a1d36e68", "metadata": {}, "source": [ "## In practice" ] }, { "cell_type": "code", "execution_count": 2, "id": "a3a78e87-8c23-45ee-8f3a-efae06f9d79b", "metadata": {}, "outputs": [], "source": [ "import numpy as np;" ] }, { "cell_type": "code", "execution_count": 43, "id": "be8ae231-dd05-4712-a780-6c0611109de1", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[ 56. 0. 4.4 68. ]\n", " [ 1.2 104. 52. 8. ]\n", " [ 1.8 135. 99. 0.9]]\n" ] } ], "source": [ "A = np.array(\n", " [[56.0, 0.0, 4.4, 68.0],\n", " [1.2, 104.0, 52.0, 8.0],\n", " [1.8, 135.0, 99.0, 0.9]]\n", ")\n", "print(A)" ] }, { "cell_type": "code", "execution_count": 45, "id": "8bc8b58f-0621-4e4a-a78c-9063690bc37e", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 59. , 239. , 155.4, 76.9])" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sum = A.sum(axis = 0)\n", "sum" ] }, { "cell_type": "code", "execution_count": 47, "id": "de094d9e-7a3d-4401-9773-ba565738cbb7", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0.94915254, 0. , 0.02831403, 0.88426528],\n", " [0.02033898, 0.43514644, 0.33462033, 0.10403121],\n", " [0.03050847, 0.56485356, 0.63706564, 0.01170351]])" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "A/sum" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.13" } }, "nbformat": 4, "nbformat_minor": 5 }