{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "%pylab is deprecated, use %matplotlib inline and import the required libraries.\n", "Populating the interactive namespace from numpy and matplotlib\n" ] } ], "source": [ "import numpy\n", "import scipy # necessary for some reason to not have import sciy within kimmy fail\n", "import micropip\n", "await micropip.install(\"kimmy\")\n", "import kimmy\n", "import astropy.units as u\n", "import warnings\n", "warnings.simplefilter('ignore')\n", "import matplotlib\n", "%pylab inline" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# ``kimmy``: example notebook\n", "\n", "This notebook briefly covers some of the basic use of ``kimmy``, a python implementation of the simple chemical evolution model of [Weinberg et al. (2017)](http://adsabs.harvard.edu/abs/2017ApJ...837..183W).\n", "\n", "Currently, only a simple one-zone chemical evolution model is implemented, with default parameters reflecting those describing the evolution of oxygen and iron. However, the code is flexible and given the correct yield parameters, could be used to do other elements (each element is allowed to have a prompt, SN II, component and a delayed, SN Ia, component). To setup the default model, do" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "oz= kimmy.OneZone()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To print the parameters of the default mode, simply print this object, which produces a nicely formatted list of parameters" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "eta :\t2.5\n", "frac_Ia_2 :\t0.522\n", "mCC_Fe :\t0.0012\n", "mCC_O :\t0.015\n", "mIa_Fe :\t0.0017\n", "mIa_O :\t0.0\n", "min_dt_Ia :\t0.15 Gyr\n", "r :\t0.4\n", "sfh :\texp\n", "solar_Fe :\t7.47\n", "solar_O :\t8.69\n", "tau_Ia :\t1.5 Gyr\n", "tau_Ia_2 :\tNone\n", "tau_SFE :\t1.0 Gyr\n", "tau_SFH :\t6.0 Gyr\n" ] } ], "source": [ "print(oz)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The code can currently compute the time evolution of the elements and their distribution at the present time (assumed to be 12.5 Gyr after the start of star formation). Parameters can be changed simply by setting their value, which will directly update the model (at any time you can ``print(oz)`` to know which parameters you are using and you can use ``oz.initial()`` to go back to the parameters that you used to initialize the object). \n", "\n", "For example, we can reproduce Fig. 2 in [Weinberg et al. (2017)](http://adsabs.harvard.edu/abs/2017ApJ...837..183W):" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEKCAYAAAAxXHOuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABFsUlEQVR4nO3dd1zV1f/A8ddhbxkCAgq4BWeCqFmamjMbjhyVuUrtm81v35Z961v92ntYZuUss8zKhtrQyjR3kQM3ogwRVJbscX5/XNyMC1z4XOD9fDzuozvO/Zw31xtvzud8znkrrTVCCCGEpdgYHYAQQoiGRRKLEEIIi5LEIoQQwqIksQghhLAoSSxCCCEsShKLEEIIi7IzOoDa1rRpUx0aGmp0GEIIUa/s2LHjpNbatzrvbfCJJTQ0lO3btxsdhhBC1CtKqaPVfa+cChNCCGFRkliEEEJYlCQWIYQQFiWJRQghhEVJYhFCCGFRkliEEEJYlCQWIYQQFtXg17Hknslg54bvy2+gzv5XXfacuqjBpW+4tK264Cl16UEu7/Zcv5XkdlXOAS7oX13UySU/R7nvPxufKuvZC54oO75zfZ59uax+bGzA2Qllb3/B+2zK+0gu6UBddFeV+66yn7/spzLjcwQFDq7n2lb0Dkc7W5zsbcs4jMLZ3hlHW8eK+xOiAWvwiUXFJWB/x3+MDqPeMLfsW1XKwxXYQq4j5Dqc/2+WiyLNFdLcFOlukOZmup/aBHKczEo9Vs1O2eNq74aHoztu9q64O7jj4+SDv6s/fi5++Ln44e/iTzPXZvi5+GFT2R8YQtQjDT6x5Ho6svPG9ua/QZf7oIy2Nay+ae77y21Ww/gq7b7iBurcy2W3UyUau4Ji7PKLz/3XOb8Y94JiWpwqxPFoIQ55xZe9L9/ZjhwvR7K9nMj2cuSMjzOZfs6c8XGmxO7CX8DlxFeVf8MLWig09kXZOBRlYV+UhWNhJo6Fmeda5Dl4kukSymm3NpxyCia7yIbcgiJyCorJLSgmO7+I9NwCiskn3yaPHNs80uzycXMuxskxg0O2CWQVnaSwpOCi/p3tnAnxCCHUI5TQJqG09GhJB58OhLiHYGtz+ahICGunGnpp4sjISC1bulivkrw8ik6epCgllaKUFAoTEyg4eoyC+GMUHoun8PhxKCkxNba1xSE0FMd2bXEKC8e5SxecOnXC1s219gLMy4Tj/0DiDkjYBrG/QcEZsHeFdoOh+yRo2c902g8oLtEcz8jl2Kkcjp7O4eCJM+xOzGBPUgbZBcWApolbEV2CoXVAEU09s8nWycRlxhGXEUdSdhIl2vTzOts5096rPR28O9DZtzMR/hEEugaiKjutJ4QFKKV2aK0jq/Vea0osSqmhwFuALfCR1vrFctr1ADYB47XWX1Z0TEks9ZsuKKDg6FHyDx4k78AB8g8eIn//fgoTEkwNbGxwbNMG565dcOrSBeeuXXFs0wZlU0unloryIe4P2LcK9nwFuWng3Qoip0HkFNMcTRmKSzRHTmbzT3w6m2NP8efhUySm5wIQ4uPC4HB/BndsRqcgV45lxbHv9D72nd5HzKkY9p3eR05RDgDNXJsR4R9x7tbSo6UkGlErGkRiUUrZAgeAQUACsA2YoLWOKaPdz0AeMF8SS+NUlJZG3q5d5P6zk9ydpltJRgYAtl5euPTsiWuvXrj26ol9SEjt/PItzIO938L2+XBsE7g0hT73Qo87yk0wZ2mtiT+dyx+HUvk55gR/HjpFQXEJvu6O3NQtkFHdmxMW4AFAiS7hUPohdpzYce52MvckAD5OPlzd/Gr6Nu9L74DeuDm4Wf7nFI1SQ0ksvYH/aa2HlD5+DEBr/cIl7e4HCoEewPeSWASYflEXxMWRG/0POZs3k715M0UnTgBgFxCAa69euPXri+tVV2HrVgu/fI9tgd9fhMPrwD0QBj8LnUZXfjVaqay8Qn7bn8p3/yTx6/4UCos1YQEe3N47hJu6BeHscH6uRWvNsaxj7Dixg81Jm9mQtIGsgizsbOyI8I+gX/N+DAgeQJBbkOV/TtFoNJTEMgYYqrW+o/TxRKCn1nrWBW2CgKVAf2A+5SQWpdR0YDpAcHBwxNGj1d79WdRTZxONKclsIXvzZtOIxt4e1x49cOvfH7f+/XFobuFfvkc3wZpHTPMyIVfBDW+DT+sqHeJ0dgHf70zis63x7D2eiaeLPeN7BHN77xACPZ0va19UUkR0SjTrE9azPmE9hzMOA9DFtwvDQocxJHQIvi7VKqshGrHGlFiWA69prTcrpRYiIxZhJl1URG50NFnrfuXMr79ScOQIAI5hYXgMG4bH8GE4NG9umc5KiuGvxfDzU1BSaBq9RE4ze/RyLmat2XrkNAs2xvFTTDJKKa7vEsC9A9vSyrf8UVd8Vjw/xv3ImiNr2J+2H4WiR7MejGg1giGhQ3Cxd6npTygagYaSWCo9FaaUOsL5dWtNgRxgutb6m/KOK4lFlCX/yBHOrPuVzJ9+JO+fnQA4de5sSjLXDcfe37/mnWQkwrezTKfHwm6Am94DR/dqHSr+dA6LN8XxyeZj5BcVM/KK5tw7sA0hPhXP5cSmx7I6bjWrj6zmaOZRXO1dGdZyGGPajiHcJ1wm/kW5GkpiscM0eT8QSMQ0eX+L1npPOe0XIiMWYQEFCYlkrVlN5qrV5MXEgI0Nrlf1wXPUKNwGDMDGwaH6B9caNr0LPz8JTdvBuE+haZtqHy41K58Pfj/Mks1HKSrRjO/Rgn8Pbo+3a8Uxaq35O+VvVhxcwU9xP5FXnEcH7w7c0uEWhrcaLjsFiMs0iMQCoJQaDryJ6XLj+Vrr55RSMwG01nMvabsQSSzCwvKPHCHj22/J+PobipKTsW3SBI8bbsBz9CicOnSo/oFjf4cvp0BxIdy8ENoMrFGcKZl5zPn1EJ9sOYargy3/HtyeW3sGY2db+WXWmQWZrI5dzecHPudg2kG8nbwZ3348Y9uPxcfZp0ZxiYajwSSW2iCJRVSHLi4m+89NpH+1gjO/rEUXFuLUqRNet92Kx/Dh1RvFpMfDZ+MhdT+M/hA6jqxxnAdPZPH0dzFsOHSS9v7uPD+qExEh3ma9V2vNluQtLN6zmD8S/8DBxoHrW1/PxPCJtPas2gUHouGRxFIBSSyiporS0sj8/gfSli2j4PBhbL298Rw3Fq/x46s+F5ObDkvHQfwWGPGGaVFlDWmt+SnmBM98F0NSRi5TrmzJQ0Pa4eJg/o5NsemxLNm7hO8Of0dBcQFDQocws+tMSTCNmCSWCkhiEZaitSZn0yZOf/IpZ379FWxt8Rg8CO8pU3Du3Nn8AxXkwBe3w6GfYcSbFkkuAGfyi3h5zT4WbzpKsLcLr4zpQs9WVTu1dTrvNEtilrB071Jyi3IZGjqUmV1n0sqzlUViFPWHJJYKSGIRtaEgPp60pZ+R/uWXlGRl4dKrF02n34lL797mXWlVVACf3woHf4ZR86DLWIvFtjn2FI+s2En86RxmDWjLvQPamDX3cqG0vDQW7VnE0n1LySvKY1jLYdzb/V5ZdNmISGKpgCQWUZuKz2ST/vnnnF64kKLUVJw6dsTnzjtxH3QtyraSnYkLc+HTm+HonzD+U2g/zGJxnckv4qmVe1jxVwI9Qr14a/wVZS6urExaXhoL9yxk6d6lFOtibgu7jTu63IGHg4fFYhXWSRJLBSSxiLpQUlBAxsqVnP7oYwqOHsWhTWt8Z92D++BBFW+ImZ8Fi643TehPWQ2B3Swa1zd/JzL761042tvy3q3d6VXFU2NnJWcn8+7f7/Lt4W9p4tiEmV1nMrb9WOxt7Ct/s6iXJLFUQBKLqEu6uJisH38k9d05FMTG4tihA7733otb/2vKP0WWdQI+GgglRXDnOvAItGhMsalnuHPxdo6eyuHJ68OZ2Kv6m3LuPbWX17a/xpbkLbRq0oonej1Bj2Y9LBqvsA6SWCogiUUYQRcXk/n996TOeY/CY8dw6tIF33vuwfWqPmX/Uk/eDfOHgE8bmPoj2DtZNJ7MvEIeWBbN2n0pjItswTM3dcTRrnpFxLTW/J7wOy9ufZHEM4lc1+o6Hop8iKbOTS0aszCWJJYKSGIRRtKFhWSsXEnqe+9RlHQcl9698H/kkbIXW+77AZbdYtpXbMTrFo+lpETzxi8HeGfdIfq08WHubRG4O1X/VFZuUS4f7fqIBbsX4GjryH3d72Ns+7FSZrmBkMRSAUkswhroggLSln3OyTlzKM7MpMmokfjeex/2/n4XN/zpCfjzHRj1EXS5uVZiWbEjgYdX7KRDM3cWTOmBn3vNRkdxGXE8t+U5Nh/fTKR/JM9c+QwtPFpYKFphFEksFZDEIqxJcUYGJ+d+wOlPPkHZ2eEzbRo+06Zi41x6xVZxoWky//hOmP4b+LarlTh+3Z/Cvz75i6buDiye2pOWTWtW3llrzTeHvuHlbS9TrIu5r/t9TOgwQUYv9ZgklgpIYhHWqCA+npTXXidrzRrsAwPxn/04bgMGmOZfMpNg7lXQpAXc8QvY1s6VV9Hx6UxduA1bG8Vnd/aijV/NC6AlZyfz9Kan2ZC4gQj/CJ7t8ywt3GX0Uh/VJLHInxNCGMChRQuav/kGIZ8swcbVlYS7Z5Ew8y4K4uNNV4WNeBOOR8P6V2sthm4tPPl8ei+0hvHzNnMoJavGx2zm2oz3Br7Hs32e5cDpA9z83c18H/u9BaIV9YkkFiEM5BIZScuvVuD3yCPkbNtG7IjrSZ0zh5LWQ6DLOFj/CiT+VWv9t/V3Z9n0XihlSi4HTtQ8uSiluKnNTay4YQXtvdrz2B+P8fgfj5NdmG2BiEV9IIlFCIMpe3t8pkym1epVuA8cwMl33iX2hhvI9h0Pbv7w9UzTFjC1pI2fG8um98JGKW77aAvHTuVY5LgBbgF8PORj/tXtX/xw5Adu/u5mdp/cbZFjC+smiUUIK2Hv70/Q668TPP9j0HDszrs5Ht+H4uMH4M+3arXv1r5ufHpHTwqKS5g4fwspWXkWOa6djR13db2LBUMWUFRSxMTVE/li/xc09Lndxk4SixBWxvXKK2m18hu8p0wh/adNxP4Swpmlb8Kpw7Xab1t/dxZM7kFqVj6T5m8jI7fQYsfu7t+d5dcvp1dAL57d/Cz/3fhf8oosk7yE9ZHEIoQVsnF2xv+Rhwld+ik23gHE/+ZB0sxbKE5Pr9V+rwj2Yu5tERxKyeKORdvIKyy22LGbODZhzsA5zOw6k5WHV3L76ttJPJNoseML6yGJRQgr5tytGy1XfovPDT3J2J1B7HVDyN68pVb77NvOlzfGdWNbXBqPrNhp0dNWNsqGu7vdzbsD3iUhK4Fx349jU9Imix1fWAdJLEJYORsHB/xe/JjQ8V7YFGVybMoUTrz8CiUFtTehP6JLIP8Z0p6V0Um8s+6QxY/fr0U/lo1Yhq+zL3f9chdfHvjS4n0I40hiEaI+sLHFefJrtBx0HM+r23F6/nzixo4j/+DBWuvyX9e0ZtQVQbz+8wG+35lk8eMHewSzZNgSegf25ulNT/Pa9tcoLrHcqTdhHEksQtQXIVdi0/l6AkK20Py1ZylKSeHI6DGcXvJJrVxlpZTihdGdiQzx4t9f/MPuxAyL9+Hm4MY7A95hfPvxLNyzkAd/e5CcQstc7iyMI4lFiPpk0DNQUoR74TpafbsSl969OPHccyTedz/FWTVf3HgpRztbPpgYgberA3d9uoOMHMtdKXaWnY0ds3vN5tGoR/kt4Tem/jiV03mnLd6PqDuSWISoT7xbQs+ZEL0Uu4IEWsydi9/DD5O1di1HRo8hLybG4l36uDky59buJGfk8eAX0ZSU1M4alFvDbuXt/m9zOP0wk1ZPIumM5U+/ibohiUWI+qbvQ+DsBWufRimFz9QphCxZjM7PJ278BNKWfW7xU2Pdg7144rpw1u5L4f3fa289Tb8W/Zg3eB6n8k4xcfVEDqfX7todUTusKrEopYYqpfYrpQ4ppR4t4/UblVI7lVLRSqntSqmrjIhTCEM5NYGrHoDD6yBuIwAu3bvT8uuvcImKIvl//yPpPw9Tkm3Zvblu7x3CDV0Dee2n/Ww8dNKix77QFX5XsGDIAkp0CZPWTGJn6s5a60vUDqtJLEopW2AOMAwIByYopcIvabYW6Kq17gZMBT6q0yCFsBZRd4JbM1j3LJSOTuy8vWkx7wN877+PzFWriBs/wbRbsoUopXhhVGdaNnXlwS+iScuuvcud23u3Z/Gwxbjbu3PHT3ew+fjmWutLWJ7VJBYgCjiktY7VWhcAy4AbL2ygtT6jz4/xXQHZcEg0TvbOplNixzbBobXnnlY2NjSdOZPgjz6kMCWFuDE3k73JcgsQXR3teGv8FZzOLuCxr3bV6p5fLdxbsGT4Epq7N2fW2ln8mfRnrfUlLMuaEksQcOGfVwmlz11EKTVSKbUP+AHTqEWIxqn7JPAMvmjUcpbrlVfScvkX2Pn5cuyOOzm9eLHFkkCnoCb8e3B71uxJZvn2BIscszxNnZvy8eCPCfEI4Z6197AxcWOt9icsw5oSi1m01l9rrTsANwHPltVGKTW9dA5me2pqap3GJ0SdsXOAfo+aCoLtu7yYlkNwMCGfLcN9QH9OPP8Cxx+fTUl+vkW6vvPqVvRq5c3/vttD3MnarbPi5eTFx4M/ppVnK+5ddy8bEjfUan+i5qwpsSQCF9YwbV76XJm01uuBVkqppmW8Nk9rHam1jvT19bV8pEJYiy7jwLs1/P7yZaMWAFs3V4Leeoums2aR8fXXHJs0maLTNV8jYmujeH1sN+xsFPd/Hk1RcUmNj1kRTydPPhz0Ia09W0tyqQesKbFsA9oqpVoqpRyA8cC3FzZQSrVRSqnS+90BR+BUnUcqhLWwtTNdIZa8Ew79UmYTZWOD76y7CXrrLfL27iVu3HjyY4/UuOtAT2eevakT0fHpzN9Y8+NVxtPJkw8Hf0gbzzbc/+v9bE/eXut9iuqxmsSitS4CZgE/AnuBL7TWe5RSM5VSM0ubjQZ2K6WiMV1BNk5LxSDR2HUZBx7NYf2rZY5azvIYMpiQxYsoyc4mbsIEcrZtq3HXN3QN5Nowf1776QBHavmUGJi23p87aC6BboHMWjeLPaf21HqfoupUQ/+9HBkZqbdvl79sRAO3ZR6s/g9M/gFCK17eVRAfT/z0GRQmJBDw/PM0uX5Ejbo+kZnHta//TniAB5/d2QsbG1Wj45kjOTuZSasnkVOUw8KhC2nt2brW+2xslFI7tNaR1Xmv1YxYhBA10H0iuPqZRi2VcGjRgtDPluLcrRtJ//kPJ+d+UKMrxvw9nHjiujC2HDnN0q3Hqn2cqmjm2owPB3+InY0d03+aTkJW7V6dJqpGEosQDYG9M/S+G2J/hcQdlTa39fSkxccf4XHD9aS++SYnnn8BXVL9CfixkS24qk1TXly9j+SMuik5HOwRzAeDPiCvOI8ZP88gLS+tTvoVlZPEIkRD0WMaOHnC+tfMam7j4EDgiy/iPWkSaUuWkPTIo+jC6u1erJTi+ZGdKSwu4f9+sPxGmOVp59WOOQPncCLnBPesu4e8orpJaqJikliEaCgc3aHnDNi/Ck6aV/VR2djg9+gj+D7wAJnffUfCrHsoyc2tVvfBPi7865o2fL/zeK3uJXapbn7deOHqF9iZupNH/3hUioVZAUksQjQkPe4EWwfYPMfstyilaDpjOs2efpoz69dz7I47Kc7MrFb3M/q1Itjbhf+u3E1BUe2ubbnQoJBB/KfHf1h7bC2vbq98nknULkksQjQkbr7QdRxEL4Xsqo0avMaNJeiN18nduZOjE2+n6GTVRx1O9rY8fUNHYlOz+WhDbJXfXxMTwydyW9htfLL3E5bELKnTvsXFJLEI0dD0ngVFebDt4yq/1WPoUFrMfZ+Co0c5OmkyhSkpVT5G/w5+DA735521h0hMr95ptep6KPIhrg2+lle2vcL6hPV12rc4TxKLEA2Nb3toOxi2fQiFVZ/MduvThxbzPqDw+HGO3T6JwhMnqnyM/44IR6N5rg4n8gFsbWx5/urn6eDdgUfWP0Jset2OmoSJJBYhGqLesyA7FXZ+Xq23u0ZFEfzhPIpSUjg68XYKjx+v0vtbeLswo29rVu1KZntc3davd7Zz5q3+b+Fg68C9v95LRn5GnfYvJLEI0TC17AvNOsOmOVDN9SkuEREEz/+Y4tOnOTrxdgoSyt0Ttkwz+rXCz92R//thb63WbSlLgFsAb1zzBolnEnlk/SNypVgdk8QiREOkFPS+B07uL3dzSnM4d+tG8IL5FGdmcvT2iRQkmL/C3cXBjoeGtCc6Pp3vdlZtxGMJ3f27M7vnbDYmbeSNHW/Uef+NmSQWIRqqTqPAPRA2vVujwzh37kzwgvmUZOdwbPKUKs25jO7enLAAD15avY+8wrofNYxpN4bx7cezKGYRP8T+UOf9N1aSWIRoqGztIeoOOPI7pOyr0aGcO3Yk+KMPKU5L49jkKWZfimxro3jiujAS03NZ+GdcjWKoroejHqa7X3ee3vS0TObXEUksQjRk3SeDrSNsnVfjQzl37my6Wiw5mWNTp1Gcnm7W+/q0acqADn7MWXeI09kFNY6jquxt7Hm578s42znz4G8PklOYU+cxNDaSWIRoyFx9oPMY+GcZ5NX86iiXiAhazHmXgrg40wr9rCyz3vfYsA5kFxQx9/fDNY6hOvxd/Xnx6heJzYjl2c3P1vnFBI2NJBYhGrqo6VCYDX9/apHDuV55JUFvv0Xe/v3Ez5hJSU7lI4C2/u7cdEUQi/6M40SmMRtF9g7szV3d7uL72O/58uCXhsTQWEhiEaKhC+wGLXqaFkzWYGv8C7lfcw1Br75KbnQ0Cffdb9auyPcPbEdxieaddQctEkN1zOgygz6BfXhxy4vsPbXXsDgaOkksQjQGUdPhdGyNLj2+lMeQwTR7+n9k//EHx594otJ6LsE+Lozr0YJlW+M5dsqYeQ4bZcMLV7+Ap5MnD69/WOZbaokkFiEag/Abwa0ZbP3Aoof1uvlmfO+7l4yV35LyWuV1YO4Z0BZbG8Wbaw9YNI6q8HLy4oWrXuBo5lFe3vayYXE0ZJJYhGgMbO0hcqppxGJmrRZz+cycidctt3D64/mcmr+gwrbNmjhxe+8Qvvk7kUMp5k3814aogCimdJrCioMrWHt0rWFxNFSSWIRoLCImg429aa7FgpRS+M9+HPchQ0h5+WUyvv22wvZ3XdMGZ3tbXv/ZuFELwKxuswj3CeepTU9xIrvqG22K8kliEaKxcPeHjiNNV4flW3a0oGxtCXz5JVyiokh6fDZnNmwst623qwNTr2rJql3JHDhh3KjF3tael65+iYLiAmZvmE2JrrvCZA2dJBYhGpOeM6Agy7SuxcJsHB1pPuddHFu3JvG++8g7UP6IZGqflrg62PLuOsuelquq0CahPBr1KFuSt7B4z2JDY2lIJLEI0Zg0j4SAbqYiYLWwSNDW3Z0Wc9/HxsWF+JkzKUpNLbOdl6sDt/UO4fudScSmnrF4HFUxss1IBrQYwDt/vyNbvliIJBYhGpvIqZC6F45tqpXD2wcE0Pz99ylOSyd+1ixK8speEHnn1a1wsLNhzq/GrMY/SynFf3v/F2d7Z/678b+yxb4FWFViUUoNVUrtV0odUko9Wsbrtyqldiqldiml/lRKdTUiTiHqtc5jwLFJtUoXm8u5U0eCXnmZvJ27SHr0sTLXuDR1c2RCVDDfRCcatq7lXCzOTXk86nF2ntzJophFhsbSEFhNYlFK2QJzgGFAODBBKRV+SbMjQD+tdWfgWaDmO+sJ0dg4uELX8RCzEs6UfarKEtyvvRa/hx4ia80aUt9+u8w2M/q2xlYp3v/d2LkWgGEth3Ft8LW8+/e7HE43dhRV31lNYgGigENa61itdQGwDLjxwgZa6z+11mmlDzcDzes4RiEahsipUFII0Z/UajfeU6fgefPNnJr7AenffHPZ682aODG2R3O+3JFAYnpurcZSGaUUs3vNxtXelSc2PEFRSZGh8dRn1pRYgoD4Cx4nlD5XnmnA6rJeUEpNV0ptV0ptTy1n8lCIRs2vA4RcBdsXWGz/sLIopWj25H9x6dWL5CefInfXrsvazOzXGq3hA4N2Pr5QU+emzO45m92ndrNwz0Kjw6m3rCmxmE0p1R9TYnmkrNe11vO01pFa60hfX9+6DU6I+iJyCqQfhcO1u/Jc2dsT9Mbr2DVtSsKsey4rEtbcy4VR3YP4Yns8p87k12os5hgSOoRrg6/l/ej3OZZ5zOhw6iVrSiyJQIsLHjcvfe4iSqkuwEfAjVrrU3UUmxANT9gN4OoL2+fXeld2Xl40n/MuxRkZpt2QCy4u+DW9byvyCktYvOlorcdSGaUUj/V8DHtbe6ndUk3WlFi2AW2VUi2VUg7AeOCivSGUUsHAV8BErbWx+0EIUd/ZOcAVE+HAGkiPr7x9DTmFhRHw3P+Ru2MHyS+8cNFrbfzcuTbMn8Wb4sgtMP5yXz8XP+7rfh+bj2/m+9jvjQ6n3rGaxKK1LgJmAT8Ce4EvtNZ7lFIzlVIzS5s9CfgA7ymlopVS2w0KV4iGIWKyaaHkX3VziW2T667D545ppH+2jLTlyy96bUa/VqTlFLJ8R+0nOXOMbTeWLk278Mq2V0jPSzc6nHrFahILgNZ6lda6nda6tdb6udLn5mqt55bev0Nr7aW17lZ6izQ2YiHqOa8QaDsI/loMxZUX67IE3wcewLVPH5KfeZbc6Ohzz0eGeNE92JMP/4ilqNj4fbtsbWx5sveTZBZk8vqO140Op16xqsQihDBA5DQ4cwL2/VAn3SlbW4JeexV7f38S7n+AojTTCgKlFDP6tSb+dC5r9iTXSSyVae/dnts73s7Xh75mW/I2o8OpNySxCNHYtR0ETYJhe+2txL+UracnQW++SfGpUyQ9/Mi5lfmDwvxp1dSVD36PtZpJ87u63kWQWxDPbn6Wwjoa1dV3kliEaOxsbCFiEhxZDyfrrh69c6eO+M9+nOw//uDUPFONGBsbxZ19W7ErMYNNsdZx0aeznTOPRT3GkYwjLN231Ohw6gVJLEII6H472NjVyaXHF/IcNw6P664j9e23yd68BYCRVwTR1M2RD363np2G+7Xox9VBV/P+P++TmiOLrisjiUUIAW5+EHY9RH8KhXW3tYpSioBnnsYhNJTEhx6iKDUVJ3tbpvQJ5fcDqRw0sBDYpR6JeoSC4gLe/OtNo0OxepUmFqWUtxk3zzqIVQhRmyKnQV4G7Pm6Tru1cXUl6M03KDlzhsR/P4QuLmZCVDCOdjYs+DOuTmOpSIhHCLeH3863h78lOiXa6HCsmjkjliRgO7CjgtvO2gpQCFFHQq8Cn7am/cPqmFO7djR76ilytm7l5Ptz8XZ1YOQVQXz1VwLpOQWVH6COTO8yHT9nP57f8rzUbamAOYllr9a6lda6ZXk3wDpm2YQQ1aeUacFkwlY4safOu/cceRMeN1zPyffeI+evv5jSpyV5hSV8ttU6FkwCuNi78GDkg+w9vZevDn1ldDhWy5zE0ttCbYQQ1q7rBLB1gB0LDem+2ZNPYh8YSNJD/6GNK/Rp48PiTXEUWsGCybOGtxxOd7/uvPPXO2QVWM8ckDWpNLForcuuK1rFNkKIesDVB8JvhH8+h4K6r+po6+ZG0KuvUHjiBMn/e5qpV4ZyPCOPNbutY8EkmC44eDjqYdLy0/h4V92t/alPzL4qTJncppR6svRxsFIqqvZCE0IYImIK5GfAHmNO9Th364bvrLvJ/OEHuh/YQqiPCws2HjEklvJ09OnIiFYj+GTvJxw/c9zocKxOVS43fg/TKa8JpY+zMJUSFkI0JCFXQtN2hp0OA/CZPh3nyAhSnn2WGW0c+etYOtHx6YbFU5Z7r7gXrTXv/P2O0aFYnaoklp5a67uBPIDSEsEOtRKVEMI45ybxt0HybmNCsLUl6OWXwcaGqKVv4WmvrG7UEuAWwMTwiXwX+x0xp2KMDseqVCWxFCqlbAENoJTyBaxnRk0IYTldJ4CtI+yo+0uPz7IPDCTgmacp2LWT2Vnb+WHncZIzrGs6d1rnaXg5evHq9letZm8za1CVxPI28DXgp5R6DtgAPF8rUQkhjOXiDR1vgp1fQEG2YWF4DBuGx/DhdPplOcHpiSzZHGdYLGVxd3BnZteZbEvexvqE9UaHYzXMWXkfDKC1/hR4GHgBOA7cpLVeXtF7hRD1WMRkyM+E3cau1/D/7xPYennyv93LWb7pCPlF1rUw8eb2NxPiEcLrO16nqKTI6HCsgjkjlm8uuP+c1nqO1vpdrfXeWopJCGENgntD0/aGng4DsPPyIuDpZ/BNiWfIX6tYvct6Lj0GsLex5/7u9xObEct3h78zOhyrYE5iURfcb1VbgQghrIxSEDkFEnfAcWN3bXIf0B+Pm25i3MF1rP3mV0NjKcvA4IF09OnI3H/mUlBsPVvQGMWcxKLLuS+EaOi6jAM7J0MvPT6r2eOPUeTpxYhVH7L7SIrR4VxEKcW9V9xLUnYSXx740uhwDGdOYumqlMpUSmUBXUrvZyqlspRSmbUdoBDCQC7eEH6TaRI//4yhodh6eBDwf/9HcFYKe5971dBYytI7sDeR/pHM2zmPnMK637XAmpizpYut1tpDa+2utbYrvX/2sUddBCmEMFDkFCjIgt0rjI4E/4HXcKDHQMI2fE/q9mijw7mIUop7u9/LqbxTfLbvM6PDMZQ5V4X1VkqpytoJIRqoFj3BN8wqTocBtP3vY6Q7uRP32Gx0oXXVoL/C7wquDrqa+bvnN+oNKs05FXY78JdSaplSarJSqlltByWEsCJnV+In/QXH/zE6GsLbBfHjwIm4xcdycsFCo8O5zD1X3ENmQSaL9iwyOhTDmHMq7C6t9RXA/wAvYKFSapNS6nmlVN/S1fhCiIasa+kkvgFFwMoSOXEkGwM6kfruuxQcPWp0OBcJ8wljcMhglsQsIS0vzehwDGH2ynut9T6t9Rta66HAAEwr728GtlgqGKXUUKXUfqXUIaXUo2W83qE0qeUrpR6yVL9CiEo4e0HHUbBrueGT+ABDOzVjWe9xFChbjj/5lNVtp3J3t7vJLcplccxio0MxRFW2zXdSSnVSSnUCtNZ6ldb6Hq11pCUCKR35zAGGAeHABKVU+CXNTgP3AtZ3SYgQDV3kFCg4A7uNv5zW0c6Wof0680HYdeRs2ULGV9ZVzbGVZyuGhA5h6d6lZORnGB1OnTNn8t5OKfUykAAsAhYD8Uqpl5VS9haMJQo4pLWO1VoXAMuAGy9soLVO0VpvA6xrxk6IxqB5D/ALt5rTYbf0DOan0ChOtgrnxEsvU5SaanRIF5neZTo5RTksiVlidCh1zpwRyyuAN9BSax2hte4OtAY8sezIIQi4sLh1QulzQghroJSpCNjxaEj62+hoCPR05tqOAbwQfhMlubmceOUVo0O6SFuvtgwKGcTSvUvJLGhcS/7MSSwjgDu11ueundNaZwJ3AcNrK7CaUEpNV0ptV0ptT7Wyv2KEqNe6jAU7Z6u59Pj23qHE2HmTOvxmMr/9jpxt24wO6SLTu0wnqzCLpXuXGh1KnTJrSxddxsyY1roYy27xkgi0uOBx89LnqkxrPU9rHam1jvT19bVIcEIIwNkTOo2CXV9CvvHrNK5s7UMrX1feC7oK+8BAkp951qrWtnTw7kD/Fv1ZErOEMwXGX/RQV8xJLDFKqdsvfVIpdRuwz4KxbAPaKqVaKqUcgPHAtxY8vhDCEiJKJ/F3GV81QynFLVHBbE7KofCu+8k/eJDTn3xqdFgXmdF1BpkFmSzbv8zoUOqMOYllFnC3Uuo3pdRrpbffMV2ddZelAtFaF5X29SOwF/hCa71HKTVTKTUTQCnVTCmVADwIPKGUSlBKybYyQtSl5pHg38lqToeNiWiOg50NS+1Cce3Xl5PvvEPhCevZpLKjT0euDrqaRXsWNZo9xMxZIJmgte4JPAPEld6e0VpHaa2rdaqqgr5Waa3baa1ba62fK31urtZ6bun9ZK1189K9yjxL7zeuWTEhjHZ2Jf7xfyDxL6OjwdPFgRGdA/g6OgmP/zyKLioi5eWXjQ7rIjO7ziQ9P50v9n9hdCh1wpzLjf8C0Fqv01q/U3pbW1YbIUQj0WUs2LsYXgTsrFt6BnMmv4g1p23xufNOMn/4gezNm40O65wuvl3o2awnS2KWNIp6LeacCgtTSu2s4LYLaFrbgQohrIhTk9JJ/BWQZ/xJg4gQL9r7u7N06zF87rwD+xYtSP6//0MXWU+p4CmdppCSm8IPsT8YHUqtMyexdACur+A2AriytgIUQlipiKlQmG09k/g9g9mZkMGek/n4PfwfCg4dJn258bGddWXglXTw7sCCPQso0SVGh1OrzJljOWrGLaEughVCWJGg7uDf2XQ6zAr26hrZPQhne1uWbj2K+7XX4hIVRepbb1OcafyICkzJb0rHKRzJOMJv8b8ZHU6tMnuvMCGEuIhSEDkZkneZttQ3mIeTPdd3DWBldBJn8ovwf+xRijMyOPn+XKNDO2dw6GCC3IKYv3u+1W2caUmSWIQQ1dd5LNi7Ws3+Ybf2DCGnoJhvopNwCgujyehRnP7kEwri4owODQA7GzsmdZzEP6n/8FeK8cm4tkhiEUJUn5MHdB5tKlucZ/wuvl2aN6FjoAefbj6K1hq/++7Dxt6eE69Yz4boN7W5CS9HL+bvnm90KLVGEosQomYiJkNhjtVM4t/aM4R9yVn8HZ+Ona8vPjNmcGbtWqu5/NjZzpkJYRNYn7Ceg2kHjQ6nVkhiEULUTGB3aNYFti+0ikn8G7oF4uZox6ebjwHgPXkS9oGBnHjhRXRxscHRmUxoPwFnO2cW7llodCi1QhKLEKJmlDIVATuxCxJ3GB0Nbo523NgtkO93JpGRU4iNoyO+/36Q/P37yfjuO6PDA8DTyZORbUay6sgqUnMa3g7skliEEDXXaYzVTeLnF5Ww4i/TSgiPYcNwCg/n5NvvUFJgHSvfbwu7jeKS4ga5OaUkFiFEzTl5QOcxVjOJHx7oQbcWnny6xTSJr2xs8P33gxQmJZH+2WdGhwdAC48WXNPiGpbvX05eUZ7R4ViUJBYhhGVEToGiXNhpHRst3tozmMOp2Ww9choAtz59cOndi5NzP6D4jHXURpkYPpG0/DS+j/3e6FAsShKLEMIyAq+AgG6m02FWMIk/oksg7k52fLrl2Lnn/B78N8VpaZyebx2X+kb6R9LBuwOfxHzSoBZMSmIRQlhOxGRI2QMJ242OBGcHW0Z3b86a3cmcOpNveq5zJ9yHDuXUwkUUnTxpcISmy6Mnhk/kcMZhNiVtMjoci5HEIoSwnM5jwMHNaoqA3dozmILiEr7ccX47Q9/77kXn53PyvfcNjOy8oaFD8XHyYcneJUaHYjGSWIQQluPofn4SPzfd6Gho6+9OVKg3n209RkmJ6VSTY8uWeI4ZQ9oXX1AQH29whOBg68D4DuPZkLiB2PRYo8OxCEksQgjLiiidxLeClfgAt/YKJu5UDn8ePnXuuab/+hfK1tZqNqgc234sDjYOfLL3E6NDsQhJLPVcfHw8/fv3Jzw8nI4dO/LWW2+V2zY0NJTOnTvTrVs3IiMj6zDKsk2dOhU/Pz86depU5usnTpzglltuoVWrVkRERNC7d2++/vrrOo5SVFlgN6uaxB/SsRleLvZ8tvX8JL69vx+e48aSsXIlBUePGhidibeTNyNaj+C7w9+RnpdudDg1JomlnrOzs+O1114jJiaGzZs3M2fOHGJiYspt/+uvvxIdHc327cZPrk6ePJk1a9aU+ZrWmptuuom+ffsSGxvLjh07WLZsGQkJ5pf+0VpTUtKwCypZrcgpVjOJ72RvmsT/cU8yqVn55573ueMOlJ0dJ+d+YGB0590Wdht5xXl8degro0OpMTujAzDa09/tISbJsoWAwgM9eOr6jpW2e+mll9i9ezcpKSns27ePe+65h4ceeqhKfQUEBBAQEACAu7s7YWFhJCYmEh4eXq3YATIzM+nXrx8FBQUcOXKEdu3a4eTkxJ9//omNjeX+Funbty9x5Wxnvm7dOhwcHJg5c+a550JCQrjnnnsAePLJJ/H29ub+++8HYPbs2fj5+XHjjTcyZMgQevbsyY4dO1i1ahUhISEWi1mYqdNo+HG2qQhYix5GR8OEnsF8tOEIX+5I4K5rWgNg7+eH1/hxnP7kU5rOnIGDwd+Ttl5tifSP5Iv9XzApfBK2NraGxlMTMmIx0K5du7CxsWHVqlX88ssvLF68+KLXr776arp163bZ7ZdffinzeHFxcfz999/07NmzzNeVUgwePJiIiAjmzZtXblweHh78/fffLFiwgEGDBhEdHc3mzZvNTipVjbsse/bsoXv37uW+PnXq1HOfV0lJCcuWLeO2224D4ODBg/zrX/9iz549klSM4ugOnW+G3V9ZxSR+a183era8eBIfSkct9vZWc4XYhA4TSDyTyB+JfxgdSo00+hGLOSOL2rJr1y6++uorbG1tsbW1xdvb+6LX//jD/C/XmTNnGD16NG+++SYeHh5lttmwYQNBQUGkpKQwaNAgOnToQN++fcs95u7du+nY8fLPJyYmhq1btzJw4EA8PT1xd3evdtzmuvvuu9mwYQMODg5s27aN0NBQfHx8+Pvvvzlx4gRXXHEFPj4+ZGVlERISQq9evSweg6iiiMmmEcvOL6DndKOj4Zaewdy3LJqNh09ydVtfAOx8ffEaP57TixfjM3MGji1bGhpj/+D++Dn7sWzfMq5pcY2hsdSEjFgMUlhYSGpqKq1bm4blO3fupHPnzhe1Mfcv/8LCQkaPHs2tt97KqFGjyu0zKCgIAD8/P0aOHMnWrVsrjDEmJqbMifXCwkLeeecdvv76a9zc3C573RIjlo4dO/LXX+cr7M2ZM4e1a9eSmnp+J9g77riDhQsXsmDBAqZOnXrueVdXV7P7EbUosJtpNf6OhVYxiT+00+WT+AA+d0xDOThw8n3jRy32NvaMaT+GjUkbOZpp/EUF1SWJxSD79+8nLCzs3OPo6Gi6du16UZs//viD6Ojoy27XXnvtuTZaa6ZNm0ZYWBgPPvhguf1lZ2eTlZV17v5PP/10LmkMHDiQxMTEy96TlJREs2bNLns+Pj6eKVOm0KZNm3PHrGrclRkwYAB5eXm8f8H/7Dk5ORe1GTlyJGvWrGHbtm0MGTLE7GOLOnRuJf42oyPB0c6WMRHN+WnPCVKyzm/6aNe0KV633ELm9z+Qf+SIgRGajGk7Bjtlx+f7Pzc6lGqzqsSilBqqlNqvlDqklHq0jNeVUurt0td3KqXKPwlv5Xbt2kWXLl3OPS4rsZhj48aNLFmyhHXr1p0bGaxatQqA4cOHk5SUBJgu3b3qqqvo2rUrUVFRXHfddQwdOpSSkhIOHTp02Wk4gCFDhjBt2jR+//33i54fMWIEY8aMYfjw4eWedjPHhAkT6N27N/v376d58+Z8/PHH515TSvHNN9/w+++/07JlS6Kiopg0aRIvvfTSuTYODg7079+fsWPHYmtbfyc6G7RO1rUSf3xUMEUl+qKV+AA+06ai7O05dcF30Ci+Lr4MChnENwe/Iacwp/I3WCOttVXcAFvgMNAKcAD+AcIvaTMcWA0ooBewpbLjRkRE6PqgdevWOicnp8773bVrl37ggQfqvF9LKC4u1l27dtUHDhwwOhRRkW/v0/pZf61z0oyORGut9bgP/tRXv7ROFxeXXPT88aef0TGdOuuC48cNiuy8Hck7dKeFnfTy/csNiwHYrqv5+9yaRixRwCGtdazWugBYBtx4SZsbgcWlP/dmwFMpFVDXgVpaeno6Dg4OODs713nfnTp14vXXX6/zfmsqJiaGNm3aMHDgQNq2bWt0OKIiVrad/oSoYI6dzmHj4Ys3ofSeOhVKSji9YKExgV3gCr8raOfVjmX7ltXLXY+tKbEEARdu3JNQ+lxV26CUmq6U2q6U2n7hZK+18vT0rHBRo7hceHg4sbGxvPbaa0aHIioT0LV0Et86VuKfncRfuuXiSXyH5kE0GXEdacuXU5SWZlB0JkopxncYz/60/USnRhsaS3VYU2KxGK31PK11pNY60tfX1+hwhBARUyAlxqom8X+OuXgSH0zrWnRODmmffGpQdOdd1/I63O3d+WyvdVS8rAprSiyJQIsLHjcvfa6qbYQQ1qbTaNMk/vYFRkcCmE6HFZVolm+/eBLfsW1b3AYMIO2TTyjJzjYoOhMXexdubHMjPx/9mZO5xteOqQprSizbgLZKqZZKKQdgPPDtJW2+BW4vvTqsF5ChtT5e14EKIarI0c20En/PV5Br7GkmgFa+bvRq5c2ybRevxAdoOv1OijMySFtu/O7M4zuMp0gX8dXB+rV/mNUkFq11ETAL+BHYC3yhtd6jlJqplDq7YdQqIBY4BHwI/MuQYIUQVRc5BYryYKfxv7ABbukZQvzpXDYcung04NytGy5RUZxesBBdUGBQdCYhHiH0DOjJigMrKC4pNjSWqrCaxAKgtV6ltW6ntW6ttX6u9Lm5Wuu5pfe11vru0tc7a62N3zpVCGEeK5vEH9LRH29Xh8sm8cG0Gr/oxAkyf/zRgMgudnO7m0nKTmJj0kajQzGbVSUWIUQDZ4WT+L/sPUFK5sWT+K5XXYVDq1acXrjI8Mt9B7QYgI+TD8sPWMdIzxySWIQQdafTaHBwt5pJ/PE9Wpgm8S9Zia9sbPC+fSJ5e/aQe8GedUawt7VnZNuRrE9YT3J2sqGxmEsSixCi7ji6QRfrmsTv3crnsu30AZrceCO2TZpweuEig6I7b3Tb0Wit680kviSWBsDcksNr1qyhffv2tGnThhdffLEOIyyblCZupCIml07iW8lK/J7BJKTl8sclk/g2zs54jhtH1tq1FFShcmltaO7enCuDrmTFgRUUlRQZGos5JLE0EJWVHC4uLubuu+9m9erVxMTE8Nlnnxm+2l9KEzdSAV0hsLvVbKd/fhL/8m3qvW69BWxsSFuyxIDILja23VhSclNYn7De6FAq1egLfbH6UUjeZdljNusMwyofEViiNLG5tm7dSps2bWjVqhUA48ePZ+XKlWWWMJbSxKLWRUyG7+6F+K0QXHbF07riaGfLzRHN+WjDEVIy8/DzcDr3mr2/Px5Dh5L+5Qqa3nMPtmXUH6orfZv3xc/Fjy8OfMGA4AGGxWEOGbEYyFKlic0pOZyYmEiLFuc3LWjevHmZNVhAShOLOnB2Et+KttMvLtF8sT3+ste8J02iJDubjK+Mnd+ws7FjVNtR/Jn4JwlZxp6aq4yMWMwYWdQWS5UmrmrJYXNJaWJRa85O4kcvhaHPg7OXoeG0bOrKla19+GxrPP+6pg02Nurca86dO+HctStpny7F67bbUBYctVfV6LajmbdzHisOruC+7vcZFkdlZMRiEEuWJjan5HBQUBDx8ef/GktISDj3vvJIaWJRqyKmWNckflQwiem5rD94+Y7oXrfeQsHRo2T/ucmAyM5r5tqMvkF9+frg1xQWFxoaS0UksRjEUqWJKyo5fKEePXpw8OBBjhw5QkFBAcuWLeOGG24ApDSxMEhAF9Mk/nZrWYnfDB9XBz7bevlKfPehQ7H19iZtmfE7Dd/c/mZO5Z1iXfw6o0MplyQWg1iqNHF5JYfh4tLEdnZ2vPvuuwwZMoSwsDDGjh1Lx44dpTSxMFbkFEjdZ7oZzMHOhjERzdkWl0ZuwcX7ctk4OBD0+usEPPWUQdGd1yewD2HeYWQWZBodSrmU0dsV1LbIyEhd3iW41qRNmzbs2rWrzqtI7t69m/nz59fLKpIlJSV0796d5cuXSxXJ+qogB3JOgmew0ZEAkJFTiIOdDc4O1v2HitYapVTlDWtAKbVDa13+wrgKyIjFCkhp4qqT0sQNhIOL1SQVgCYu9lafVIBaTyo1JVeFWQEpTVx1Z0sTCyGsj4xYhBBCWJQkFiGEEBYliUUIIYRFSWIRQghhUZJYhBBCWJQkFiGEEBYliUUIIYRFSWIRQghhUZJYGoDKSvyeJaWJhRB1QRJLA1BRid+zpDSxEKKuWMWWLkopb+BzIBSIA8ZqrdPKaDcfGAGkaK0r/vPcTC9tfYl9py27s2oH7w48EvVI5X1bqDRxRSV+z5LSxEKIumItI5ZHgbVa67bA2tLHZVkIDK2roGqbpUoTm0NKEwsh6opVjFiAG4FrSu8vAn4DLvuTX2u9XikVasmOzRlZ1BZLlSauLVKaWAhRHdaSWPy11sdL7ycD/kYGUxfMLU1cVoXGV199tUrVGKH6pYnLGjWcLU2cmZl57tSUpePu2LEjK1asOPd4zpw5nDx5ksjI8+UhzpYmTk5OltLEQliROkssSqlfgMvr3MLsCx9orbVSqkbVx5RS04HpAMHB1lPr4ULmlia2lAtLEwcFBbFs2TKWLl0KmEoTL168+LJEk5SUxPDhwy871tnSxK1atSIrK+uyKpKWiHvAgAE8/vjjvP/++9x1111A2aWJn3zySQoLC8/9LEII49XZHIvW+lqtdacybiuBE0qpAIDS/6bUsK95WutIrXWkr6+vJcK3OEuVJobyS/xKaWIhhBGsojSxUuoV4JTW+kWl1KOAt9b64XLahgLfm3tVmJQmrpiUJhZClKUhlCZ+ERiklDoIXFv6GKVUoFJq1dlGSqnPgE1Ae6VUglJqmiHRWpiUJq46KU0shPWyihFLbaovIxYhhLAmDWHEIoQQooGQxCKEEMKiJLEIIYSwKEksQgghLEoSixBCCIuSxCKEEMKiJLEIIYSwKEksQgghLEoSSz0XHx9P//79CQ8Pp2PHjrz11lvltg0NDaVz585069btol2CjZCXl0dUVBRdu3alY8eOPPXUU5e1kdLEQtRP1rJtvqgmOzs7XnvtNbp3705WVhYREREMGjSozMqQAL/++itNmzat4ygv5+joyLp163Bzc6OwsJCrrrqKYcOGnaujcrY08aRJk87tXHz06FG+/fZbs/vQWqO1tmjVSyFE5Rp9Ykl+/nny91q2NLFjWAeaPf54pe0sUZo4ICCAgIAAANzd3QkLCyMxMbHcxGKOuihNrJTCzc0NMNV3KSwsRCl17nUpTSxE/dXoE4uRdu3aha2tLatWrSI2NpbRo0dflFiqWjArLi6Ov//+m549e5bZn1KKwYMHo5RixowZTJ8+vcx2Z0sTb926leeee46VK1dW6ecyN+7i4mIiIiI4dOgQd99990Vxm1OaeNSoUdx///3nShNv3bqVrKwsDh48yKJFi6SKpBAGafSJxZyRRW2xZGniM2fOMHr0aN58881ya6Rs2LCBoKAgUlJSGDRoEB06dKBv377lHrO2SxPb2toSHR1Neno6I0eOZPfu3XTqVHY1BClNLET90egTi1EsWZq4sLCQ0aNHc+uttzJq1Khy+zxbIdLPz4+RI0eydevWChNLXZUm9vT0pH///qxZs+ZcYpHSxELUX5JYDGKp0sRaa6ZNm0ZYWBgPPvhgue2ys7MpKSnB3d2d7OxsfvrpJ5588knAmNLEqamp2Nvb4+npSW5uLj///DOPPPLIudelNLEQ9ZckFoOUVZr4uuuuq/JxNm7cyJIlS85dRgzw/PPPM3z4cIYPH85HH31EYGAgJ06cYOTIkQAUFRVxyy23MHToULNKEy9cuJB+/fqde37EiBEkJyfTrFmzKsd71vHjx5k0aRLFxcWUlJQwduxYRowYce71s6WJH3jgAV5++WV8fX1xdXUtszSxp6enlCYWwopIoS8rIaWJq05KEwtRe6TQVz0npYmrTkoTC2G95FSYFfD09CQmJsboMOqV8PBwYmNjjQ5DCFEGGbEIIYSwKEksQgghLEoSixBCCIuSxCKEEMKiJLEIIYSwKEksQgghLMoqEotSylsp9bNS6mDpf73KaNNCKfWrUipGKbVHKXWfEbEKIYSomFUkFuBRYK3Wui2wtvTxpYqAf2utw4FewN1KqeoXHRFCCFErrCWx3AgsKr2/CLjp0gZa6+Na679K72cBe4GgS9sJIYQwlrWsvPfXWh8vvZ8M+FfUWCkVClwBbCnn9enA2SpW+Uqp3RaKs75rCpw0OggrIZ/FefJZnCefxXntq/vGOkssSqlfgLK2w5194QOttVZKlbszplLKDVgB3K+1ziyrjdZ6HjCvtP326m6k1tDIZ3GefBbnyWdxnnwW5ymlqr17b50lFq315RWeSimlTiilArTWx5VSAUBKOe3sMSWVT7XWX9VSqEIIIWrAWuZYvgUmld6fBFxWZF0ppYCPgb1a6/q3Ha8QQjQS1pJYXgQGKaUOAteWPkYpFaiUWlXapg8wERiglIouvV1e3vBy82ol4vpJPovz5LM4Tz6L8+SzOK/an0WDL/QlhBCiblnLiEUIIUQDIYlFCCGERTW4xKKUekUptU8ptVMp9bVSyrOcdkOVUvuVUoeUUmWt9K/3lFI3l25/U6KUKvcSSqVUnFJqV+m8VbUvMbRmVfgsGsP3otItlErbNdjvRWX/zsrk7dLXdyqluhsRZ10w47O4RimVccHc9pOVHlRr3aBuwGDArvT+S8BLZbSxBQ4DrQAH4B8g3OjYa+GzCMO0yOk3ILKCdnFAU6PjNfqzaETfi5eBR0vvP1rW/yMN+Xthzr8zMBxYDShMW0htMTpuAz+La4Dvq3LcBjdi0Vr/pLUuKn24GWheRrMo4JDWOlZrXQAsw7StTIOitd6rtd5vdBzWwMzPolF8LzBjC6UGzpx/5xuBxdpkM+BZusauoamV73yDSyyXmIrpr45LBQHxFzxOoHHvO6aBn5RSO0q3w2msGsv3wtwtlBrq98Kcf+fG8l0w9+fsrZT6Rym1WinVsbKDWsteYVVS0fYwWuuVpW1mY9oR+dO6jK2umfNZmOEqrXWiUsoP+FkptU9rvd5yUdYNC30WDYKFtlBqEN8LUWN/ASFa6zOlawe/AdpW9IZ6mVh0BdvDACilJgMjgIG69CThJRKBFhc8bl76XL1T2Wdh5jESS/+bopT6GtPwuN79ArHAZ9EovhfmbqHUUL4XZTDn37nBfBcqUenPqS/Yk1FrvUop9Z5SqqnWutzNOhvcqTCl1FDgYeAGrXVOOc22AW2VUi2VUg7AeEzbyjQ6SilXpZT72fuYLn5orLtBN5bvhTlbKDXk74U5/87fAreXXh3WC8i44PRhQ1LpZ6GUala6pRZKqShMeeNUhUc1+qqEWrjK4RCmc4bRpbe5pc8HAqsuaDccOIDpiojZRsddS5/FSEznTPOBE8CPl34WmK4G+af0tqcxfxaN6Hvhg6mg3kHgF8C7sX0vyvp3BmYCM0vvK2BO6eu7qOCqyvp+M+OzmFX6HfgH0wVRV1Z2TNnSRQghhEU1uFNhQgghjCWJRQghhEVJYhFCCGFRkliEEEJYlCQWIYQQFiWJRQghhEVJYhGihpRSoUqpXKVUdOnj4gu2GI9WSoWacYy5Sqk+pffPXPLaZKXUu0op59LjFSilmtbGzyKEJdTLLV2EsEKHtdbdSu/nXnDfXL2AuytqoLXOBboppeKqHJ0QdUhGLELUEaXUbUqpraWjjg+UUralz4cBB7TWxQaHKIRFSGIRwvKcLzgN9jWcSx7jgD6lo5li4NbS9sOANeW8Pxp4pu5CF6Lm5FSYEJZX1qmwgUAEsK10Pz9nzu8qPASYUt77S3frLrecshDWRhKLEHVDAYu01o9d9KRSLoCn1jrJmLCEsDw5FSZE3VgLjCktmoVSylspFQL0B341NDIhLExGLELUAa11jFLqCUylfm2AQkxXgQ0DvjQ0OCEsTLbNF6KGStepfK+17lSN9/4F9NRaF1bhPXGY6oOUW8FPCCPJqTAhaq4YaHJ2gWRVaK27m5tUzi6QBOyBkqr2JURdkRGLEEIIi5IRixBCCIuSxCKEEMKiJLEIIYSwKEksQgghLEoSixBCCIuSxCKEEMKiJLEIIYSwKEksQgghLOr/ATybpYxNaLFaAAAAAElFTkSuQmCC", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "ts= numpy.linspace(0.001,10.,1001)*u.Gyr\n", "oz.initial()\n", "plot(oz.Fe_H(ts),oz.O_Fe(ts),label=r'$\\eta= 2.5, \\tau_* = 1\\,\\mathrm{Gyr}$')\n", "# Higher outflow rate\n", "oz.eta= 5.\n", "plot(oz.Fe_H(ts),oz.O_Fe(ts),label=r'$\\eta= 5.0, \\tau_* = 1\\,\\mathrm{Gyr}$')\n", "# Lower outflow rate\n", "oz.eta= 1.\n", "plot(oz.Fe_H(ts),oz.O_Fe(ts),label=r'$\\eta= 1.0, \\tau_* = 1\\,\\mathrm{Gyr}$')\n", "# Longer SFE timescale, first reset\n", "oz.initial()\n", "oz.tau_SFE= 3.*u.Gyr\n", "plot(oz.Fe_H(ts),oz.O_Fe(ts),label=r'$\\eta= 2.5, \\tau_* = 3\\,\\mathrm{Gyr}$')\n", "xlabel(r'$[\\mathrm{Fe/H}]$')\n", "ylabel(r'$[\\mathrm{O/Fe}]$')\n", "xlim(-2.,0.5)\n", "ylim(-0.2,0.45)\n", "legend(frameon=False);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "or Figure 3, which also illustrates how to change the shape of the star-formation history to Linear-exponential:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAFgCAYAAAAo31N4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAD/70lEQVR4nOzdd3xN9xvA8c+5Nzd7yI4kSEIQe+9Ze9Votb8orRZVanWP0FY1unSqFkVbtKm2aKnRqlFbbUKMSIwgCSJ73nvP748TIQRBuBHP+/W6r3vvWfe5qX7Pee73e56voqoqQgghhBBCCCGEsCydpQMQQgghhBBCCCGEJOhCCCGEEEIIIUSpIAm6EEIIIYQQQghRCkiCLoQQQgghhBBClAKSoAshhBBCCCGEEKWAJOhCCCGEEEIIIUQpUKoSdEVRuiqKclhRlGhFUV4vYn07RVFSFEXZk/94q7j7CiFEWSNtphBCCCFE2WJl6QAuURRFD0wDOgFxwHZFUZaoqnrwqk03qKra8zb3FUKIMkHaTCGEEEKIsqc09aA3AaJVVY1RVTUX+BnofQ/2FUKI+5G0mUIIIYQQZUyp6UEH/IBTV7yPA5oWsV1zRVH2AmeAl1VVPXAL+6IoyrPAswAODg4Nq1evXgKhCyHuVzt37jyvqqqnpeO4DXe9zZT2Ughxpfu4vbznPDw81ICAAEuHIYSwoNttM0tTgl4cu4BKqqqmK4rSHfgdCL6VA6iqOhOYCdCoUSN1x44dJR6kEOL+oSjKCUvHcBfdUZsp7aUQ4kplvL0sUQEBAUibKcSD7XbbzNI0xP00UOGK9/75ywqoqpqqqmp6/uvlgEFRFI/i7CuEEGWMtJlCCCGEEGVMaUrQtwPBiqIEKopiDfwPWHLlBoqi+CiKouS/boIW/4Xi7CuEEGWMtJlCCCGEEGVMqRnirqqqUVGUUcBfgB6Yo6rqAUVRnstfPx14FBihKIoRyAL+p6qqChS5r0W+iBBC3APSZgohhBBClD2lJkGHgiGYy69aNv2K118BXxV3XyGEKMukzRRCCCGEKFtK0xB3IYQQQgghhBDigSUJuhBCCCGEEEIIUQpIgi6EEEIIIYQQQpQCkqALIYQQQgghhBClgCToQgghhBBlVFxcHL179yY4OJjKlSszduxYcnNzLR2WEEKI65AEXQghhBCiDFJVlX79+tGnTx+OHj3KkSNHSE9PJywszNKhCXFXRUREUKtWLfR6PbVq1SIiIqLIZdfb9kbLhbjbStU0a0IIIYQQomSsWbMGW1tbnn76aQD0ej2fffYZgYGBTJw4EXt7ewtHKETJi4iIICwsjNmzZ9OqVSs2btzI448/DsCCBQsKlg0ZMoTNmzezbNmyQtvebPnatWuJiooiJCSEsLAwQkNDLfyNRVkjCboQQgghxF02cekBDp5JLdFj1vB15u1eNa+7/sCBAzRs2LDQMmdnZypWrEh0dDR16tQp0XjEZQkXT/LpglGWDqPMslL0WKHDCj1WivasR4eVomPD+rVMeKUX1hf3sPvPSByAJx+qCoBDcmTBss9e/h9//fUXn7/8P5xSD7J3RRTOio7PXh3IH0uW8NlrT+JtOknq/uW0q1WdgQMe54OPPuGvv/4qlLQDkqSLEiUJuhBCCCGEECXovDmN77L/tXQYD6ZmsIE1kAblTCa8jSa825rwMhrZdeIj7b3RRMu8XHrXN0NiNCRe3r0h0LsJcPYzOHt5+Xi9nideKI/VgS85mbCSEP+a/PTZGzw57hXCw8OlV12UGEnQhRBCCCHushv1dN8tNWrU4Lfffiu0LDU1lZMnT1KlSpV7Hs+DJNChEj80/drSYZRNqopRNZFnzsOoGskzGws9f/L5J3Tq2RkHHyfO51zgQm4SG6N2oDqC6nzVoc6baFK+AW0DW1HTqRpeNu7s3bOHt96awLsTJ1KpclXOnDtPdvxhTu34m+rOWQQlRlHp3DqsDpnxAQ49CfHOgXh1+IlNF8rx9LARgPSqi9snCboQQgghRBnUoUMHXn/9debOncuTTz6JyWTipZdeYvDgwXL/+V1mb+tIg+qtLR3GAym7u0LYG/n3oLfXhqL/8fEyAOb/PJ/g+sGs2rqKKfOn4NvEl/9S97D9yF4A3PRuJOxKoOb/GjHuw0nMmjKLDh26sXGjE489G8arr75K87B3OHj2AvHHo1j847fU9FTok7oFq9+fpZnBhdWvteaFqW8DSM+6uC2SoAshhBBClEGKorB48WJGjhzJpEmTMJvNdO/encmTJ1s6NCHumktJ8OjRowuS4y+++AKAF8e8WLBsYthEQkND+fGnH3n/2/eJN8SjNlJxqevCEY5gP8ae0RtGE/daHP5Z/gwfPpyffvqJDh060KpVKy7Eqkyf9RPT58zj7yoTObJlKS3TVtDlzEp+72xk99aX+PWNp6jSez0bt++V+9VFsSmqqlo6Botp1KiRumPHDkuHIYSwIEVRdqqq2sjScZR20l4KIcpqe6koSlfgC0APzFJV9YPrbNcY2AL8T1XV34ra5hJpM+9fqqoSmxrLmpNr+PXwr5zJOIO3vTePVXsMXaSOzyd/XpDkp6SkMHfuXNq3b4+qquw5lczMxavwObua/1lvpJouDrOVPbpGT7PeqhUjx71KZGSkpb+iuEdut82UedCFEEIIIcQDSVEUPTAN6AbUAEIVRalxne0+BP6+txGKe01RFIJcghhaeyjL+y3ny/ZfEuQSxNTdU/na9DU9v+nJrvhd7N+/n48++oghQ4awdu1ajEYjycf28NcXr/Pu5/PZ1mUJg/WT+T2nIerWr2m171X8sg/L3OripmSIuxBCCCGEeFA1AaJVVY0BUBTlZ6A3cPCq7UYDC4HG9zY8YUl6nZ72FdvTvmJ7YlJiWHBoAX8c+4NlMcuo4V6D51s/T3h4eKHh9OHh4YSHh1Mh9ySfvTiMd/9syY971jAleQZ/DbTnrHcwHk+sYePOAzLsXRRJetCFEEIIIcSDyg84dcX7uPxlBRRF8QP6At/cw7hEKRPkEsQbTd9gdf/VjG86noy8DJ5f/Ty7/Xbz7/Z/MZlMREZGEhoaSlhYGEOGDGHPf5v4qF9NWtevQ6cLr/CVsTfeCf9iNaMl7b1TmT17NuHh4Zb+aqKUkR50IYQQQgghru9z4DVVVc2Kolx3I0VRngWeBahYseK9iUzccw4GBx6v/jh9g/sye/9sZu6fyeYzm3ml0Ss8XPlhFEUpslBdbPRxTs3fRM+dTflMN4tqvzxJ22o9uXjqkIW/kShtpAddCCGEEEI8qE4DFa5475+/7EqNgJ8VRTkOPAp8rShKn6sPpKrqTFVVG6mq2sjT0/MuhStKC2u9NSPqjWBhr4UEuQQxftN4nl31LKdStQEZoaGhREZGFvSsh1QJoKt7EuOHPs5zNh/zQd7/MB3+iwMjHXi9e6Dcly4KSIIuhBBCCCEeVNuBYEVRAhVFsQb+Byy5cgNVVQNVVQ1QVTUA+A0Yqarq7/c8UlEqBZUL4vuu3zOh2QT2n99PvyX9+C7yO4xmY6HtLg17zzm5n99HtWS/d18653zAoVwvPmiSRO6aD5k6dSphYWGSpD/gJEEXQgghhCij9Ho99erVK3gcP37c0iGVKqqqGoFRwF9AFPCLqqoHFEV5TlGU5ywbnbhf6BQdj1V7jD96/0Fz3+Z8uvNTBiwbwOGkwwXbhIaGFhSUc3N2ZM/MVzgWFcVAwxT2luuIfu0k2pvWM3vWLLkv/QEn86DLHJVCPNDK6ry+JU3aSyHuT46OjqSnp5fIsaS9LD5pMx9cqqryz8l/mLxtMhl5GXzW7jNa+rUsclu9Xs+kJfuYtSGGH30W0Dx5KaZGw7Dp/RlGk+keRy5KmsyDLoQQQgghbmrnzp20bduWhg0b0qVLF86ePWvpkIQoMxRFoVOlTvzS8xcqOVdi1OpRLD22tMhtQ0JCaGaXwLhO1QmN/x+rXfuj3/Etvw7yArMk6A8qqeIuhBBCCHEPPD5jyzXLetYpz6DmAWTlmhj83X/XrH+0oT/9G1UgKSOXEfN3Flq3YHjzm35mVlYW9erVAyAwMJBffvmF0aNH88cff+Dp6cmCBQsICwtjzpw5t/elhBBF8rT35Lsu3zFu3Tje3Pgm57LO8XTNp7lyJoCwsDCGDh3K7Nmzeb1rNYas7MO4zDOMC9jEymF+9Jl7jirVQggLC5O50h8gkqALIYQQQpRRdnZ27Nmzp+B9ZGQkkZGRdOrUCQCTyUT58uUtFJ0QZZujtSPfdPiGsE1hfLbzMxIzE3m18avoFG0Q89XTsVXp+jSf136e9CQ7xlf4h8zv+rLBZyhPPzuy0PaibJMEXQghhBDiHrhRj7edtf6G690crIvVY34zqqpSs2ZNtmy5tjdfCFHyDHoDH7T+AE87T+YenMu5zHNMbj0ZG70NoCXdVybe1bo+xex6z+DtEsLQ6K9oa8zm+xlfMfKFVyVBf0DIPehCCCGEEA+IatWqce7cuYIEPS8vjwMHDlg4KiHKNp2i45XGr/Byo5f5+8TfjPhnBGm5aUVuG71qPh89UovwhOb8EfgWnNhMqxOfE3046h5HLSxFEnQhhBBCiAeEtbU1v/32G6+99hp169alXr16bN682dJhCfFAeKrmU3zQ+gN2J+7mqZVPkZCRcM02ISEheKTH8FTzSoyLqsaeJh+ji9vG7Md8LBCxsARJ0IUQQgghyqiiplirV68e69evZ+/evRw4cIBhw4ZZIDIhHkw9gnrwdYevOZ12mqF/DyU1N7XQ+rCwMIYMGUJLx0Rq+zkTusmHWUfL8URwOuz/zUJRi3upVCXoiqJ0VRTlsKIo0YqivF7E+icURdmnKMp+RVE2K4pS94p1x/OX71EURSaeFEKUedJmCiGEEPef5r7NmdZhGnHpcbzy7ysYzcaCdaGhoYSHh/Pi2DH89fbjZGVmMjf4MxJtg8hcMJSa3lbUqlWLiIgIC34DcTeVmgRdURQ9MA3oBtQAQhVFqXHVZrFAW1VVawOTgJlXrW+vqmq925kQXggh7ifSZgohhBD3r0Y+jXir2VtsPrOZj7Z/VGhdaGgokZGR5Cad4duhbTiZbUOv3S2wsnMmckIDvv78I8LCwiRJL6NKTYIONAGiVVWNUVU1F/gZ6H3lBqqqblZV9WL+262A/z2OUQghSgtpM4UQQoj7WN/gvgyuOZiIQxH8fOjnIrfpVMMbw7H1JAR2Z2eTz1AuHKVNyiJmz5pFeHj4PY5Y3AulKUH3A05d8T4uf9n1DAFWXPFeBf5WFGWnoijPXm8nRVGeVRRlh6IoO86dO3dHAQshhAXd9TZT2kshhBDi7hrXYBxt/dvywX8fsOVM0dMfxvz+GfUruDB0gwNJTV6G/b/Sxv4oUVFS2b0sKk0JerEpitIe7WLztSsWt1JVtQHacM/nFUVpU9S+qqrOVFW1kaqqjTw9Pe9BtEIIYVm322ZKeymEEELcXXqdng/bfEigSyAv/fsSsSmx12wTUq0qTwTmYG2l44lDLTFV7oTy15v0bxFkgYjF3VaaEvTTQIUr3vvnLytEUZQ6wCygt6qqFy4tV1X1dP5zIrAYbfinEOJBoqqWjuBekjZTCCGEKAMcDA581eErDDoDo1aPIiUnpdD6sLAwXh01jKer64hKyOD5pP9xJs3M7C5GyEyyUNTibilNCfp2IFhRlEBFUayB/wFLrtxAUZSKwCJgkKqqR65Y7qAoitOl10BnIPKeRS6EKDmqCrmZYDZp7y8eh6g/Yfd82PwVrJ4Ey17StgHY+g182QA+CoKpDS0WtgVImymEKDmZSXBgMSwZAxeOWToaIR44fo5+fNH+C85mnOXFdS+SZ84rWHepsvvMd8eRuvVXVp6146+A13FQ02HRs2A2WzByUdKsLB3AJaqqGhVFGQX8BeiBOaqqHlAU5bn89dOBtwB34GtFUQCM+dWHvYHF+cusgJ9UVV1pga8hhLhEVUFRIOsinDsMWcmQnay9z0qGhk+Bsy8c+Qs2fKIty7qobWPKhdG7wL0yHFwCqyZcPq6iA1sXaPMKWNuDgyeUrwt25cDJ1xLf1CKkzRRC3LGM87BlGsSshTN7ABVsnKFaN639FULcU/W86jGxxUTe3Pgmk7dN5q1mb5F/riY0NJTQ0FCy80x0/PRffjU2Z3DnyehXvAybPofWL1o2eFFiSk2CDqCq6nJg+VXLpl/xeigwtIj9YoC6Vy8XQpQAYw4kn7qcPF9KpCu3B49giI+EteHXJuD/mw9VOkLsBvhl0LXHDWqnJeiKHqxswas62JYDO1ct2bZ10bar3R8C2+QvK6ddPOquGPxT+1Ht8QCSNlMIUWyqColRWjLu7Ac1+4DOSkvQfetDuze0dt23AehL1eWhEA+UXpV7EZMSw6z9swhxC+Gxao8VWm9r0PNm9xBG/riLl/4rR/c4O1qtfIeHX5zJkBffJjQ01EKRi5IiLbAQD6LcDDAbtSQ4M0kbJp4SB6lx2vusZGj3OjQYpPV+z2h97TF6f60l6GYjJJ/UEmu3IC2RtnMF5/wZvSo2g4ELtWWXEnBbF9DptfXBHbXH9TiX1x5CCCFu3an/YM+PcHglpMdry+oO0BJ0u3Lw2nFtNJIQotQYXX80By8cZMqOKbT0a4mfY+FJWrrV8iHQwcjvx0z06v0ldnvH8OPgIJqHhQFIkn6fkwRdiLLGbIK0/IswFz+tB/zv8VoCnnJKe866CG1ehYfCtF6VDVPAqbzWo12uIvjUAZf8BNs1APp9e1Xvdv5rAN96MGLT9eNx9NJ60oUQQtwbmUlg76a9/mcinNkFVbtA5Q7a6KVyV9SXlORciFJHp+h4p/k79PmjDxM3T2RGpxkFQ90BFEUhfsU0lDZj2aIE0qHVC3ivm8zCT95j0IRwSdDvc5KgC3G/yU6BlNOgmsGnlrbsj1FaUZ+UOEg7o/Vq1xsIfaaB3hoO/gH2HlrS7d9Yew7I7xW3d4PxiaA3FP15ts5Q57Gi1wkhhCgdctIhagns+QlObYMXo8DBAx7+Uvuh1MbJ0hEKIW5BecfyvNjwRd7b9h6/R/9O3+C+hdYf2baaF1/4iO83H+eJ0c8QuHs+9c5GcOSQzI1+v5MEXYjSxJQHqWcg9bRWKC2onbZ86VhtmGJKHOSkasuC2sGTf2ivk09oBdkqNdeSb2c/rXAaaMtfPnL1J12mKNdPzoUQQpRuSTHw70daQc28DHAN1IpoKvm1OqTYmxD3rf7V+rPi+Ao+3v4xLf1a4mXvVbAuJCSElk5JrDDoCf/7OLM6T0L59SkmdK9wgyOK+4Ek6ELcS2YzJB+HxENaol33f9ry5a9oU4mlx2s94wDuwTB6R/6OinbRFdBaS8Bd/MC9yuXjPrX0Xn4LIYQQlpQUC3lZ4F1DK7R5eLlWLLPeAKjQVPvhVQhx39MpOia2mMgjSx5h0tZJfNn+y4Kh7mFhYbw4ciiPjJ/Or1GJfGXnQMN4K15tlFv4Nhdx35EEXYi7JS8bDLba611zYfePkHAActO0ZVZ2UOdx7ULK2U+rnnup99vFH8pVunysXp/f8/CFEEKUMmf3adMpHVgMVbtCaAS4VoKXo8HK2tLRCSHugkrOlRhdfzRTdkxh5fGVdAvsBlwuBPfe+69gbDGaT9cpfNn0DWxOhsO696H7x5YMW9wBSdCFKAmZSVoRnvj92rRj8fvhwlHtosnBHXLStES8Xih41wLvmloxtktajbNY6EIIIUq5U/9pw9ijV4G1E7QYDU2fu7xeknMhyrSBIQP56/hfvL/tfZqWb4qbrdY7fmlu9JWR8Tw3fycXq3cAr3jYPhsaPq2NshH3HUnQhbgVZhNciM5PxPdDw6e0qcUOLYMlo7RtXCpoSXiN3oCqLWv+vPYQQgghisNsBlRtSsrjG+HsHujwFjQaos2mIYR4YOh1et5t8S79/+zPB/99wEdtPiq0vktNb5oHufPpqiMoFavTM1tl56uNGbszgLCw8VLV/T4jCboQ15OTpt0PbusCiVHwx/OQcBCMWdp6nUG7188tCII7a/eBe9eSe36EEELcPlMeRC6EjZ9Dm5e1e8ubPgfNRoDBztLRCSEspIprFYbXGc60PdPoFtCN9hXbF6xTFIW3etWg+xfrGf9HFI0fGUoHm5n83GMAD78uc6PfbyRBFwLAmAvH1uT3jO+DhEitMm7Hidrwczs3sHaARs+AT23t4VH18rBCJ2/tIYQQQtyO3EzYPR82T4WUk+BVQ/uBGGSuciEEAENqD2HViVVM2jqJhj4NcbZ2LlgXUt4Z/amd6Go8hFfv9jBvE7VO/8x3M7/m+XEvS4J+H9FZOgAh7jljLsRugH/egf++vbx8wUBY+56WpHvXgvZhENRWW+fkrfWQd52s3UfuU0vu+RNCCFFyfnwUVrwCzuUhdAGM2AzBnSwdlRCiFDHoDLzb8l2SspOYsn3KNevj/vmeXBP8uP00dPsQUk7SSrebqCiZG/1+Ij3o4sGx+0c49CfErofcdNBZQf1B2joraxj6jzZc3db5xscRQggh7pTZDAd/16qxW9trc5dbTYBKzS0dmRCiFKvpXpOnaj7FnMg59AvuRz2vegXrqng6EOCu44ctJxjWpj02NXrDxk9pWz/YcgGLWyY96KJsykmHwyvh3yummDi0TJvmrM5j8L+f4NXYwtOX+daT5FwIIcTdd2ILzOoAvz0Ne3/SllVuL8m5EKJYhtcZjrutO5/v+hxVVQuWh4WFcWDhl5xLy2HRzlNsceyOasxl2qBaFoxW3CrpQRdlR1IsHPwDjq3WLn7MeWCwhyZDwc4VHvlWe68olo5UCCHEgygpBla9DVFLwMkX+kyHOo9bOiohxH3G3mDP8LrDmbxtMpvObKKVXytAKwSnqjB+4xlennmCctu+ZtnTjQnJ2ArZKZfrWohSTXrQxf0rMwn2/wapZ7X3xzfCP29DxgVo9hw8+Qe8dlxLzkEr8ibJuRBCCEtZOg6iV2s1Tkbv1Gqa6ORSTAhx6x4NfhQ/Rz++3PUlZtVcsHzAgFA+HtINg2clpi1cQ8CATyA3DXZ8Z8Foxa2Qs4K4f5iMcHIbrAmHbx+Cj4Jg4RA4slJbX6M3vBgFIzdD5/cgqB1Y2Vg0ZCGEEA8wYy5snX75h+Sen8GYXdD2VanMLoS4Iwa9gefrPU9UUhR/H/+70LpedX3xdrZh1oZYKF8XAtvCtulamyRKPUnQRemWclqbgxwg6yLM6QwbpoCih3avw9DV0OBJbb2tMzj7Wi5WIYQQAkBVIWopfN0UVr4Gkb9py90rg5OPZWMTQpQZ3QO7E+wazFd7viLPnFew3NpKx1MtAtgYfZ6DZ1Kh5RhIOwv7f7VgtKK4JEEXpU/WRa3H4ZuW8FkN+HuCttzREwYuhFdjYOgqLUH3bwQ6vWXjFRaXmZfJseRj7EncY+lQhBAPuvPR8EMvbepOnQGe+A2aj7J0VLfkYvZFS4cghCgGvU7PmPpjOJF6gt+jfy+07okmlbC31hM2bzW1+oxlb4KJ6LljiPjpR8sEK4pNisSJ0mVNOGz+EozZ4NsAOk2C4M6X11fpaLnYhMXkmHI4k36G0+mn0aGjhV8LAEb8M4KDFw6SlJ0EgJedF6sfW23JUIUQD7oNUyB+H/T4BBoMBv39c6mVmJnItD3TWHpsKb/2+pXK5SpbOqR7QlGUrsAXgB6YparqB1et7w1MAsyAERinqurGex6oEEVo69+Wep71mL5nOr2CemFrZQuAi72Bes6ZbE604tOPv6SmdzxWS0by/jevgaIjNDTUwpGL67l/zhqibMpMgn2/QINBWhE3Z1+o9wQ0fEq7Z0Y8EHJNuZzNOMvp9NNkGbPoULEDABM2TWDj6Y2czzpfsG1N95oFCbq/oz/e9t74Ofrh6+iLv5O/ReIXQjzgTm0HGyfwqg6dw6HjRHDytnRUxaaqKoqikGPKYWXsSh6r9hguNg9GtWdFUfTANKATEAdsVxRliaqqB6/YbDWwRFVVVVGUOsAvQPV7H60Q11IUhXENxzF45WAiDkXwdK2nC9btWfAZSofXOYIfVnXbwLrJTOnnQuvwcEnQSzFJ0MW9p6pwcivs/B4O/q71lrv4QUgvaPT0zfYW96E8Ux7xGfGczjjNucxz9KrcC4DPdn7Gn8f+5FzWOVS0eTzdbN0KEvTyDuVp7de6IAH3c/QrlISHNQu7919GCCEuyUmD1e/Cf99CSE94fD44uFs6qmKLz4jn233fcj7rPF889AUVnCqwuv9qHK0dLR3avdQEiFZVNQZAUZSfgd5AQYKuqmr6Fds7ACpClCINvRvSyq8Vs/bP4pGqj+Bs7QzA4V2bGTbGm5+2nWD0Q1VwaDYC17/DcEzJtHDE4kYkQRf3VmYSfNcNzh0CG2eoPxAaPAXl61g6MnEHjGYjCZkJnE47zen00/Ss3BODzsC8g/OYe3AuiZmJhaYA6RLQBWu9NT4OPjT3bY6fk5+WhDtoSfglI+uNtMTXEUKImzu8Apa9BKlnoMmz0GGCpSMqtviMeGbtn8Wio4tQUelXpR9GsxErndWDlpwD+AGnrngfBzS9eiNFUfoC7wNeQI+iDqQoyrPAswAVK1Ys8UCFuJGxDcbSf2l/vo/8njENxgAQEhJCI8dkVmYb+WXHKZ5u9BR5q8OZ2MXOwtGKG5EEXdxdqgont8D5o9qwdXs3rbBbi9FQs682rF2UeiazicTMRE6nn+ZMxhna+rfFxcaF5THL+WLXFyRkJmBSTQXbN/JpRAWnCnjae9LEp0lB7/elnnArndb0hFaX4VVCiPvQvl9h0VDwqgH9f4AKjS0dUbGtj1vPuLXjUFWVPsF9GFZ7GL6OMgPKzaiquhhYrChKG7T70a8piqOq6kxgJkCjRo2kl13cU9XdqtMtoBvzo+YzIGQAHnYehIWFEfbSswQ/O43ZG2KomBPLkT1mhtfOgaQYcAuydNiiCJKgi7sjMwn2RmjD2M8fAUcfqDcA9AboPc3S0YkipOemE50czam0UzT0boivoy9bz27lnc3vkJCRgFE1Fmw7p8scGvs0xt3Onfre9Qsl35d6wgG6BnSla0BXS30lIYQoOWazNk2Ri582nL3rh9DoGbCytnRkN3U+6zzns85T3a069bzq0S+4H0/XerrQiKUH2GmgwhXv/fOXFUlV1fWKogQpiuKhqur5620nhCWMqj+KVSdWMXPfTN5s+mbBfebvfDefnAYDeH7iTN4fOhHd8QmwZZpWzFKUOpKgi5K392dYMhpMueDfGHp/DTX7aMm5sDizaibPnIeN3oa4tDg+2v4RRy4e4XT65euRya0m4+voi5utG3U96+IXqCXfVyfgTcs3pWn5a0YCCiFE2XL+KCwdCylxMHIrWNtDs+csHdVN5ZpymXdwHjP3zSTAJYCfe/yMs7Uz45uNt3Ropcl2IFhRlEC0xPx/wIArN1AUpQpwLL9IXAPABrhwzyMV4iYqOlekX3A/fj3yK4NqDKKCUwVCQ0Pp++hjNH7vHzo//y59H6sLf+yH3T9CuzfAwcPSYYurSIIuSsbZvWBlB55Vwbc+NBys3VvuU8vSkT3QTGYT+87v43DSYQ5fPMyRi0c4evEow2oPY1idYdhZ2XE89Ti1PGrxSPAjVHWtSiXnSgXDHau6VuXDNh9a+FsIIYSFmM3w30z4522wsoHO74Gh9N+7qaoqa0+tZcqOKZxKO0W7Cu14qeFLKIpi6dBKHVVVjYqijAL+QptmbY6qqgcURXkuf/104BHgSUVR8oAs4HFVVWUIuyiVhtcdzh/H/mDW/llMbDERAFuDnh51yrNk7xkm9amJfYsxsHu+VuCy/RsWjlhcTRJ0cWeST8Ga92DfAqjRGx77ATyrQfePLR3ZA8WsmolLiytIwr3tvXm06qOoqAz5awh55jycrJ2o5lqNfsH9qOupTWHnbufOkj5LLBy9EEKUQtkp8MtTELMWgjvDw1PBycfSURXLmpNrGLduHJVdKjOj44yCqSlF0VRVXQ4sv2rZ9CtefwjIr9XivuBl70WfKn1YfHQxY+qPwd1Om1miXwN/ft5+ir8OxNO3fjWo2k37AbLlWG1UkCg1JEEXtycrGTZ+Clvzz18tx0CrFy0a0oMiPTedxKxEgly0wh4vrH2BTWc2kWXMAkCn6OgW2I1Hqz6Klc6KGZ1mUMGpAt723mW+9yQ+Pp7Y2FgCAwPx8bk/LqSFEKWUtaN2a1bPz6Dh01DK28+UnBRiUmKo71WfthXaMqnlJHoE9cCgu/Xby6QtFeL+9kTIEyw4vIBfDv/CiHojAGhUyZUKbnZMW7aTCYO64p5+mH8H27N91os0Hjn9JkcU95LO0gFcSVGUroqiHFYUJVpRlNeLWK8oivJl/vp9+fcBFWtfUcK2zYBNX2qV2EfvhE7vgl05S0dVJm2P3860PdMYs2YMXRd2pXlEc0atHlWwPsAlgH7B/ZjYYiI/9/iZrQO2Mi54HFu2bCE+Pp7GPo3xcfC568l5fHx8wWdawrx58wgKCqJr164EBQUxb948i8RxL0mbKUQJy0qGP1+AtHjQ6WHAL1ohuFKcnBvNRiIORdBjcQ9eWvcSeaY8zieex/ucNxcSi75N+kbt9YPYlgpR1gS6BNLWvy0/H/6ZHFMOADqdQrAhmeg0He9+/AX/HMkgzTEI26hfiIiIsHDEohBVVUvFA+2+n2NAEGAN7AVqXLVNd2AFoADNgG3F3beoR8OGDVVRTGazqkYuUtVja7X3WSmqemaPRUO6X509e1bdvHmzevbs2YJlaTlp6q6EXWpEVIT6zuZ31MErBqsms0lVVVV9e9Pbap0f6qi9FvdSX1r3kjpz70z131P/Xvf4c+fOVe3s7FRnZ2fVzs5OnTt37l3/Tpb4zCudPXtWtbOzU4GCh52dXaG/8fUAO9RS0Abe6uNet5nSXooy79g6Vf0kRFXfcVXV/b9ZOpobunQeWRa5TO3zex+11ve11GdWPqMeTjp80/b4Rutv1pber+2lJR7SZgpL23Zmm1rr+1rqwiMLC5aFNG6jVnrtT/WbddHagi3fqOrbzmqf5sEWirJsu902szQNcW8CRKuqGgOgKMrPQG/g4BXb9Abm5n/hrYqilFMUpTwQUIx9xe06sQX+Hg+nd0DIwxDUDmydoXxdS0d235k3bx4jXxmJQ1UH0vanMf3L6ZgbmJmyY0rBNpfuFU/NSaWcbTnGNhjLa01ew87q5oWJ4uPjGT58OFlZWWRlaUPehw8fTqdOne7aMEVLfObVYmNjMRgMBZ8PYG1tTWxsbFkeniltphAlIS8bVr8LW6eBexUYugr8Glo6quuaN28ew4cPxyHIAZ9XfHDBhc/bfc5DFR8iISHhhu3xzdrrB7QtFaJMauzTmOpu1Zl3cB59q/RFURQO79xI78GTWbgzjuFtglBq90f9ezytnE5ZOlxxhdKUoPsBV/7riAOunr+pqG38irkvAIqiPAs8C1CxYsU7i7i0MeZqRW0KHsnac24GmPPAZASzMf91Xv5rY9GvUSErBc7sgpRTWtVa/6ba86Lh2npVLfq5KOqNip3ezj73RnZODhkZGTg4OGBrY3Nbx0hXTWwxp7E5L4V/0xMI+DAAgJe35OK4fCQVze0YY1WeaootVXV2eGNASTHCH6MBcL2FzzIkJRHR10Be3hXLDAYMi4eAm9ttxV8aP/Nq9XNy+L67GZPJjvUnTEz9L5fc3FwCAwPvyedbyF1vM8t0eynuP6Y8yE2HnPTCz7np2nnOmHPFuS7/XGa6wTlPNWnnmdM7IfEguAeDbz3YNhPtnGa+/vntmvPTVe/v8Px1vXNPenY2F7esZW5PgAz2706g5rkTtFRmoNh8f9P2+Gbrr2xL49NVRq/IfhDaUiHKJEVReLLGk7y58U22nNlCC78WhISEUMsxg7kn8zhwJpVafu6cd23AU/W3a+2lvjSlhg+uB+6/gqqqM4GZAI0aNbJ8BlhcqgppZyExCs4d0p4vRENm0uWE3Jh18+NcQ9GK4OgM2v+UuvwHCuRlQU4q2DiBtROkndFiUPL3U5QbPF/ns64bxm3sc5clJydz+swZFEVBVVX8fH0pV67cTfdLRWWn3oSvqqOaWUeszsSL9tnYqVDNaKLjySRC0rKppM/D1l1HwLkTNLSzB1LvOGZno5Eq5VRU9XJ5CUVRcc5NgPN3Z8pWS3zm1WyB9rX8OH3mDCczDNjZ6ZkxY4b0+Nyh+7a9FPcHYy6kx0PqWe38kpr/SDur3QOelXw5Ac9Jh/z7KG/LpXPbpXOdokc7/1lp51d7DzBmw8lt2mlH0XHNeU25umzPVeena85jt3f+ut6557DOxHhDNtFNffh87yncc01Uz81E56rHnHgI7Oxv2h7fbP2VbamLvYKdnSJtqRD3sa4BXfls52fMPTiXFn4tCAsL4813XsCq30f8uuMk546cJ+K3g8xsb4Zjq6FqF0uHLChdCfppoMIV7/3zlxVnG0Mx9r2/5KRD1BI4tQ0SD8G5KC0Jv8TeHTyqgVd1sHW54lHuqvcuYO2Qf1FiuHyRcikp111xwaGqsPM77cKl4VNgNmk/ADh63vOvf6futAJtfHw8QUFBhYb52dmdJCZm3TXHM6tmNp3exPb47fwX/x9RSVGYVTMDQwbyWpPXCDEbmXc+Eg+jB1WrVL3qmHbExPyNfQld/BiAXfnDH62trcnNzWXGjG+oOWhQiRz/bn2mWTVjUk3as9mESTUVPF9ad/Uyo9l4zbpzF84RkJhBzOwWD8IFpbSZovRLi4f4/doj5dQVyfhZyEi8dnsrW3AqD86+4BoANo5aNfVLzwWvHbQfjguWO2jzlBd5rrMqnDynnIZFw7Re96GrLdJjdL1zVFHnHnunU4Qte5JfY3/F0VCOuGmHaLfp8g+6V55HbtYeX2999ScGkGbMJCMvg4y8DBLiT5B45iwxH3R4ENpSIcosg95AaPVQvtz9JUcvHiU0NBSA8Sv2MeefZH5b9yET3vgA4t6GPT9Kgl5KlKYEfTsQrChKINqF4v+AAVdtswQYlX+/ZFMgRVXVs4qinCvGvqWf2QwnNsGen+DgH5CXoSXcXjWg1iPgGaIl5J4hJZ80ZyVz8uu+VEzbxc+Rebx36GPCwsIK/ke+UkREBOHh4URFRRESEnLd7W5125LYD2DkyJFMnz4dVVVRFIXnnnuOr7/+ulj7XhIbG3vd5S4eLuxJ3ENGXgYdK3VEQWHCpgmk5KZQ17Muw+sMp7FP44K5xq10VtTzqgfA4MGDC8U2ePDgG178mFUzeeY8jGYjeaY8jKqx4HWemlewLM+Uv405jxO6E1R8qCLxifFU8qvEQeUgC48svHycmzxfSnyNqvZ8ZTJsVI2YzeZC601mE+fUcwS+HUhuXi7WttbMMs8iYlHEdRPpq5Nx9Xq3OdyG5M3JuGxyuaV/M/cpaTNF6WE2Q1IMxO/THmf3aUn5lUm4nSs4+WrJd/m6l187+15Oyu1c727F9MMryfnlGYzZmTy/PIsdU+sSFja+UFtxs/PPna6/0Tnq6nOPYqXg/4Y/ETER9K7cm1cav8IbG95g+ubC5xFXT1fOZZ4jNTeVs7qzVGxfkYTUBCpVqsRmNnNq2ynSc9NJz0snRo0hcEIgeUoe1o7WfGb+jI/mfXTNnyo3IZf3x7z/ILSlQpRp/av2Z+a+mcyPms/EFhMJDQ3Fs24CQ+fu4MtfVtEhxBtWRMKO2VrHnP29uT1RXF+pSdBVVTUqijIK+AutwvAcVVUPKIryXP766cBytKrE0UAm8PSN9rXA17g9KXGwe76WmCef0HoFaj8K9Z6ACk2KvFi53gXAjS4MrrsubifpP/THN+cCxyo/ySNvTsF702aGDBkCcM2FR1hYGLNnz6ZVq1Zs3LixyO1uddui9vv444/x8vIiMTGRV1555ab7AXzzzTcFFz6gzVIwffp0ateuzYgRI26475X27NlDdk42irWCzqDDrrIdTnWcCIsK42L0RYxmI552nigoZJuyebza4zgYHDCrZrJN2Ww+s5k1J9eQa8ol25RNjimHmBMxHPI4RNcfuqIYFHLycvg34V/a/NAGWwfbIhNms2oudsxXMvQ3UCG/g/RP05/8ueXPIrfTK3oMOgNWOquCZ71Oj17RHjpFh5XOCp2iu7xMp8NK0ZZZ661JPJfIqSOnqFenHp7unly8cJEd23dQt05dKgdWLrzvlce74nMurSu0TKcvtO+ldUXtu2H9Br7/7nteeekV2oW348z+M8X6t3Y/e6DbTGFZZjMkRMLZPfmJ+D6Ij9R+VAatx9ozBKp0hPJ1wKc2eNcq9lScdyVB7v8IrJ4IW74iOklPWpev+Padx685L93svFXc9dc7f93sHLVnzx6ys7PRO+rR2+vRO+vJiMmgoWdD/J38GfvLWLY5bKP7D93J0+eRZkxjfe56Gs1vVOhvaHjMgD/+AGw0b8T2kC1uDm7kZeYRfyKe2lVr4+flR/qFdNb/s572LdvTrEEzDu4+yKKfFzFu5DhadG5BcuPkMt+WClHWlbMtR+8qvVl8dDFj6o/B3c6dttU8cXOwZtGu01qCXm8AbPsGIhdCk2GWDvmBp6iloBCXpTRq1EjdsWOH5QJQVS0xX/Gqdr93YBuoPxCq9wRre6DoCw2gyAuEHj16sGzZsmuWh4eHX3efz98ex8Mn3uV0mpn4luE07HM5iV27di2jR48mMjKyYFmtWrWYOnUq7du3v+F2t7rt1fv16tWLL774AoPBQF5eHmPHjmXp0qXX3c+smsnIy6Bek3okZSSRo+agt9Ojs9NhV84OZw9nxr06jvS89IJehIy8DLKMWWQbtQT60iM7L5u07DQUq9vvxbFSrLDWW2NrZYuN3gYbvQ2xR2MJrBCIl5sX1nprDDoDFy9cZPeO3fTp1adQkmzQG7BStPcFr698vnLb/GcrnRVDBw/lxRdepFnjZgXrdvy3g4kTJrJu7TrtePmPSwnwnbrd/84l6U5iUBRlp6qqjW64kbB8eyksKzsVjq2Bo3/D0VWXe8atncCnFvjkJ+Ll64BndW24+XXc7Ifkos5V4eHhN0yQb7b+g0lv81jyN/y45RT+T8+hbYfLwzivbCtu1pYUZ/2Nzl9BVYNIykvCaGvE4GbA4GbAzssOe2976raoS2RMJDonHaqu6GszNVvF29Ebfzd/ytmUw8XGhZSEFFYvW82EVyYwKWwSI4eMpE2TNrhYu+Bs48yOTTsYO2ZsiXw/aS+LT9pMUZocTzlOr997MbLuSEbU067131lygJ/+O8n2NzviYm+Ab1pptwU9u9bC0ZYdt9tmSoJuqcYzOwX+fEH7pSqwDTw8FVwDCl24+Pr6kpOTw4IFCwpdaOTl5TF37txrTqDdunVjxYoVRZ5YgcInXVMea9dv1E66817HvdVTxCdnYzAYCvbNy8vD1tYWk8lUsEyv15OdffPtbnVbgFxTLheyLlC5bmXs3e0x25nR2evQ2+qxdrJGNag8Nugx0nO15Do973KinXGp5+Ym7K3scTQ44mjtiIPBAXsre2ysbDCrZi5kXSApO4kLWRcwqkYAHqn0CFaZVjiXc8aznCcjBo9gyaIlBUn3lQn4le+tdNcOTrnVv8ftuBefURo+syRjkAvO4pGLzQeMqsL5o3D0LzjyF5zcolU+t3XResaDO4N/Y3ANLFzLhDtLwEsiQS60/vAK1p9SGTnuVSJ3bkVv73LDtuJmbcnN1hucDDj6O6K6qli7W2PlaoWtpy06Fx3lq5YnOSf5mj+1Kd1EblIubZq0YdP+TVh7WuNm7UZLp5Y0D2hOgGcAjWo0Ij0xHVtr27sa/83WS3tZfNJmitJm1OpR7D+/n78f/RsbvQ374pJ5+KtNTO5bmwFNK8KWafDXmzBym3ZLrbhjt9tmlpoh7g+UuJ3w29OQEsdej94M+ngnB56pfE1CXrVqVYxGI/Hx8RgMBtq3b8/s2bN56KGHaNWqVaFDtmrVipycnCKXR0VFFbwGIHY9/P48rfvO0tbVH0j5wA/YuHFjoYuejRs3EhISUuh4ISEhxdru0rZr1q/BK9CLg8cPYudhx8ETBwl5JoTwreFcyL5QKClOy0sDoPJbla85ljnLDLkQkxyDg7UDjtaOeDt4FyTbjgYt4f74vY9pWLshfy76E71RT05aDk8PeJp/lv3D3h170ev0AFzIusCqE6to5N2IKq5V+PfUv4xaM4oglyDaVWjHzx/9zPsj36dXu14FMaxduxb/TH/a+Le56X/iotzK3+523YvPKA2fWRpjEOK+l5cNJzbCkb+1xPzicW25Vw1oPkorHuTfhIhffiX8ifduKQEHbYh0eHg4s2fPLvh/9dJ5bfTo0YSGhhIVFXXD81ix1+dlaxeaO2bTss1r2nobx5u2FcVZ//f6v3Hwc2DPiT3kOeRx8OxBQt4LodXPraj+VeGLWmOaEVOKCX2Gns6VOrNg9gLqV67P8l+Wo6QrZCVmMWbkGJYeXcqR4CMYXA30cOnBpF6TMOi1JHnt2rUElw/GoDeUSPx3sl4Icf96ssaTDPl7CMtiltEvuB+1/Vyo4uXI4t1xWoJe+zFY9Rbs/Qk6vWvpcB9okqDfazu/h2UvgVN5VlV4keHvzSm4kLk6IT958iQrV67khRdeKLj4uXRhUtQJ1MbGhn/Xb6BZqzZk55nIyjWxftMWqjZ9CBQd8/5cQzdlIz57ppLtHMDSjfsJbtWDTdHneWzMWzzz5seMfcFESI0aHDxwkC+//JJBo95m1cEEQLtXru+ot3lmwueMGmWkevUQdkVt4/uFM2k+5mHGrHyP8zmnScu7SJrxIlYv2/By3MvaDMtQMOuy0krhj+g/cbQqh6PBFWeriviWq4tT/vuj+4+zYvEqTBkKpiwFNRdQdAwbOpQulW9QXdIMvdvY89NPPzFq+CxcXFxISUlh7ty5DBj2Nkv2xRKZvIk9SWuJTtuNGTMP+4+glZcDeeZKjK8dgbPBHYCsTtUYM3EOh87ZUj0khENRUXz99dcMeP5tVuw/e1v/6Xs//zbPvPUlI0caS+yYlviM0vCZN4rhoWb1ST2+v9DtHUKI6zCbtGHru+drQ9jzMsHKThvZ1WK01lNermLB5nc7Ab9Zglg9JIS1/26gacvW5BrN5BhNbNi0hapN2hN5OoWqzTryx28/0T3xa+wvHuJszWEsuVCf4FY92Xj0PP3HvMUzYZ8wdtylc90BvvxyKgNHvc3fB+Lzz3FfMGqUkQrBfmw7vI6lG36lygv16PFrf2xetuf1uNcLzmuqCuY0Pd7eQVR2qsGFC+lsXLGdvCQFY4oO1ahN0TZs6FAaOXYhu2F17Rw1svA5qtmT3UizOkmDvAEs+GQV7lnrimxPb9beluT6BnVroUs4JG2pEGVEY5/GVHerzryD8+hbpS+KotCrji+frz7CzLk/8+VH7/F+nWyaZkxlzbmq/G/AQEuH/MCSIe73cvhR7HqY25uzdtV5JCKFLXuiCAgIYPLkyYSGhqLX6wsS8ktD9T6Y8imPDBzK6i27OJOSxebdUSxauQadozv+wTXBYEtaRhYp6VkoBhvU69xT7MMFvrCeRlPdIX4zteGtvMFkYlu8uHWZ6KzPo7O+gM76XP7zeXTW51H0l+elVVU9aq4rZqMzqtEJ1eSIanTEbHRENTmhGrX3qskR1Hv125CKNhetEcfgyShWmZhzXclLrYcxtS7mHJk+pqzJOLAW79iVxa48LEM2i0eGa5YxqWdh9zzY+QOkxoGjD4T0hOAu/LL9LO++/3GRPeQ3G2J+oyHSGdm5NGjemtffmkRwzXqkZOWSnJnHzshD/L58FY+EDmL/kRgOHI2lQlA1dNZ2pGVmkZScio29I6qiJ9d048KZ7XR7mGb4ghwMvJg3gnXm+sX4Y5hRDEnobc+isz2D3uYsOtuz6AyXpzY1G50w53hhzvXAnOuOmuuuvc5zA9Vwg2Nfn97hKIqSizG9Jtq5SgXuvC5IScm7eBbXTZ8X+u8v7WXxSZspSqOlx5by5sY3mdFxBi38WhB1NpVuX2xA2RHBnLAhtPZIxmrhYAb/40SX5z+W4pB3SO5Bvw33tPFMOQ0z2pBitKLV97l8OWMOHTt2ZOXKlQwfPpzw8HDCw8N576NPGfjSJEa9N42Ve06QnHftydrRyoyLQSU+9hCpFxJxcbSnScN61K1Vg6OHDrB+zWoSTp/Ex9ODvg/3oF2b1lQ+NJ2KB75mwsEqTNuRS4UK/gwcMIAOHTqgU0CvU8g2ZRGTFsnxtMPEZ57ibOYp4rPiSM+7fJGioMPTzht3Kx/sjc4EuVelimd1yttXwNPOG73OqqDo/N69e3nuuRFkpKdfjt3JiW+++Zq6deve9E92/vwFTp+Ow8/PHw8P92L/qU1mI/su7GBT/CrOZyfyTuOpAKw9vQw/h0oEu9REuZvT+AiLcrY14FvOrtjbywVn8cjFZhlgNkPsOtgxBw4tB9UElR+CRs9A1W6gt7rpPeI3SsBz84zUbtqa5197B9cKVTlxIYPjFzI4cCKRuOTsGxaO0ysq7o62lLM3kJeezMljh0lNOoeLowMN69elZvVq2Bh0WOt1HDqwn7WrVxF/Jo7yXh706dWDdq1bodcp2GeeweOfFxi+zoHt0QlU9Pdn4MAn6NihA3qdgoJKfNYpolP3czztMCfTj3Ey/Rg5Jm3ecZ2ix9e+Ij7WFXDOc6eGT11q+zbE1dYNRSn+ee1G568cUw4/HvmGFSd/pVq5Okxq8nWpPCcZ9DoqezoWWibtZfFJmylKozxTHl0WdqGqW1Wmd9RmlAgaM4/alTxZ8nI3MObCJ9VIcKxBh29O3LNiv2WVJOi34Z41nsZczk9pgl3acRrNTCPbsSKTJ08mPDycqVOnEpdmZtJ3S/Gp354T6ToUnQ5HGyuquqhsXf4zVjlpnD95lADvcrwxdgSDnijmr1mqChnnwNFLG8aYfBLcAgtWJ2UnsSthFzsTdrIrcReHkw5jUrWCWl72XgQ4B1DRuaL27FSRSs6V8HfyZ8FPCxg+fHhBhdoZM2YwaNCgaz4+Pj6eoKAgsrKyCpbZ2dkRExNzw7m/b9fhpMP8euRXVp1YRVJ2Ek4GJzpU6sBbzd4quJdPiKvJBWfxyMXmfSzjAuyZDzu+g4uxZOsd+fGgwger4rHxqX5LPeS1atXiw0+/xCmgNrHntQR815GT7IuJx1DOp1APt0Gv4GkLZ47so0XdqrRqVIdydtYc2LWNhT/P4/jhAwT5+/DaC6N4csD/bj9JPXdY+25d379mWlKT2cThi4e181zCLnYl7iIpOwkAR4Mj1dyqUc21GtXdqlPVrSpVylXhl59+ue457k7Pa1EXonhjwxscSznGwJCBjG0wFlurYo5mKwWkvSw+aTNFaTVtzzRm7J3BX4/8RXnH8rh3HIZb077sfqszjjZWsPwV1J0/4PHBBS5k3Jtiv2WVFIkrxY589ShVs2OJrPsqR5LeYuVPMxk+fDgde/Tl6W9WowQ1x1y1A3orK4z7fkeXeJio/ZuhWlU+KeYw3WuoKvzztja3+rP/ojr7csbaml3HlrIzYSc7E3ZyPPU4ADZ6G+p41mFI7SE09GpIHc86OFo7FnnY+Ph4hg8fTlZWVsEFyvDhw+nUqdM1Fyc+Pj7MmDGD4cOHY21tTW5uLjNmzCix5FxVVY5cPIKPgw8uNi4cvHCQ36N/p61/W7oHdae1X2us9dYl8ll3g8mskmcyk2cyYzKrGM0qJrOKu4M1VnodFzNyOZ+eU7BcezZTx78cBr2OmHPpHL+QgdGkrTep2nOvOr7odArbjycRdTa1YL3RrKKiMrJdFQD+3HeGfXEpGE0qRrMZo1nFxkrH271qAvDD5uPsjUtGVbW/tQq42lvzzsPa+q/WHOXAmVRtPSpmFXxdbJnYuxYA4csOcjQxHXP+/gCVPR0L9n/l172cSMqE/P1VFWr7uxR8/rC5O0hIzS44vqpC8yB3xvesAUD/6ZtJzszTBobmx9ephjdvdJNiRkKgqnByq9ZbfvB3MOVCpZZstn2IZz5ezDffzuHg3GvvIb/6HnFVVQms1ZATeDL+9/04PjqZ51dngPIfADZ6yDkfR80Ab1rVCyDA3YFje7fy04wvObxnGzbVq/F+WBihof0ux9a0IuEj+pfM94xcCH+M1qYmbT6SHCdvIs9Haj8+J+5kT+Keglk+/Bz9aOXXigZeDWjg3YAA54BrfhS42TnuTs5rJ1JPMGD5ANxs3JjRaQYtfFvc0VfPMZrIyDGRkWMkPcdIJXd77K2tOH4+g/9ik0jPMWrrcrXnMQ8F4+Vsy5pDCfz83ymM+eegS+eAbwY2xMPRhvlbT/Ddplh+frY5nk7XH/UghLg/9anShxl7Z/D7sd8ZUXcEXrnxZJlU/j18jh51ykO9ASj/zWTMQxUsHeoDSxL0uy1yEVWT/+Wkfx9qPRZGyLsRoNPTf8J0FkSmoQuywXxoNXF/z8YpqAJTwsIIDZ1xZ5+pqrDydXL+m86aWj1Yu+cLdiXuIiFTK/bmZO1EA68G9A3uSwOvBtR0r1nsHubY2FgMBkOh3gNra2tiY2OLvEAZNGgQnTp1IjY2lsDAwBJJzk+lnmJ57HKWxy4nJiWG15u8zhMhT9A1sCudAzrjYHC4488A7eLnfHouWbkmrehenonMXBM1fZ3xcLThxIUM/olKJCvXWLAuO8/E8DaVCfBwYN3hRL5aE01WfsG+S9v8+lxzqno78eO2E7z1x4FrPnfDq+2p4GZPxPaTfLTy8DXrd03ohJuDNYt2neartdHXrO9S0wdbnZ5l+87y/ebjhdZZ6ZSCBH1T9AV+330aK52CXq9gpdPhan/538HRxDT+i01CUUBBQVHA2/lyT8/p5CyiE9NRFNDlX+Tqr7jYTcnK42JGLigKCqBTtL/pJZeqAyg67dYJnQ6srS7f0uFsayDPZNa2URR0Crg6XP7BpaKbAx6OxkLx+d/C0HYhyiSzGQ4uhvVTIPEg2LhAw6eh0dPgFcKztWrxzbdzrlvErXpIDX5avh48K7P9eBI7T1zkbEo27j1f5vfdZ6hf0ZtaqXFs/H0ux3ZvpGrF8rwTFkZoaJ/LMTSpyPhhj93d72nMhVVvYd72DQcr1GddzS5s3zKByPOR5JpzAahSrgo9AnvQwLsBDb0b4uNw8/NPcc5xt3peyzZmY2tlSyXnSrze+HW6BnbFxcblutvnmczEp2QTn5pNQmo2Cak5JKRm81ijClTxcmTVwQTG/rybzNzCPVsLRzSnYSU3th9P4tWF+y7Hb6XDwVrP4BaBeDlDapaRk0mZWOW3+4b8Z3P+D6nuDtZU93FGryt9w+6FEHfOz9GPpuWb8kf0HwyvM5yw5wYw/r805q3dS+cQDzYeuojvRT3Ptyxn6VAfWDLE/S4OP/r5p/k03zmWC+k5DN5UkTfCJhCbrmfm7nRw9ibr2A4+e6oV48cMK7i/746ZzRz6YxiLTq1mWTk3UtU8POw8aOTdiAbeDWjg1YBg12B01ykmFx8ff8OLjns9bP1KuaZcnl75NPvOaxceDb0b0j2wO50qdcLV1vWa7U1mlbMpWVxIz+VCRg7n07Ue6dZVPKnt78Lh+DRe/W0vmfnJ86Uk+sNH6tCrri+bo88zYNa2a44768lGdKzhzeqoBIb8oP370esU7A16bK31TB/YkIaVXNl49Dxfr4vGzqDHzlqPnUGPvbWe4W0r41vOjsjTKWw4el5LkHUKBr2CXqejZ93yONsaOJqQxqH4tILll7ZrGuSGjZWeM8lZJKblFCy/9Bzg7oBOp5CWnUeu0YyVTpefgF/6nNJThKg0kCGbxSPDNUs5VdWqsa+eBAn7OZpixYf/prPXVJkXX59QcH4p6h7yg6cv0vKxkfR8Zhz/HTtHjllLzLydbahkb2T78p8Z9b9ujBv8WKlI2nJNuWxb8ChrL+zj33IeJJpz0Ck6arjVKEjG63vVL/K8cMn1znUleY5TVZWlMUv5ZMcnfNv5W6q6Vr38HYxmYs9ncCg+lcPxaRxJSOOJppVoX92L/2KTeGzGlkLHsrbS8fWABnSs4c3RhDR+3n4KNwdrHKz1ONhY4WhjRdMgd9wcrEnLziMlKw9HGyvsra0K/fB5p6S9LD5pM0VptjxmOa9teI1vO39Ls/LNeOTDxexMNHHqyycIqRbMvBGNqX9uEYzaAR7Blg73viVD3EuZiIgIts1+jf+1NjJlnxeDnxnKm5/NQd9hLG4ediT98zWJW5YzOapmiSTnKTkpLI9dzuI9M4nKOY+1iwsdKnWgb3A/mpZvet2E/Erz5s276b3ld3vY+tXf6Z8T/3A6/TRjGozBSjEQ4BxMy/Lt6VetJ+WsPVmw/RTfnUjkXHocF9JzOJ+eQ/9GFQhtUpEzyVm0/mjtNce17amntr8LjrZWuDpY41tOXyiJDnDXeuCreDvy4SO1sTXosbe2KtimSn7RnFbBHux9uzP21voik95WwR60Cva47ver5edCLb/r96IEezsR7O103fW+5exuWAzNyVbuuxfigRC7AVa/C3H/kWbwZMIGR3qH/cA3H7W9Zgj7pWnMAms34c99Z1i69yyHE9JwaTWAc2k59G9Sibwzh1j63Rfs2LWFjJAQJoeFERr6uEW/YnJ2MhtOb2DtqbVsOr2JTGMmduXcaFWhDe0qtKONXxvK2ZYr1rFudK4rqXNccnYy7259l1UnVlHTrR57T2STk5FCbX8X4i5m0n7KOvJMWgeJlU4hyNOBHKN2/36wlyMfPVoHb2dbfJxt8Xa2wcXOUDAcP9jbiQn5t/oUxcnWIO2/EOKGOlTqgPM2ZxYdXUSz8s14rlcLhs3dwbqDcbQO9oS0ePj0D+1W2Y5vWzrcB470oN+lXzdr16rJ1icVHBwciXAdzZtTZmDo8jJ5aRf4vFclXhgx9I4Tc7NqZtvZbSyOXszqE6vJNecS4lqVPnaV6NH6LVyKebECt95rcLOe9tthMqucvphFXHoca8/+yuLoxeSYcrAylUd/9iUuZpgwmVUGtwjgnYdrkms0U3X8CnQKuDlY4+5gg4eTNY808KdfA39yjCZ+330aD0cb3B1tcHewxsPRBjtrfYnEK8oG6REqHukNKoXidsKadyFmHTj5QttXqff0FD778qsii7yt3PAf4XNXsOJAIrhpc5sHl9MRvWYBbwzsyrNP/s9CX6Rop1JPsfbUWtaeWsvuxN2YVBOeejvaVe5J+wrtaVK+CTb6W7tHurjnujs5x207s51R/7xMtjkFNakL6YmtAB2hTSryfr/amMwqn646TFVvJ6r5OBHk4Viivdx3k7SXxSdtpijtJm+bzMIjC1nz2BpsdI7Uf3cVjzb0Z1IfrZYQ8/rCxeMwetc1BThF8UgPeilT1XwUh0w76Dabpj5dsT/oTGZaCqfmvkbYOq87Ss5VVeWfk//w6Y5PiUuPw9namUfsK9K3RRgh5W/vvHmr95ZfKpZzu/Ff6gmYszGWvXHJHE1I59i5dEz2u7HzW4CVTkevoF4cPFwLF30AHtVs8XDSkvA6/lqvs7WVjp3jO1LO3rrIYZc2Vnoeb1zxtmIUQohSK+EgrA2HQ3+CvTt0mQyNhoDBlv0HhxYq8paQmk20vgIX6g+m1YdrAVv8/fxI3Pknx9cvwtHfM7+HvHQk50nZSSw9tpQ/jv3B0YtHAQh2CeIZxY2H4vZTI7gXuqbjQXd7CW1xz3XFPcdl5hrZfvwim4+dR6covNa1OpvObMBo1BNgfJ36lWtRraUT1X2cqJo/IkqvU3ilS/Xbil8IIUpKv+B+RByKYFnMMgaEDKBNVQ9WHUxg4sM10ekUqN4Tlr0IiVHgff1RO6LkSYJ+F0T89BNhbWw4csFMv6c/xaqbDTY2toQ1s2fyaq87mlPwZOpJJv83mU2nN1HNtRoftQjnof/mYbP/b6g2EG6SoF+vVyAwMJC8vLxC2+bm5hIYGHj1IW5JzLl0DpxJJToxnejEdI4mpuFka2DhCK167bL9Z4jLPEgFVycGVa5DeffyROfAuMZD8HbwhpY3Pr67o1SYFUI8IC4c4/j3z1Ex9T/SclR+iHahfN8J9G/+dMEmISEh/LNuA0nOlVmy5wz/HU9CVcHOyYWXulSjZ53yVHJ3AB4GvrHYV7mSyWxi85nNLI5ezNpTazGajdTxqMOrjV+lnW15Kix9GVJOQedwaDq8WD05d/tct2D7SRbuPM3uUxfJM6kYrNNpXNkAVGd0g9EMqz0MJ5vr36IkhBCWVt2tOiFuISyOXsyAkAF0ruHDXwcS2H86hboVykH1HrDsJe3HYEnQ7ylJ0EtYREQEf3/9KqEddby6yQGP7mM5npFLN3Mk48d8S3h4+G0dN8eUw5z9c5i1fxYGvYHXGr/G/4IexurXp+DYGujxCdR65IbHuJv33eUYTew8fpEtMRc4nZzFp4/VA+CTv4+wbP9ZFAUqudlTxcuJ2n4umFUz6+PWY1dpNpnn9lC+QjvGP3SpB6febf2NhBCiTEo/B2vDMe/8AW+jmVOB/fDt/yG1dx5gyJAhGHW2hIaGkpiWTaNn3mXE8vNgk0WQhz0PB1mx5Kt3CH99DKHtq1j6mxQSlxbH79G/83v07yRkJuBq40po9VD6VelHFdcqkJUMn9fRplAbvBwqNi3WcUv6XJeQms2yfWfZfOw8055ogI2VntjzmWTlmXimVSAeHif5MWY6qdYOmMy9MegMGGzkHnAhROnXN7gvk7dN5uCFg3QIqYJep/D3wXgtQXfyAf/GELUU2r5q6VAfKHIPegnfH1SrVi3WDi+PZ+4pJju+xcxYF5L//Z7s3Uv57rvvbmtY+6bTmwjfFs6ptFN0C+jGy41fxsvgBD/2h+Mb4eGp0GDQDY9xt+6723j0PLM3xrA1JomsPBNWOoUADweWjmqFnbWew/FpmMwqQZ4O2Bq0e79Xn1zN1F1TOZZyDD9HPwbXHEyfKn2wtbK9yacJUfLknsrikfspLUBVYc+P8Pd4yEnnxyM2BAz8kpZdL/8Yu3btWp5//V0efvULFu06TZ7ZTA3nPGKWzeTIlr8ICQkhLCysZGYJKQE5phxWn1jNouhFbDu7DQWFFn4t6FelH+0rtNem/DSbLw9hP7RMu0B09CrW8UvqXJeSlcfy/WdZsucMW2MvoKpQ2dOBOYMbU8ndAVVVMatmZuybwfS90wlwCWBK2ymFKrWXRdJeFp+0meJ+kJKTwkO/PES/4H6ENQtjwLdbOZeWwzPlzxAeHk43l2g+7mTDkqD3ePjJ0ZYO974j96CXEieio/BIOYfa4Ek2RVfAr1wekavn4eLkcMsXSAkZCXy4/UNWnVhFJedKzOg0gxa+2tBwLhyD5JPQdwbUvXl13ZK47y4lM49Nx86z4eg5hrUOIsjTkQsZOcSez6B/I3/aBHvSrLI7jjaX/1lV89GG+GXmZZJnMmDQGzibfhadTscHrT+gS0AXrHTyz1AIIQo5Hw1/joPjG6Bic+j5OU+Wr0n2dw8DWi2PHScuMv+EA5ntX2bx7tP0b+TP0NZBBHo4wBt9LBr+1Q4nHWbh0YUsi1lGam4qfo5+PF/vefpU6VN4fvLUs/DLk9B8JNTsqw2xvAV3cq7LzDWSmWvCw9GGowlpvLFoP0GeDoztEMzDdX0Jyp/BAyA9L52xa8eyPX47D1d+mLCmYdgb7G/xryKEEJblYuNCx0odWRa7jJcavUTnGt68s/Qgb37/OXOmTqVVTT/4ujH7Fkwmw+BRan7sLeskMypBERERdK9qg2LM5snvIjlQuR2fP16P7du2EBISckvHOpx0mGdXPUtGXgaj6o3i6VpPY623vryBe2V4/j8wFK/X+Xbvu7uYkcv3m4+z4eg59pxKxqyCk40VD1X3JsjTkV51fOldz++6+ydnJxNxKIKfDv3ECw1foF9wPx6v/jhPhDxRUChOCCGEZsFP80hYFMaz1ZPJNes4VOEJmgz+CnQ6QkJCWL9hA3leIcxYH8Puk8k4GsBw5B82zf0Aj1JWk0NVVXYk7GDW/llsPrMZa501HSp2oG9w36Kn/zy5VUvOc9LhNn+4vdVzXa7RzPoj51iy9wyrDibQv5E/7/auRYOKrvw5uhU1fZ2LPFc5GBxwtnZmUstJ9KnS57ZiFUKI0qBfcD+Wxy5n9cnVdKr5EO8sPUj/cZMuzwbiVZNRHVValcC00KJ4JEEvIREREYSFhbFoYC2Sso+wN3gonD/J9t+2EBHx0y3de74ncQ8jV4/E3sqeX3r+QlC5oMsrT2yBg79Dp0nXTc6LGrpX3PvukjNzWREZj5uDNV1q+qDTKXy9Lpoavi6Mal+FNlU9qVuhXMG837oiqqcDnE0/y9yDc1l4dCFZxiza+bejmms1AAw6uTdPCCGutmrOe9Tb+ynVapkwh/Rhp0tvBo18hfByC+j76GN0HP4OQxaeAKcsKrjaMTDEwI/vjWHyu2+XquRcVVU2nN7At/u+Zc+5PbjZujG2wVj6V+2Pi41LUTvAjjmw4jUoVwGe/AO8bvyj9vWGqN/KPebvr4ji5/9OkZKVRzl7A30b+BX84KzTKdTyKxyr0Wxk1v5ZBb3+n7X7TH5oFkLc9xr7NMbP0Y/FRxfTo0sPcuOjia54xajskJ64/PsR50+kWy7IB4wk6CUkPDycOd9Op95/Q9ls25KUVFsS/57BJ/GHbune861ntzJmzRg87Tz5tvO3+Dr6Xl6ZehZ+fQqsHaDdG2Blfc3+NyqOM2jQIDp16lTkRc2RhDS+23ScxbvjyM4z0722D11q+uBiZ2D3W50LDVsvjpf+fYmoC1F0D+rO0zWf1gr+CCGEuFZ2CvwzkQ4nZpPr4wH9pqGr1pWWwMxvXRn5aQRToj24kGGHn5c1FzbOZ/Pa37hYvRqT33271PRomMwm/j7xN7P2z+LIxSP4OvjyZtM36Vul741rjJzcqk3lE9wZ+n0LduVu+Dk3Os/B9c912Xkm1h1OpEtNHxRFIc+o0r6aJw/X86VVFc8bzkUenxHPa+tfY1fiLuys7Hiq5lOSnAshygSdoqNPlT5M2zONU2mncEyJYffJKiSmZePlZAvVe6L8+yHD2/pbOtQHhhSJK6ECHnq9npyDK7CK6M94u/Eccm5JxNDG2NraYjKZinWMdafW8dK6l6joXJFvO3+Lh53H5ZXGHPi+JyQcgGGri+xdKG5xnKtNXHqA7zYdx8ZKR9/6fgxsVum6w/quJzU3lVn7ZjG0zlCcrZ05cOEArjauhX9gEKIUkqJHxSMFj+4CVdWq4y5/BTIS+WxLNqMWnsHg4ArAv0fOMWnpAaLPZdAsyI2xHarSLMit1CWGuaZclhxbwneR33Ey7SSBLoEMrT2UboHdbjxiypQH+vz1h5ZD1S6g09/ws27nPJeYms38rSf4cdtJLmTksnhkC+pXdC3299t6diuv/vsq2aZs3mr+Fj2DehZ737JG2svikzZT3E/iM+Lp/FtnhtUZRu5uL6YecWRILWtef7wdGzdsoPKyR9D71MDvlU2WDvW+IkXiLCwkJISEdbMpb2XPrxerMKGtHxs3biz2vefLY5bz5sY3CXELYXqn6dcOA1zxGsT9B/1/uO7Qv+IWx0nNzuO3HXH0a+BHOXtrmge54+FoQ2iTirg5XNsrfyOqqrI8djkfb/+YizkXqe1Zm06VOlHTveYtHUcIIR4oKae1xPzwMvCpDaERzP71Ser9t4cKNRsTvuwgaw+fw8tOwXb7D0S8v6DUJeaZeZn8duQ3fjjwA4lZidRwr8Hn7T6nfcX2195ffrUTW2DxcHh8PpSvA9W7F+szi3ueAzifnsN7fx5k2f6zGM0qHap78XTLQOpVKFfs77j6xGpe/PdFAp0D+bT9pwS5BN18JyGEuM/4OPjQwq8Ff0T/wYonV/LdOyv44a9tvPNUV0JCQvht2ENUT10P2alg62zpcMs8SdBLSPv27dAdncvSLH9yHPTsWfodb0XMLda95wuPLGTilok09G7IVx2+wsHgUHiDi8dh3wJoOQ5q9rnucW5WHCfmXDo/bD7ObzvjyMg14Wxn4NGG/nSu6UPn28inT6Se4L2t77H17FZqudfi645fU8O9xq0fSAghHhARP/1E5I9hvF7nAnq9jsPlH6H+sJmgt+KF18J4euoy9NUysbO24rGqBn6dPIrJkyaWquQ8My+TeQfnMT9qPsk5yTT2acykVpNoXr75zeNUVdg+C1a+DuUqgf7WfhS+2Xkuz2Tm9MUsAjwccLSxYtfJZAY2q8RTzQMI8HAo6pA31KR8EwaGDOT5es9LlXYhRJnWr0o/Xvr3JbYlbKVz7Qqss7ElL8+o1Zs6sQW++weO/g21H7V0qGWeJOglICIiggPrl1K+r8JWpS1Zsbv48o/JDB8+/Kb3Bu49t5dJWyfRwq8Fn7f7vOj79FwDYPgGcCtchfbqIjnXK47j5uHFM99vZ82hRAx6hV51fBncMoA6/uXu6Ht/suMTIs9HEtY0jP5V+6O/ydBEIYR4kP06fw72f79GeONczJVas817EE+MepN3XX/FFNCcqbHuKFXboRzfyuE/p0ElXyZPmlhq7jE3q2aWHFvCl7u+5FzWOdr5t2NI7SHU86pXvAPkZcPyl2D3fAjuAv1mXvd+81stAmfj5MbX66KZt+UEBr2OtS+3w9agZ+3L7dBfp5jp9URfjGbGvhm81+o9nKydeKXxK7e0vxBC3I/aV2iPq40ri44uok3Vl1i0+zSRZ1K0fKFCE3DwhEN/SoJ+D0iCXgLCw8P5ZfxTcOgLdlrVZWZYL5xHtmX06NE33C8zL5M3NryBl70XH7f5+NrkPD0RoldDvVDwKFxk7XpFcq4sjuNRvgLBAVpBh3J2BsZ1DGZA04pawYfbtPnMZio6VcTfyZ83m76Jlc6q8L3yQgghrnV6J832vIxfkAoPjUfX6kWa6/SM+9CDCetOou47QIvK7kzoWYOQ8j2BSZaOuJAd8Tv4aPtHRCVFUcejDp+2+7T4ifkl22dpyXmbV7VCp7qih8HfShE4N58K/H44nZYfriEz10SLyu480zKQSyn5rSbnK2JX8Pbmt7G3sicuLY7K5Srf2ncU9yVFUboCXwB6YJaqqh9ctf4J4DVAAdKAEaqq7r3ngQpxFxn0BroFduO3I78xtm4YigL/Hj6nJeg6PVTvAft/035sLeY0z+L2SIJeAqKioqjmkEa2zp7TVhXpGOKNtc6LqKioG+734fYPiUuLY06XOThZOxVeqaqwaBic3AaBrcHlcuXE+Ph4hg8fTlZWVsF9eMOHD6dTp074+Pjg5uHFLwfSmPndARaPdCHY24lPH693R9/xfNZ5Ptr+EStiV/Bo1Ud5u/nb+Dhcv/CcEEIIwGyGLV/B6omYjXmYn1qJLrAl0Ynp+feZ55BnNPPdoIZ0quFdqoayA5xKO8VnOz9j1YlV+Dj48EHrD+gW2O3m95hfyZirzTrSdLh2v3lgm+tuerPz2yWXRo2tjDzL9H+P0auOLyPbV6a6z+3dG5lnzuPTHZ8yP2o+9b3qM6XtFLzsvW7rWOL+oiiKHpgGdALigO2KoixRVfXgFZvFAm1VVb2oKEo3YCbQ9N5HK8Td1S2wGz8d+om9SZuo5evG+qPnGN0hWFtZvRfs/B5i/9WKeoq7RhL0EhASEkLG4XVEmYN4qEZ5HGysWLt27Q0LxK0+sZpFRxcxtPZQGvkUUdxv3y8Qsw56fFIoOYcbF8k5nWPDG4v2cSQhnV51fSlnf2v3913NZDbx25Hf+GLXF2SbshlRdwRDag+5o2MKIcQDIT0RFj8Hx1ZDyMOEfrCTib1y2Hf0MN+sO4adQc/j1Qz8+dlUOs8YauloC0nLTePbfd8yP2o+Vjornq/3PE/VfAo7K7tbO9Du+bDhE3jmL3D0umFyDjcvApeeY+T7TbHYGvQMbR1E5xo+/PNiWyp7Ot7O1ywQvjWchUcX8kTIE7zU6KUbV58XZU0TIFpV1RgARVF+BnoDBQm6qqqbr9h+KyDzTYkyqa5nXXwdfFkeu5w2Vccx/d8YUrPzcLY1aO23jTNELZEE/S6TBL0EvPXGK9gdHsN2c2/aVnFj7dq1DBky5LoF4hIzE3lnyzuEuIUwsu7IazfIugh/h4FfI2j4zDWrr1ck54+TVixYspnyzrbMGdyIh6p73/F3++7Ad3yx6wualm/K+KbjCXAJuONjCiFEmXdsDSwaDjmp0ONTaPQMj2b8wrBfjoJrFn3rlaedazIvjBharGKi94rRbGTR0UVM2zONpOwkelfuzZgGY269N9lkhFVvwdZpENgWdMW73Lje+c3HvyLT/z3GjH+PcTEzj371/QDQ6ZQ7Ss5VVUVRFAbXHEwTnyZ0DypeNXlRpvgBp654H8eNe8eHACuKWqEoyrPAswAVK1YsqfiEuGcURaFrYFd+OPADjzYxYDKrbI6+QNdaPtpIqODOcHiF1sbrJY28W+Qve4ciIiJYPvM9HmsPu41VmNupCdX8PQkPDy+ysI9ZNTNh0wSyjdl80OYDDPoifqVfPQkyL8DAhaDTFbsY3BkXJ55qbs/LXarhaHP7/2kz8jK4kHWBis4VeazaY/g6+NItsFupG3ophBClzc8/zSd9yesMrZ5GdIoVR+q+QecGTzN9bTTfHHPC0dMe45bv+fLjRawKCbnuucIStpzZwsc7PuboxaM08GrA1x2/vr0pM7Muwm/PaD9SNH0OOodfcyF3K0Xgxn08h/4/HOR8ei5tq3ryYqeq1L2FqdKKoqoq86PmcyjpEO+1fI8AlwD5AVrclKIo7dES9FZFrVdVdSba8HcaNWqk3sPQhCgx3QO7MydyDufU7TjauDJn+RZe/t8EoqKiGNuxEp82vwCntkJAkf8biBJQKhJ0RVHcgAVAAHAceExV1YtXbVMBmAt4AyowU1XVL/LXvQMMA87lb/6mqqrL73bcERERhIWF8fc7vSDme2Ktg/F3cyAsLOy6F1wLDi9g85nNjG86/vrzqVbpAC5+UL7uDYvBNWzZjknLDjGgaSV6Nala0BNwJ7ae3UrYxjDcbN34pecvOFs7S4+CEKXM/dpmlnVLfphKtf/eoX51I6b6T3LaoQfPvzQRvxNVicvS06uuL+8+XBNXh16WDrWQM+lneH/b+6yLW4efox+ftvuUjhU73v755O8JELsBen0JDZ+6ZnVxisC1bd+Bw8diqV2tMgl5thxfeYgZg6rSsJLb7X7NAlnGLN7e/DYrYlfQvkJ7cs252Oht7vi44r51GqhwxXv//GWFKIpSB5gFdFNV9cI9ik2Ie66qa1WCXIL468RKKtr04b9Tacz58ktat27Nln9XkfNvKMf/+IRqYyVBv1sUVbX8D3yKonwEJKmq+oGiKK8DrqqqvnbVNuWB8qqq7lIUxQnYCfRRVfVg/sVmuqqqU27lcxs1aqTu2LHjtuOuVasWU6dOpV3iHE5HbePDagvo55PM6NGjiYyMvGb7zLxMuizsQnW36szsNPOmFz/x8fEEBQUVuhfPzs6OmJgYTmZZM3zeDjJyTLzVqwYDm1W67e8BWm/C3INz+XTnpwQ6B/Juy3ep41nnjo4pxP1AUZSdqqoWUQii9LJEm3mn7WWZF7mQtIgh2NraYej3NaaQPszeGMNHKw9hzM5g2uDW9KhT3tJRFmJWzfx6+Fc+3fkpKirP1X2OJ0KeuP1k1WzSKv1mJsH5o1Dx2lHCNzqv+fj4oKoqf+47ywcrDtGyijsfPVr3dr9ekc6kn2Hs2rEcTjrM6PqjGVJ7yK0VvHvA3Y/t5c0oimIFHAE6oCXm24EBqqoeuGKbisAa4Mmr7ke/Lmkzxf3sm73f8M2eb8hZUpec4P+x+qXLtT7OT+1I7sld+H50AWR07Q3dbptZWs5KvYEf8l//APS5egNVVc+qqror/3UaEIV235DFREVF0apVK0yndrDTVJnGAa60atXqutXbfz3yK8k5yTxf7/mik/Mdc+Dfj7SLHC4Xy7mStbU1v24+zKDZ23B1sGb52FZ3nJxnG7N5c+ObTNkxhYcqPMRPPX6S5FyI0u2+bDPLJFMeLH8VfnuG/fFGeG4jsd6deXzGFiYvP0T7al6c/nZEqUvOT6WdYujfQ3lv23vU8azD4t6LeabWM7eXnKsqbJ4KPzysVWy3dysyOYfrn9diY2OJPJ3CYzO2MDpiNy52Bh6uW7L/XE1mE8NXDed02mm+6vAVw+oMk+RcoKqqERgF/IXWTv6iquoBRVGeUxTlufzN3gLcga8VRdmjKIpk3qJM6x7YHRWVZPMmQJtu7ZJyzQfh62CCs3ssFF3ZVyqGuAPeqqqezX8djzYk87oURQkA6gPbrlg8SlGUJ4EdwEtXD/e8Yt8SK+AREhLClnWraJN+hsPm1vQKcGPjxo1FVm/PMeXw/YHvaerTtOi5Y9PiYdXb4N8I8i8YiiqWYy5Xgc+2p1PbvxzfDW6Mm8OdVWkHrSDEybSTjKo3Si5YhLg/3JM2Uwoe3URmEvz6FMSuh2bPM2LhEnouO8bCY0ew1uv47PG6uFw8wpZKpSc5N6tmIg5F8MWuL9Aret5p/g79gvvd/nD2vGz4cxzsjYCQh8FsBK5/XrpeEbgDmU6Ef7URV3tr3u9Xm8caVbjlOcyv59JIQb1Oz1vN38LDzoNAl8ASObYoG/Jv8Vl+1bLpV7weCpSuqRaEuIsqOVeihnsN1KYHcMxVWH/0HM+00trNrUnlaK6C/tAy8K1v4UjLpnuWiSmK8o+iKJFFPHpfuZ2qnUmvO+5eURRHYCEwTlXV1PzF3wCVgXrAWeCT6+2vqupMVVUbqarayNPT846+U1hYGJ+8qf24etpQgTNROxgyZAhhYWHXbPv70d85n3WeYXWGFX2wv94EYw50n0J8QgJbtmwBYMaMGdjZ2eHi4oKdnR1fvfsqE3rW4KehTe84Od+TuIfU3FRs9DZ83/V7htcdLsm5EKVEaWgzS7K9LHMSDsK37eHkVujzDaeajMf98XB+PJRHsAssG92CcslHGTp0aJHnBEs4nnKcwSsH88F/H9DQuyGLey/mkaqP3H5ynhYPP/TUkvN2b0D/H8DaHtCGsm/ZsoX4+PhCu1wqAmdnZ4eLqxsO7uWZMWMGvRpXYVjrINa+3I7QJhVLLDnPNeUycctE5kTOAaCxT2NJzoUQohi6BXRDKa+QEP0nm4+eIz0zm7Vr1/Lkcy+QZF8Zov+xdIhl1j3rQVdVteP11imKkqAoSnlVVc/m3zeZeJ3tDGgXmj+qqrroimMnXLHNt8CfJRf5jVV0yAVgV/Q5Fs1+io8++uiaAnF55jzmRM6hrmddmvg0ufYgx9ZA5EJo9wbzlm++pnhO9LFjTFl5kNDmlWlcPeCOY1ZVlQWHF/Dhfx/ySNVHGN9svMz5KkQpU1bbzPtdREQEm+eMZ3Kjc2Sb9eyu9jJZtOXNz9ejKLb080/jr+nvEPBaFCGlpEq7yWxi3sF5fLXnK6z11oS3CqdXUK87n5njt2cg4QA8NhdqXP7dqDhF4OyrNOHjf2IoX86egQPboCgKb3a/dvTZnTifdZ4X1r7AnnN7GF5neIkeWwghyrqugV35ZOcnNGmjZ1s0eNVqQZB9LuHh4Xj6xcGa9yD9HDjKD/glrbQMcV8CPAV8kP/8x9UbKNqVxGwgSlXVT69aV/6K4Z59gWsrtJWwSxXcV4X1xHhyIY1bd+b05qKvcZfFLONMxhnCmoVde0FkNsOK18AtiPgqoQzvHkJWVlZBAZ3hI55n0Fd/8dfhbCoHGGlc/c7izjXlEr4tnEVHF9HWvy1jG4y9swMKISzhvmszy4KIn37i9IIXmdoyC3P5+uyqMIpn5+yEI3toEuDGp4/Xxd/VHkY9aulQCxxLPsaETRPYf34/7Su0Z0KzCXja3+HFlKpqhYF6fKINafepXbAqPj6e4cOHFz6PDR9Op06d8PHxIToxnUl/HuTfI+cI8nRgTKeQuzKFZ+T5SMauHUtabhpT2k6hS0CXEv8MIYQoy3wcfGjg1YCL2SexjlUImzqfsB41tJVndmsJ+rE1UPdxywZaBpWW8cwfAJ0URTkKdMx/j6IovoqiXLonqCUwCHgov0DHHkVRLs3/9ZGiKPsVRdkHtAdeuNsBh4eHM3v2bDwNWZxUvWjfrAGzZ88mPDy80HYms4lZ+2cR4hZCa7/W1x5Ip4N+M6HPN8SeOlOoeI5isMH14df561ASr3Spxsh2le8o5nOZ53j6r6dZdHQRz9Z5li8f+hIna6c7OqYQwiLuuzbzvpebgevqF3m5fhbUfowz/RbxaUx5qNIaw7F1/DSsqZaclxJ55jy+3fct/Zf251TaKT5s/SFftP/izpJzVYX1H2v3nKsqeIUUSs7hxkXg1h5OpOvn69l18iLje4Swcmwb2lf3uv14riMpO4ln/noGg87AvG7zJDkXQojb1D2wO7GpMdQKzGT9kfOXV/jUBXsPGeZ+l5SKHvT8+SQ7FLH8DNA9//VGoMif2VVVHVTU8rvpUgX3rKmvEqOWJ9jbkco1rq3gvurkKk6knuDTdp9ev5cgv8BCoHX85eI5Oiu8Hn0HK/+avNGxEsPbV7njmFVUUnNS+bTdp3Sq1OmOjyeEsIz7sc28ryWfgp9D6eyfiemht9ngNZBx3+zEZFKZFlqXhxs8jJX+Y0tHWSAmJYbX179OVFIUnSt15o2mb+Bh53FnBzXmwJLRsG8B1Hlcm21Ef+0lRFFF4PL0dgQGBuLs5sYzrQJ5tk0QHo4lP++4qqooioKbrRvhrcJp5N0IV1vXEv8cIYR4UHQK6MT7/72Ps0cku6Ibk5CajbezrdbBWKWDlqCbzdp7UWLkr3mbQkJC2LjhX+zTTxCj+hLo4VBkBfffj/6On6MfHSpecy2tDQtZPEKrBEzh4jnl3D3R6RT6V8hkeMdadxTr+rj1mMwmvOy9WNx7sSTnQghRXCe2wMx2cPEEIzd58cLhWjz9ww58nG1ZMroV9klHi5y5w1KWHlvK//78H2czzvJJ20/4pN0nd56cZ5zXplDbtwAeGg99ZxSZnEPh85irf2V8Hp9EtednUM7dE3trK97sHnJXkvPk7GSe++c51setB6BTpU6SnAshxB1ys3WjWflmnMrdDKhsOXbh8soqHSHzgky3dheUih70+1FYWBhvjxvC+n45pNgHsHnDeoYMGVJoiPvF7ItsPbuVwTUHF10dff0UuHic+IvpxO49TGBgIIMGDaJTp07ExsZSKSAA3/K3Pz2PqqpM3T2Vb/d/y1vN36J/1f5Y6eQ/uRBCFMvO72HZy1CuIsl95nHMFM3RY0Za+ur5ZkgTdv635Zp231Iy8zJ5/7/3+T36dxp4NeCjNh/h7XDD2feKx2yGub3hQjT0/x5q9gW0e81jY2MJDAzEx8en0C4DnhjIefc6TN8Uh16nY0yX6hj0d68/4FjyMUatHkVCZgI9g3retc8RQogHUbfAbmw6Mx7ncmfZfKwCfer7aSsqPwQoEL0a/BpYNMayRrK1O1DJXqvgvv5gPF9+8+Q1FdxXn1yNSTXRNbDrtTuf3AYnNrHd/RHaBlcvqHb79ueziDJUYUr/BnfcyzBz30y+3f8tjwQ/Qt8qfe/oWEII8SCIiIjgw8nvMbRCDKOaWHPWvgaJ3SJ47sdjXMi2pq9/Bn9PfwfXF0pPlfboi9G8/O/LxKTE8GydZxlRd0TJ/Rir00HHiWDnCv4NgRtXaT+fnsOQ77ezNy6Fh6p7MalPLfzK2ZVMLEXYELeBV9e/io3ehu+6fkddz7p37bOEEOJB9FDFh7DeYo17+Sg2H7uiHpaDB/jW04a5t33FYvGVRZKg34ZLFdyXvxMKMbOp2bIrBzavu2a7lcdXEuAcQDXXatceZOOnmG3L0W38zwXVbnW2Tny1O4fyfsl3HOPcA3P5as9X9ArqxVvN35L5zYUQ4iYiIiIIf/tN/n0+APeLcZz0781Dv4B6MZLy5exZNKIFtfxcSk2VdlVV+T36dyZvm4y9wZ7pnabTwrdFyRx8+yytEFyTYRB8eca/61Vp79ixI+XLl8fN3hpvZ1umhgbRs075u1Kh/ZKoC1GMWjOK4HLBfNXhK3wcfG6+kxBCiFviZO1Ea//WbD29g/iL7Zn2/c98M+U9oqKimPaoL8+GpKHLuqj9kCtKhGRtt+FSBXdvJyuyVGuaNW1xTQX381nn2R6/nc4Bna+9QImPhCMrifPvRR751W4VHR4Pv4LO0ZXRDezuqPc8MTORr/Z8RadKnXi35buSnAshRDF8M+VdNg93wz15DzndPuNjhxcwNngc4qNYNrq1lpyXEpl5mby58U3e2vwWdTzr8Fuv30omOTcZtak/l70Ex9ZqSfoViqrSbh9Qjyfn7uV8eg46ncLMJxvRq67vXU3OAaq7VSesaRhzu82V5FwIIe6iboHdyDBdRG8fw5R5S5k6dSrZ2dk0CX0DHSob51n+Vq+yRDK321BQwf3CSc6o7lTxdqJVq8IV3P858Q9m1UzXgCKGt9u7QbOR2LQeXVDttlzrgdgFNiBt3Sw6NQi+o/i87L2Y220uH7b+UO45F0KI4rhwjDkt43DKOs3ZbrPpsakyy/ad4cWOVTg+9w1c7A03P8Y9cjjpMI//+TjLYpYxsu5IZnaaeedzmwNkp0LE/2DbdGj2PDw+T5vv/ApXVmnX2Tjg1nU0jg+HkWW2IiE1+85juInk7GTGrBlDTHIMiqLwWLXHsDeUnunthBCiLGrj3wZ7K3sMDjto0msQ7du3x2Aw0KDXs+Tp7Unc9JOlQyxTJEG/DSEhIWzcuBEl9TTxqhtBntdWcF95fCWVXSoT7FpEsu3sC13fx7tSNWbMmIG9syuONduRFfkPX4x5/JqCO8X19/G/+e3Ib4DWs2DQl54LSiGEKLVO74TZnXF3sGJRxbfostyBpIxc5g1pSm39GUJCqls6QkAb0v7L4V8YsGwA6XnpzOo8ixH1RqDX6e/84MYc+K6bNrtIz8+g62Qo4rg+Pj5Mnz6DcrXb4/fsDBxrd6S1Rxb/vNyemr53d4RBTEoMA5YPYOPpjcSkxNzVzxJCCHGZnZUdbfzboHM8SHS6gnppdJXeCn1wR5q6p10z4krcPulevQ1hYWEMGTKE7YPhgr4W2zZtKFTJNzEzkV0JuxhRd8S1O2+fBZ4hxNtWJjY2lk6dOnHs8EH2HT5G9cpdqOjve1sxrY9bz2vrX6O2Z236VOkjPedCCFEcR1fBL0+CgwczfF5geqQ/vk4m5g9vxokDu0pNlfb03HQmbpnIyuMraeHbgsmtJuNu515yH2BlA/UHgmd1qNz+hlXaBw0ayLq8IGIT05jYoypt6gSVXBzXsfn0Zl7+92UMegNzusyhnle9u/6ZQgghLutQqQMrj68k2XSUo4ktqOrtBMBhc0VCnHWQeBC8a1o4yrJBsrjbEBoaiqKaKHd4FMdSYPbo0YUq+a46sQoVlS6BXQrvmJcF/0zkmKE6td/ahMFgQPGtyaevj+CZpwbddjxbz27lhbUvEOwazLQO0yQ5F0KI4tg9H5aMQfWuyTTfD5i+OZkqzkbO/vYWwe/sLjVV2o9cPMILa18gLj2OMfXHMKT2kJKrLRL1J9g6Q2AbaKb9qHy9Ku3/HjmHv6sdlT0d+XJgU2ytdFjdxenTLtlyZgsjV4+kcrnKTH1oKr6Ot/dDthBCiNvX2q81evRYOUXyw4otvPNEezZu3Mib4fPZ0h+tmrsk6CXits6siqJYKYpSV1EUt5IO6H4QERHBrM/eQ6+onDfaExYWVugCbtPpTQQ4BxDkclWvwuEVkJPK6FmbtQq41q649Hqd135YS3x8/G3FsjtxN2PWjKGic0VmdJqBk7XTnXw1IYQo0yIiIqhVqyYT2trCH89zxq4qL9hPZsrmZEKbVGTFG704sGcHJpOJyMhIiyfna06uYdDyQWQZs5jTZQ7D6gwrueR86zewYCBs/Lxg0ZVV2lNTU8nKymL486N5OeI/nprzH1+tiQbA0cbqniTnAA29GzKk9hDmdZsnybkQQliIg8GBVv6tsHY+wM/rdmFra8vo0aMZM/4D8KqpJeiiRNzy2VVRlPLA90AQ8KaiKA/UBNuXplj7IGwMAF6V6xEWFkZERAQAJrOJ3Ym7aeTT6Nqd9/5Mjq0HW+K1Hm7XDs9izsnEeOBvYmNjbyueyPOReNl78W3nb3G1lekNhBDieiIiIpgw/k3+GlOLSe1tOOXRlrZHQ/njYArje4QwuW8tDPco6bwZVVX5dt+3jF07lkCXQCJ6RNDQu2HJHNxsghWvw8rXoXoPeHx+waqrq7Rb+wTjPuBjftt7jmdaBvJ+v9olE8NNpOSk8Pbmt0nJScFab83o+qOlGJwQQlhYh4odwJCMfVVPcvOMl3/IrtIBTmyBnHRLh1gm3M6VyItAGBCnqurLwMCSDal0uzTFWo2KWsVc/+r1C02xduTiEdLz0mnkfVWCnn4Oov8hr3pfcnLzsAtuhl1AXVI2/khOWhKBgYG3Fc+gGoP4pecveNh53NH3EkKIsm7K+5PYMi4YvzMruVBvJKFpY1C8qmCzfS5DWwfd9WnBiivbmM1rG17jy91f0j2wO993/R5vB++SObgxR7vnfts30HQEPDYXrC8nvldWabcNbIDPoCmgt2Zqv2De6lUDW0MJFKS7iROpJ3hi+RMsPbaU/ef33/XPE0IIUTztKrRDh44cm70cOJNyeUWVjmDOg+MbLBdcGXI7Cbo9kAHUK9lQ7g+XplhLTTwOgJNXQKEp1nYk7AC4tqcj6Rg4euPYYgjTvpmBe4ehmJJOYTy0lhkzZtxS5fY8Ux6jV49m69mtANKrIIQQN5OZxJeNT+Jx4T+ONpxA293tyFPhl2ebcXTdQktHVyAhI4GnVj7FytiVjG0wlg9af4CtlW3JfYDOANYO0PUD6PbBNZXafXx8+Gb6DOzs7LBJOUnmrqVMaKynV5OqJRfDDexM2MkTy58gNSeVWZ1n0cqv1T35XCGEEDfnautKXc8GWDkdYPOxC5dXVGwGBgcZ5l5Cbqea2BfAR8AXiqK8CKwq2ZBKt0tTrFW+cIp01RYvT69CU6ztTNiJn6MfPg5XJdwVmxE/YDWxx07QoEVb6iXH0CtAx8PvRt/ytGpf7PqCdXHr6F2ld0l9LSGEKLuST8H8fjT21bPA6wXe3BxCdR97Zg9uxKFdWwtNkWlJ+87tY+zasWTmZfJF+y9oX7F9yR38fDTorcA1APrOID4hgdgtWwpVaVdVlflbTxCRVInIQ0dJOH2yyCrud8v6uPWMWzsOP0c/vu7wNRWcK9yTzxVCCFF83YI6s/vcZNYc289zbStrC61stGKjR1dp062VkhFp96tb7kFXVfUI8AraPeh/q6o6vcSjKsUuTbGWcuYICaorxw/uZsiQIYSFhaGqKjsTdl47vD0nnflzvyeochW6du1K87rV6e96imd7t7nlC5/1cev54eAPPF7tcTpW6liC30wIIcqgC8dgTlfUtHg+cHyN1082oo6Hnp+GaMn5pfbb0pYeW8rTK5/GRm/D/O7zSzY5P7EFZneExSNAVZk3fz5BQUF07dqVoKAg5s2bR0JqNk99t50JfxzAy9kWFzcPmjdvfs+Sc4Aa7jXoEtCF+d3nS3IuhBCl1EMVHgIgMnkTuUbz5RVVOkDyCUiKsVBkZcdtzcelquoFYHEJx3JfuFTRN3PXRDJtnQh7eWzBNDzHko+RnJN8zfD29JUTabdnBubcLEyBTck5vofnnhtO586dbuniJz4jnrCNYVRzrcYrjV8p0e8lhBBlTmIUzO2NajLyrtuHfBfrQkuPHPZ89zburx4sFdOomcwmvtj9Bd9Ffkdjn8Z80vaTki34GblQS8zLVYA+04hPSCio0p6VlQXA6A9mUvGYJ7kmlUm9azKwWaV7dj9+rimXiEMRPBHyBB52Hrzf+v178rlCCCFuj7eDN5UcQojJ2s+eU8k0Ccyf1KtKfsfh0VXgXtlyAZYBN+1BVxTlvKIoPe5FMPcTN0Mu53NtUVALlu2I1+4/L9SDbjZjiFrEgfMKedbOuHcbg0vzx7C2tr7lyu2Lji4ix5TDx20/xkZvUyLfQwghyhJtGrVaNPIzcPGzFmRkZTPa5j3mnijHpD61+PHlfhyI3F8qplFLz01nzNoxfBf5HY9VfYwZnWaUXHKuqrDxM/jtGfBrAENWgVvQNVXaQcGxUV/cbGD5mNYMah5wz5LzlJwUhq8azpQdU9h8ZvM9+UwhhBB3rkflzujtTjN16WJq1aqFXq+nVptepBq85D70ElCcIe55wDeKogy9eoWiKBElH1LpdmmaNS/rXKzc/Jk6dWrBNGs7E3biZe+Fv5P/5R2Ob8Am+zw/RhpxrNsFxcqa9D0ryM3NveXK7SPqjuDnnj8T6HJ7Fd+FEKIsu9Q+//De82wf5Y21kzvdEp9nZYIzMwY2ZFCzSpYOscCp1FMMXD6QTac3Mb7peCY0n4BBZ7j5jsVlyoUDv0PNfjDod7DXejguVWm3cvFGZ+cMqFz88yN+GFSHIE/Hkvv8m7j0/fee28sHrT+gjX+be/bZ4v6gKIpbMR7lLB2nEA+iHpU7A7D13GamTp1KdnY2U6dOZdG+VIzH1kFelmUDvM8VZ4j7WaAfsFJRFH9VVd+5Yl21uxJVKRYeHs7sWTNxWv8oebbudGnfntmzZzN69Gi83/KmoU/Dwr0PBxaDtSOdxrzL2u1W5MVFYpV5/pYqt+89txc3WzcqOFUgyCXoLn0zIYS4v4WHh7NwyljqH5hErr0XT2S9wTkXRwzrv6Hj+z0tHV6BnQk7Gbt2LAAzO82kSfkmJXfwvCxQzVql9if/ABtn0F3+Ld7Hx4exH8/hx2gdxlP7SV7+CdM//5hK/r4lF8NN7Encw5g1Y1BRmdV5Fg28G9yzzxb3lTP5jxsN6dADFe9NOEKISyo6V8Sc6oS1byItWrfBYKWnffv27L3wMlaR78HJLVD5IUuHed8qVpE4VVWPA62AzoqizFIU5XamZysToqKiaNWgBjpUzPba3OOtWrXi6JmjJGYlUsejzuWNVRXT4b9JKlcHfeUW6J08eL1fM2JiYhg0aFCxPu9C1gVeWPsCr61/DVVVb76DEEI8oALzjlDvQDhZjv50T32DOLM7Pz/bjCObVlg6tAKrTqzi2b+fxdXGlYj/s3fncVFV7wPHP4cBBBXFDUVxATVlcd+XNLc0M9Nsw10xd7/tZdnXth+VZYuampVlaWm7LV9Tc0lFM61ERdQ0RHEBxY0dBub8/piRXEAGGLiDPu/Xa17MXebc594Ll/vMueec/ssdm5ynnYNP74avxhB/6hS/Re4n/vTp3MWZ2Tm88MM+lsd5EVyvBgsm9i3U/yNHcTO5UbNCTZb1XybJubie/VrrAK21f34v4GyBpQghSsTF3Zkoz6Ns/uffJrtBd4zDnKMhZpOBkZV99tSgKwCtdaJSqhfwBfCDUup+rv+t5g0pMDCQP7espSPgUsGaoEdERNC4c2MAmlT996GCpUs/5cuPjpJhOcGumq9Qr/t9TB7UDZOLfYfNoi3M2DqDi5kXWdh7Yam1CxRCiDJn30q+fcCTM25+DDr7JKaK1fgmrAMxe3Y4zTBqn+//nNd2vEaLGi2Y13Me3h7ejiv8QhwsGwLnY9lUfTh3NGyIm5sbZrOZRYsW0WPAECYt+4u9Jy4ypksDpt/RlHKupoLLdRCtNb/H/05H344EVwvmiwFf4HLzftcv7NPJQesIIUpA5aOgbtV8e2ANfZo0AiBiRySVzpejzRFJ0IvDnv+Ouy690VqnA4OAE8CvQKUSicqJzZgxgzmzXwGsCfrGjRsJCwuj14O9AGjsbU3U4+PjmTBxEj/tT2PdwSTObl7GgbdHcOZ0gt3b+nTfp2w9sZWn2j11ReIvhBDiMpHL4esxnCjXiF5nn0C5V2B5WDti9uxwimHUtNa88+c7vLrjVW6rexsf3P6BY5PzhH2wuA8kx3P2zg+54/H3SE9PJykpifT0dCZMmEDy+bNkZVtYNKINz98VXKrJuTnHzMxtM3lo7UP8dvI3AEnORYG01hmOWEcIUTJmjHkcS3ol/kjYgNlszs2J3Jv0gZORkH7e6BDLLHv+Q36gLqu61VpbtNYTgP8BN11vZaGhoQy/924AXnj1TaZNm0Z4eDgV6lfAx9Mn96bryJEjjGrhRmtfF1tHPOBuUnb33H4q5RTvRr5Lz7o9ub/J/SWyL0IIUebtXAwrJxJftT13pjxLVa8KXPjmeer7eOden43sqd2cY2ZGxAwWRy3m/lvu5+3b3sbD1cNxG7DkwFejre/H/szfmTX+7aXd5IZXu0G4e3hyIeE4Pz98K32DS29cc7D2VD95/WRWHl7JpBaT6OjbsVS3L8o+ZTVcKTXTNl1PKeXAtiFCiKIYOnQoProZ6W7/UL56pdz/uc0GTgU0xEYYHWKZZc8j7iOB+Uqpv4HVwGqtdbzW+kWl1JISjc5JBQbUhrOwYPEy2gZba7a//fFbGldtnLuOf11f3uqpeX93Bc7c8hEXIpaRFbXG7p7by7uV5/4m9zMicIQ82i6EEHnZ9i6snUFstVvpeyKMTk3qsGBYa8rPvNvoyABINafy2K+Pse3kNqa2nMr45uMdfz13McG9H4FHZfCuh7+Ot/bSXqU21Qc+RblajbiQfBp/f39c7Gxe5SgJqQlMXj+ZmAsxvNzlZQY1GlSq2xc3jAWABegJvAQkA98A7YwMSggBoa3vZ96Brby5dgn/6fCAdWZ2FriVhyObIfAuYwMsowqsQddaT9JatwZeAKoAS5RSvymlXgHqK6VK7zk5J7B8+XJWffsZFq0YHTaR5cuXY7aY+efCP9xS5Zbc9WplHMbTTRHh0gYXdw/0qf2F6rm9crnKPNXuKXwr+pbUrgghRJljHec8mOdv84C1M9ju2o7eJx6iX8sGfDCyLeXd7fneueQlpicyZvUYfj/1Oy91fokJLSY4Njnf8QGse8H6vlYz8LZ2ZF2rVi3+88ZH+I5+Bzfvmlz48TXmPTvR7v89jrQncQ8nU04yv9d8Sc5FcXTQWk8BMgC01ucBd2NDEkIA3BvSGYu5Er8cvWzsc1d3qNdJOoorBrvvZLTWB4ADwNtKKU+gB3Af8BbQtmTCcy6Xxtj9fEobLiSd4tUX/8vDk8ZxRp/BbDHntj8H4PB6cPUgu8d0/DM023f+atcNkkVbmLl1JkNuGUIrn1YluDdCCFG2WK/Bz7JxRg/qxx1ns3t3Ric9RIdq2bx9f8tSryHOT+zFWCaum8i5jHPM7TnXsWN8aw0b/g+2zIZb7oCcbDD9+698ccQRVsR5EVK3PJOau9Fu+lelnpxfzLxI5XKV6VO/D21rtqWKR5VS3b644ZhtlUEaQClVA2uNuhDCYFUreOBlacXRtN9Iz07H09XTuiCgO/wyE5JOQSWpbCysAmvQlVKJSqk7L5+ntU7XWq/SWk/TWt8UyTnYxkBfvJjK7hYu4MWdfaxjoL//7fsAV9SgZx9YzWmvYHYlZDOkQ0O7b5B+ivmJ7//5nuPJx0tkH4QQoqwKD/8/NjzXk/px3/Cr1wBGJT3EwIbl2PPJf50mOd9zZg8jfx5JmjmNxbcvdmxynpMNP0yFLbNJqNOP+NtmX5GcA3QMqMrwjvX4blo37urVtdST85+P/Ezfb/ryV8JfAJKcC0eYC3wH+CilwoEI4BVjQxJCXNK6ele0ymLL8W3/zvTvbv15ZLMxQZVx9nQSZwYWKqXGXb1AKbXc8SE5r/3799O1a1dcMpNIc6mIi4uia9eunFVncVWuBFQOAOCLJQtJP/0Pc39LBiDznx12lZ9mTmPOn3NoVr0ZdwbcWfAHhBDiZqE1D9aMocGxr1lfvj9jEx/kpbub8cboHhzYv9/o6ADYfHwz49aOo4JbBZb1X0azGs0cV7jW8PVo2LWMV7bmcMsTqwlodAtLly7lYHwy7244BEBw7cr836BmpdpLuzU8zZKoJTy1+SmaVm1KQ++Gpbp9ceNRStUD0Fp/BjwFvAqcAgZprb8yMjYhxL/6N+qCzinHyoO//DuzVjPw8AYZbq1I7HnE/RRwD7BaKeWntX7hsmVNHRGEUqoq1vHVGwCxwP22NkZXrxeLtXOQHCD7Uu29vZ8vrsDAQCIiImhgTibZpSJgHQO9WtNq+Hv742ZyIz4+njGTHyc7M51yXn+j68zmv0d+Z9hdvQqsyfgo6iNOp5/mzdvelCFohBD5KivXTIf69VWeu9Wdn009mXp+KG/e34rBrfzYuHGjU4xz/s3f3/Dy9pdpUrUJ83vNp7pndcduQCku1OnBzDkrmfdbau7s/7zxMbX+rk5FDzdC29ejWsVyjt2uHXIsOczaOYvlB5bTt0FfwruGU85U+nGIG85KoLXtfbjWekhJbUgp1Q+YA5iAD7XWr121vCnwsS2eGVrr2SUVixBlTZeGNcne1IQ/Tm/Foi3WHMbFBP63WmvQtQbp8LpQ7MoCtdaxQFfgdqXUh0rlZo/aQXFMB9ZrrRsD623T+emhtW551aP1hfl8kc2YMYOwsDBcsy6S6Voxd7w/70beue3Pjxw5gpubG2YLpFxMIjX6V9zd3QscXi0+NZ4l+5Zwh/8dtPRpWRLhCyFuHGXimukwv74Gm2bxE92ZnDyKh5p5MCCkZu412Ohxzj/c+yEv/PYCHX078nHfjx2bnCedhIOrAdhvCuKTfbaaceWCd/fRVO7/OH4VXfhpWldDknOAVUdWsfzAckYFjeL1bq9Lci4c5fI7+oAS24i1fft84A4gCAhVSgVdtdo54D+AJOZCXKVKBXd8TK1It1zgrc/fIiQkBJPJxMufbYGLcXAuxugQyxx7EnQFoLVOBHoBPsAPSqnyXHnxLI67gU9s7z8BBpXy5+0SGhpKeHg4HtlJ/HPqAtOmTePF/3uRJJJoULkBAP7+/nw2wMKE3gFUbHkHuLiSlZVV4PBq1Tyr8UjrR3i09aMlEboQ4sZSJq6ZDvHrLPj1VdZ59OHRrPEM9Tez7JVH8fDwMHycc601c/+ay5y/5tDfvz/zes2jvFt5x20g8TAs7gsrJ0FGEv7+/pjNZgBq3D2dyh3vJX3vWhYPa0bNSg4cW91OWlu/o78z4E4W9FrAE+2ekKe/hCPpfN47WnvgsNY6RmudBazAeo38d+Nan9Za78Ta7FMIcZWutW9Faxc+2LiYefPmkZGRQZ8J4QDs+FK+1yose/6T7rr0RmudjvVG7gTwK1DJQXHU1Fqfsr2PB2rms54G1iql/lRKjS/C51FKjVdK/aGU+uPMmTOFDjQ0NJRKpkzqNAohKiqKrnd2RaPxq+gHQK2KJgY0dqFWw0CqdAnFs5y7XcOrubm4MTxouAyrJoSwR6lcM4t7vSy2TW/Ar6+wrlxvJiePZv6wtoRPuo+oqChycnKIiooyLDm3aAuzds7ig70fMKTxEF7p+gpuLm6O28Cp3fBRXzCnwohvwaMStWrVYtGiRXh6eqKP7iRp/UJmP9iWen61HbddO8UlxTF69WiOJx/HRblwq9+tpR6DuOG1UEolKaWSgea290lKqWSlVJIDt1MHiLts+rhtXqEZfs0UwiDdGtUjJ60+vt3r0aNHD9zc3OjYfxgZ7tU498d3RodX5hTYBl1rPfaqaQswQSn1PPC8vRtSSq0D8spSr3g2UWutlVL5fVPaVWt9QinlA/yilDqgtd5ciM+jtX4feB+gbdu2hf5G9ovPPuUBzGzbFc3DISE8+MyDAPh5WRN0TvwBwN/Ve9Kvri8vxfxz3eRca81jvz7GHf53cHuD2wsbjhDiBuUM18ziXi+LYvny5YSHh3N31cOE9yzHKrryWMpY3hvRlp5N8/3utVTlWHJ4aftLfHvoW4YHDuepdk85dozz2K2w/EHwqAwjvoPq1iZU30eewL1pd2JiYjhy5Aj+/v6GjG++7+w+Jq+bTI7O4VzGuX///wnhQFrr0u3p0AGMuGYK4QzaNahK9qpAzlZYxcmUk9SuWBuUwr1JL9pe+AIsFnCRJ6zsVeQjpbV+Ebj+c9tXrt9bax2Sx+t7IEEp5Qtg+3k6nzJO2H6exjrkRnvbIrs+X1zLly/nzVes30l06H478+bN49MfPgXIrUFPOfArOZj4K7sBo3q1LPDm6a/Tf7Hu2DrOZzh3/0xCiNJ1I1wzC8s6zvkMvn+yO+E9y7FadWVqylhC66U6TXJutph5ZsszfHvoWyY0n+D45BxI2fMDaa6VOX3XUqjemOwcC//3UzQPr4jkh90nqVmzJp06dTIkOd92chtjV4/Fw+TB0juW0rxG81KPQdwclFKdlKP/uPJ2Aqh72bSfbZ4Qwk7VKpbDkuADwK9xv+bOP5hVi+rlFZzeZ0xgZVShE3Sl1FCl1Aql1DLgVaWUI54v/AEYZXs/Cvg+j+1WUEp5XXoP3A5E2ft5RwgPD+eN8BcAcK1QhR49etDvgX5os6a6Z3WWLl3Kju8WsC+tCmkZZg5t+7nAMpdGL6VyucoMbDSwJEIWQtyYysQ1s7DCw8P55fk7aXhkGetdu/NY9mQe71iZr+a9ZHRoAGTmZPLYr4/xc+zPPNrmUaa2murY5DwjiaVLl+Lz4DxueT2OBs278MGSZYz95A8+jDjCqE71+Xh0e4d/IWCv30/9zpT1U/Dz8mNp/6X4V7b7O3ohimIk8JftnnO0UqqkvpHaCTRWSvkrpdyBB7FeI4UQhdC2VgCWzGp8u/s7zGaztSPXcGtFJjEy3FphFKUGvbvW+kGt9XCt9VCsvbsX12tAH6XUIaC3bRqlVG2l1CrbOjWBCKXUbmAH8D+t9errfd7R9u/fT+OAeoA1QQegMmSeziQhIYEJEyYQez6btUn+ZBzby+SJE4iPj8+3vLjkODYc28B9t9yHp6tnSYQshLgxlYlrZmH19z5MwyOfst61G49kTeCjMR0Zf3d39jvBOOdp5jSmrp/Kr3G/MqPDDMaGjC3wM4Xy+yJy5rbmlacmkJ6ezonEJDLMOby4NZmth8/w6j3NePHuENxdjXtEsFn1Ztx3y3183O9jfMr7GBaHuDlorSdprVsBLwBVgCVKqd+UUq8opbrZel93xHayganAGmA/8KXWep9SaqJSaiKAUqqWUuo48BjwnFLquFLKUf0wCXFDGH57B7JTgjmQdoDy3uWZNm0a02a8BtUayXjohWTPOOhXK6eUuhNrhxp+QLEzS631Waw9xF89/yTQ3/Y+BmhRmM87WmBgIPsi/6A24FahKgAHEw5SLr1c7vBqYT8kAetBbaRyJS+OHDmS72OIn+//HJMy8WCTB0s6dCHEDaSsXDMLZds8Xu9djrV04knzJD4e25G2Dao6xTjnyVnJTFk/hd1ndvN/Xf6PuxvdXfCH7KW1bRi517jo05mzmWeAdOui7CzMf0fwwl0TCG1fz3HbLFR4mhUHV3B3w7sp71aeZzs8a0gc4ualtT4AHADeVkp5Aj2A+4C3gLbX+2whtrEKWHXVvPcuex+P9Z5XCJGPDgFVyV7ZFPdqm/nfvv/927fWTztgz5eQYwaTAztTvYEV5av4yVi/yewPVAWmODQiJzZjxgx+/O4LANzLe7FhwwZOpJyg3S3t8Pf3R+dcNvqGthQ4vFpH345MaTWFmhWco22lEEIYYvtCWPsca3V7JiWNYVpLd1rU8XKKcc4vZFxg3Npx7D2zl9e7ve7Y5NxigZ+fgk2vQcvhZA36gJQMMxWCe1CujnUY5uSd3zGg/S2O22YhZFuy+e/W//LK76/w/T9O0QpC3ISUUh5KqRClVAjWfi1Xaa2naa0dkpwLIRzDx8uDehWCMOkKbDp+WY25f3fISoETfxoXXBlT6Bp0rXUasOzStFLqaWCWI4NyVqGhoXie3ArJh7j3weFUqFoBNVXRq00vatWqxZ8vdifjVDT94sZy/sdZBQ6v1r1ud7rX7V6KeyCEEE7mzyWwejq/unRkuuU/TAxO4Z3/PsKEe/cTGBho6DjniemJPLT2IY4lHWNOzzl08+vm2A1sXwA73odOU+H2/8NHw70vfcrmRE+y/tnOhf8dsWuYzpKQnp3Ok5ueZNPxTUxqMUme9BKlTinlCrwCjAWOAgqoq5T6GJihtZYxyYVwMh0DavDTqSZsPr6ZHEsOJhcT+HcDFBzZDPU6Gh1imVDoBF0p9eXlk0BLbpIEHaCBX03YD1sitnPONYFhq4blDjHT2PMiOyv706JWRz6aE5PvTVW2JZtPoz9lYMOBVPesXprhCyGE89jzFfrHR9ju0pon9H/49KGuhNSpzJNhDxgdGadSTjFu7TjOpJ9hQe8FdPDt4PiNtB0D5atCi1DSzRYe+zKSzYme3B1SnXvvuoPG86YYkpxfzLzIlPVT2HNmD//t+F/ub3J/qccgBPAG4AX4a62TAWztvmfbXg8bGJsQIg/t/avy1f6mUPEvdp/ZTeuara3/52o1s3YU1/0po0MsE4ryiHuS1vp+2+s+YJ2jg3JWy5cvZ/M6a8/sd/QfwJdrrN9V+FX0A3M6+sx+fstsQKeGNa57U7Xh2Abe/vNtdp/ZXSpxCyGEs1i+fDkhISHcE+RO9tfj+EM35T+Wx1gyzpqcO4O4pDhGrR7F+YzzvN/nfccm55nJpH49lR1b1hF/LhlaDuViejb3L/qN1fviee7OQN4Z1p5bu3Q2JDkHa5v7M2lnePO2NyU5F0YaADx0KTkH0FonAZOw9bUhhHAuHfyrkZ16Cy64XjHcGgHd4fgOyEozKrQypSgJevhV08Y1DixFl8bnbdYkgDRdjrdmz+KrNV8BULtibX765G2UtnDAUpfZ0yexdOnSfMtaGr0Uv4p+3OZ3WylFL4QQxrt0Hf3sxbF882Bl9rs0ZnTyFO6rm+Y0yfmxpGOMWTOG9Ox0FvddTEuflo4rPO0ciW91odyeT3l18hACAgJYunQpXh6u3FLTiw9GtGXcrQGGDaMWnxqPRVvw8/Ljx8E/0qd+H0PiEMJGa611HjNzgGvmCyGMV9vbk7reVfDiFn7Y9wMhISGYTCYmvr4ccrLg2G9Gh1gmFDpB11ofuWr6nOPCcV7h4eEsXrwY7/KupFGOPr160ntQb3SmJulsEt++Z/3e4u+c2iQf2cOECXkPsbb3zF4iz0QyPGi4tV2GEELcJMLDw/n6zcdovv91DlOH8ZbpPNzVl0/fftno0ABrzfnYNWPJzMnkw9s/JLCaA3uPTzmNeXE/vFJjGfJlOiujkqBOMyY9MYPTpxN48/4W9A4yrsPQyNOR3PvjvSzaswgAd5O7YbEIYROtlBp59Uyl1HCsvboLIZxQB/9qnD8dwFnO8t+3/ktGRgZDp8/DbIHoVe8VXICwvw26UuqxPGZfBP7UWkc6LCIntX//frp27Ur0ngWkK+vIcm5V3Mj6O4sjR44Qm+zKgsM+7D2zG23OwL185TyHWPvswGdUdKvIoEaDDNgLIYQwToULB2m5/1WOWaozyvws74zpQeu6lZh0n/HjnMclxTFmzZjc5LxJ1SaOK/ziCfh0IC4X4rjve8UPB7Op1GEI3t1HkXVwy3WH4ywNW45v4bFfH8OnvA8DAgYYFocQV5kKfKOUGgtc6v65LdbhfQcbFpUQ4ro6+Fflmz1BVPT5iYw6Gbi5udGtd38u7AnEcnij0eGVCYWpQW8LTATq2F4TgH7AB0qpG77Ff2BgIBEREbhkp5FhS9BjEmJwN7vj7+/P9jgzUz47zOm11tqH/IZYs1gsDGw4kApuFUo1fiGEMFR8FGtHViQ+qzzDs57hjVE96RBQjYiICMPHOY9LjmPs2rElk5wDWMzg4sqFAR+xNiaHqn2nUuW2MaQdiODi+vevOxxnSVt9ZDX/2fAf/Cv78+kdn1LXq65hsQhxOa31ca11B+AlINb2eklr3V5rfcLI2IQQ+evgXw1trkp193pXDLfm1bw/gd5ZkHHRwOjKhsL04u4HtNZapwAopZ4H/gd0w/rN5uuOD895zJgxg7CwMFaO8SXTxZONGzfyT8I/NPNvRq1atfh07kuEPfF/KKzJeX5D47ze/XXyaFIlhBA3rsTDWD4dRKZ7Ze5Pe4r729akff3KueOch4df3bVJ6YlLtj7Wnp6dzuLbFzu+5tzLF6o0gEnb8DBruj6zlL9T3Mn4ayWpEZ8ZNowawJm0Mzy39Tla+LRgXs95eLl7GRKHEHlRSv2ltW6ttd4AbLjeOqUcmhDiOupW9USlX0BfbMRf5k1czLxI5XKV2ZNUmVYuCo5th1v6Gh2mUytMgu4DZF42bQZqaq3TlVKZ+XzmhnFpHF7Lnpc5m+PBtGnTcHvSjfaB7SErjSHH/4+4KfdQt/tYujZvlOcN16VfUKM6ABJCiFJ3/iiWT+4iKd3MsKz/0jOgMu+/9AiPhho/zvnlybnDa85P7Yalg6HtWOj5HLiYsGgz7pWr83R7b1rePRZ//5cNfbS9RvkavNf7PUKqh+Dh6mFYHELkI1Aptec6yxXgHL1LCiFyKaVo7luBvUf9qNA0h03HNuF13IspT7/D3uGumGK3SIJegMIk6J8Bvyulvsd6URwAfK6UqgBEl0RwziY0NJRjh18h0702W//8jK4rulKjfA0SD/5GdTT/UJcpPTvj7npty4GUrBR6f9Wbaa2mMTL4mj5PhBDixpN0CssnA0lLSWJo1nM8PvRO+oX48tLE+4yOjOPJxwlbE5abnDet2tRhZZ+N/JnKP4WhPCphahHK0bOp+Hh54OXhxsrJXXA1FWUAFcfQWvP2X2/TpEoT7gy4k7a12hoWixAFsOePMqfEoxBCFNoDPVqz+zsTOk0x5c0pVI6ozH9fegVT+qcQG2F0eE7P7rsErfXLwHjgAnAemKi1fklrnaq1HlZC8TmV5cuXY8pKJuZEIl36dgFg/x/7eXrMQAD2JsIXyz/L87Mb4zaSkZNB8xrNSy1eIYQobZfGOa/pZeKfF5qRcSGe4ZlPMfH+u+kX4mt0eIA1OR+7Ziyp5lQ+6POBQ5PzXxY9R7kvH+DomVQC3zhG+Nc7GDR/KzO/jwIwNDnPseTwwm8v8HHUx+xN3GtYHELYQ2t91I7XcaPjFEJcq0NAVcCFZr49aHBbA3bv2W19Wq5BV+sTZtIO/boKe6dgBixYv7E0Oz4c53Vp/N6Kpiz8Apoy5akpACyYtYDG3jlkaRMHTyblO7za6tjV+FbwlQRdCHHDunSdXPj2q5yc1RG/SorRmU/QuE4dBraobXR4AJxIOUHYmjBSzakOH0ot4ejftDsylyPnLXRZnMzxyi15/5AHFdxdmNKjkcO2UxRZOVk8uflJvj30LeObj+fpdk8bGo8QQogbV0D1ClSvWA7SArmQeeHfL4UbdAVtsbZDF/myO0FXSj2M9TH36ljboy9TSk0rqcCczaVx0MuTgXavQO1brDebGWczCKnlzhHtS/rpo7i7u3PkyBVDxXMx8yLbTm6jb4O+uCjjak+EEKIkhYeH8/H7C+hydC769AEeynqU4KCW/LzwBaNDA6zJ+djVY0kxp/DB7R84dpxzIObkWUb8pLjtkzTSmtxJjcHPkHP2GP/t6EmD6saN3GG2mJm6fiq/HP2FJ9o+wbRW06QvFCGEECVGKUUH/6rEHquDi3Jhy4kt1gV+7cDkDrFbjA3QyRUmWwwDOmitn9dazwQ6Ag+VTFjOZ//+/XTt3BE3csC9PGfSzwCQdT6Lt3ZYeP6PSqTH/JXn8Grrj60n25JNP/9+RoQuhBCl4tDB/XQ9+T4c/4OpWVPpc9dQnn3wNvbvN36c86uT86BqQY4rPPJz2L0Cf39/1seYuaArUrlLKOmHd3Dum+dp0bSh47ZVBG4ubrTwacFLnV9iVPAoQ2MRQghxc2jvX5VTF1zwsdRh0dpFmEwmQlq357R7PWmHXoDCJOiKKzvjyLHNuykEBgaydZNtlA/X8pxJO4On8qR2jdpsP25h9bb9uKaeznPInO5+3Xmp80sEVXXgDaEQQjgTi4VvRvhgilnPM+Yw2t4xihGdGjjFOOcnU04StiaMZHOy45PzP5fAysmw50uqVqvBe+8topzKJnXlC6SsfptF8+cZOozawXMHAZjScgqDGw82JA4hhBA3H2s7dDj6VyaqliLufBzz5s1jxfYTWE5GSjv06yhML+4fY+3F/Tusifkg4KOSCMoZzZgxgyefeISd9wCu5Yg+Fk3qmVTeee1FGtf05ISlKq1btMzzRqyaZzW5MRJC3Li0Rv/8FAPqpfGa+UHSG/RhVMe6TjHO+em004StCSMpK8nxyfnv78PPT0Lj27k48CPGf7SDDv7tiYmJ4ciRI/j7+xuWnB9PPs74X8Zj0RZ+HPwjbi5uhsQhhBDi5nSLjxdkpdK8yTAO8ja/J/zO4B6D8T7/LC57/ivjoV9HYXpxfwsYA5wFEoFRWuu3SyowZxMaGspjDz8MwPKvv2PX/l3Uq1GPezsF0GLrJHYdOpbnjdjm45v55u9vyLHISCBCiBvUptdROz9gUfad7PG+nfVzHsfDw4Np06YZOs75uYxzPLT2Ic5lnOO93u8RXC3YcYVvm2dNzpvcycm+H3Dfh3/x17HzBNSoSK1atejUqZNhyfk/F/5h1M+juJh5kde7vS7JuRBCiFLn4qJIO7qXhNT6+JT3yW2HHtJvNJnZWtqhX0eBNehKqWRAXz7rsmVaa12pJAJzRj26d4FlMHLsQ5xmDXUq1uHC0T14Ay6V8+6h+KuDX/HPxX+4p/E9pRqrEEKUih0fwK+v8GV2d/5u9hTL7muBy5NDjI6Ki5kXGb92PCdTTrKg9wKHjqARHx+P+Z/9VA/ox4nb5jPygz9JzsjmkzHt6dyousO2UxTRZ6OZ+MtEXF1cWdJvCY2rNDY0HiGEEDcv76xE4s5l8ED7zmw6+Qtmi5mI3/+k4nkP2kk79HwVWIOutfbSWle67OV12eumSc4BzBlpAJjcK3Ah4wKJcYl8+PbLmLWJt+YvZunSpVeubzGzM2EnnXw7SY+5Qogbz96v0aueZG1OG3695Tlm3dscFxfjr3Wp5lQmr5tMzMUY3unxDu1qtXNMwVrz9cfvEhAQQMjUz6gxbQ2D5keQlaNZMaGj4ck5wJKoJXi4ekhyLoQQwnDjB90GQPLxKqSaU/l4zceEhYXh0bS3jId+HTLmVyFkZaQC4OLuwfnM82xes5l63q6c0NVJORN3zRjo+xL3kWpOpYNvB6NCFkKIknFoHZZvJ/C7pSkr6r/I20Pb4Goy/l9KenY6U9ZPYd/ZfczuPpsudbo4pmCtSfn+SXoceJYa7hkkJSWRmnSRE9+/yXv3Nia4dmXHbKfI4VkfdHupy0ssvWMp9SrVMzQeIYQQ4pHR91HORbN29Rl0tmbuT3MJDw+n2YCJMh76dRh/N1WGZGdaa9Bz3FwxW8yQDv5VXIjTNcg+f+qaMdC3n9qOQtG+VnujQhZCCMc79js5K4YRbanLuzVf5t2RnSjnajI6KrJysnh046P8lfAXr3R9hZ71ejqmYK1hzbNUjPyAlX8rzvp2pvwtna2L4iIxnz/pmO0U0ebjmxn580iSspLwcPWgZoWahsYjhBBCALiaXOjU2IcGrfvRqW4nGvVpZO2XRsZDvy5J0AvhUoKe5mqtqTAnmRn/QzrT16aSfTHhmjHQT6WeIqhaEN4e3kaEK4QQjpewj+xl9xKX7c3/eb/M/LG3Ud69MAOClAyzxcyTm55k68mtvNj5RfoH9HdMwRYL/O9x2L6A1GYjeerkbVQb+DQVW90BcM11v7T9cvQXHt74MJk5mdIZqRBCCKfT3r8qh0+n0LpGJ/65+A8nUk6Am6c1SZd26HmSBL0QLiXoGSbrTdCEURM4eDqTfQdj8Sznfs0Y6C92fpFP7/jUkFiFEMLhzsdi/mQQZ7NcmV7hZeaNu53Knsb3EJ5jyWFGxAw2xG3gmfbPOHZYyz8Wwx+L0Z0f5oNKU/HqMZ6sI3+R+cscPD09r7nul6Yf/vmBJzY9QUi1EBb3XUwVjyqGxCGEEELkp4N/NQDKZ4cAEHHclpQ36Crt0PNhfLVHGWLJsibo6S7ZAAzu1o3+H1fghGcgXdq3z/Mmzd3kXqoxCiFEibBkY/74blLT0njULZw3x99FDa9yRkeFRVt4aftL/HzkZx5p/QhDA4c6dgOtRmBxq8ALR5vx6fbDDGntx6P/aU3c0dsNHef8p5ifmBExgw6+HZjbYy7l3cobEocQQghxPc39KuPpZiLmZHmqUIWXP3+ZoeFDGdnNn4+7W2Q89DxIDXoh5CboKhMAl2PRdNz/CkfPXLjmJm1+5Hwe2fhIbsc9QghRlunEw5iT4nnY5VleHn8vdbw9jQ4JrTWzdszi20PfMqH5BMKahTmk3PgTcRz/dAIJRw+CmweqZShuriYeutWfN+5tjl9tX0PHOQdo49OG+265j/m95ktyLoQQwmm5mVxoXd+btbtiOP37adwbuXMh5QKjn5tPZg7s//kDo0N0OpKgF4LOygAgFevPj8JfBGDRsu+uGWJt47GNpGSlyPBqQogbQ3YGj/A4T40bTsMaFY2OBq01c/6aw+cHPmdE0AimtJzikHI/+/Rjfn8yCL+YFTx7fwfe/vAzlFI8d2cgM+4MMnQYOa0164+ux6It+Fb0ZWanmZQzGf8UgxBCCHE97RtU41S64qF+0zBrM7vP7aZ7r76kVQ0m559fjQ7P6UiCXgiWbGtifiY5EW3R+Hm6kaldiTsRf8UQa2fTz3Lw/EEZXk0IccM4gQ/jR48zfDixS97f8z6LoxZz3y338WTbJx3yZWj8iWNUXvMf7r7FhYfXwaomM3lrVzaxx08a/mWr1pq3/nyLR359hJ9ifjI0FiGEEKIwhrSpQ8LnTzO253A8TB5sOW7tvb1S8/4EemdJO/SrOEWCrpSqqpT6RSl1yPbzmp5ulFJNlFKRl72SlFKP2Ja9oJQ6cdkyB3Xfe5XsTHK04uSFk1jSLdT1LsdpXYXsC/FXDLG2I34HAB19O5ZIGEKIm5sR18zKVX1o26BqCexN4S2LXsa7ke9yV8BdPNfxOcckz+YMyq0MY0BjF6atN/F14CzcffxJ3/opp+KOFr/8YrBoC+G/h7Nk3xIebPIgAwIGGBqPEEIIURh+VcrTsLILkTv/ooNvBzYf34zWmj1JlTC5KBkP/SpOkaAD04H1WuvGwHrb9BW01ge11i211i2BNkAa8N1lq7x9abnWelVJBKmyM8jEHZOnC5ZUC7W9FPFUuWaItZ3xO6noVpGgakElEYYQQpT6NdPLwzn6FP3hnx+YtXMWvev15qUuL+GiHPRvLP08Xpmn+M/mCnwX8iamilVJ+HImaX//ZugwajmWHGZunckXB79gTMgYnu3wrOP2WQghhCglM2bMICwsDJ9UH46nHOeLX74g9Mm3yVGuMh76VZzjjgvuBm6zvf8E+BV4+jrr9wL+0VqXbrVGThZmXMk2ZePn48fIt3ZRxac8HiauGGqncZXGVHSriMnFVKrhCSFuGmXjmulgG49tZObWmXTw7cCsbrNwdXHAvzBzBpjcoJIvrlN3cCRzNS7xmaT++Aouif8YOowawD8X/2F17GomtpjI5BaTDX/UXgghhCiK0NBQAMJfC0dNUPzfZ//H8y+/giljmYyHfhVnSdBraq1P2d7HAzULWP9BYPlV86YqpUYCfwCPa63P5/VBpdR4YDxAvXr1ChWkyskiS7mRYk6hfq36LNu1jCNHjlwz1E5o09BClSuEEIVUKtfM4lwvHW1n/E6e2PQEgVUDmdNjjmOGsMxKgxWh4F0PfddclHt5Vjw2kH0xx8l5cKGhw6hprVFKcUuVW/ju7u+o61XXkDiEEEIIRwkNDSU0NJSBKwdSe3htQvuEwsZY2Py6tR26h3P0c2O0UntOTim1TikVlcfr7svX09ZxyfIdm0wp5Q4MBL66bPZCoCHQEjgFvJnf57XW72ut22qt29aoUaNQ++CSk4kZd5Kzkqno6knCujmYVNYVN3Bp5jTSs9MLVa4QQlzNGa6ZxbleOtK+s/uYtmEadb3qsrD3Qiq4VSh+oVmpsPwBiNnEIY9mjFi8g5TMbCqUc6V9YANDh1Ez55h5fNPjfHvoWwBJzoUQQtwwli9fTsz6GLbEbiGkZQjrYzJBW+DY70aH5jRKLUHXWvfWWofk8foeSFBK+QLYfp6+TlF3AH9prRMuKztBa52jtbYAHwDtS2IfVE4WZlsNultGFi0OL2D/n1c+kvH9P9/T6fNOnEk7UxIhCCFuEjfCNdMRjlw8wqRfJlHZvTKL+izC28O72GUmxP3DxYV90bERRHV4gzs31yUhKYO0rOziB1xMmTmZPPrro/xy9Bf5sleIUqKU6qeUOqiUOqyUuqZPD2U117Z8j1KqtRFxClHWLV++nBkzZjD5jsm4uLsw6ZVJTH3tE2s79KPymPslztLTzA/AKNv7UcD311k3lKse1bx0o2ozGIhyaHQ2LpYsspUb51LPEfHzagBWrt92xRjoUYlRVC5Xmeqe1UsiBCGEgDJyzSyu+NR4xv8yHqUU79/+PjUrFPQkf8GWfvope2a0pMLZvYzb4c/ATb40reXFFxM64ePl4YCoiy4jO4OHNzzMpuOb+G/H/zIscJih8QhxM1BKmYD5WL/MDAJClVJX9/J7B9DY9hqP9SkkIUQhhYeHs3jxYsbePpZypnIkV09mwfsfEXnGBWK3Gh2e03CWBP01oI9S6hDQ2zaNUqq2Uiq3d2GlVAWgD/DtVZ9/XSm1Vym1B+gBPFoSQZosmWTiSqYlk4ra2lHPsTOpV4yBHn02muBqwdKRjxCiJJWJa2ZxnM84z/hfxpOSlcJ7vd+jfqX6xS4zPj6eCRMnMisinTG/+7Mu5EUyTuzn7bv8qVrBAW3aiyHbks3UDVPZdnIbL3V+ifub3G9oPELcRNoDh7XWMVrrLGAF1o44L3c38Km22g54X/VFpxDCDvv376dr1654uHrQrlY7tp7YSteuXVlzIAVO7oLMFKNDdApO0Umc1vos1l6Gr55/Euh/2XQqUC2P9UaUaIA2LhYzScqEclFUdbMeuuOJKbljoFeqVomYizH0qd+nNMIRQtykyso1s6hSzalMWjeJkyknWdRnEYHVAotfaMZFLm5fhpubG+uPpON6PoHKpvVk//4Zpyd3pWH9OsXfRjG4urjS0bcjdze8m7sa3mVoLELcZOoAcZdNHwc62LFOHax9eORypo41hXBGgYGBRERE0KNHD7rW6cprO15j5a8ridV1QJ+BuN+h0TW3NzcdZ6lBLxNMlixS3Ky1LNVdTaTqclw4fz53DPTos9FYtIXgasEGRyqEEGVTZk4m/9nwHw6cO8Cb3d+kTc02xS80/Tx8Oohb9s7C7xbrk6vZF+I5+/McstJTDR3nPDkrmYPnDgIwrtk4Sc6FKMOcpWNNIZzVpbHQN27cSAcf6/dgMz6YQZ+xM0CZ4Kg85g5OUoNeVrhqM2mungB8vf08q+PcMaWc/nec3FR4qt1TNK/R3OBIhRCi7Mm2ZPPUpqfYEb+DV299le51uxe/UFtyrhP2sbxBOKm9/PDOegt99E+ysrIMHef8YuZFJq2bxImUE/x8z8+UdytvSBxC3OROAJcPleBnm1fYdYQQBbg0Fvq0adPYv38/gW8FEjIghPuGjYEPlkk7dBupQS8EV0sWKSYTAB+99zGfrfiamMOHGDHC+rRorQq1GBE0gioeVYwMUwghyhytNS/+9iIb4jYwvf10BgQMKH6haefg07vRp6P5yO//eDbaj7Cu/kSvXsbPP/9MTExM7vW7tF3IuMBDax/iwLkDvNj5RUnOhTDOTqCxUsrfNizlg1g74rzcD8BIW2/uHYGLWutTVxckhChYaGgoUVFRLFu2DI7AwfSDhLQIITq9Kpz4E7LSjA7RcJKgF4JJm0kzWQ+ZOfJ/ZB7/84qal4gTESSmJxoVnhBClElaa978401WHl7JpBaTHNd7+cFV6NP7WVjzRV7+uy6P9G7Mc3cG4uvra+g45+cyzhG2Nox/LvzD3J5zua3ubYbEIYQArXU2MBVYA+wHvtRa71NKTVRKTbSttgqIAQ5jHZpysiHBCnGDuDTc2vg+43HxcGHaa9OY/dVvYDHD8Z1Gh2c4SdALwZVs0lysvbM3OLaGtAPrcntvTzOnMWndJL75+xsjQxRCiDJncdRiPon+hNCmoUxqManY5cWfOsVvv/1GvG9v9t+znneO+fPcnYE80vsWpxhhY/HexRxLOsa7vd6la52uRocjxE1Pa71Ka32L1rqh1jrcNu89rfV7tvdaaz3FtryZ1voPYyMWomy7NNzauNvH4eriSmqNVEbPXESORtqhIwl6obhqM+m2GnSf7CRiTqcSEBDA0qVLOXLxCAANvRsaGaIQQpQpKw+vZM5fc+jv35/p7acXO4H+YslCDs64hWdG9SMgIIA//9rNhse7M+7WAAdFXHyPtH6ET+74hE61OxkdihBCCFHqLg23Vt6tPG182hBxMoJOt93OrlM50g4dSdALxZUc0rAAUFlnczpVk56ezoQJE/jr2F8ABHg7z02gEEI4s83HN/PCthfoXLsz/9fl/3BRxfuXlHAkmsDfn6a9r6Jmtwdw8e/AhAkTcM1MclDERZeYnsgTm57gXMY53ExuBFULMjokIYQQwhCXhlsD6FKnC4fOH+LHX38kKqWy9RF3c4bBERpLEvRCcCWbNEsOAJ5aczrVmqy7u7uz5/geXJUrdb3qXq8IIYQQwO4zu3n818dpUrUJb932Fm4mt+IVmJpIxW9CaVxNMTpxJNur3InOMePu7s6RI0ccE3QRJaYnErYmjM3HN3Ms6ZihsQghhBBGuzTc2nPPPcfsKbMBmPDqBDJrtYOcTGtncTcxSdALwU1nk+1mArMmR5tITMkGICsriyS3JOpVqoebSzFvMoUQ4gYXczGGKeunUKN8DRb0WkAFtwrFKzDtHHwyEM/0U4w5N5btXr05890rpB3cSlZWlqHjnCemJzJ2zVhOpZ5ifq/5tPRpaVgsQgghhDMIDQ3lzjvv5PXXX2f/lv3oZE3re1qzcFUkGnXTt0OXBL0QXMnG7KrwdCuP9xsZrN+2F09PTxYtWsSMLjN4qctLRocohBBOLSE1gYm/TMSkTCzqvYhqntWKX6h7RbKr3cLT7s/yZ+VeXPjxNdwTD+Zen43qrf1M2hnGrhlLfGo8C3otoF2tdobEIYQQQjibjRs3smbNGiwWC0NaDyG5ajKzF3zI3xdcITbC6PAM5Wp0AGWFzsnGpDSZCqpUqEJMTAxHjhzB398/9+avHvUMjlIIIZxXUlYSE9dN5GLmRT7u9zF1KxWzSVDKGVAuUKEarg8sof6GQyxrUJX6D6+85vpsBI3Gw+TBwt4LaVOzjWFxCCGEEM7mUkdxAF1qd+HbQ99SuWll1s5OpUn1HZCdBa7uBkdpDEnQ7ZRtzsQNyFQWXLPMHFvxKP4j36dWVS9Op51m47GN9Krfi+qe1Y0OVQghnE5mTib/2fAfYpNiWdBrQfE7SUs5DZ/cRYapAv/c9S3BdbyZ2rNx7mIjE/PzGeep5F4Jn/I+rBiwotid3wkhhBA3mksdxcXHxxM+OxymwPD/Dqd7cmXIToeTu6BeB6PDNITcNdjJbM4ErAm6W2YmLc7/QvyZc4C1s6P/+/3/OJ122sgQhRDCKeVYcpi+eTp/JvzJK11fKfbwYqdj9pK2sBc552J5+PRAHvliNzkW7aBoi+d02mlG/jyS8N/DASQ5F0IIIfIwY8YMHnjgAR5//HHefu1tAjwDUAGKLUetHXLfzO3Q5c7BTtmZWQAkZaWRnZTEObzo3LYFS5cuJeZCDAANKjUwMEIhhHA+Wmte3fEq646t4+l2T3OH/x3FKu+rj+dz9q0u6ItxPHhhMtuyGrJweGtMLsUbP90RElITGLtmLKfTTnNXw7uMDkcIIYRwWqGhoZQrV45y5crRr18/YjbE4ObnxqyPFnP4oqsk6KJg2dnWGvSL6SmU13DR4kl6ykUmTJjAvvh91K5Qm/Ju5Q2OUgghnMuiPYv44uAXjAkZw/Cg4cUqKz4+Ho9106lX2YXR6Y/xW1pdYhf/h4qWVAdFW4zYUuMZu2YsiemJLOqziFY+rYwOSQghhHBqJ0+e5O+//2bZsmVgGxH1mfee4Ze/0+DYdsjJNjZAg0iCbqfsrAzrTxNURHMxx9ppgbu7O4fPH8bf27hhfIQQwhl9/ffXzI+cz8CGA3m09aPFLu/IkSM8udGFB44MZFuyL/GfTceUft7wcc4t2sLU9VM5m3GW93q/J0OpCSGEEHYIDAzkxRdfZMaMGcx5dg6V3StzS59biDgOZKVA/G6jQzSEdBJnp2yz2frTpDFlwKlMD8A6BnpidiLdK3U3MjwhhHAqG45t4OXtL9O1Tlde6PwCShXjEfTUs/D7ezRoMopjF8wc/HIFLh4/Ykm9QJanp6HjnIO1nfnT7Z/G3eROixotDI1FCCGEKCtmzJjBqFGjeO211zh54iSJexJJrJOI64WKQBbEboU6N98oKFKDbiez2doGXZUzsToyidGLD+SOsbvu/nWMbz7e4AiFEMI57Dq9i6c2P0VwtWDe7P4mbi5uRS8s7Rx8OpCcrXN489tfeWfB+3i6u+Llqp1inPOfYn4CoF2tdpKcCyGEEIUQGhpKdnY2b731FiNHjiTxj0TcqriRVsuLg4k5nNj2pdEhGkJq0O2ks81owOxiYcr4KXSf3N3wMXaFEMLZxFyMYer6qfhW8GV+r/nF65vDlpxbzvzNOPMTnMqpx/R7OzCwX2/DxzlPTE8kbG0YCakJdPTtKENsCiGEEEUQFBREQkICvr6+vPvsuzx/8nm6j+rOljVfcp/XXrDkgIvJ6DBLldSg2yknJ4tsQKPJjlzJiT3rANh7Zi9z/prDxcyLxgYohBAGS0xPZNIvk3B1cWVh74VU8ahSpHLi4+PZuWkt5o/uJOf0QcZlPU5C9c58/lBHqlcsR61atejUqZNhyfnZ9LOMWzOO+NR45veaL8m5EEIIUUQzZswgMTGRRx99lLtuuwtfN19+j/8dr5C+VC4HJOwzOsRSJwm6nSzZ2aTbhvGpZz7O3t82EBAQwPs/v8+Hez8sXvtKIYQo41LNqUxeN5nzmedZ0GsBfl5+RSpn6dKlBAQEMH38fSSfOMhDmQ9zpmZXPn+oA1UruDs46sI7l3GOcWvHcSLlBPN7zadtrbZGhySEEEKUWaGhoQDMnz8fDw8PTm47iXtDd6p1HGRd4SYcbk0SdDvl5JjJtCXhHlpzNiWL9PR0vt/wPRVcK1DJvZLBEQohhDHMFjOPb3qcv8//zezuswmuHlykcuLj45k8cQLp6els+DuJhh+YWLU/nbfuaoB3eeOTc4Atx7dwPPk47/Z6l3a12hkdjhBCCFHm+fn5kZmZybp165j/5HxyyGHs7Oc4lqwkQRf5s2SbybAl6OW05ny6BQD3Gu5UMRXtMU4hhCjrtNa89NtLbD2xlf92/C/d/LoVuaxjf0excbgbU3vVBRQXziaSsWE+iafiHBdwEWmtAbi70d38OPhHOvh2MDgiIYQQ4sbw+uuvk5OTw9ixY+l5S0+0WePa2JXsOh3g6Daw/Q++WUiCbiedYyZTWQ9XOa25kGodds2ligv1KtczMjQhhDDMwt0LWXl4JRNbTGTILUOKXlDGRVpGvUTzmorUdmPxajcIsA5lafQwahczLxK2NozI05EA1KognYMKIYQQjhIaGsqcOXOoUKECZAPHod6t9QjoMQLSzsKZA0aHWKokQbeTJSc79xH382YvkjKtQ/xUrVOVgGoBBkcnhBCl79tD37Jw90Lubng3k1tMLnpBGUmwbAiuZ/YxNfsRVh/zxCVmq+HDqAEkZSUx/pfxRJ6OJDkr2bA4hBBCiBtZaGgoUVFR5OTk8OR9T3KWs8T7NLYuvMkec5dh1uykc7JyH3GvfPc7vN6jCv7+/tSsWZNsnW1wdEIIUbq2HN/CS7+9RJfaXXi+8/NF7ygzJxs+vx/LiV1MyppGesM72DapLqemdjN8KMvkrGQmrJ3A3+f/5p3b3uFWv1sNi0UIIYS4WXSu3RmAralxDPGqDbFbod04g6MqPZKg2yknO5tMWy/uvjV8aRXcKneZm3IzKiwhhCh1+87u4/FNj3NLlVt487Y3cXMpxjXQ5EpywB3890gHMhr254MRbfBwM9Ggbm3HBVwEqeZUJq6byIHzB3ir+1t0r9vd0HiEEEKIm0Uj70b4lPdh68ltDKnfGWIjrO3Qb5JRs+QRd3vl/NtJ3IklkziflMLO+J08s+UZEtMTDQ5OCCFKx/Hk40xZN4Uq5aowv9d8KrhVKFpBOWY4bW1T5nXbw4wZ/yjvj7Qm587A3eSOX0U/ZnebTY96PYwORwghhLhpKKXoXLsz209tJ7t+J0iJh3MxRodVapwiQVdK3aeU2qeUsiil8h1UVinVTyl1UCl1WCk1/bL5VZVSvyilDtl+Orxbdctlw6w1yTrMuXMXiD4bzU8xPxWv9qgExcXF0aNHD4KCgggODmbOnDn5rtugQQOaNWtGy5YtadvW+HF9x44di4+PDyEhIXkuT0hIYOjQoQQEBNCmTRs6derEd999V8pRlowLFy5w77330rRpUwIDA/ntt9+uWF6S+24ymWjZsmXu67XXXnNIucKxjLpmXsi4wKR1kzBbzCzsvZAa5WsUKf74kydI/OBeshb14PstfwLQoq435VyNT87TzGmcyziHm4sbs7rNolf9XkaHJIQQQtx0utTuQnJWMvsq25q63UTt0J0iQQeigHuAzfmtoJQyAfOBO4AgIFQpFWRbPB1Yr7VuDKy3TTuUvqwG3aLL0Sy4KZv+2ETqjlS6tOmCyWQiJCSE5cuXO3rTRebq6sqbb75JdHQ027dvZ/78+URHR+e7/saNG4mMjOSPP/4oxSjzNnr0aFavXp3nMq01gwYNolu3bsTExPDnn3+yYsUKjh8/bnf5WmssFoujwnWohx9+mH79+nHgwAF2795NYGBg7rKS3ndPT08iIyNzX9OnO/xPSThGqV8ztdZM2zCNkyknmddzHgHeRescc+mnn7B6alOqx//K7PSBzPk1DovFOYZPycjO4D8b/0PYmjDMFrPR4QghhBA3rY6+HVEotqUdgwo1rO3QbxJOkaBrrfdrrQ8WsFp74LDWOkZrnQWsAO62Lbsb+MT2/hNgkKNjTEtNzq1Bz7G4k56Wyo+f/Uj81/HMmzePjIwM5s2bx4wZMxySpM+aNYsRI0bQt29f6tevz+zZswtdhq+vL61btwbAy8uLwMBATpw4Uay4kpKSaNWqFcHBwZQvX56WLVvSsWNHhye73bp1o2rVqnku27BhA+7u7kycODF3Xv369Zk2bRoAM2fO5J133sldNmPGDObMmUNsbCxNmjRh5MiRhISEEBd37djKpbV/+bl48SKbN28mLCwMAHd3d7y9vXOXl+S+52fnzp00b96cjIwMUlNTCQ4OJioqitjYWJo2bcqwYcMIDAzk3nvvJS0trXgHQNjFiGvm8ZTj7D6zm1dvfZXWNVsXKe74U6dI+nIKo5u7MNd8N3OPNmT7G2M4fTqhSOU5UlZOFo/++ig7Tu1gTMgYp30ySgghhLgZeHt4E1wtmG0nf4P6naUG3UnVAS7PKo7b5gHU1Fqfsr2PB2rmV4hSarxS6g+l1B9nzpyxe+MpSRdzE/TsHOuNW9KuJFpNaEWPHj1wc3OjR48eLF68mPDwcLvLzc/evXtxcXFh1apVrFu3jk8//fSK5bfeeusVjyJfeq1bty7P8mJjY9m1axcdOnTIc7lSittvv502bdrw/vvv5xtXpUqV2LVrFx9//DF9+vQhMjKS7du34+Ji369SYePOy759+3K/eMjL2LFjc4+XxWJhxYoVDB8+HIBDhw4xefJk9u3bR/369R2+f9djz74fOXKEGjVqMGbMGFq1asW4ceNITU0tlX0HSE9PvyK2L774gnbt2jFw4ECee+45nnrqKYYPH57b9ODgwYNMnjyZ/fv3U6lSJRYsWFDs4yQcptjXzMuvl0lZSTzZ7klub3B7kQNK3vYxU9qa+NB8O6/GNef01y/g7qI5cuRIkct0BLPFzBObniDiRAQzO81kYMOBhsYjhBBCCOhUuxN7E/eS5NcWLsbBhWNGh1QqSq0Xd6XUOiCv8XJmaK2/d9R2tNZaKZXv85Ja6/eB9wHatm1r93OVFcp7cjzDmqDvT6oMQNbZLNp2urL5Z9euXdm/f3/hA7/K3r17+fbbbzGZTJhMpmtqk7ds2WJ3WSkpKQwZMoR33nmHSpUq5blOREQEderU4fTp0/Tp04emTZvSrVu3fMuMiooiODj4mvnR0dHs2LGDXr164e3tjZeXV5HjtteUKVOIiIjA3d2dnTt30qBBA6pVq8auXbtISEigVatWVKtWjeTkZOrXr0/Hjh0LLPPq/du3bx/h4eFUr14dPz8/fHx8+PLLL6lXrx79+vXjwoULVK9enQEDBnDgwAFWrFjBCy+8cEWZ9ux7dnY2f/31F/PmzaNDhw48/PDDvPbaa7z88sulsu+XHnG/2syZM2nXrh0eHh7MnTs3d37dunXp0qULAMOHD2fu3Lk88cQTBe6nKJgzXDMvv176BfrpEUEjirUtr44j+M8X/+Mrz84kfPlfdFY6WSbw9/cvVrnFNfevuWyM28izHZ7l3lvuNTQWIYQQQlh1rt2ZD/Z+wM4KXvQC62PuLesZHVaJK7UEXWvdu5hFnADqXjbtZ5sHkKCU8tVan1JK+QKni7mta3i4u5Jlq0GfsOQQnp6eVK1alUEeg65YLyIi4oo2w0VhNps5c+YMDRs2BGDPnj00a9bsinVuvfVWkpOTr/ns7Nmz6d3730NtNpsZMmQIw4YN45577sl3m3XqWCvWfHx8GDx4MDt27Lhugh4dHZ1nTa7ZbGbevHkkJSXlPnZdlLivJzg4mG+++SZ3ev78+SQmJl7Rud24ceNYsmQJ8fHxjB07Nnd+hQr29Th99f6tXbuWESNGcMcddwCwZMkSJk+ezIABA3KnC2LPvvv5+eHn55f7pMO99957RUdtpbHveTl79iwpKSmYzWYyMjJyy7p67Osij4UtruFs18xaFYoxHvmeL8ms15VaderS7q6JfDh5CpU8XMly8WTRokWGjnUOMCp4FA29GzKo0SBD4xBCCCHEv1rUaEF51/L8lnacXh7e1sfcW4YaHVaJK0uPuO8EGiul/JVS7sCDwA+2ZT8Ao2zvRwEOq126RFtyyFIKN+XGzz//TExMDG+88QZhYWFs3LgRs9nMxo0bCQsLY8aMGcXa1sGDB69I8iMjI2nRosUV62zZsuWKzrwuvS5PcrXWhIWFERgYyGOPPZbv9lJTU3MTx9TUVNauXZv7CHOvXr3ybLd+8uTJPG+q4+LiGDNmDI0aNcozGbUn7oL07NmTjIwMFi5cmDvv6rbPgwcPZvXq1ezcuZO+ffvmW5a9+xcWFkZERARhYWEsWrQIgAULFjBx4kR27959xfTVNeeF2fdatWpRt25dDh60Ni9ev349QUFBuctLY9/zMmHCBF5++WWGDRvG008/nTv/2LFjub3Mf/7553Tt2tWu8kSpMPSamWvXMvj2IVbOfYK9xy8yYsQIYg79nXsdHTGieLXyRWXRFr7++2vMFjPVPatLci6EEEI4GTeTG+1rtWfbqZurHbpTJOhKqcFKqeNAJ+B/Sqk1tvm1lVKrALTW2cBUYA2wH/hSa73PVsRrQB+l1CGgt23asTFasslSCtecbLIjPwcvWFtlLWOfHMu0adPw8PBg2rRphIeHExpavG929u7dS/PmzXOn80rQ7bF161aWLl3Khg0bctsUr1q1CoD+/ftz8uRJwDpsV9euXWnRogXt27fnzjvvpF+/flgsFg4fPpxnZ219+/YlLCyMTZs2XTF/wIAB3HvvvfTv3z/fx+ntERoaSqdOnTh48CB+fn4sXrw4d5lSipUrV7Jp0yb8/f1p3749o0aNYtasWbnruLu706NHD+6//35MpryHbirM/lWqVInw8HAWL17MDz/8gMViYfLkybz33nu55+bSdH4Jur3mzZvHsGHDaN68OZGRkTz77LOltu9Xt0GfPn06n376KW5ubgwdOpTp06ezc+dONmzYAECTJk2YP38+gYGBnD9/nkmTJhVr34V9ysI1E4Cob9A/TGOrbs5H5cdQq7IHYP0iqlOnTobVnGuteeX3V3jxtxdZd9T+/i+EEEIIUbo61u5IXHIccb4h1rHQk04V/KEyrtQecb8erfV3wDUDOWutTwL9L5teBazKY72zQIkOVmutQYdyOoesCyeIOhbFHwl/EDYwjOcmPefQbYWGhl6R5EdFReU7Hvj1dO3aFa3zbmZ/KVEHCAgIyK0Fvlx0dDRDhgzB09PzmmWjRo1i1KhR18wHHHLTXVBP+L6+vqxYsSLf5RaLhe3bt/PVV1/lzmvQoAFRUVG504XZv5UrV7JmzRpcXV0JCgpySKdx+WnZsuV1h7oryX3PycnJs8yRI0cC1nHSf//9d8Da8aCrqyvLli0reKeEQzn7NTM+Pp4Lvy/nlsj/Y5duwosVZvDpQ7dSw6tcSW3SblprXt/5Ol8c/IIxIWPo16Cf0SEJIYQQIh+da3cG4DfPctZ2e0e3QrMbu78Yp0jQywTbI+7uWnM4LoHnxoVSa3wtanjWKNHNXrhwAXd39zyTyJIWEhLCW2+9VerbLa7o6GgGDBjA4MGDady4cb7rFWb/Bg0axKBBg/JdPnr06Nz3TZs2LXYtelGVxL4LURhLly5l0sQJbB3jyV7vOvxHPcqX47vn1p4bSWvNO3+9w7L9yxgeOJxHWz8q/SYIIYQQTqxBpQb4VvBlW2oc97t7SYIu/pWVkU6WUpTTFpIzLFjKW8fFtiRbIO/huh3C29ub6OjoktvADSgoKIiYmBijwzBEae771bXyQsTHxzNhwgTS09Pp/YmZSrcOIuGvpzFN6Q6U/peM18SXGs8XB7/ggSYP8FS7pyQ5F+Imp5SqCnwBNABigfu11ufzWO8jYABwWmtd+EcahRBFppSic+3OrIldQ3bd9rge3WZ0SCXOKdqglwWZ6am2BF2TZta4VXZD52jOnThndGhCCOEU4vdu4t27vChX3ovElGxifv4I14wLho9zfolvRV++HPAlz3Z4VpJzIQTAdGC91roxsN42nZclgLSHEcIgnWp3IsWcQlStxnDmAKQmGh1SiZIE3U4e5dzIRJGR487fCRnkpOWQcTiDhgENjQ5NCCGMdyGOoF3/ZcAtbgQPmZI7Oysry/BxzpdFL+OTfZ8AUK9SPVyU/OsTQgBwN/CJ7f0nwKC8VtJabwakRkYIg3T07YhC8Vs528PfN3gtutyl2MnN1YUs5cLhkxn8tCOW1F9TeT7wecPH7xVCCMOlJpLz6SCy0lIYZ3mWQ5t/pHLlynh6Gj/O+dd/f82snbPYfWZ3vp1mCiFuWjW11pe6hI4HahoZjBAib5XLVSakegjbko+Cq+cNP9yatEG3l62TuA5t2zPl5yn4+/tLci6EEBlJ5Cy9h+xzcYzPfoZnwx7g/Wn3cOTIEcOvk/+L+R8v/fYSXet0Zdats+SxdiFuQkqpdUBeF6IZl09orbVSqljf4imlxgPjAerVq1ecooQQV+no25GPoj4iqW4bKt3gCbrUoNtJaWuC7nbiT9zT4nh+7/PM2zXP6LCEEMJY52JIPxPLZPPDjBs+lI4B1Qwf5xxgw7ENzIiYQdtabXn7trdxM7kZFosQwjha695a65A8Xt8DCUopXwDbz9PF3Nb7Wuu2Wuu2NWqU7Cg/QtxsOtfuTI7OYWeNBhAfBenX9Od4w5AE3V62GvSKOgtLjoV9Z/eRlJlkdFRCCGGMS4+L125J+qS/CB02jp5Nnefp0DNpZwiuHsy8nvPwcDV+iDchhFP6ARhlez8K+N7AWIQQ19GiRgvKu5Znm6sGNBz73eiQSowk6HZSOgezAnetUe7lSMpMwtvD2+iwhBCi9GmN5Ydp7Fr+PNk5FmpUr07vIOdIzjNzMgF4oOkDfNLvEyq4VTA4IiGEE3sN6KOUOgT0tk2jlKqtlFp1aSWl1HLgN6CJUuq4UirMkGiFuIm5mdxoX6s9O1KPgckdjkYYHVKJkTbo9tI5mJXCDchwVWg03uW8jY5KCCFKnf7leVx2LWVz9mBOHzhN32Dn6I9jX+I+pm2Yxhvd36BNzTa4usi/OCFE/rTWZ4Feecw/CfS/bDq0NOMSQuTtmQ7PULlcZTh/7w3dk7vUoNtJWTTZCty0JsPVAuD0CXpcXBw9evQgKCiI4OBg5syZk++6DRo0oFmzZrRs2ZK2bduWYpR5Gzt2LD4+PoSEhOS5PCEhgaFDhxIQEECbNm3o1KkT3333XSlHWXJycnJo1aoVAwYMuGL+6tWradKkCY0aNeK111675nMldVxMJhMtW7bMfeW1bXFz0BHvoLbNYWl2b8xdpztNcn7o/CEmrJuAu8mdOhXrGB2OEEIIIRysdsXa1ifj6neGk5GQmWx0SCVCEnS75WBGccG1FpW8q9Oldhf8vPyMDuq6XF1defPNN4mOjmb79u3Mnz+f6OjofNffuHEjkZGR/PHHH6UYZd5Gjx7N6tWr81ymtWbQoEF069aNmJgY/vzzT1asWMHx48ftLl9rjcVicVS4DjdnzhwCAwOvmJeTk8OUKVP4+eefiY6OZvny5Vecz+Iel+sdE09PTyIjI3Nf06dPL/rOibLrr09R657nx5yOHG47k8f7NjE6IgCOJh3lobUPUc6lHB/c/gG1KjjHlwZCCCGEKAH1O4POgbgdRkdSIiRBt5OyWB9x9211F+2bduO9Pu/RokaLEtverFmzGDFiBH379qV+/frMnj270GX4+vrSunVrALy8vAgMDOTEiRPFiispKYlWrVoRHBxM+fLladmyJR07dnR4stutWzeqVq2a57INGzbg7u7OxIkTc+fVr1+fadOmATBz5kzeeeed3GUzZsxgzpw5xMbG0qRJE0aOHElISAhxcXGG7d/1HD9+nP/973+MGzfuivk7duygUaNGBAQE4O7uzoMPPsj33//bn831jktxjsn17Ny5k+bNm5ORkUFqairBwcFERUURGxtL06ZNGTZsGIGBgdx7772kpaUV7YAIp3ExJZ3NuiWbgv+P5wc2d4phyxLTExm3dhwWbeGD2z+grlddo0MSQgghREmq2wGU6YYdD10a6F3Hiz/uI/qktaf2lPP9SEzuxk/narE78rcilxlUuxLP3xVc4Hp79+7FZDKxatUqYmJiGDJkCE888UTu8ltvvZXk5Gsf65g9eza9e/e+Zn5sbCy7du2iQ4cOeW5PKcXtt9+OUooJEyYwfvz4PNerVKkSu3btYseOHYSHh1+RINqjsHHnZd++fblfPORl7Nix3HPPPTzyyCNYLBZWrFjBjh07SE5O5tChQ3zyySd07Ngxz88Wd/+ux959f+SRR3j99devWffEiRPUrftv8uHn58fvv//bg+X1jktxjglAeno6LVu2zJ1+5plneOCBB2jXrh0DBw7kueeeIz09neHDhxMSEkJsbCwHDx5k8eLFdOnShbFjx7JgwYIrfodF2VO52wRq3fIgr9bwwsXF+OQcrE2NbvO7jXsa30OAd4DR4QghhBCipJWrCLVb3rDt0CVBt5tGAySdJF65cTr9NCHVQ3BRJfMQwt69e/n2228xmUyYTKZrapO3bNlid1kpKSkMGTKEd955h0qVKuW5TkREBHXq1OH06dP06dOHpk2b0q1bt3zLjIqKIjj42i8aoqOj2bFjB7169cLb2xsvL68ix22vKVOmEBERgbu7Ozt37qRBgwZUq1aNXbt2kZCQQKtWrahWrRrJycnUr1//uonoJVfv3759+wgPD6d69er4+fnh4+PDl19+Sb169ejXrx8XLlygevXqDBgwgAMHDrBixQpeeOGFK8q0Z99/+uknfHx8aNOmDb/++mthD8UVrj4uxTkmlx5xz8vMmTNp164dHh4ezJ07N3d+3bp16dKlCwDDhw9n7ty5kqCXYUkXreON3lKrssGRWF3IuECWJQuf8j7M6DjD6HCEEEIIUZrqd4Hf3wNzOrh5Gh2NQ0mCfh2X13T/OfsVxlQ/wtALSaR3/g/LD37Ol8P/LJFHPM1mM2fOnKFhw4YA7Nmzh2bNml2xjr21sWazmSFDhjBs2DDuueeefLdZp461UyUfHx8GDx7Mjh07rpugR0dH51lbazabmTdvHklJSbmPnBcl7usJDg7mm2++yZ2eP38+iYmJV3RuN27cOJYsWUJ8fDxjx47NnV+hgn1DLl29f2vXrmXEiBHccccdACxZsoTJkyfnduK2ZMmSAsu0Z9+3bt3KDz/8wKpVq8jIyCApKYnhw4ezbNky6tSpc8Uj6MePH889b1DwcSnuMcnP2bNnSUlJwWw2k5GRkVve1X8bzvA4tCi6c5kKc44FN5PxLaOSs5KZsG4CWTlZfHXXV9JbuxBCCHGzqd8Fts2F43+A/61GR+NQxt9plRFa56CVQmlFsjkJ73LeJZZwHDx48IoOwiIjI2nR4sr27lu2bLmi065Lr8uTXK01YWFhBAYG8thjj+W7vdTU1NzEMTU1lbVr1+b2nt6rV688262fPHmSWrWu7YgpLi6OMWPG0KhRozyTUXviLkjPnj3JyMhg4cKFufOubt88ePBgVq9ezc6dO+nbt2++Zdm7f2FhYURERBAWFsaiRYsAWLBgARMnTmT37t1XTF9dc16YfX/11Vc5fvw4sbGxrFixgp49e7Js2TIA2rVrx6FDhzhy5AhZWVmsWLGCgQMH2n1cintM8jNhwgRefvllhg0bxtNPP507/9ixY/z2m7U5yOeff07Xrl3tLlM4n7rVKztFcp6RncHU9VP5+9zfPNrmUUnOhRBCiJtRvY6AuiHboRt/t1VGWLS1kzAX7UKKOQUvd68CPlF0e/fupXnz5rnTeSXo9ti6dStLly5lw4YNucNjrVq1CoD+/ftz8uRJwDo0V9euXWnRogXt27fnzjvvpF+/flgsFg4fPpxnZ219+/YlLCyMTZs2XTF/wIAB3HvvvfTv3z/fx+ntERoaSqdOnTh48CB+fn4sXrw4d5lSipUrV7Jp0yb8/f1p3749o0aNYtasWbnruLu706NHD+6//35MJlOe2yjM/lWqVInw8HAWL17MDz/8gMViYfLkybz33nu55+bSdH4JenG5urry7rvv0rdvXwIDA7n//vuveAy/oONSnGNyqQ36pdelXtw//fRT3NzcGDp0KNOnT2fnzp1s2LABgCZNmjB//nwCAwM5f/48kyZNKonDIkqJyQnanJstZp7Y9AS7Tu/ilVtfoZtf/k/5CCGEEOIG5ukNtUJuyARdqh7slE2O7Z0LKVkpVHSvWGLbCg0NJTQ0NHc6Kioq3/HAr6dr165orfNcdilRBwgICMitBb5cdHQ0Q4YMwdPz2nYdo0aNYtSoUXmWnVfNemEtX778ust9fX1ZsWJFvsstFgvbt2/nq6++yp3XoEEDoqKicqcLs38rV65kzZo1uLq6EhQUhItLyX+3ddttt3HbbbddMa9///70798/389c77gU55jk5OSQl5EjRzJy5EjAOlb6pU7rYmNjcXV1za39F8IRFkYuZNPxTfy343+5w/8Oo8MRQgghhJHqd4U/l0B2Fri6Gx2Nw0iCbietrQnKuYpBtK7Z+lKXcSXuwoULuLu755lElrSQkBDeeuutUt9ucUVHRzNgwAAGDx5M48aN812vMPs3aNAgBg0alO/y0aNH575v2rRpidWiF1VJHBMhStvIoJHUq1SPQY0GGR2KEEIIIYxWvzP8vhBO7oJ6eY9UVRZJgm6nHGVN0Bt3H8H9Te4vte16e3sTHR1datu7EQQFBRETE2N0GE6ltI/J1TXzQhTH2ti13Fb3Nrw9vCU5F0IIIYRV/c7Wn0cjbqgEXdqg2ykHaxt0Nxc3gyMRQoibx+f7P+fxTY+z/MD1m70IIYQQ4iZToTrUaHrDjYcuCbqdcmydxCX+8BKdl3dmfuR8gyMSQogb208xP/HqjlfpUbcHwwKHGR2OEEIIIZxN/S5wbDvkZBsdicNIgm4ni7Im6BpFclYyrkpaBwghREnZfHwzz0U8R7ta7Xij+xsynJoQQgghrlW/M2SlQPweoyNxGEnQ7ZRj6xQuy5aYl2Qv7kIIcTPLzMnkxW0v0qRqE+b2mEs5UzmjQxJCCCGEM6rfxfrzBhpuTaok7GSxtUHPcrGOH12S46ALIcTNrJypHO/1eY9qntXky1AhhBBC5K+SL1QNsLZD7zzN6GgcQmrQ7WS5VINuS9AruslNoxBCONKxpGMsjV6K1prGVRpT1aOq0SEJIYQQwtnV72JN0C0WoyNxCEnQ7aRtNejuNVrwQJMHqF+pvsERCSHEjSMhNYHxv4zngz0fcC7jnNHhCCGEEKKsqN8FMi7A6RtjaGqnSNCVUvcppfYppSxKqbb5rFNXKbVRKRVtW/fhy5a9oJQ6oZSKtL36OzrGHGWtQe962yie6/gcDb0bOnoTQghhl7JwzSyMi5kXmbhuIuczzrOw90KqeVYzMhwhhBBClCUNbqx26E6RoANRwD3A5uuskw08rrUOAjoCU5RSQZctf1tr3dL2WuXoAC22YdbM5kyyLWWjG/+4uDh69OhBUFAQwcHBzJkzJ991GzRoQLNmzWjZsiVt2+Z5v1+qxo4di4+PDyEhIXkuT0hIYOjQoQQEBNCmTRs6derEd999V8pROp4jz1lJHiOTyUTLli1zX6+99ppDyhV2c/prpr3Ss9OZsn4Kx5KOMa/nPIKrBxsVihBCCCHKIu96ULnuDZOgO0UncVrr/QBKqeutcwo4ZXufrJTaD9QBSuVZBoutBv2bn19gosdpNj2wyenbR7q6uvLmm2/SunVrkpOTadOmDX369CEoKCjP9Tdu3Ej16tVLOcq8jR49mqlTpzJy5MhrlmmtGTRoEKNGjeLzzz8H4OjRo/zwww92l6+1RmuNi4uzfEdl5ahzVtxjVNDx8fT0JDIy0r6dEg5XFq6Z9toZv5N9Z/fxRrc3aO/b3uhwhBBCCFEW1e8C/6wHreE690dlgXNlJ3ZSSjUAWgG/XzZ7qlJqj1LqI6VUlet8drxS6g+l1B9nzpyxe5uXhlnLth0xT1fPwgdeCLNmzWLEiBH07duX+vXrM3v27EKX4evrS+vWrQHw8vIiMDCQEydOFCuupKQkWrVqRXBwMOXLl6dly5Z07NgRi4M7ZejWrRtVq+b9BciGDRtwd3dn4sSJufPq16/PtGnWnhtnzpzJO++8k7tsxowZzJkzh9jYWJo0acLIkSMJCQkhLi7OsP3Lj6PO2fWOUXGOz/Xs3LmT5s2bk5GRQWpqKsHBwURFRREbG0vTpk0ZNmwYgYGB3HvvvaSlpRV6n0TRFfWaWdTrZWF08+vG/wb/j971e5dI+UIIIYS4CdTvDKlnIPGQ0ZEUm9Jal86GlFoH1Mpj0Qyt9fe2dX4FntBa/3GdcioCm4BwrfW3tnk1gURAAy8DvlrrsQXF1LZtW/3HH/luCn6eDvF7AUiI28kxd6hsceeiSxZta7ZFUYRvZ2o1gzsKfhx4+PDhmEwmPvroI2JiYhgyZAh79uzJXX7rrbeSnJx8zedmz55N797X3ujGxsbSrVs3oqKiqFSp0jXL/f39qVKlCkopJkyYwPjx468b344dOwgPD+f7778vcF8uV5i4Y2NjGTBgAFFRUVfMnzt3LkeOHOHtt9/OcxuxsbHcc889/PXXX1gsFho3bsyOHTtITk4mICCAbdu20bFjxxLZv+spzXN2vWPkiONjMplo1qxZ7vQzzzzDAw88wHPPPUdGRgbp6en4+fnxzDPPEBsbi7+/PxEREXTp0oWxY8cSFBTEE088cd1tlBal1J9aa+PbdVzF2a6ZBV4vC+m93e8RVC2Ibn7dHFamEKJkOev10hk5+pophCjA2X9gXmsY8A60HWN0NEDRr5ml9oi71rrY1SNKKTfgG+CzSzeatrITLlvnA+Cn4m4rP1qBi3IpWnJeCHv37uXbb7/FZDJhMpmuqU3esmWL3WWlpKQwZMgQ3nnnnTwTPYCIiAjq1KnD6dOn6dOnD02bNqVbt/xvnKOioggOvrataHR0NDt27KBXr154e3vj5XXlePGFidteU6ZMISIiAnd3d3bu3EmDBg2oVq0au3btIiEhgVatWlGtWjWSk5OpX79+gcknXLt/+/btIzw8nOrVq+Pn54ePjw9ffvkl9erVo1+/fly4cIHq1aszYMAADhw4wIoVK3jhhReuKNPIc3b1MSru8cnvEfeZM2fSrl07PDw8mDt3bu78unXr0qWLtQOP4cOHM3fuXKdJ0J3VjXLNzMtn+z9jfuR8HmjygCToQgghhCi+qgFQsaa1HbqTJOhF5RRt0O2hrI0tFwP7tdZvXbXM19beEmAw1g6Uiu+ymu41s4N4o4aJNpaaHK2Qw8b7/+eQTeTFbDZz5swZGja09hS/Z8+eK2orwf7aWLPZzJAhQxg2bBj33HNPvtusU6cOAD4+PgwePJgdO3ZcN0GPjo7OfRT76tjnzZtHUlJS7iPnRYn7eoKDg/nmm29yp+fPn09iYuIVHaWNGzeOJUuWEB8fz9ix/1YMVqhQwa5tXL1/a9euZcSIEdxxxx0ALFmyhMmTJzNgwIDc6YKU5jkr6BgV9/jk5+zZs6SkpGA2m8nIyMgt7+q20tdrOy0cw5Brph1Wx65m1o5Z9Kjbg+ntp5fWZoUQQghxI1PK2g49dmuZb4fuFG3QlVKDlVLHgU7A/5RSa2zzayulLvUu3AUYAfTMY2ig15VSe5VSe4AewKOOjtFia4Pe3KcDwwKHObr4Kxw8eJDAwMDc6cjISFq0aHHFOlu2bCEyMvKa1+WJntaasLAwAgMDeeyxx/LdXmpqam7imJqaytq1a3N7T+/Vq1eebaBPnjxJrVrXPn0bFxfHmDFjaNSoUZ7JqD1xF6Rnz55kZGSwcOHC3HlXt2kePHgwq1evZufOnfTt2zffsuzdv7CwMCIiIggLC2PRokUALFiwgIkTJ7J79+4rpq+uOS/MvjvinEHBx6i4xyc/EyZM4OWXX2bYsGE8/fTTufOPHTvGb7/9BsDnn39O165d7S5TXKssXDPzsuPUDp7d8iytfFrxerfXcXUpM98RCyGEEMLZ1e8MySfhfKzRkRSLU9wdaa2/A64Z/0lrfRLob3sfAXk/V661HlGiAQIW25ZDu0/Ft6JviW5r7969NG/ePHc6MjKSO++8s9DlbN26laVLl+YOxQXwyiuv0L9/f/r378+HH35I7dq1SUhIYPDgwQBkZ2czdOhQ+vXrh8Vi4fDhw3l21ta3b1/CwsJYsmQJ3bt3z50/YMAA4uPj80zeCyM0NJRff/2VxMRE/Pz8ePHFFwkLCwOsta8rV67k0Ucf5fXXX6dGjRpUqFCBWbNm5X7e3d2dHj164O3tjclkynMbhdm/SpUqER4eDsCdd97JkCFDrqhB37VrV+70pUfci+J65wzIPW8ZGRl5nrNLCjpGxT0+6enpufEB9OvXj6CgINzc3Bg6dCg5OTl07tyZDRs2EBAQQJMmTZg/f35u+/NJkyYV6fgIq7JwzczL5uObqV+pPnN7zsXD1cOIEIQQQghxo2pgqwA6ug2q+hsbSzGUWidxzqgwHXh8+GZT5lR3Y3mfZQTUaEx5t/IlHN2/GjVqxN69e/H0LNme468WFRXFRx99xFtvvVXwyk7GYrHQunVrvvrqKxo3bpznOoXZv5UrV7JmzRpcXV3x8PAgODg4t805WB9xL6gNujNx9PG5nvw6+3MW0umRfRzR4ZHWmmRzMpXc8+5XQQjh3OR6aT/pJE4IA1gs8EZDaHIHDFpgdDTO30lcWXfpEfen1k2jnm8Q7/V5r1S2e+HCBdzd3Us9OQcICQkpk8l5dHQ0AwYMYPDgwfkmn1C4/Rs0aBCDBg3Kd/no0aNz3zdt2tSpk/OSOD5C5Odcxjmmb57O9A7TCagcIMm5EEIIIUqGi4v1MffYCKMjKRZJ0O1kUdZxsM1YSnwM9Mt5e3sTHR1datu7EQQFBRETE2N0GE6rtI9PgwYNnLb2XJSsNHMaU9ZN4dCFQyRlJhkdjhBCCCFudPW7wIGf4OIJqFzH6GiKxCk6iSsLLjUEyCK7VB9vF0KIsshsMfPYr48RfS6aN7q9QUuflkaHJIQQQogbXQPrsL4c3WZsHMUgCbqdLj3inkVOqdagCyFEWWPRFp7f+jxbT25lZseZ9KjXw+iQhBBCCHEzqBkC5SrD0bL7mLsk6Ha61It7pjZT3lVq0IUQIj8Z2RmcSDnB1JZTGXLLEKPDEUIIIcTNwsUE9TqW6Rp0aYNupxzbz9C693Cr362GxiKEEM5Ka015t/J8ePuHMs65EEIIIUpf/c5waA2knIaKPkZHU2hSg26nSzXoj/d4jna12hkbjBBCOKH1R9fz0NqHSMpKws3khlJ5DsMuhBBOQSlVVSn1i1LqkO1nlTzWqauU2qiUilZK7VNKPWxErEKIQrh8PPQySBJ0O1lsPw+fPkiaOc3QWIQQwtlEno7k6S1Pk56djpuLm9HhCCGEPaYD67XWjYH1tumrZQOPa62DgI7AFKVUUCnGKIQoLN8W4FYBjm41OpIikQTdThoLJq0Zsvp+Vh1ZZXQ4QgjhNI5cPMLUDVOpWb4m83rNk440hRBlxd3AJ7b3nwCDrl5Ba31Ka/2X7X0ysB8om2M3CXGzMLlB3fZSg36jsyhwsY21Vs5UzthghBDCSSSmJzJp3SRMysR7vd+jqkdVo0MSQgh71dRan7K9jwdqXm9lpVQDoBXwez7Lxyul/lBK/XHmzBmHBiqEKKT6XSBhH6SdMzqSQpME3U4WwMU21JqHq4exwdgpLi6OHj16EBQURHBwMHPmzMl33QYNGtCsWTNatmxJ27ZtSzHKvI0dOxYfHx9CQkLyXJ6QkMDQoUMJCAigTZs2dOrUie+++66Uo3Q8R56zkjxGFStWvGZe586dHVL21UwmEy1btsx9vfbaayWyHVE0yVnJlDOV492e71K3Ul2jwxFCiCsopdYppaLyeN19+Xpaaw22G728y6kIfAM8orVOymsdrfX7Wuu2Wuu2NWrUcOh+CCEKqX5nQMOx7UZHUmjSxa6dLOrfbzM8TGUjQXd1deXNN9+kdevWJCcn06ZNG/r06UNQUN5NpzZu3Ej16tVLOcq8jR49mqlTpzJy5MhrlmmtGTRoEKNGjeLzzz8H4OjRo/zwww92l6+1RmuNi4tzfUflqHNW3GNUlOOzbVvJPEbk6elJZGRkiZQtii7HkoOLcsG/sj/fDvwWk4vJ6JCEEOIaWuve+S1TSiUopXy11qeUUr7A6XzWc8OanH+mtf62hEIVQjhSnTZgKmdth960v9HRFIpzZSdOzIJG6dKrQZ81axYjRoygb9++1K9fn9mzZxe6DF9fX1q3bg2Al5cXgYGBnDhxolhxJSUl0apVK4KDgylfvjwtW7akY8eOWCyWgj9cCN26daNq1bwfld2wYQPu7u5MnDgxd179+vWZNm0aADNnzuSdd97JXTZjxgzmzJlDbGwsTZo0YeTIkYSEhBAXF2fY/uXHUefseseoOMfnei7VqsfGxhIYGMhDDz1EcHAwt99+O+np6YXeh+vZuXMnzZs3JyMjg9TUVIKDg4mKiiI2NpamTZsybNgwAgMDuffee0lLk04dHU1rzcvbXyb893C01pKcCyHKqh+AUbb3o4Dvr15BWYejWAzs11q/VYqxCSGKw80D/NqWyY7ipAb9OmbtmMWBcwcAiK3gSYaLiTrlazPnrzlF7qW4adWmPN3+6QLX27t3LyaTiVWrVhETE8OQIUN44okncpffeuutJCcnX/O52bNn07v3tV8Wx8bGsmvXLjp06JDn9pRS3H777SilmDBhAuPHj89zvUqVKrFr1y527NhBeHg4339/zf+y6yps3HnZt29fbhKbl7Fjx3LPPffwyCOPYLFYWLFiBTt27CA5OZlDhw7xySef0LFjxzw/W9z9u57SPGfXO0bFOT72OnToEMuXL+eDDz7g/vvv55tvvmH48OFFKis9PZ2WLVvmTj/zzDM88MADDBw4kOeee4709HSGDx9OSEgIsbGxHDx4kMWLF9OlSxfGjh3LggULrvjbEcX3/p73+ebQNzzU7CEZSk0IUZa9BnyplAoDjgL3AyilagMfaq37A12AEcBepVSk7XPPaq2lx2AhnF39LrBlNmQkgUclo6OxmyTohaBQ+HrVLpVt7d27l2+//RaTyYTJZLqmNnnLli12l5WSksKQIUN45513qFQp71/OiIgI6tSpw+nTp+nTpw9NmzalW7du+ZYZFRVFcHDwNfOjo6PZsWMHvXr1wtvbGy8vryLHba8pU6YQERGBu7s7O3fupEGDBlSrVo1du3aRkJBAq1atqFatGsnJydSvX9+u5PPq/du3bx/h4eFUr14dPz8/fHx8+PLLL6lXrx79+vXjwoULVK9enQEDBnDgwAFWrFjBCy+8cEWZRp6zq49RcY9PQfz9/XOT6jZt2hAbG3vF8t69exMfH3/N58LDw7n77iuaBeb7iPvMmTNp164dHh4ezJ07N3d+3bp16dKlCwDDhw9n7ty5kqA70MrDK3k38l0GNhzItFbTjA5HCCGKTGt9FuiVx/yTQH/b+whAvokUoiyq3xk2WyBuBzS2ryLQGUiCfh2X13Q/Ny+AjRUr8ViLh2nqE4ybqeTG+TWbzZw5c4aGDRsCsGfPHpo1a3bFOvbWxprNZoYMGcKwYcO455578t1mnTrWEUN8fHwYPHgwO3bsuG6CHh0dnWcNrdlsZt68eSQlJeU+cl6UuK8nODiYb775Jnd6/vz5JCYmXtFR2rhx41iyZAnx8fGMHTs2d36FChXs2sbV+7d27VpGjBjBHXfcAcCSJUuYPHkyAwYMyJ0uSGmes4KOUXGPT0HKlft3pAOTyXTNI+7r1q0r9jbOnj1LSkoKZrOZjIyM3NivrtGVGl7H2XZiGy9ue5GOvh15odMLcmyFEEII4bzqtgcXV+tj7mUoQZc26PZSGnQWQ9eO4GzG2RLd1MGDBwkMDMydjoyMpEWLFless2XLFiIjI695XZ7oaa0JCwsjMDCQxx57LN/tpaam5iaOqamprF27Nrf39F69euXZBvrkyZPUqlXrmvlxcXGMGTOGRo0a5ZmM2hN3QXr27ElGRgYLFy7MnXd1O+PBgwezevVqdu7cSd++ffMty979CwsLIyIigrCwMBYtWgTAggULmDhxIrt3775i+uqa88LsuyPOGRR8jIp7fJzBhAkTePnllxk2bBhPP/3vl2nHjh3jt99+A+Dzzz+na9euRoV4wzFbzARXD+bt294u0S8phRBCCCGKzb0C1G5V5tqhSw26nXIue7qppHtx37t3L82bN8+djoyM5M477yx0OVu3bmXp0qW5Q3EBvPLKK/Tv35/+/fvz4YcfUrt2bRISEhg8eDAA2dnZDB06lH79+mGxWDh8+HCenbX17duXsLAwlixZQvfu3XPnDxgwgPj4+DyT98IIDQ3l119/JTExET8/P1588UXCwsIAa43oypUrefTRR3n99depUaMGFSpUYNasWbmfd3d3p0ePHnh7e2My5d2BVWH2r1KlSoSHhwNw5513MmTIkCtq0Hft2pU7fekR96K43jkDcs9bRkZGnufskoKOUXGPT1paGn5+frnT1/syobiuboPer18/goKCcHNzY+jQoeTk5NC5c2c2bNhAQEAATZo0Yf78+YwdO5agoCAmTZpUYrHdbLrX7U43v25Scy6EEEKIsqF+F/htPmSlgXt5o6Oxi9I63yEfb3ht27bVf/zxh13rPv1uAFvLe3DRZOL3ob9T3q30TnCjRo3Yu3cvnp6epbZNsLbD/uijj3jrrbLXaanFYqF169Z89dVXNG7cOM91CrN/K1euZM2aNbi6uuLh4UFwcHBum3OwPuJeUBt0Z+Lo4+MsYmNjGTBgAFFRUXZ/Rin1p9b62oHkxRUaNWukD+89bHQYQggDyfXSfoW5xxRClKC/18Ln98HIHyCge8HrO1BRr5lSg24ny2UVRuVM5fJf0cEuXLiAu7t7qSfnACEhIWUqObskOjqaAQMGMHjw4HyTTyjc/g0aNIhBgwblu3z06NG575s2berUyXlJHB9x4yvqyBVCCCGEEIap1wGUCxzdVuoJelFJgm6nS88ZmJRLqY756+3tTXR0dKlt70YQFBRETEyM0WE4rRv5+DRo0KBQtefCfhXcHNOBoBBCCCFEqfGoDLWalal26NJJnD20xqIU7rocL3R4wehohBBCCCGEEELYo34XOL4TsjONjsQukqDbQWsLOYC7yYNBTQYbHY4QQgghhBBCCHvU7wLZGXByl9GR2EUSdDtYLBoLkJOTxe6ESKPDEUIIIYQQQghhjwZdYeiXUDOk4HWdgCTodtDagkUp0lU6T255yuhwhBBCCCGEEELYw9MbbukL5SoaHYldJEG3w6VH3AHcTe6GxiKEEEIIIYQQ4sYkCbodLBYLFmXtyV0SdCGEEEIIIYQQJcEpEnSl1H1KqX1KKYtSKt/B3JVSsUqpvUqpSKXUH5fNr6qU+kUpdcj2s4oj49NaY0FZE3QXSdCFEMZy9mumEEIIIYQoGqdI0IEo4B5gsx3r9tBat9RaX35TOh1Yr7VuDKy3TTuO1mhAo6QGXQjhDJz7mimEEEIIIYrEKRJ0rfV+rfXBYhRxN/CJ7f0nwKBiB3UZaw06VNWePNz6YUcWLYQQhebs10whhBBCCFE0rkYHUEgaWKuU0sAirfX7tvk1tdanbO/jgZr5FaCUGg+Mt02mKKXsvcmtDiSuIt+nSZ1ZdSDR6CCKSGI3xs0Ue/2SCsQJFOuaedX1MkMptS+f7VQGLl41z9l+h/KK0ehyC/NZe9ctaL3rLc9vWX7zb4ZzXFrn1971S+L85rcsr/N7I18vHerPP/8szD2ms3O2v/Xikv1xXjfSvgA0KdKntNal8gLWYX0s8+rX3Zet8yvQ9jpl1LH99AF2A91s0xeuWu98CcT/R2kdK4ldYjf6JbEb/3K2aybwfmGWOdt5uF78RpVbmM/au25B6xX2PBYw/4Y/x6V1fu1dvyTOb37LnO38lrXXjXT8bqR9kf1x7teNtC/F2Z9Sq0HXWvd2QBknbD9PK6W+A9pjbYOZoJTy1VqfUkr5AqeLuy0hhDCSE14zfyziMmdRUjEWp9zCfNbedQtaryjnsSycXyiZOEvr/Nq7fkmcX3u3LYQQohQ4RRt0eyilKiilvC69B27HWpsE8AMwyvZ+FPB96UcohBDOw9HXTK11vjfw11vmLEoqxuKUW5jP2rtuQesV5TyWhfMLJRNnaZ1fe9cvifNr77aFEEKUDqdI0JVSg5VSx4FOwP+UUmts82srpVbZVqsJRCildgM7gP9prVfblr0G9FFKHQJ626Yd7f2CV3FaErsxJHZjlOXY7SLXTOEk5Bzf2OT8Fs+NdPxupH0B2R9ndiPtCxRxf5Tt+XghhBBCCCGEEEIYyClq0IUQQgghhBBCiJudJOhCCCGEEEIIIYQTkATdDkqpfkqpg0qpw0qp6UbHYy+lVF2l1EalVLRSap9S6mGjYyoMpZRJKbVLKfWT0bEUllLKWyn1tVLqgFJqv1Kqk9Ex2UMp9ajtdyVKKbVcKeVhdEzXo5T6SCl1WikVddm8qkqpX5RSh2w/qxgZoxBCiBufUuoN2//8PUqp75RS3vms5/T3lEqp+2z3AhalVNvrrBerlNqrlIpUSv1RmjEWRiH2pyycG7vucZz93BR0rJXVXNvyPUqp1kbEaQ879uU2pdRF27mIVErNLKhMSdALoJQyAfOBO4AgIFQpFWRsVHbLBh7XWgcBHYEpZSh2gIeB/UYHUURzgNVa66ZAC8rAfiil6gD/wTqudghgAh40NqoCLQH6XTVvOrBea90YWG+bFkIIIUrSL0CI1ro58DfwzNUrlKF7yijgHqzDchakh9a6pdY638TXCRS4P2Xo3BTmHscpz42dx/oOoLHtNR5YWKpB2qkQvzdbbOeipdb6pYLKlQS9YO2Bw1rrGK11FrACuNvgmOyitT6ltf7L9j4Za5JYx9io7KOU8gPuBD40OpbCUkpVBroBiwG01lla6wuGBmU/V8BTKeUKlAdOGhzPdWmtNwPnrpp9N/CJ7f0nwKDSjEkUTCkVoJRarJT62uhYhGPYhvX7RCn1gVJqmNHxCMeTv9vr01qv1Vpn2ya3A355rFYm7im11vu11geNjsNR7NyfMnFuuDHucew51ncDn2qr7YC3Usq3tAO1Q4n83kiCXrA6QNxl08cpI0nu5ZRSDYBWwO8Gh2Kvd4CnAIvBcRSFP3AG+Nj2iP6HyjoOtVPTWp8AZgPHgFPARa31WmOjKpKaWutTtvfxWIcbEw6SV7MC23y7Hw20/SMLK9lIRXEV8lzfA3yttX4IGFjqwYoiKcw5lr/bQhkL/JzH/BvinvIyGlirlPpTKTXe6GCKqaycG3vvcZz53NhzrMvK+bA3zk5Kqd1KqZ+VUsEFFSoJ+k1AKVUR+AZ4RGudZHQ8BVFKDQBOa63/NDqWInIFWgMLtdatgFTKwGPWtnZMd2P9gqE2UEEpNdzYqIpHW8eRlLEkHWsJVzUryO8RL6VUM6XUT1e9fEo/ZFFES7DzXGOtLbx0k5JTijGK4lmC/ef4pqeUWqesfbRc/br7snVmYG1i+JlxkRbMnn2xQ1etdWusvytTlFLdSijcAjlof5yCvftSwD2O05wbwV9Afa11C2AesLKgD7iWdEQ3gBNA3cum/WzzygSllBvW5PwzrfW3Rsdjpy7AQKVUf8ADqKSUWqa1LivJ4nHguNb60tMKX1MGEnSgN3BEa30GQCn1LdAZWGZoVIWXoJTy1Vqfsj0OddrogG4kWuvNtidyLpf7iBeAUmoFcLfW+lVgQCmHKBykMOca63XPD4hEvvwvMwp5jqNLOTyno7Xufb3lSqnRWK95vWzJ09Wc5p6yoH2xs4wTtp+nlVLfYf3dsafdusM5YH/KxLlRStl1j+NM5yYP9hxrpzkfBSgwzssrR7XWq5RSC5RS1bXWifkVKv9EC7YTaKyU8ldKuWPtNOsHg2Oyi1JKYW0HvV9r/ZbR8dhLa/2M1tpPa90A6/HeUIaSc7TW8UCcUqqJbVYvysaNzTGgo1KqvO13pxdloHO7PPwAjLK9HwV8b2AsN4tCPYqmlKqmlHoPaKWUuqYjJeHU8jvX3wJDlFILgR+NCEw4TJ7nWP5ur08p1Q9r07yBWuu0fFYrs/eUV1PWfie8Lr0HbsfaGVtZVVbOTYH3OGXg3NhzrH8ARiqrjlibXZ66uiAnUOC+KKVq2e6rUUq1x5p/n71eoVKDXgCtdbZSaiqwBmuv1h9prfcZHJa9ugAjgL1KqUjbvGe11quMC+mmMQ34zPbHGgOMMTieAmmtf1fWzn/+wvp43i7gfWOjuj6l1HLgNqC6Uuo48DzwGvClUioMOArcb1yEIi9a67PARKPjEI6jtU6lDFznRNHJ322B3gXKAb/Y7sW3a60nKqVqAx9qrfuXlXtKpdRgrI/i1gD+p5SK1Fr3vXxfsLZ9/s62r67A51rr1YYFfR327E9ZOTfkc49Tls5NfsdaKTXRtvw9YBXQHzgMpOGk/1/s3Jd7gUlKqWwgHXgwnydscqkClgshhBBXsD0S+5NtOD6UUp2AF7TWfW3TzwDYHnEXZZic6xufnGMhhHAu8oi7EEKI4iorjwaK4pNzfeOTcyyEEAaSBF0IIYTdbM0KfgOaKKWOK6XCbGP/XnrEaz/wpZM+GigKQc71jU/OsRBCOB95xF0IIYQQQgghhHACUoMuhBBCCCGEEEI4AUnQhRBCCCGEEEIIJyAJuhBCCCGEEEII4QQkQRdCCCGEEEIIIZyAJOjihqCU8lNKPXDVPE+l1CallMk2XVMp9blSKkYp9adS6jel1OBCbsddKbVZKeXqyPiFEEIIIYRzUUo1UEqlK6UibdM5SqnIy14N7CjjPaVUF9v7lKuWjVZKvWu7Z41USmUppaqXxL6IskMSdHGj6AW0vmreWOBbrXWOUkoBK4HNWusArXUbrGO7+tm7AVsZ2cB64IECVhdCCCGEEGXfP1rrlrb36Vrrlpe9Yu34fEdg+/VW0Fqn27ZxsliRihuCJOiizFNKdQXeAu61ffsYYFs0DPje9r4nkKW1fu/S57TWR7XW82xlvKSUeuSyMsOVUg/bvjk9qJT6FIgC6mJN9IeV9H4JIYQQQgjnp5QarpTaYbsPXXTZ05uBwN9a6xyDQxRliCTooszTWkcAO4G7bd9mxiil3IGAy77ZDAb+uk4xHwEjAZRSLlhr15fZljUGFmitg7XWR7Em6u0cvydCCCGEEMKJXXoUPVIp9R3kJuEPAF1steA5/FuRcwewOp/PRwIvlV7ooqyQdrTiRtEEOHDZdHXgQn4rK6XmA12x1qq301rHKqXOKqVaATWBXVrrs0opL+Co1jr30STbI/NZSikvrXVyieyNEEKUEKWUH9YbyS8um+eJ9Sayp+0aVxN4G+ujmeeBLOB1rfV3hdiOO7DOVma2I/dBCCEMkn7Z4+6X9ALaADutrSHxBE7blvUFxuT3eaXUaKBtCcUqyihJ0EWZZ+tM4+JVN4DpgMdl0/uAIZcmtNZTbJ/747J1PgRGA7Ww1qhfkprHZssBGcWLXAghDNELCAK+uGxeXn12fKK1HgqglKoPDLR3A3n02fGZY0IXQgino7BeL5+5YqZS5QFvrbW0KxeFIo+4ixtBA67qVENrfR4wKaUuJekbAA+l1KTLVit/VTnfAf2wPr6+Jr+NKaWqAYlaa3Mx4xZCiFIlfXYIIYTDrcd6TfUBUEpVtX2p2QPYaGhkokySBF3cCA4A1ZVSUUqpzpfNX4v1MXa01hoYBHRXSh1RSu0APgGevrSy1joL64X0ywI68+gB/M+xuyCEECVP+uwQQgjH0lpHA88Ba5VSe4BfAF+ubX8uhF3kEXdR5mmtU4D2eSyaDzyKtQ0kWutTWG8k82S70ewI3HdZ2bFAyFWrDgWmFytoIYQwjvTZIYQQRaC1rpjP/C+4stkQSqkFWO9D8/281noJsMShQYoyT2rQxQ1La/0XsPHSUBfXo5QKAg4D67XWh66znjuwUmv9t+MiFUKI0lGIPjtaX5rQWk/B2m69xmXrXOqzYwzSZ4cQ4saVA1S29bheKFrr1vY2h1RKedq24QZYCrstcWNR1id/hRBCCHGjU0q1/f927hAngiAKAmgtggvgyZpNECiOgUdyCNxqLoHlBChOQEKC5whcAleIHUEwrCH5ZN5zPTPpZFxXKv2T3Le9/vH8I8mu7ecy4O0tyWPbh+X9eZKXtttlfZrkPYfD5G5pyrdJntteftv3LMlr24u//zsA+P806ACwHmZ2AMBgGnQAWLnNZnOV5K7t7ZHfn+QwSO7ml2tBT0n2rgUBwHE06ACwcmZ2AMAMGnQAAAAYQIMOAAAAAwjoAAAAMICADgAAAAMI6AAAADCAgA4AAAADCOgAAAAwgIAOAAAAA3wB4q8h5fwjwjYAAAAASUVORK5CYII=", "text/plain": [ "<Figure size 1008x360 with 3 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "figsize(14,5)\n", "ts= numpy.logspace(-1.,1.,31)*u.Gyr\n", "colors= plt.rcParams['axes.prop_cycle'].by_key()['color']\n", "subplot(1,3,1)\n", "oz.initial()\n", "plot(ts,oz.O_H(ts),'o',mfc='none',color='k',\n", " label=r'$\\eta= 2.5, \\tau_* = 1\\,\\mathrm{Gyr}, \\tau_{\\mathrm{SFH}} = 6\\,\\mathrm{Gyr}, \\mathrm{Exp}$')\n", "plot(ts,oz.Fe_H(ts),'.',ms=9.,color='k')\n", "xlabel(r'$t\\,(\\mathrm{Gyr})$')\n", "ylabel(r'$\\log_{10} Z/Z_\\odot$')\n", "ylim(-1.5,0.5)\n", "subplot(1,3,2)\n", "semilogx(ts,oz.O_H(ts),'o',mfc='none',color='k')\n", "semilogx(ts,oz.Fe_H(ts),'.',ms=9.,color='k')\n", "xlim(0.08,11.)\n", "xlabel(r'$t\\,(\\mathrm{Gyr})$')\n", "ylim(-1.5,0.5)\n", "subplot(1,3,3)\n", "plot(oz.Fe_H(ts),oz.O_Fe(ts),'o',mfc='none',color='k')\n", "ylim(-0.25,0.45)\n", "xlim(-2.,0.5)\n", "xlabel(r'$[\\mathrm{Fe/H}]$')\n", "ylabel(r'$[\\mathrm{O/Fe}]$')\n", "# tau_SFH= 40. Gyr\n", "ts= numpy.logspace(-2.,1.,31)*u.Gyr\n", "oz.initial()\n", "oz.tau_SFH= 40.*u.Gyr\n", "subplot(1,3,1)\n", "plot(ts,oz.O_H(ts),'-',color=colors[0],\n", " label=r'$\\eta= 2.5, \\tau_* = 1\\,\\mathrm{Gyr}, \\tau_{\\mathrm{SFH}} = 40\\,\\mathrm{Gyr}, \\mathrm{Exp}$')\n", "plot(ts,oz.Fe_H(ts),'--',color=colors[0])\n", "subplot(1,3,2)\n", "semilogx(ts,oz.O_H(ts),'-',color=colors[0],label='O')\n", "semilogx(ts,oz.Fe_H(ts),'--',color=colors[0],label='Fe')\n", "subplot(1,3,3)\n", "plot(oz.Fe_H(ts),oz.O_Fe(ts),'-',color=colors[0])\n", "# tau_SFH= 2.5 Gyr\n", "oz.initial()\n", "oz.tau_SFH= 2.5*u.Gyr\n", "subplot(1,3,1)\n", "plot(ts,oz.O_H(ts),'-',color=colors[1],\n", " label=r'$\\eta= 2.5, \\tau_* = 1\\,\\mathrm{Gyr}, \\tau_{\\mathrm{SFH}} = 2.5\\,\\mathrm{Gyr}, \\mathrm{Exp}$')\n", "plot(ts,oz.Fe_H(ts),'--',color=colors[1])\n", "subplot(1,3,2)\n", "semilogx(ts,oz.O_H(ts),'-',color=colors[1])\n", "semilogx(ts,oz.Fe_H(ts),'--',color=colors[1])\n", "subplot(1,3,3)\n", "plot(oz.Fe_H(ts),oz.O_Fe(ts),'-',color=colors[1])\n", "# tau_SFH= 2.5 Gyr, lin-exp\n", "oz.initial()\n", "oz.tau_SFH= 2.5*u.Gyr\n", "oz.sfh= 'lin-exp'\n", "subplot(1,3,1)\n", "plot(ts,oz.O_H(ts),'-',color=colors[2],\n", " label=r'$\\eta= 2.5, \\tau_* = 1\\,\\mathrm{Gyr}, \\tau_{\\mathrm{SFH}} = 2.5\\,\\mathrm{Gyr}, \\mathrm{Lin-Exp}$')\n", "plot(ts,oz.Fe_H(ts),'--',color=colors[2])\n", "subplot(1,3,2)\n", "semilogx(ts,oz.O_H(ts),'-',color=colors[2])\n", "semilogx(ts,oz.Fe_H(ts),'--',color=colors[2])\n", "subplot(1,3,3)\n", "plot(oz.Fe_H(ts),oz.O_Fe(ts),'-',color=colors[2])\n", "subplot(1,3,1)\n", "legend(frameon=False)\n", "subplot(1,3,2)\n", "legend(frameon=False)\n", "tight_layout();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The code does not implement the sudden changes considered in Weinberg et al. (2017), but you can change the delay time distribution of type Ia SNe to be an approximate $t^{-1.1}$ distribution after a minimum delay. For this, we add a second exponential with a different exponential decay time that gives about half of the type Ia SNe to approximate the $t^{-1.1}$ distribution. For example, we can re-create Fig. 11 of Weinberg et al. (2017) as follows:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAFgCAYAAAArYcg8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABxJklEQVR4nO3dd3gU1dvG8e9Jo/deQkIvCRBaEClKlV4VASkKihQRRH+KDSuCCgoIiNioAgrSmzSldxBCINKChBI6JJCQss/7x655AyQhgWR3kzyf69qLnZkzM/dmYfIw5RwjIiillFJKqczDxdEBlFJKKaWUfWkBqJRSSimVyWgBqJRSSimVyWgBqJRSSimVyWgBqJRSSimVybg5OoAjFSxYULy9vR0dQyllR3v37r0sIoUcncPe9HinVOaU2DEvUxeA3t7e7Nmzx9ExlFJ2ZIw57egMjqDHO6Uyp8SOeXoJWCmllFIqk9ECUCmllFIqk9ECUCmllFIqk9ECUCmllFIqk9ECUCmllFIqk9ECUCmllFIqk9ECUCmllFIqk9ECUCmllFIqk9ECUCmllFIqk9ECUCmllFIqk9ECUKkUCAkJYf78+am2vdWrV1OxYkXKlSvHmDFjEm3Xt29fChcujK+v713zvb29qVq1Kn5+ftSuXfu+9UJDQ+nRowdlypShVq1a1KtXj0WLFqVK9sQyKaWUcn5aACqVAuvXr2ffvn2psq3Y2FgGDx7MqlWrCAwMZO7cuQQGBibY9vnnn2f16tUJLtu4cSMHDhy4b5xXEaFjx440atSIkydPsnfvXubNm0dISEiyM4oIFoslxZmUUko5NzdHB1AqvdiyZQvDhw8nb968rFmzht9//50yZco89PZ27dpFuXLl4rbRrVs3lixZQpUqVe5r26hRI4KDg1O0/Q0bNuDh4cGAAQPi5nl5eTFkyBAARo4cSf78+Rk2bBgA7777LoULF6ZDhw489dRT1K1bl71797Jy5Uq8vLxSJVNiZs+ezcSJE4mKiqJu3bpMmTKFffv20a9fP3bt2kVsbCz+/v7Mnz+fnDlz0rJlS2rVqsW+ffvw8fFh5syZZM+ePVWyZFSREbc5cnCvo2M4LXFxBeOKxdUDcc0Kxjg6UpKyeriRM1sW8uXKSdasWRwdR6VDWgCqdGfYsGEcOHAgVbfp5+fH+PHjk2zToEED6tSpw9ixYx942bNhw4aEhYXdN3/s2LE0a9YMgLNnz+Lp6Rm3rGTJkuzcuTNFuY0xtGjRAmMML7/8Mv37949bdvjwYWrWrJnoun379qVz584MGzYMi8XCvHnz2LVrF2FhYRw7dowZM2bw2GOPpSjPwzhy5Ajz589n69atuLu7M2jQIObMmUPv3r1p37497733HhEREfTs2RNfX1+Cg4MJCgrixx9/pH79+vTt25cpU6bwxhtvpHnW9CzrtSAq/97E0THShShx5SY5uCa5OC/5OScFOCOFOS4lOCYlOC1FiMXV0TEBkJhoLGEXcb9zgwLmFpUKuNGwcgka1a9HxYoVMU5eyCrH0QJQqRQICgqiUqVKd81bs2YNFy9epFevXnHzNm/ebJc8W7ZsoUSJEly8eJHmzZtTqVIlGjVqlGDbwYMHs2XLFjw8PNi9ezfe3t4UKFCA/fv3ExoaSo0aNShQoABhYWF4eXmlSvHXrFkzLly4cN/8UaNG0aFDB8B6WX3v3r3UqVMHgIiICAoXLgxYz1LWqVOHrFmzMnHixLj1PT09qV+/PgA9e/Zk4sSJWgA+wFWTnzkenR0dw2m5YMEVC+4STTYiyCYR5JIwSsk1qstp8sjNuLZRuHPapRTBLl6cdC3DP67luWVy2i2riBBtEe7EWLgZGcslXLmRvRiXPPJwybiw6UgU7y6fiUvIfp4ol58ObVvTunVr8uXLZ7eMyvlpAajSnQedqUsrly9fJk+ePLi5uREVFcXw4cPJnTs3O3fuZPLkyXe1Tc4ZwBIlSnDmzJm4ZSEhIZQoUSJFmf5rX7hwYTp16sSuXbviCkAfHx8WLlwY13by5Mlcvnz5rodFXnzxRaZPn86FCxfo27dv3PwcOXKkKEdi1q1b98A2IkKfPn0YPXr0fcuuXLlCeHg40dHRREZGxuW696yGnuV4sPzFvHjune8cHSP9uhMOl/+BS0fxOH+Q8mf3Uv78VrizATBQtCqUbQKV2kCJ2uBi/1vsb0ZGs/vkFZbsOsaGLI8RXrE+OyPD+GPqMiIHD6NN00a88MILtGzZEjc3/fWf6YlIpn3VqlVLlEqu3bt3S6tWrUREZPz48bJr1y4REalfv75YLJYUby86OlpKly4tJ0+elDt37ki1atUkICAg0fanTp0SHx+fuOnw8HC5efNm3Pt69erJqlWr4pZbLBbx9/eXKVOmxM07ffq0eHl5xU3fuXNHKlSoIKVLl5aYmJgE9yMi0qRJEwkJCXlgpodx+PBhKVeunISGhoqIyJUrVyQ4OFhERNq1aydz5syRTz/9VAYPHhy3T0C2bdsmIiL9+vWTsWPHJnt/wB5xguOPvV96vEsD0XdETu8Q+fNzkZ9ai3yUX+SD3CJflBNZ+qrIqS0isbEOiRYTa5HN/1ySftN3ifdby6X0m0ukeOtXxCVrTvH29pYJEyZIWFiYQ7Ip+0rsmKdPASuVTJUqVeLy5cv4+vqyYsUKqlatSlhYGAULFnyoM1Bubm5MmjSJp556isqVK9O1a1d8fHzilrdu3Zpz584B0L17d+rVq0dQUBAlS5bkxx9/JDQ0lAYNGlC9enX8/f1p06YNLVu2jFvfGMPixYv566+/KF26NP7+/vTp04fPP/88ro2HhweNGzema9euuLomfE+TxWLh+PHj5M+f/675CWV6GFWqVOHTTz+lRYsWVKtWjebNm3P+/HlmzpyJu7s7PXr0YMSIEezevZsNGzYAULFiRSZPnkzlypW5du0aAwcOfKh9K/VI3DygVF144k14YQX87wR0+RG868PB32B6a5hQDdZ/DNeC7RrN1cXQoHxBfuhTh/WvP0Hn2l54VGtJheFzyePfiaHDXsPLy4tx48YRGRlp12zKORhrcZg51a5dW+7tOkOp5Jg7dy5r1qwhe/bs5MyZky+++MLRkR6KxWKhZs2a/Pbbb5QvXz7BNgEBAfz000989dVXdk6XsODgYNq2bUtAQMBDrW+M2Ssi93ea6ESMMS2BCYAr8IOIJNhJpDGmDrAd6CYiC5Laph7v7CzqFhxdCQfnwYkNIALlmkGdflD+KYdcIj564SajVx7lr38uUSavK7E7ZrFpyS94enry5Zdf0rVrV72dIgNK7JinBaAeEFUmFRgYSNu2benUqRPjxo1zdJxky+gFoDHGFfgHaA6EALuB7iISmEC7tUAk8JMWgE7sRgjsmwl7Z0D4BShQDuoNhurdwT2bXaOICCsOnefDpYe5fjuadmVc+evbd9m/by8tWrRg8uTJlCtXzq6ZVNrSAjABekBUKvNJBwVgPeBDEXnKNv02gIiMvqfdMCAaqAMs1wIwHYiNhiNLYetEOH8AsheEx4eA/0vgkToPXiXXtVtRvL8kgOUHz9OgXAF8w/fx2cgRxMbG8tVXX9G/f389G5hBJHbM03sAlVLKuZQAzsSbDrHNi2OMKQF0Ar5NakPGmP7GmD3GmD2XLl1K9aAqhVzdwbcL9P8Tnl8BxarBug9gfDVrURgdYbco+XJ48E33GozuXJXdwdf4/VYFFm7cw+OPP86AAQPo0KEDV65csVseZX9aACqlVPozHnhLRBIep89GRKaJSG0RqV2oUCH7JFMPZgx4N4Bei6DvH9ZCcO378E0tOPALWGLtFMPQ3b8UiwfXx8PNhVcWnWDo2Ol8/fXXrFmzhtq1a6d6p/vKeWgBqJRSzuUs4BlvuqRtXny1gXnGmGDgaWCKMaajXdKp1FWqrrUQfH4F5CwCiwfCd09A8Ba7RahcLDdLBtenaok8vDL3AFn82rF582aio6N5/PHHmT9/vt2yKPvRAlAppZzLbqC8Maa0McYD6AYsjd9AREqLiLeIeAMLgEEistjuSVXq8W4AL663diMTeQOmt4GFL8LN83bZfYGcWZjzUl3aVy/O56uPsvFqbvbs2UOtWrXo1q1bunpQTCWPdgWulFJORERijDGvAGuwdgPzk4gcNsYMsC2f6tCAKu24uEDVp6Fia9jyNWydAEGroMl74N8fXNJ2/OEsbq6Mf9aPXFnd+PbPE4RHerFmzR/06dObN954g7NnzzJ27FhcHNCFjUp9TlUAPqjvK2PMc8BbgAHCgIEi8rdtWbBtXiwQ48xP+SmlVFJEZCWw8p55CRZ+IvK8PTIpO/LIDk3eBb/usPJ/sHoEBCyE9pOgcKUHr/8IXFwMn3b0JWdWN7776yQWEebOnUuxYsX4+uuviYiIYPLkyVoEZgBOUwDa+rSaTLy+r4wxS+/p++oU8ISIXDPGtAKmAXXjLW8sIpftFloppZRKK/nLwHML4OCv1iJwagN48i2o/xq4pt2vb2MMI1pWwmCY+tcJsnu4Mn78eLJnz87nn3+OiDBlyhQtAtM5pykAAX/guIicBDDGzAM6AHEFoIhsi9d+B9abo5VSSqmMyRio/iyUawor34ANn8I/f0Dn76wFYprt1vBWy4pERsfy/eZTZPdwY/To0RhjGDNmDFmyZGH8+PHaV2A65kzl+wP7vrpHP2BVvGkB/jDG7DXG9E9sJe0XSz2KkJCQVH0ibvXq1VSsWJFy5coxZkyCo30B0LdvXwoXLoyvr+9d8729valatSp+fn7Urn3/XQ+hoaH06NGDMmXKUKtWLerVq8eiRYseOfeZM2do3LgxVapUwcfHhwkTJjzyNpVSSchREJ6Zbn1I5HIQfNsA9s2yDjGXRowxjGxbhWdqlWTC+mPM232Gzz77jGHDhjFx4sQkj1nK+TlTAZhsxpjGWAvAt+LNbiAiNYFWwGBjTKOE1tV+sdSjWL9+Pfv27UuVbcXGxjJ48GBWrVpFYGAgc+fOJTAwMMG2zz//PKtXr05w2caNGzlw4AD3jvIgInTs2JFGjRpx8uRJ9u7dy7x58wgJCUl2RhHBYrm/qzk3NzfGjRtHYGAgO3bsYPLkyYlmV0qloqpPw8DtULIWLH0Ffn8J7oSl2e5cXAyjO1fliQqFeG9xAH/+c4lx48bRo0cP3nnnHX7++ec027dKW85UACan7yuMMdWAH4AOIhLXTbmInLX9eRFYhPWSslKpZsuWLQwfPpwFCxbg5+fHyZMnH2l7u3btoly5cpQpUwYPDw+6devGkiVLEmzbqFEj8ufPn6Ltb9iwAQ8PDwYMGBA3z8vLiyFDhgAwcuRIxo8fH7fs3XffZcKECQQHB1OxYkV69+6Nr68vZ86cuXfTFCtWjJo1awKQK1cuKleuzNmz9/1zTbbZs2fj7++Pn58fL7/8MrGxsezevZtq1aoRGRnJrVu38PHxISAggODgYCpVqsRzzz1H5cqVefrpp7l9+/ZD71updCdPCei12Pp0cMBC+K4RnP87zXbn5urC5OdqUrFILl6Zs48jF8L4+eefadGiBf3792fTpk1ptm+VdpzpHsC4vq+wFn7dgB7xGxhjSgG/A71E5J9483MALiISZnvfAvjYbsmVXX207DCB526m6jarFM/NB+18kmzToEED6tSpw9ixY++7FHuvhg0bEhZ2///Kx44dS7NmzQA4e/Ysnp7//3+ekiVLsnPnzhTlNsbQokULjDG8/PLL9O///3c/HD58OK5IS0jfvn3p3Lkzw4YNw2KxMG/ePHbt2kVYWBjHjh1jxowZPPbYYw/MEBwczP79+6lbt+4D2ybkyJEjzJ8/n61bt+Lu7s6gQYOYM2cOvXv3pn379rz33ntERETQs2dPfH19CQ4OJigoiB9//JH69evTt29fpkyZwhtvvPFQ+1cqXXJxhUb/g1KPW/sL/LEFtB1vfXI4DeTM4sbPL9Sh4+St9J+5l2VDGvDrr79St25dunTpwu7du/H29k6Tfau04TQFYDL7vhoJFMDa6z38f3cvRYBFtnluwC8ikvD1MqUeQVBQEJUq3d0Nw5o1a7h48SK9evWKm7d582a75NmyZQslSpTg4sWLNG/enEqVKtGoUYJ3PzB48GC2bNmCh4dH3MG6QIEC7N+/n9DQUGrUqEGBAgUICwvDy8srWcVfeHg4Xbp0Yfz48eTOnfu+5c2aNePChQv3zR81ahQdOnQArJfV9+7dS506dQCIiIigcOHCgPUsZZ06dciaNSsTJ06MW9/T05P69esD0LNnTyZOnKgFoMqcvOvDy5tgwQuweACc3QtPfQZuHqm+qyK5szK1Zy2e+W47r/yyj5l9/Vm2bBn+/v60b9+e7du3kyNHjlTfr0obTlMAwoP7vhKRF4EXE1jvJFA9zQMqp/CgM3Vp5fLly+TJkwc3NzeioqIYPnw4uXPnZufOnUyePPmutsk5A1iiRIm7Lq+GhIRQokRSzz3d77/2hQsXplOnTuzatSuuAPTx8WHhwoVxbSdPnszly5fveljkxRdfZPr06Vy4cIG+ffvGzU/OQTw6OpouXbrw3HPP0blz5wTbrFu37oHbERH69OnD6NGj71t25coVwsPDiY6OJjIyMi7XvU8e6pOIKlPLWch6SXj9h7DtGwgNgGdnWx8cSWXVPfMyqqMv/1twkNGrjvJ+2yrMnz+fli1b8sorr+g9gemJiGTaV61atUSp5Nq9e7e0atVKRETGjx8vu3btEhGR+vXri8ViSfH2oqOjpXTp0nLy5Em5c+eOVKtWTQICAhJtf+rUKfHx8YmbDg8Pl5s3b8a9r1evnqxatSpuucViEX9/f5kyZUrcvNOnT4uXl1fc9J07d6RChQpSunRpiYmJSXA/IiJNmjSRkJCQu7bdq1cvGTp0aIo/970OHz4s5cqVk9DQUBERuXLligQHB4uISLt27WTOnDny6aefyuDBg+PyAbJt2zYREenXr5+MHTs22fsD9ogTHH/s/dLjXSZx8DeRTwqLfF1VJPRImu3mgyUB4vXWcll16LyIiIwcOVIA+fnnn9Nsn+rhJHbMc6aHQJRyapUqVeLy5cv4+vqyYsUKqlatSlhYGAULFnyoM1Bubm5MmjSJp556isqVK9O1a1d8fP7/7Gbr1q05d+4cAN27d6devXoEBQVRsmRJfvzxR0JDQ2nQoAHVq1fH39+fNm3a0LJly7j1jTEsXryYv/76i9KlS+Pv70+fPn34/PPP49p4eHjQuHFjunbtiqtrwsNMWSwWjh8/ftdDKFu3bmXWrFls2LABPz8//Pz8WLlyZYLrP0iVKlX49NNPadGiBdWqVaN58+acP3+emTNn4u7uTo8ePRgxYgS7d+9mw4YNAFSsWJHJkydTuXJlrl27xsCBAx9q30plOFWfhudXQkwk/Ngcjj/4LPzDeKd1ZaqVzMObC/7mzNXbjBw5kieffJJBgwZx5MiRNNmnSl3GWhxmTrVr15Z7u85QKjnmzp3LmjVryJ49Ozlz5uSLL75wdKSHYrFYqFmzJr/99hvly5dPsE1AQAA//fQTX331lZ3TJSw4OJi2bdsSEBDwUOsbY/ZKJhwqUo93mcyNEJjbDUIDod0EqNnrweuk0L9XbtNm4mbKFcnJry/X4/LFUKpVq4aXlxfbt2/H3d091fepUi6xY56eAVTqIXTv3p3p06czZcqUdFv8BQYGUq5cOZo2bZpo8Qfg6+vrNMWfUiqZ8pSEF1ZBmSet/QX+OSbVO40uVSA7Y7pUY/+/1/l67T8UK1aMadOmsXfvXkaNGpWq+1Kpz6keAlFK2U+VKlUeuS9DR/D29n7os39KZSpZckGP+bD0VfhzNNw8a+0qxiXh2z0eRptqxdj0jydT/zpB08rWh9F69+7Np59+Sps2beKe7lfOR88AKqWUUhmVqzt0nAIN34B9M2FBX4iJStVdvN+uCsXzZmP4r39z604MEyZMoFixYvTt25fo6OhU3ZdKPVoAKqWUUhmZMdD0fWgxCgIXw7zuEJV6o+fkzOLGuGeq8+/V24xaeYS8efMyZcoUAgICGDt2bKrtR6UuLQCVUkqpzODxV6D9N3B8PczunKpjCNctU4CXGpbhl53/su34Zdq1a0eXLl34+OOPOX78eKrtR6UeLQCVUkqpzKJmb3j6JzizC2Z1hsgbqbbp4c0r4FUgO28vOkREVCwTJ07Ew8ODQYMGkZl7HHFWWgAqpZRSmYlvZ3hmOpzbl6pFYFZ3V0Z3rsrpK7cZv/4fihcvzqeffsratWtZsmRJquxDpR4tAJVSSqnMpkp76DoTzv8NMzumWhH4eNmCdKvjyQ+bTxFw9gYDBw7Ex8eH4cOHExkZmSr7UKlDC0CllFIqM6rUBp6dBRcOwpxn4E54qmz27daVyZfdg3cXB+Di4sqECRM4deqU9ifqZLQAVEoppTKriq2gy48Qsts6ckh0xCNvMk82d95tU4m/z1zn1z1naNq0KR07duSzzz7jwoULqRBapQYtAJVKgZCQEObPn59q21u9ejUVK1akXLlyjBkzJsXtvL29qVq1Kn5+ftSuff/oZqGhofTo0YMyZcpQq1Yt6tWrx6JFix4595kzZ2jcuDFVqlTBx8eHCRMmPPI2lVIO4tMROn0HwVtgfq9U6Sewo18J/L3z8/nqo1y7FcUXX3zBnTt3+OSTTx49r0oVWgAqlQLr169n3759qbKt2NhYBg8ezKpVqwgMDGTu3LkEBgamuN3GjRs5cOAA947zKiJ07NiRRo0acfLkSfbu3cu8efMICQlJdkYRwWKx3Dffzc2NcePGERgYyI4dO5g8eXKC2ZVS6US1rtYxg4+vhcUDIIF/9ylhjOHjjj7cjIzhyz+CKF++PC+++CLTpk3TbmGchBaASiXTli1bGD58OAsWLMDPz++Rh1HbtWsX5cqVo0yZMnh4eNCtW7cEn5RLbrt7bdiwAQ8PDwYMGBA3z8vLiyFDhgAwcuRIxo8fH7fs3XffZcKECQQHB1OxYkV69+6Nr68vZ86cuW/bxYoVo2bNmgDkypWLypUrc/bs2ZT+COLMnj0bf39//Pz8ePnll4mNjWX37t1Uq1aNyMhIbt26hY+PDwEBAQQHB1OpUiWee+45KleuzNNPP83t26nXqa1SmVatPtDsIwhYCKvefOSxgysVzU3vel7M3fUvgeduMnLkSDw8PHj//fdTKbB6FDoWsEp/Vo2AC4dSd5tFq0KrxC/BAjRo0IA6deowduxYfH19k2zbsGFDwsLu72R17NixNGvWDICzZ8/i6ekZt6xkyZLs3LnzvnWSameMoUWLFhhjePnll+nfv39cu8OHD8cVaQnp27cvnTt3ZtiwYVgsFubNm8euXbsICwvj2LFjzJgxg8ceeyzJzwkQHBzM/v37qVu37gPbJuTIkSPMnz+frVu34u7uzqBBg5gzZw69e/emffv2vPfee0RERNCzZ098fX0JDg4mKCiIH3/8kfr169O3b1+mTJnCG2+88VD7V0rF02AY3L4M276BHAXhyRGPtLlhTSuwaP9ZRq0MZHa/urz22muMGjWKt956Cz8/v1SJrB6OFoBKpUBQUBCVKlW6a96aNWu4ePEivXr1ipu3efNmu+TZsmULJUqU4OLFizRv3pxKlSrRqFGjBNsOHjyYLVu24OHhwe7du/H29qZAgQLs37+f0NBQatSoQYECBQgLC8PLyytZxV94eDhdunRh/Pjx5M6d+77lzZo1S/Cm71GjRtGhQwfAell97969cYPGR0REULhwYcB6lrJOnTpkzZqViRMnxq3v6elJ/fr1AejZsycTJ07UAlCp1NL8E7h9Ff4cDbmLWzuPfkh5srsztGl5PloWyIajF3njjTeYNGkSn3zyCQsXLkzF0CqltABU6c8DztSllcuXL5MnTx7c3NyIiopi+PDh5M6dm507dzJ58uS72ibnDGCJEiXuurwaEhJCiRIl7lsnqXb//Vm4cGE6derErl274gpAHx+fuw6wkydP5vLly3c9LPLiiy8yffp0Lly4QN++fePm58iR44E/j+joaLp06cJzzz1H586dE2yzbt26B25HROjTpw+jR4++b9mVK1cIDw8nOjqayMjIuFzGmLva3TutlHoExljvBwy7AMuGQa7iUL7ZQ2+u52NezNp+mlErj7BmWCOGDh3Kxx9/zMGDB6lWrVrq5VYpIyKZ9lWrVi1RKrl2794trVq1EhGR8ePHy65du0REpH79+mKxWFK8vejoaCldurScPHlS7ty5I9WqVZOAgIBktwsPD5ebN2+KiEh4eLjUq1dPVq1aFbeexWIRf39/mTJlSty806dPi5eXV9z0nTt3pEKFClK6dGmJiYkREZFTp06Jj4/PXRmaNGkiISEhd227V69eMnTo0BR/7nsdPnxYypUrJ6GhoSIicuXKFQkODhYRkXbt2smcOXPk008/lcGDB8flA2Tbtm0iItKvXz8ZO3ZssvcH7BEnOP7Y+6XHO5VikTdFvq0vMqq4yLkDj7SptYcviNdby2Xm9mC5evWq5M6dW7p06ZJKQVVSEjvm6UMgSiVTpUqVuHz5Mr6+vqxYsYKqVasSFhZGwYIFH+oMlJubG5MmTeKpp56icuXKdO3aFR8fn7jlrVu35ty5c4m2Cw0NpUGDBlSvXh1/f3/atGlDy5Yt49Y3xrB48WL++usvSpcujb+/P3369OHzzz+Pa+Ph4UHjxo3p2rUrrq6uCea0WCwcP36c/Pnzx83bunUrs2bNYsOGDfj5+eHn58fKlStT/DMAqFKlCp9++iktWrSgWrVqNG/enPPnzzNz5kzc3d3p0aMHI0aMYPfu3WzYsAGAihUrMnnyZCpXrsy1a9cYOHDgQ+1bKZWELLmgx2+QNS/M6Qo3zz30pppWLkwd73xMXH+MrDlyM3ToUBYuXEhAQEDq5VUpYqzFYeZUu3ZtubfrDKWSY+7cuaxZs4bs2bOTM2dOvvjiC0dHeigWi4WaNWvy22+/Ub58+QTbBAQE8NNPPzlNL/7BwcG0bdv2oX9xGGP2isj9nSZmcHq8Uw8t9DD82AIKlIUXVoHHg28RScju4Ks8M3U7b7asSLdq+SlVqhSdO3dm5syZqRxYxZfYMU/PACr1ELp378706dOZMmVKui3+AgMDKVeuHE2bNk20+APw9fV1muJPKeUARXzg6Z+svS8sevmh+wis452fppUKM/XPE7hmzcVLL73E3Llz+ffff1M5sEoOLQCVyqSqVKnCyZMnGTdunKOjpIi3t7deNlLK3io8BS0+hSPLYOOoh97MG09VJOxODFM3neC1114D4Ouvv06tlCoFtABUSiml1IM9NsjaJczmsXD44YaUrFwsN+2qFWfGtmBy5C9C9+7d+f7777l69Woqh1UPogWgUkoppR7MGGg9Fkr6w+JBcOHhzsS/2rQcEdGxfL/5FP/73/+4desW3333XSqHVQ+iBaBSSimlksctCzw7C7Lkhnk9rB1Gp1C5wrloX704M7cHU7x0BZo1a8aUKVOIjo5Og8AqMVoAKqWUUir5chWFZ2dD2HlY+CJYYlO8iSFNyhMRHcu0zSd59dVXCQkJYfHixamfVSVKC0ClVIZy47aeRVAqzXnWgVZfwIn1sOnLFK9ernBO2lcvzqztp3n8yWaUKVOGCRMmpEFQlRinKgCNMS2NMUHGmOPGmPtGoDZWE23LDxpjaiZ3XaVUxnbuegRD5+2n6Vd/cjMyfReByTgWdrAdAw8YY/YYYxo4IqfK5Go9D9W7w59j4NiDh32816Any3E7KpZZO88wZMgQtm7dyt69e1M/p0qQ0xSAxhhXYDLQCqgCdDfGVLmnWSugvO3VH/g2BesqpTIQEeH27ducCD7Du79s5ckvN7D94BFeyLIJN5f0OzZwMo9n64HqIuIH9AV+sGtIpcD6UEibr6BwFfj9Rbh+5sHrxFOxaC6aVS7C9G3BPPtcb3LkyMGUKVPSKKy6l5ujA8TjDxwXkZMAxph5QAcgMF6bDsBM29h2O4wxeY0xxQDvZKyrlEonoqKiOH36NKdOnSI4OJiQkBDOnj3LuXPnuHjxIhcvXuTSpcu4latH0Se60zpPMJMjltI417+YMCH21kDwKO7oj/GwHngsFJHweO1zAJl3SCflWB7ZrQ+FfPcELOgLL6wEV/dkrz6ocVk6TwllxdHrdO/enV9++YWvvvqKPHnypGFoBc5VAJYA4v/3IQSom4w2JZK5rlLKyURFRXH06FH+/vtvDh48yJEjRzh69CinTp3CEm+0AWMMRYsWpXjx4hQtWpRStZqQv0AuWrjupa3re+QwkUTkLMCF4s9wu1w7yuUp6sBP9ciSdTwzxnQCRgOFgTb2iaZUAgqUhXbjYWE/2PApNP8o2avWLJWPemUK8P3mk0x46WV++OEHZs+ezeDBg9MurwKcqwC0C2NMf6yXjylVqpSD0yiVuZw9e5ZNmzaxY8cOdu7cyf79+4mKigIgS5YsVKxYkVq1atGjRw/Kli1L6dKl8fb2pnjx4ri5uXHyWCAHV0yl5tVFlHK5RLRrdtx8O4Nfd7J5NaCki9Pc1ZLmRGQRsMgY0wj4BGh2bxs93im7qfo0BG+GrePBuyGUv++vY6IGPlmW3j/tIsS1KLVq1WLq1KkMGjQIY9LvrRzpgTMVgGcBz3jTJW3zktPGPRnrAiAi04BpYB0c/dEiK6WScv36ddavX8/q1avZuHEjJ06cACB79uzUqlWLIUOGUKtWLapXr06FChVwc0vgkBR1m2t75nF584+Uv7UPbzGcy1+HqEYf4+Hb4aEHpndiyTkWxhGRTcaYMsaYgiJy+Z5lerxT9tNyDJzZBYv6w8Bt1u5ikqFh+YJUKpqLHzafpH//l3n55f5s376dxx9/PI0DZ27OVADuBsobY0pjPdh1A3rc02Yp8Irtnpi6wA0ROW+MuZSMdZVSdnDy5EkWL17M4sWL2bZtG7GxseTOnZsnn3ySQYMG0ahRI/z8/BIu9v4jAuf2EblrJgT8Rr7YW4RLYf4s8SJ+bQdRsnhZ+30g+3vgsdAYUw44ISJi6w0hC3DF7kmVis89Gzwz3Xo/4OKB8NxCSMZZeWMM/RqU5n8LDuLd4yly5szJDz/8oAVgGnOaAlBEYowxrwBrAFfgJxE5bIwZYFs+FVgJtAaOA7eBF5Ja1wEfQ6lM6d9//2XevHnMnTuXAwcOAFC9enVGjBhBy5YtqVu3Lu7uybgx/PZVODif2L2zcL10GMSdVZa6XCj7DO07PMOT+TLc2b77JPNY2AXobYyJBiKAZ20PxynlWIUqwlOjYMVw2DkV6g1K1mrt/YrzxZogZu0+T9euXZk/fz4TJ04kZ86caRw48zKZ+ZhRu3Zt2bNnj6NjKJUu3b59m4ULF/LTTz/x559/AuDv78+zzz5Lx44dKVOmTPI2ZLHAqT9h3yzk6HJMbBQBlGVu9BNEVuzEwJY1KFc4V6rlNsbsFZHaqbbBdEKPd8puRGBud2sn0S9thKK+yVpt8sbjfLkmiNGNctKjzZP8/PPPPP/882mbNRNI7JjnNGcAlVLpw5EjR5gyZQozZ87k5s2blC1blk8++YTu3btTtmwKLs1ePwMHfoEDs+H6v0S65WZhbFNm3XmCkpVqM6xZBXxLaFcQSqU7xkCHSfDt49ah4vr/Ce5ZH7haD/9STFx/jIOR+ShfvrwWgGlMC0Cl1ANZLBZWrFjBhAkTWL9+PR4eHnTt2pUXX3yRhg0b4pLcp29joiBoJeybCSc2AMLpPP5MphNLwmvQoFJJvmxWgaoltfBTKl3LURA6TIY5T8PGUdDikweuki+HBx39SrB4/zm69+nHx++N4Pjx45QrV84OgTMfLQCVUom6c+cOs2fPZuzYsRw9ehRPT09Gjx5Nv379KFSoUPI3dPEI7JsFB+fB7SvE5izO9uIv8MnZmgSF5ucpnyIsaFxeCz+lMpLyza3DxW37Biq2Bq96D1ylz+PezN9zhpz+zTHmbWbOnMnHH3+c9lkzIS0AlVL3iYyM5IcffmDMmDGcPXsWPz8/5syZwzPPPJO8hzkAIm9AwELYPxvO7gUXd8JLN+c3SxM+/6c4UVegXfXijH+iLJWL5U7bD6SUcowWo+Dkn7B4AAzYClmSfqijSvHc+HvnZ+mR6zRu0pQ5c+bw0UcfaZ+AaSDz9JqqlHqgqKgoJk+eTJkyZRgyZAilS5dmzZo17Nu3jx49ejy4+LNYrAf7hS/C2Aqw/DUkOoLTtd9jWMl5+B7uyehjJelSuxR/vtGYCd1qaPGnVEaWJSd0nArXTsO6D5K1Sp/HvTlzNQL/ji9w8uRJduzYkcYhMyc9A6iUIjY2ljlz5vDBBx8QHBxMw4YNmTNnDk8++WTy/ud95QT8Pc/6uvEvZM1DbPUebMrRgq8CcnJoy03yZbfwatPy9K7nRcGcWdL+QymlnINXPXhsIOyYAlU6QumGSTZv4VOEwrmycDZrabJmzcqcOXOoV+/Bl49VymgBqFQmt379el5//XX+/vtvatSowbfffstTTz314MIv4joELrYWff9uB+MCZRpzo/7bzLxelZm7Q7kUdoeyhWIZ1cmXzjVKks3D1R4fSSnlbJq8D0GrYOkr1lFCkhjBx93VhW51PPlm43Ge6tyd+fPn8/XXXyf/9hOVLHoJWKlM6tixY7Rr145mzZpx/fp15s6dy549e2jZsmXixV9MFBxdCb/2sV7iXTYUbl9Fmn7A3i5bGOL2PrUW52Xchn/xLZ6b6S/UYe1rT/BcXS8t/pTKzDyyW7uGuRYM6x/8RPCz/qUwQJF6nbl8+TJr1qxJ84iZjZ4BVCqTCQ8PZ9SoUXz11VdkyZKFMWPGMHToULJmTaSfLosFzuyEQ7/C4UUQcQ2yF4Raz3Oz4tMsOFeQX3af4fjFYHJndaN3PW961/PCu2DGH7VDKZUC3g2gzkvWEUJ8u4BnnUSblsibjSaVCrP3zHXy5S/I/Pnzadu2rR3DZnxaACqVSYgIixYtYujQoYSEhNCnTx/GjBlD0aIJDNguAhcOWZ/iDfjdel+fWzao1BpL1WfZaaoxd+8FVv98gaiYS1QvmYcvnq5Gu2rF9UyfUipxzT6w9gW67FXo/xe4eSTatEfdUqw7cpHHuw5gyZwJREZGJv4fVZViWgAqlQmcPn2aIUOGsGzZMqpXr878+fMTHmj94lHrWb7Dv8Plf8C4QtnG0OQ9zhZtzIJDN/ht8RlCru0jV1Y3utfx5Nk6pahSXJ/kVUolQ5Zc0GYczO0G2yZAo/8l2vSJCoUplicrkr8eYWGfsnr1ajp27Gi/rBmcFoBKZWAWi4XJkyfz9ttvIyKMHTuWoUOH4uYW75/+xaPWhzkOL4ZLRwADXvXhsYGEl23DqhNRLNwZwo6TuwGoX64A/3uqIk/5FCWru57tU0qlUMVW1qeB//oSqnSCggmP9OHqYni6VkkmbTxOwVLlmT9/vhaAqUgLQKUyqKCgIPr168fWrVtp2bIlU6dOxcvLy3p59/xBOLIUApfC5SDAQKnHoNWXxFRqx5YLrizaf5Y1S/YRGW3Bq0B2hjevQKcaJfDMn93RH00pld61+gJObIQVw6H3Euv4wQl4ppYn32w4TvWO/Vn244fcvn2b7Nn1GJQatABUKoOxWCxMmDCBd955h2zZsjFjxgx6PdcDE7Ib1kyDo8utT+IZF+uZPv+XkEptOXgjG4sPnGXZ2sNcDr9D7qxudK5Zks41SlDLK5/2xK+USj25ikDT92HlG9Z7jas+nWCzUgWy83jZAvxzrgq3bt1m1apVdOnSxc5hMyYtAJXKQE6dOsXzzz/Ppk2b6Ny+Dd+/04v8oVvhq0/g1kVw9YAyT0LD16Fia4IjrEXf0mlBnLx8Cw9XF5pUKkzHGsVpXKkwWdz0Eq9SKo3U7gsH5sCad6zjBmdNeCzwZ+t4MnTeFQpXrc/ChQu1AEwlWgAqlQGICDNmzOD9N4bwVFkXZnzeCK+Y/ZhVm8EjF5RvBpXbQbnmXI7JwvK/z7F4ehAHzlzHGKhbOj/9G5WhlW8x8mTXzlaVUnbg4gptv4bvm8CGT6H1lwk2e8qnKLmyuFGsSXeW/zSCO3fukCWLjib0qLQAVCqdu3b6MAs/64vX7QBODXLDzQVwOW+9pFKpHZRuSKS48UdgKIvmHmXTscvEWoTKxXLzdqtKtKtenOJ5szn6YyilMqPiNaB2P9j9A9TsDUWr3tckq7srrasWY/G+GMIjo1i/fj2tW7d2QNiMRQtApdKjy8fgyFJu7ppLvrBjvFgMLpsiuNTrBZXbQolaiDHsOX2NhUuCWH7wPOF3YiiWJysvNSxDpxolqFg0l6M/hVJKQZN3rV1PrXwTXliZ4AMhXWqVZP6eMxSo3pTff/9dC8BUoAWgUunFxSMQuMT6uhgIwJGzsWy6mJtWr03C98nOAITejGTBXyf5bc8Zgq/cJruHK618i9GlVgkeK10AFxd9mEMp5USy5YOmI61DSx5aANWeua9Jba98eObPxs36nVg8ewRTp069uzsrlWL601PKmV05YR2JI2BhXB99d4rV4rtjJfli2RGebN+Db2d/S/YcOdl49CJzdp5mY9AlYi1C3dL5GdKkPC19i5Iji/5TV0o5sRq9YM/PsPZ9az+BWXLetdjFxdC5RkkmXr3N9SjYvHkzjRs3dlDYjEF/KyjlbG5ftRZ8B+dDiLXzZUo9Dq3HsvVaAbr0GcTNmzeZMuUn2j/dnVl7zvDLzt2EXIugYM4s9G9Uhq61PSmtY/EqpdILF1frQyA/Noet46HJe/c16VijBBPWHyO3b2OWLVumBeAjcnF0AKUUYImF4+vg1z4wrqK1b6yo29D8Y3gtEMvzKxi19iKNWj9Dvnz5+PWPLRzNVZN6YzbwxeogSubLxqQeNdg2oglvtaykxZ9SKv3x9Affp2HbN3D93/sWly6Yg+ol81C4ThuWLFmCiDggZMahZwCVcqRbl2H/LNjzk/WAly2/9Ym4Gs/FPQ13/fp1enfsyLJly2j9/FDy13+WV5afJ6u7C51rluT5x731gQ6lVMbQ7ENrZ/XrPoSnf7pvcXu/EnwScoOzN6IIDAzEx8fH7hEzCi0AlXKE0MOwfTIc+g1io8C7ITT7CCq1Abf/79/q0KFDdOzUiVCXgjz2/gIOR2WlwPlwXm9egZ6PeZEvh4cDP4RSSqWyvJ7w+Kuw6QvwfxlK1b1rcbtqxRi1IpAclZ9g6dKlWgA+Ai0AlbIXEQjeDFu+hhMbwD27td+rOi9B4Ur3NZ8//1cGfDSRXE++RsGC3rhkz8YnrcvyTK2SZHXXETqUUhlU/aGwb4b1gZC+a+7qFqZw7qw8XrYg2289xeIlk3n77bcdGDR90wJQqbQmYi34/voCzuyAnEWgyfvWYZCy57+veWxsLP3f/ZwVZ9zI0/5tiuf2YGjzinSqURIPN71tVymVwWXJCY3fsXYLc2QZVGl/1+J21Yux5fhlDgRf5sKFCxQtWtRBQdM3/W2iVFr6dwf83Apmd4YbZ6D1WBh6EBq9kWDx9/fJC1Qf8i3rqU6eEmX5qF0l/nqrKc/WKaXFn1Iq8/DrCQUrWu8FjI2+a9FTPkVxNZC9UkNWrVrlmHwZgP5GUSotXAqCX7rBT0/B1ZPQZhy8uh/8XwL3rPc1vxERzfBZW+kwdRc3sxThiXw3OPBpR/rUL4u7q/4zVUplMq5u1l4Qrp6AvdPvWpQ3uwcNyxcit++TLF+xwjH5MgC9BKxUaoq4Dn99DrumWe/xazoS6g4Aj4S7ZRERFu0/yweL/uZmlIWYfzbz7aDWtG+h/VsppTK5Ck9Z+0Dd9CX49bjrONqmWjH+/OcSGw6cICoqCg8PfSAupfTUglKpQQQO/ALf1IQd31p7tX91PzR8PdHi7/jFcLpN28HwX//m8ukgcmyZxJavB2nxp5RSYH34o9kHEB4KO6fetaiFT1FcjUCpmmzZssVBAdM3pygAjTH5jTFrjTHHbH/mS6CNpzFmozEm0Bhz2BgzNN6yD40xZ40xB2wvHSVa2c+VEzCzPSweCAXKwcuboN14yFEwwebRsRYmbzxOqwmb2HcylCurv6Hm1Q3sXL2A0qVL2ze7Uko5s1KPQYWWsHUCRFyLm50nmzv1yxYgR8X6ehn4ITlFAQiMANaLSHlgvW36XjHA6yJSBXgMGGyMqRJv+dci4md7rUz7yCrTs8Rae6yfUg/O/Q1tv4YXVkOxaomucuT8TTpO3sqXa4LIdvUYJye9wEtNqrB0yRJy5dLOnJVS6j5N3ofIm7B14l2z21YviVueIizbvN9BwdI3ZykAOwAzbO9nAB3vbSAi50Vkn+19GHAEKGGvgErd5epJmN4G/ngPyjWDV3ZZu3VxSfifVKxF+O6vE3SYtJXz12+TY/8vBH7/OpPHjearr77C1VX79VNKqQQV9QXfzrDzO+voSTbNqxTBIFzOWpJTp045MGD65CwFYBEROW97fwEoklRjY4w3UAPYGW/2K8aYg8aYnxK6hBxv3f7GmD3GmD2XLl161NwqMzowF75tAKGB0HEqdJsDuRLvh+rc9Qh6fL+D0auOUrNYFi7OeJV/ty1l2bJlDBgwwI7BlVIqnXpiBMREwNbxcbPy5fDAr1h2slesz6pVqx2XLZ2yWwFojFlnjAlI4NUhfjuxju6c6AjPxpicwEJgmIjctM3+FigL+AHngXGJrS8i00SktojULlSo0CN+KpWp3AmD3/vD4gFQvAYM2gZ+3e/qpf5eawNDaTVhM4fP3aSvjzsr3+kId26xZcsWWrVqZb/sSimVnhWqAFWfgV0/QFho3OzO/mVwL1CSJRt3JrGySojdCkARaSYivgm8lgChxphiALY/Lya0DWOMO9bib46I/B5v26EiEisiFuB7wD/tP5HKVEID4bsnrGP3PvkO9FkKeUom2jwqxsLHywJ5aeYePPNn40XPy3zStw1eXl7s2LGD6tWr2zG8UkplAE+8BbF3YNv/3wvYwsd69WXfxRiioqIclSxdcpZLwEuBPrb3fYAl9zYwxhjgR+CIiHx1z7Ji8SY7AQFplFNlRocWwA9NISoc+iyHJ98Cl8Tv2btwI5Ju07bz09ZTPP+4N/XCt/HaSz1p2LAhW7ZsoWTJxAtHpZRSiShQFqp2hT0/Qbj1Fq4iubPilVNw86rF1q1bHRwwfXGWAnAM0NwYcwxoZpvGGFPcGPPfE731gV5AkwS6e/nCGHPIGHMQaAy8Zuf8KiOyxMKad2FhPyhazdq9i3f9JFfZefIKbb/ZzNELYXzTzY+r677jvXdG0L17d1avXk2ePHnsFF6lZ8aYlsaYIGPMcWPMfb0iGGOes93zfMgYs80Yo6eUVebQ8HWIjoDtk+JmdaxdmizFK7Bw1XoHBkt/nGIkEBG5AjRNYP45oLXt/RYgwZutRKRXmgZUmU/kTWvhd+wP8O8PLUaBW9I9zc/aHsyHywLxyp+dGX1q8tHrA/ntt994/fXX+eKLL3BJ5AlhpeIzxrgCk4HmQAiw2xizVEQC4zU7BTwhIteMMa2AaUBd+6dVys4KVbA+Ebz7B6g/FLLnp13NUkz4M5j1RxK8e0wlQn8jKXWva6etY/ie2GDt26/1l0kWf9GxFt5bfIj3lxzmyQqFmNW7Gq8+35XffvuNsWPHMnbsWC3+VEr4A8dF5KSIRAHzsHaVFUdEtonIf73i7gD0vgKVeTR8w3pLzq5pAJQtlJM8Lne4mq0kFy5ccHC49EN/KykV37n91vv9bp6Fngutffsl4cbtaJ7/eRezd/zLy0+U4dOWpWjfqjmbNm1i1qxZvP7663YKrjKQEsCZeNMhJN3naT9gVZomUsqZFKkCFVpZh4e7E44xhkbl8pG1VDVWrFnn6HTphhaASv3n+Dr4uQ24ZYN+66DMk0k2D7l2my5Tt7Hr1FXGPlOd7pWz8USjhhw5coQlS5bQs2dP++RWmZYxpjHWAvCtRJZrv6cqY2o43Do03D7rGBLdG/li3NxZuC3wASuq/2gBqBTA3/Phl2chfxl4ca31PpMkHAq5Qacp27h4M5KZfevikz2MBg0acOnSJdauXUvr1joctXpoZwHPeNMlbfPuYoypBvwAdLDdR30f7fdUZVie/uDVALZNgpgo6pQugGvsHQ5dFqzdCasH0QJQqV3fw6L+4PU4vLAyyVE9ADb9c4lnp23Hw9WFhQMfx/3aKRo2bEhMTAx//fUX9esn/aSwUg+wGyhvjCltjPEAumHtKiuOMaYU8DvQS0T+cUBGpRyv/lAIOweHF+Hu6kLlvALFfTh46JCjk6ULWgCqzG3zV7DyDajYGnr8BllzJ9l86d/n6DdjN6XyZ2fRoMc5H7SfJk2akDNnTrZs2UK1atXsFFxlVCISA7wCrME65vmvInLYGDPAGPPf2IEjgQLAFFuXWHscFFcpxynXDApVgm3fgAidH6uAa458zF652dHJ0gUtAFXmJAIbPoX1H4Hv09B1JrhnTXKVmduDGTpvPzU88zH/5Xrs3/4XLVu2pHjx4mzZsoVy5crZKbzK6ERkpYhUEJGyIjLKNm+qiEy1vX9RRPKJiJ/tVduxiZVyABcXqPcKhB6Ckxvp9FhFEAsbg7Q7mOTQAlBlPv8Vf5u+hBq9oPM0cHVPcpXJG48zcslhmlYqwsx+/mxcs4L27dtToUIFNm3apKN7KKWUI1TrCjkKw45vyZfDg3yWG5wnvw4LlwxaAKrM5b/ib/NYqNkH2k1Mclg3EeHLNUf5ck0QHf2KM7VnTRYt+JWnn36amjVrsnHjRgoXLmzHD6CUUiqOWxaoY+u0//JxHvPKhXuRcvyxabujkzk9LQBV5rJx1P8Xf23HWy8hJEJE+GT5ESZvPEF3f0/GdfVj9qyZPPfcc9SvX58//viDfPny2S+7Ukqp+9XuC64esHMqvZrWBGDeXwcdHMr5aQGoMo/N4/7/sm8yir8Plx7mp62neKG+N591qsoP30/jhRdeoFmzZqxatYpcuXLZL7tSSqmE5SxsvZf7wC885pULl6hw9p6NcHQqp6cFoMocdkyF9R9D1Weg3YQHFn8jlxxmxvbTvNSwNCPbVmHSpEkMGDCAtm3bsnTpUrJnz27H8EoppZLk/xJE38Ll0K+U8rhNeC5Prt+46ehUTk0LQJXx7Z8Nq9+CSm2h49QH3vM3cslhZu04zcuNyvBO68qMHz+eV199lY4dO7Jw4UKyZk36aWGllFJ2VqImlKgFu3+guU9xXLPlZu7qLY5O5dS0AFQZ29EVsHQIlG0CT/8Erm6JNhURPl4eGFf8jWhVia+++orhw4fTpUsXfv31Vzw8POwYXimlVLLVeREuB9G/aiwiFpbvPenoRE5NC0CVcZ3eBgv6QvEa0HWW9WmxRIgIY1Yf5eetwfStX5oRrSoxbtw43njjDbp27crcuXNxd0+6qxillFIO5NMJsual0LHfyHLrIkE3jKMTOTUtAFXGdCEAfukGeTytI3xkyZlk8/HrjvHdXyfp+Vgp3m9bmXHjxvG///2Prl27MmfOHC3+lFLK2blng+rd4cgy6uYLJzp3Sc6cv+ToVE5LC0CV8dw4C3OeAY/s0GsR5CiQZPMfNp9kwvpjPFOrJB+39+Wrr766q/hzc0v8srFSSiknUqsPWKIZ7HkS4+rG9FVbHZ3IaWkBqDKWyBvW4u9OGDy3APJ6Jtl83q5/+XTFEdpULcaYLtWYOHFC3GVfLf6UUiqdKVwZPOvif2cbEh3B+sPnHZ3IaWkBqDKOmCiY3wsuB8GzM6Gob5LNVxw8z9uLDvFEhUJ8/awfU7+dwmuvvUaXLl2YPXu2Fn9KKZUe+T2Hy5V/eDx6N6cjE7/3O7PTAlBlDCKw/DU49Zd1eLeyTZJsvuXYZYbN30+tUvmY2rMWP//4Pa+88godOnTQBz6UUio98+kEbtnol/8AkqsIASdCHJ3IKWkBqDKGrRPgwGxo9CbUeC7Jpn+fuU7/WXsoWygnPz5fh3lzZjJgwADatGnD/PnztfhTSqn0LGtuqNKBRq6HyEIUs9fudnQip6QFoEr/jiyDdR+CT2do/E6STU9eCueF6bvJn8ODmX39WbHoN/r160fz5s1ZsGABWbLo5QKllEr3qj+LR+wtmsRsZfMxfRI4IXqTk0rfzv8Nv/e39gLfcQqYxPt9uhgWSe+fdmGAWf3qsmXdSnr37k2jRo1YvHixjvChkmSMyZ+MZhYRuZ7WWZRSD1D6CchVjK6Rm1gdURMRwSTx+yEzemABqAc95bTCL8LcHpAtH3Sba+0DKrGmd2J44efdXL0Vxbz+j3F09ya6deuGv78/y5cv17F9VXKcs72S+i3iCpSyTxylVKJcXMG3Cw23f0tuXNnzzxnqVNR/mvEl5wygHvSU8/nvid/bV6DvashVJNGm0bEWBs7ey9ELYfzQpzZXjx+gc+fO+Pr6snLlSnLmTLqTaKVsjohIjaQaGGP22yuMUuoBqj6N2/ZJPOW6m1/WuWsBeI/kFIB60FPORQRWvgFndljH9y3ul0RT4e3fD7H52GW+eLoa2a+folm7dpQpU4Y//viDvHnz2i22SvfqpVIbpZQ9FPND8pWmXehfvHmykqPTOJ3kPASiBz3lXPb8CPtmQIPh4NslyaYT1x9nwd4QhjUrTyWPa7Rs2ZIiRYqwdu1aChYsaKfAKiMQkcjUaKOUshNjML5dqOd+jCixnhBQ/y85ZwC/SOrGSRF5VQ96ym7+3QmrRkD5FtDkvSSbLtwbwtfr/qFLzZK08TI0bNiCHDlysG7dOooXL26nwCqjMdYD4nNAGRH52BhTCigqIrscHE0pda8qHXDbPJZm2Y6yO+gM/pX0MvB/knMGcG+8V/t7pvemXTSl7hF2AX7tBXlKQudp1pt8E7HtxGVG/H6Qx8sW4JW6+WjevDmxsbGsXbsWb29v+2VWGdEUrFc9utumw4DJjoujlEpU0aqEZy1Ga5edzNu4z9FpnMoDzwCKyIz/3htjhsWfTi22J43nA95AMNBVRK4l0C4Y68E2FogRkdopWV+lYzFR8Gsf6xi/vRZbn/xNxIlL4QyYtRfvAjkY1cqbNi2acO3aNTZu3EjlypXtl1llVHVFpOZ/9z6LyDVjjIejQymlEmAMWat3pt6OqXx6UkcEiS+lHUGn1QX0EcB6ESkPrLdNJ6axiPj9V/w9xPoqPVr7vvWhjw6ToEiVRJtdvRVF3+m7cXd1YeIzlXm2c3tOnTrFsmXLqFmzph0Dqwws2hjjiu14aIwpBFgcG0kplRg3nw54mFgqmVN6H2A8zjISSAfgvzOLM4COdl5fObOAhbBzKjw2KMmHPu7ExDJg1l7O34hkcvdqDHmhB/v27WP+/Pk0atTIjoFVBjcRWAQUNsaMArYAnzk2klIqUSVrc0Ny0jzLYfYdP+foNE4jOR1Bh/H/Z/6yG2Nu/rcIEBHJnQo5iojIedv7C0BinboJ8IcxRoDvRGRaCtfHGNMf6A9QqpTeDOr0LgXBkiHgWReaf5xoMxHhnd8D2BV8lQnPVmfc26+wfv16ZsyYQfv27e0YWGVUxphSIvKviMwxxuwFmmI9DnYUkSMOjqeUSoyLK1cL1eWJS9sZs3EPtcqXcHQip5CcewBzpcaOjDHrgKIJLHr3nv2JrcBLSAMROWuMKQysNcYcFZFNKVgfW9E4DaB27dp6LtiZ3Qm3dvbsng2emQ6u7ok2/W7TSRbuC2FY0/Ks+f4zFixYwLhx4+jdu7f98qqMbjHw330Eo0Qk6T6IlFJOo3iD7mRZvJ7wU7uwXjRUyTkDWA/YIY944VxEmiWxj1BjTDEROW+MKQZcTGQbZ21/XjTGLAL8gU1AstZX6YgIrBgOV45ZH/rInXi3LWsDQ/l89VHaVivG9a1z+fbbb3nrrbcYPny4/fKqzCB+f1hlHJZCKZViWSq3JHqRCz5yTMcFtknOPYC9gX3GmHnGmOeNMQmdxXtUS4E+tvd9gCX3NjDG5DDG5PrvPdACCEju+iqd2TcTDs6HJ9+GMk8k2uzI+ZsMnbefqiXyUPH6bj766ENeeOEFRo8ebcewKpOQRN4rpZxdllwEiRdPeBzhaMhlR6dxCg8sAEVkoG0ouA+BfMB0Y8x2Y8xnxphGtqfhHtUYoLkx5hjQzDaNMaa4MWalrU0RYIsx5m9gF7BCRFYntb5Kpy4EwKo3oUxjaPh6os2uhN/hxRl7yJXVjU4FLzL0lYG0bduWadOm6f/uVFqoboy5absvuprt/U1jTFi8e6OVUk4qong9Krv8y8q16xwdxSkkZyQQAETkKHAU+NoYkw1oDDwDfAXUTmrdZGz7CtYbqu+dfw5obXt/EqiekvVVOnQnDH7rA1nzQufvE+3sOSrGwsA5+7gcfoe3/bMyoGsP6taty/z583FzS/Zfa6WSTURS4z+7SikHqdSsN8z+hZiTm/j/ftwzr2R3A2OsehpjRopIBNbLr7Pu6Y9PqYcnAiteh6sn4ekfIWehRJoJHyw9zK5TVxlSNz/DenfC29ub5cuXkz17djuHVpmFMaae0VPLSqVbucrU5UpsdirFHnN0FKeQkn4Adfgjlbb+nmu97++JEeDdINFms3ecZu6uf+lZszBjBnYhe/bsrFmzhgIFCtgxrMqE7HE/tFIqrbi4cMhShnoexwi5dMPRaRwuJQVgXREZDESCdfgjQIc/Uqnj0j/Ws3/eDaHRG4k223HyCh8tC6Rh2Xws/qQfN2/eZNWqVXh5edkxrMqM7HQ/tFIqDUUX96ewuc6GNfqsaEoKQB3+SKWN6EhY0Nfa318S9/2FXLvNoDn78MyfjX/nf8Q/QUdZtGgR1asneGuoUmlCRI6KyNci0hJognUkkGeAnY5NppR6kGrNewIQcexPxwZxAim5W/7e4Y+eBt5Lk1Qqc1k7EkIPQY/fIHexBJtERMXSf+ZeomIs5D04j8Xr/2D27Nk0barP/ij7MsZkBcrZJo+LyEpgZRKrKKWcRJEKtTgTk5cyFr0PMCVPAevwRyr1Ba2GXd9B3YFQoUWCTUSEtxYe5MiFmzQikJmzpjF69Giee+45O4dVmZkxxg3rmL99gdNYj4OexpifgXdFJNqR+ZRSyRMQ681jHscJux1JruxZHR3HYR54CdgYEzdgru3Sx2QRmaTFn3pkYRdgySAoWhWaf5Rosx82n2Lp3+dolPcGM8e8ycsvv8xbb71lx6BKAfAlkB8oLSK1RKQmUBbIC4x1ZDClVPLdLuRHPhPOX2sWOTqKQyXnHsDF/70xxixMuygqU7FYYNHLEB0BXX4CtywJNtty7DKjVx2hRkGY/U4vWrduzaRJk7SjZ+UIbYGXRCTsvxkichMYiK2/0tRijGlpjAkyxhw3xoxIYHkl2wMod4wxiT81pZS6T9XGTwNwNWC9g5M4VnIKQB3/UqW+HZPh5J/QcjQUqpBgkzNXb/PK3H2UyOXG2lG98fPz046elSNJQmOii0gsqTg0nO1hu8lAK6AK0N0YU+WeZleBV9Ezj0qlWHm/BpyJyUfxiKOOjuJQySkAdfxLlbrOH4R1H0GltlCzT4JNIqJieXnWXmJiYjkx403y58rB8uXLyZkzp53DKhUn0BjT+96ZxpieWEdJSi3+WB8uOSkiUcA8oEP8BiJyUUR2A3rfoVIpZIzhULQnfm7BREfHODqOwyTnVEp12ziXBsgWb8xLg/V/xLnTLJ3KeKJuw8IXIUdBaP8NJHApV0R4Z9Ehjpy/Sdbd07l1IZgtW7ZQrFjCTwgrZSevAAuNMX2BvbZ5tYFsQKdU3E8J4Ey86RCg7sNsyBjTH+gPUKpUqQe0VirzuJanCgWjDrJly1oaNG7l6DgO8cAzgCLiKiK5RSSXiLjZ3v83rcWfSpm178PlIOg4BbLnT7DJ9G3BLNp/lgLnd3B802IWLFhA1apV7RxUqbuJSIiI1AU+BoJtr49FxF9EzjoyW2JEZJqI1BaR2oUKJTy0olKZUek6LQE4vWuFg5M4TnKeAt6XGm2U4p8/YPcP8NhgKNskwSY7T15h1IojFI6+wN6Zo/j2229p3ry5nYMqdb//jnMiskFEvrG91ifU5hGdBTzjTZe0zVNKpZK6jdtxyZKLvDcCHR3FYZJzCbiyMeZgEssNkCeV8qiM6tZlWDIYCvtA05EJNgm9GcngX/aT09xhz6RXeeutN3nxxRftHFSpRNnrWLgbKG+MKY218OsG9EiF7SqlbFzd3Pj7TkmqegQjIpmyZ4nkFICVktEm9lGDqAxMBJYNhcjr0HsxuN/f8WZUjIWBs/dy83Ykp79/jS7tW/PZZ5/ZPapSSbDLsVBEYowxrwBrAFfgJxE5bIwZYFs+1RhTFNgD5AYsxphhQBVbtzRKqWQ4n60szTjCkcMHqOxbw9Fx7O6BBaCInLZHEJWB7Z8NR5dDi0+hiE+CTT5dEci+f69zY9XX+JUpwsyZM3FxSclQ1UqlLXseCxMaXk5EpsZ7fwHrpWGl1EMqUPkJOLKcgxsXZsoCUH/DqrR19RSsHgHeDa33/iXg930hzNx+mtjDf5D7+nGWLFlCtmzZ7BxUKaVUZtKo1bPcFg/cQ/c7OopDaI+6Ku1YYmHxQDAu0PFbSOCM3uFzN3j790O4XT3J1U0z2LplM0WLFnVAWKWUUplJztx52BFVggquwY6O4hB6BlClnW3fwL/bofWXkNfzvsU3bkczcPZeLBFhnJ77IfPm/qLdvSillLKbUy7eVHY9y+WLFxwdxe60AFRp40IAbBwFldtDtWfvW2yxCMPm7yfk6i3+nfcBYz8dSevWqTqcqlJKKZUkN886uBph26q5jo5id1oAqtQXcwcWvQxZ80Lb8QmO9vHNhuNsDLrEpT++44V2T/Dqq6/aPaZSSqnMrW7LbsSKIeLkdkdHsTu9B1Clvj/HQGgAdJ8POQrcvzjoIuPX/cPtI39SJ18E33zzTabsg0kppZRjlfIuS2BMUTzlpKOj2J2eAVSp68wu2DoeavSEii3vX3z1NkN+2UfMlX/J889KFi5YgLu7u/1zKqWUUsARSymquf9L1J1IR0exKy0AVeqJug2LBkDukvDU6PsWR0bH8vLM3YSFh3P7jwksX/w7+fLlc0BQpZRSyioivy85zR22rVvi6Ch2pQWgSj3rPoSrJ6DjZMia+77FI5cEEHghnMvLv2LeD99QsWJF+2dUSiml4qlYvx0A5/5e5+Ak9qUFoEodpzbBru+g7kAo3ei+xb/uPsOve0K4sW0+Y4b0oHnz5g4IqZRSSt2t9mNPcD42LwXCgxwdxa60AFSPLvImLB4M+ctC05H3LQ44e4N3fv+biOADPOuTg8GDEx4RRCmllLI34+LCweiS+Lr+6+godqUFoHp0f7wHN0Og01TwyH7Xohu3o+n74zbu3LxCxStb+WbiRH3iVymllFO5mL08JVyvEbBvp6Oj2I0WgOrRHFsH+2bA40PA0/+uRRaLMHDGdkLDonDfNZNF82bpE79KKaWcTmGfxgAEbP7dwUnsRwtA9fAirsPSIVCoEjz5zn2Lx/9xhG2nw7i1ZSbLpk+kQIH7+wRUSimlHK1Rq6e5JVnIcvGgo6PYjVMUgMaY/MaYtcaYY7Y/7+sbxBhT0RhzIN7rpjFmmG3Zh8aYs/GW6Zhi9rDmHQgPhY5TwD3rXYv+CrrIxI0nuXV4Iz+9/Tw+Pj4OCqmUUkolLVv2HByMKkkFTjs6it04RQEIjADWi0h5YL1t+i4iEiQifiLiB9QCbgOL4jX5+r/lIrLSHqEztX/WwIE50GAYlKh116Kz1yN4efp2oi7/y5B6BWnfvp1jMiqllFLJFOzqTSW3c1y6cNbRUezCWQrADsAM2/sZQMcHtG8KnBCRzFOqO5OIa7D0VShcBZ54665Fd2Ji6T5pPbcjo/CPOsD7b7+VyEaUUkop5+HuWRtXI2xdPc/RUezCWQrAIiJy3vb+AlDkAe27AXPvmfeKMeagMeanhC4h/8cY098Ys8cYs+fSpUuPEDkTWzUCbl2yXvp1y3LXouEzt/JvuCH30SX88t14feJXKaVUulC3ZTcsYog8ucPRUezCbgWgMWadMSYggVeH+O1ERABJYjseQHvgt3izvwXKAn7AeWBcYuuLyDQRqS0itQsVKvQInyiTCloFB+dBw+FQvMZdi2ZtDmLFP2FEH1rFqmmjyZ49eyIbUUoppZyLp1cZgmKK4hlzytFR7MLNXjsSkWaJLTPGhBpjionIeWNMMeBiEptqBewTkdB42457b4z5HlieGpnVPSKuwbJhUNgHGr1516KAkGuMXHaEO2eDmD+iG56eno7JqJRSSj2ko5ZSNPP4m+ioKNw9PBwdJ005yyXgpUAf2/s+QFIjMnfnnsu/tqLxP52AgFRNp6xWvx3v0u///8O4ERFNt2/WEX3rJm82KEijhg0cGFIppZR6OLfzVyGXiWTr2sWOjpLmnKUAHAM0N8YcA5rZpjHGFDfGxD3Ra4zJATQH7u2p8QtjzCFjzEGgMfCafWJnIkGr4e+50PB1KO4XN9tiEbp9tZwwiweNXP/htYH9HJdRKaWUegQV6ll7rTh7YJ2Dk6Q9u10CToqIXMH6ZO+9888BreNN3wLu601YRHqlacDMLuIaLB9mu/T7v7sWvf/LJo6EeVDgzHpmzPrcMfmUUkqpVFCr3pOE/pGHAuFHHR0lzTlFAaic3Jp3IfwidJ9316XfZbv+YfbBm5iQ/ayeOEKHeVNKKZWuubi6cjDaE1+3M46Okuac5RKwclbH1to6fH7trku//166ydB5B4i9fo65r7WlcOHCjsuolFJKpZKL2cpR0vUqh//e5egoaUoLQJW4yBvWDp8LVYYn/v+p36gYC+0+X0KMGN6qn496dWo6MKRSSimVegpUeRKAgD/vfdwgY9ECUCXuj/cg/AJ0nHxXh8/dPv+NG275aZglmCF9ujowoFJKKZW6GrV6htvigVvo346Okqb0HkCVsBMbYN9MqD/srrF+x8zbyL6wnOS/uI+Z37/juHxKKaVUGsieIyc7o0tS3vzr6ChpSs8AqvvdCbNe+i1QHp58O272xgPH+HbPdczFY6z5cjCurq4ODKmUUkqljVMu3lRxO8flS6EPbpxOaQGo7rf2A7gRAh0mg3tWAEKvhfHizzuwRIYxa1ATChXI7+CQSimlVNpw86yFm7GwdeXcBzdOp7QAVHc7tRn2/AiPDYJSdQGIjbXQ+uP5xHjkYrh/bhrUrubgkEoppVTa8W/xLAC3T2x3cJK0owWg+n9Rt2DpK5CvNDR5L252r8/nciVLMep6hPBa746Oy6eUUkrZQanS5QmKKUrJ6JOOjpJmtABU/2/DKLgWDB0mgUd2ACb8toFtN/OS93oQcz8e6Nh8SimllJ0cifWkmkcIMdHRjo6SJrQAVFZndsGOKVDnRfBuAMD2Q8f5atsVzPWzrPn0eX3oQymlVKZxO58Pecxttq5f6ugoaUILQAXRkbBkMOQpCc0+BODKjXB6Tt2EiIWf+9WjSEF96EMppVTmUfax1gCE7PvDwUnShhaACv76HC7/A+0mQJZcWCwWWo2cRUzOQgyukY0n61R1dEKllFLKrurUb8ZFS27yhQU5Okqa0AIwszu3H7ZOgBo9oVxTAPp+PpuL2UpRy/0cb/Vp7+CASimllP25uLpyKLokPm4Zs0NoLQAzs5goWPIK5CgELUYB8N2iDWy8lpfcN0/x20cvOjigUpmTMaalMSbIGHPcGDMigeXGGDPRtvygMUYH5FYqDVzIWh4v1ysEBex3dJRUpwVgZrblawgNgLZfQ7a87Ak8wWd/huJy6zKrPuyuD30o5QDGGFdgMtAKqAJ0N8ZUuadZK6C87dUf+NauIZXKJPJVagjA/g2/OThJ6tMCMLMKPQybvgTfp6FSa66H3aLbpA3g6sa03rUpUbiAoxMqlVn5A8dF5KSIRAHzgA73tOkAzBSrHUBeY0wxewdVKqNr2KorkeKOa+jfjo6S6rQAzIxiY6xP/WbNA60+x2Kx0PK96cTkLs5LVbPQvK6O9KGUA5UAzsSbDrHNS2kbjDH9jTF7jDF7Ll26lOpBlcrocuXOw6HokpQn490HqAVgZrRjsvXhj9ZfQI6CvPzlbC5k86a661nee0Ef+lAqoxCRaSJSW0RqFypUyNFxlEqXTrl4UcXtLNeuZKz/RGkBmNlcPg4bP4NKbcGnM9OXb+KPy3nIdTOYhR/1c3Q6pRScBTzjTZe0zUtpG6VUaihREw8Ty+ZV8xydJFVpAZiZWCywdAi4ZYE24zh04gwf/HEGE3GNFSOfxc1NH/pQygnsBsobY0obYzyAbsC9QxEsBXrbngZ+DLghIuftHVSpzKBO864AhB3b5uAkqcvN0QGUHe35Ef7dBh2mEO6aly7jpkP2QnzToRKlihZ0dDqlFCAiMcaYV4A1gCvwk4gcNsYMsC2fCqwEWgPHgdvAC47Kq1RGV7pcZY7HFKZE7ElHR0lVWgBmFtdOw9oPoGxT8OtB+/99S1QeL3p4RdCuUS1Hp1NKxSMiK7EWefHnTY33XoDB9s6lVGZ1JNaTBu5HiYmOxs3d3dFxUoVeAs4MRGDZUDAG2o3nrW8XcNLNi7Ix/zJ64NOOTqeUUko5tZt5q5DP5RY7/lz54MbphBaAmcH+2XByIzT7kOUBl5l3wgWPG2dY9mlfRydTSimlnF7pOq0AOL1njYOTpB4tADO6m+dhzbvgVZ9z3p0YMvdviI5k4eutyZ41i6PTKaWUUk7vsSdacsWSkzw3jzg6SqrRewAzMhFYMRxi72BpO4E2H83HksOTdx/PSdVypRydTimllEoXXFxdORjtSRXXMw9unE7oGcCMLGAhBK2Exu/S57stXMvpTf2cl+nfsYmjkymllFLpyrksZSnjdokTQQGOjpIqtADMqG5dhlVvQola/HzFl0038pMnLJjZ7z3v6GRKKaVUupOnQn0A9q77zcFJUodTFIDGmGeMMYeNMRZjTO0k2rU0xgQZY44bY0bEm5/fGLPWGHPM9mc++yR3YqvegsibnKw9kg/XncNEXGPZ+8/i4uIUX7lSSimVrjRs9Sx3xM06lGoG4CzVQADQGdiUWANjjCswGWgFVAG6G2Oq2BaPANaLSHlgvW068zq6EgIWENPgddp8HwgeOfiqSxXt7FkppZR6SHnyFeBwdAnKSrCjo6QKpygAReSIiAQ9oJk/cFxETopIFDAP6GBb1gGYYXs/A+iYJkHTg4jrsPw1KOJL9415icjtRZtit+nc2N/RyZRSSql07YTxwtf9LDeuXXF0lEfmFAVgMpUA4j9+E2KbB1Ak3jiYF4AiiW3EGNPfGLPHGLPn0qVLaZPUkf54D25dYl72nuyKKknh28FMeq27o1MppZRS6Z6lmB9ZTAybV//q6CiPzG4FoDFmnTEmIIFXhwevnXy2IZIkieXTRKS2iNQuVKhQau7a8U5sgP2zuFilD2/ty4NL+CWWf9hT7/tTSimlUkHNptbRs24GbXFwkkdnt34ARaTZI27iLOAZb7qkbR5AqDGmmIicN8YUAy4+4r7SnzvhsGwokr8szTeWhmxZmdy1MoXz53F0MqWUUipDKF+5OqdiClIs9oSjozyy9HRqaDdQ3hhT2hjjAXQDltqWLQX62N73AZY4IJ9jrf8Irp/h7YtPcSN3WTp63qF1/RqOTqWUUkplKIGxnlRzP4MlNtbRUR6JUxSAxphOxpgQoB6wwhizxja/uDFmJYCIxACvAGuAI8CvInLYtokxQHNjzDGgmW068zi9DXZN4+/8LZkb/ThFIoKZMEzv+1NKKaVS2/XclSngEs7OTel7XGCnKABFZJGIlBSRLCJSRESess0/JyKt47VbKSIVRKSsiIyKN/+KiDQVkfIi0kxErjriczhEdAQseYWoHCXodqKF7b6/Xo5OpZRSSmVIpWo9BcCpXascnOTROEUBqB7Bxs/g6gleDmnJbfe8fNPdj0L5cjs6lVJKKZUh1WvchuuW7OS6HujoKI9EC8D0LGQvbJ/EOqnLxmxNaVssgrYNajo6lVJKKZVhubm7sz26PBEmi6OjPBItANOrmDuwZDC33PIxLKIvBW4F843296eUUkqluRPNf+RNy2Cu345ydJSHpgVgerV5HFw6witXniH8diTLRnbX/v6UUkopO6jtnR+AvaevOTjJw9OKIT26cAjZPI5lkTXY4FqPMe0rUrxQfkenUkoppTKF6iXz4uZi2KMFoLKb2GhYMpiblmy8x0Aa5blGtxb1HJ1KKaWUyjSyebjiUyKPngFUdrR1Apz/mzcjnif25hVmvNPnwesopZRSKlXVK1MAFwPWEWjTH7sNBadSwcWjyF+fsyLSj9URlVn7VmO9708ppZRygBGtKjk6wiPR6iG9sMTCksFcj3ZjpLzEmw0LU8GruKNTKaWUUiod0gIwvdgxBc7uYWRMX4q53GLwM80dnUgppZRS6ZReAk4PLh/Hsu4T1kb7sfq6J39/9byjEymllFIqHdMC0NlZLFgWDyIsxoX3Inoy4+VGZM+avnsfV0oppZRj6SVgZ7drGi4hO/k4pg9NyuXl8eoVHZ1IKaWUUumcngF0ZldPEv3HSLbEVmNLuCc7Bz3j6ERKKaWUygC0AHRWFguRCwYQFWN4+0YXlox8ztGJlFJKKZVB6CVgJ2XZ8yNZz+1kVHQPXm1dh6IF8zk6klJKKaUyCC0AndG100SvfJdNsVU55VGFHi3rOzqRUkoppTIQvQTsbES4NucF3MQw8lob/vj6BUcnUkoppVQGo2cAnUzUju/Jd3kvn0U+zdhBXfFw1xpdKaWUUqlLqwtncv1fYla/y26LD65lmlC7SllHJ1JKKaVUBqQFoLMQ4eyPPcmLYWx4axa93MXRiZRSSimVQeklYCdx7c8plAj7m9G32vPtu4MdHUcppZRSGZgWgM7g+hnc//yIrbFVKP9kT+3yRalMyhiT3xiz1hhzzPZnggcDY8xPxpiLxpgAe2dUSmUMWgA6mgjHpnTFADOkA33aPunoREopxxkBrBeR8sB623RCpgMt7RVKKZXxaAHoYKeWf0n5qEC+CG/FxPeHOzqOUsqxOgAzbO9nAB0TaiQim4CrdsqklMqAtAB0oJgrpym0eyzbYirR7Lk3yZrFw9GRlFKOVUREztveXwCKPMrGjDH9jTF7jDF7Ll269OjplFIZhhaAjiJC4DdPYwz8ke85Gtb0cXQipZQdGGPWGWMCEnh1iN9ORASQR9mXiEwTkdoiUrtQoUKPlFsplbFoNzAOsn/uh9TgHz4Nb8/ID15xdByllJ2ISLPElhljQo0xxUTkvDGmGHDRjtGUUpmIngF0gJshRyl/9Fu2Rlek26tjcHHRr0EpBcBSoI/tfR9giQOzKKUyMKeoPIwxzxhjDhtjLMaY2om08TTGbDTGBNraDo237ENjzFljzAHbq7X90qeQxcKJ73qAMQSUG0w5rxKOTqSUch5jgObGmGNAM9s0xpjixpiV/zUyxswFtgMVjTEhxph+DkmrlEq3nOUScADQGfguiTYxwOsiss8YkwvYa4xZKyKBtuVfi8jYtA76qP76/n884XqCLyM68b8X+jx4BaVUpiEiV4CmCcw/B7SON93dnrmUUhmPUxSAInIEwBiTVJvzwHnb+zBjzBGgBBCY6EpO5uw/+6h9biZ/RVei79sTHR1HKaWUUpmUU1wCTiljjDdQA9gZb/YrxpiDth7ynW8oDYuF0BkvEIsr1x97hwJ5czs6kVJKKaUyKbsVgMnt+iAZ28kJLASGichN2+xvgbKAH9azhOOSWN8h/WItHz+Imu7BTJf2dGifoo+slFJKKZWq7HYJOKmuD5LLGOOOtfibIyK/x9t2aLw23wPLk8gxDZgGULt27UfqYyu5juz+k6Y3FrAhqjL9P/jGHrtUSimllEpUurkEbKw3CP4IHBGRr+5ZVizeZCesD5U4BUtMNJGLh3AHDzxajyFr1iyOjqSUUkqpTM4pCkBjTCdjTAhQD1hhjFljmx+/64P6QC+gSQLdvXxhjDlkjDkINAZes/dnSMzvY/pRw/1ffvN4mgYNn3R0HKWUUkopp3kKeBGwKIH5cV0fiMgWIMHHhEWkV5oGfEg7NyylXfQK/rjjS7/3v3Z0HKWUUkopwEnOAGZEkbdvkXP9W4RJNop1n4iLq6ujIymllFJKAVoAppkln/fBx/0cq/L1pmr1Wo6Oo5RSSikVRwvANLB28Sy6sJ7ld2rQ67XPHB1HKaWUUuouWgCmshtXL+O95xMuSW6qvjTN0XGUUkoppe6jBWAqWzuuD+XdQtlaciBeZSo4Oo5SSiml1H20AExFy2ZPpLPbVhbf8efp/iMcHUcppZRSKkFO0Q1MRhB67gx+QV9zhvzUHzrD0XGUUkoppRKlZwBTyY5vXqCEyzUCqvyPQkWLOzqOUkoppVSitABMBQu++4wOWXazMKYRbboPdHQcpZRSSqkk6SXgR3T6RBANz04lyFKUFm/87Og4SimllFIPpGcAH1HgDy+R34Rzxv8D8uQr4Og4SimllFIPpAXgI5g34W1aZfmbBdKUZu17ODqOUkoppVSyaAH4kIIOH6D5lZkcjC5Jh7f00q9SSiml0g8tAB+CJTaWs7MHksNEcuOJUWTPkdPRkZRSSimlkk0LwIcw7+vXaZIlkIUubWjYoqOj4yillFJKpYgWgCl0aN922oTNZ2+UN8+M+N7RcZRSSimlUkwLwBSwxMZy47chuBNDTMsv8MiSxdGRlFJKKaVSTAvAFJj7xSs0yHKM393bU7fRU46Oo5RSSin1ULQATKZ92/+kQ+RCdkSVodtbUx0dRymllFLqoWkBmAwx0dHcWTYcAI92X+Pm7u7gREoppZRSD08LwGSY9/lA6nmcYEnWLtSs96Sj4yillFJKPRItAB9g95a1dI5ewpY75en+5iRHx1FKKaWUemRaACYhJjoaVv6PaFzJ88w3uLi6OjqSUkoppdQj0wIwCfNHv0Qdj1OsyPEsVWvWc3QcpZRSSqlUoQVgIrZvXEmX2OX8eacS3V7/ytFxlFJKKaVSjRaACYi6c4csa0cQKe4UenaSXvpVSimlVIaiBWACfhvzIjU9TrMyd3d8/Oo4Oo5SSimlVKrSAvAeW9YuoYtlJRvuVKbba186Oo5SSimlVKrTAjCeyIjb5PzzPSIkCyWe+1Yv/SqllFIqQ9ICMJ7fP38RP/d/WZW3BxV9azg6jlJKKaVUmnCKAtAY84wx5rAxxmKMqZ1Eu2BjzCFjzAFjzJ548/MbY9YaY47Z/syX0gyb/1hMF1nD+jtV6Db084f9KEop9dCScywzxngaYzYaYwJtx82hjsiqlErfnKIABAKAzsCmZLRtLCJ+IhK/UBwBrBeR8sB623SyRUbcJvdf73FLslCyp176VUo5THKOZTHA6yJSBXgMGGyMqWLHjEqpDMApCkAROSIiQY+wiQ7ADNv7GUDHlKz8++cvUt39DGvyPUdFH79HiKGUUo/kgccyETkvIvts78OAI0AJewVUSmUMRkQcnSGOMeZP4A0R2ZPI8lPANUCA70Rkmm3+dRHJa3tvgGv/TSewjf5Af9ukD3A4BRHzADcesU1SyxNaltx5BYHLD8iW2pLz80iLbaTl95CS+Zn5e0hue0d8Dw/6DrxEpFASyx0mJccyWxtvrFdOfEXkZgLL4x/vfLFebclIHPHvLa3pZ0of0tNnSviYJyJ2eQHrsB587n11iNfmT6B2EtsoYfuzMPA30Mg2ff2edteSmWlaCj/DA9s/qE1SyxNaloJ5e+z1XT7szy+1tpGW30NK5mfm7yG57R3xPTjiO0jhzy7RY2FKjmVATmAv0DmZ+3Xqn8tD/iz1M6WDl34m53y53VcRphERaZYK2zhr+/OiMWYR4I/1f7+hxphiInLeGFMMuJjMTS5LYYTktH9Qm6SWJ7QsufMcITVyPMw20vJ7SMn8zPw9JLd9ZvoekiWpY6ExJlnHMmOMO7AQmCMiv6dRVKVUBpZuLgEbY3IALiISZnu/FvhYRFYbY74ErojIGGPMCCC/iLxp1/AOZozZI3c/GKMcQL8Hx0vP30FyjmW2S8MzgKsiMiwF2063P5fE6GdKH/QzOSeneAjEGNPJGBMC1ANWGGPW2OYXN8astDUrAmwxxvwN7AJWiMhq27IxQHNjzDGgmW06s5nm6AAK0O/BGaTn7yDBY9k9x8L6QC+gia1LrAPGmNbJ2HZ6/rkkRj9T+qCfyQk51RlApZRSSimV9pziDKBSSimllLIfLQCVUkoppTIZLQCVUioDMsZ8aYw5aow5aIxZZIzJm0i7lsaYIGPMcduDJ07rUYcNdUYp+Ezp6XtK1vCs6eF7etDP3VhNtC0/aIyp6YicD0MLQKWUypjWYu0guhrwD/D2vQ2MMa7AZKAVUAXo7uTDyj3qsKHO6IGfKR1+TykZntVpv6dk/txbAeVtr/7At3YN+Qi0AMwEjDFljDE/GmMWODpLZmKMyWGMmWGM+d4Y85yj82RWmfXvv4j8ISIxtskdQMkEmvkDx0XkpIhEAfOwdkjtlOTRhw11Osn8TOnqe+IRh2d1Isn5uXcAZorVDiCvrQ9Pp6cFoJMzxvxkjLlojAm4Z36yLwfY/vL2S9ukmUMKv4/OwAIReQlob/ewGVhKvgf9+w9AX2BVAvNLAGfiTYeQMcYVFuAPY8xe23B46V16+56KiMh52/sLWLtxS4izf0/J+bmnt+8mjt1GAlEPbTowCZj534x4p6WbY/3LttsYsxRwBUbfs35fEUnuyCjqwaaT/O+jJHDI1izWvjEzvOkk83sQkUCHJLQDY8w6oGgCi94VkSW2Nu8CMcAce2Z7WMn5TMnQQETOGmMKA2uNMUdFJDmXjdNEKn0mp5LUZ4o/ISJijEmsvzmn+p4yGy0AnZyIbDLWAd/jizstDWCMmYd1TOXRQFs7R8xUUvJ9YC1CSgIH0LPtqSqF30OGLQAfNMSmMeZ5rMeEppJwp69nAc940yVt8xwmjYcNdYhU+Ezp6nsyyRzS0Nm+pwQk5+fudN9NcukvpfQpRaecjTEFjDFTgRrGmPtuBFePLLHv43egizHmW9LZeLXpVILfQ2b9+2+MaQm8CbQXkduJNNsNlDfGlDbGeADdgKX2ypgWbPfe5vrvPdAC64MW6Vl6+56WAn1s7/sA953lTCffU3J+7kuB3rangR8DbsS7/O3U9AxgJiAiV4ABjs6R2YjILeAFR+fI7DLx3/9JQBasl9YAdojIAGNMceAHEWktIjHGmFeANVhvIflJRA47LnLSjDGdgG+AQliHDT0gIk/F/0xY7zdbZPvMbsAv8YYNdTrJ+Uzp7XvCOoThr8aYfsBpoCtYhzQkHX1Pif3cjTEDbMunAiuB1sBx4Dbp6JivQ8GlA7ZLXctFxNc2XQ/4UESesk2/DWC7BKzSmH4fzkG/B6WUenh6CTh9Sm+XAzI6/T6cg34PSimVTFoAOjljzFxgO1DRGBNijOln69vrv9PSR4BfnfxyQIah34dz0O9BKaUejV4CVkoppZTKZPQMoFJKKaVUJqMFoFJKKaVUJqMFoFJKKaVUJqMFoFJKKaVUJqMFoFJKKZUOGGO8jTERxpgDtulYY8yBeC/vZGxjqjGmvu19+D3LnjfGTDLGZLNtL8oYUzAtPotyPB0JRCmllEo/ToiIn+19RLz3yfUYMDipBiISAfgZY4JTnE6lG3oGUCmllMpAjDE9jTG7bGfxvjPGuNrmVwb+EZFYB0dUTkALQKWUUip9yhbv8u8iiCvyngXq284OxgLP2dq3AlYnsv4B4GP7RVeOppeAVbpmjCmJ9UA3P968bFgPck1EJNYYUwT4Guulj2tAFPCFiCxKwX48gHW2bcak5mdQSqmHlNAl4KZALWC3MQYgG3DRtuwp4IXE1jfGPA/UTqOsysnoGUCV3jUFat4zry/wu634M8BiYJOIlBGRWljHiC2Z3B3YthEDrMf6P2ullHJWBpghIn62V0UR+dAYkx3IKyLnHB1QOQctAFW6ZYxpAHwFPG27hFHGtug5YIntfRMgSkSm/reeiJwWkW9s2/jYGDMs3jZHGWOG2p62CzLGzAQCAE+sheR/l1KUUsoZrcd6TCwMYIzJb4zxAhoDGx2aTDkVLQBVuiUiW4DdQAfb/3RP2i7VlhGRYFszH2BfEpv5CegNYIxxwXp2cLZtWXlgioj4iMhprIVgndT/JEoplTpEJBB4D/jDGHMQWAsU4/77/1Qmp/cAqvSuInA03nRB4HpijY0xk4EGWM8K1hGRYGPMFWNMDaAIsF9ErhhjcgGnRWTHf+vaLilHGWNyiUhYmnwapZRKJhHJmcj8+cD8+POMMVOA15JaX0SmA9NTNaRyWloAqnTL1kHpjXseyogAssabPgx0+W9CRAbb1tsTr80PwPNAUaxnBP9zK4HdZgEiHy25Uko9lFggjzHmQEr7/xORe++VTpTtQbrtgDtgSVFClW7oJWCVnnkDd93QLCLXAFdjzH9F4AYgqzFmYLxm2e/ZziKgJdbLu2sS25kxpgBwWUSiHzG3UkqlmIicERHPh+j8OaX7ibDdVlNCRK6m5b6U42gBqNKzo0BBY0yAMebxePP/wHqZFxERoCPwhDHmlDFmFzADeOu/xiIShfXm6F8f0EFqY2BF6n4EpZRSyv6M9fejUhmHMaYm8JqI9EpmexesD4o8IyLHkmj3OzBCRP5JnaRKKaWUY+gZQJXhiMg+YON/wx8lxRhTBTgOrH9A8ecBLNbiTymlVEagZwCVUkoppTIZPQOolFJKKZXJaAGolFJKKZXJaAGolFJKKZXJaAGolFJKKZXJaAGolFJKKZXJaAGolFJKKZXJaAGolFJKKZXJ/B/m3yYSFTdHMQAAAABJRU5ErkJggg==", "text/plain": [ "<Figure size 648x360 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "figsize(9,5)\n", "oz.initial()\n", "ts= numpy.logspace(-2.,1.,101)*u.Gyr\n", "subplot(1,2,1)\n", "semilogx(ts,oz.Fe_H(ts),color='k',label=r'$t_d = 0.15\\,\\mathrm{Gyr}, 1-\\mathrm{exp}$')\n", "ylim(-1.5,0.45)\n", "xlabel(r'$t\\,(\\mathrm{Gyr})$')\n", "ylabel(r'$[\\mathrm{Fe/H}]$')\n", "xlim(0.03,12.)\n", "subplot(1,2,2)\n", "plot(oz.Fe_H(ts),oz.O_Fe(ts),color='k')\n", "xlim(-2.,0.4)\n", "ylim(-0.2,0.45)\n", "xlabel(r'$[\\mathrm{Fe/H}]$')\n", "ylabel(r'$[\\mathrm{O/Fe}]$')\n", "# min. delay time: 0.15 Gyr, t^{-1.1} approx\n", "# change exponential decay times (set 2nd); default 2nd frac. is that for min_dt=0.15\n", "oz.initial()\n", "oz.tau_Ia= 0.5*u.Gyr\n", "oz.tau_Ia_2= 5.*u.Gyr\n", "subplot(1,2,1)\n", "semilogx(ts,oz.Fe_H(ts),label=r'$t_d = 0.15\\,\\mathrm{Gyr}, 2-\\mathrm{exp}$')\n", "subplot(1,2,2)\n", "plot(oz.Fe_H(ts),oz.O_Fe(ts))\n", "# min. delay time: 0.05 Gyr, t^{-1.1} approx\n", "# Now need to set all parameters, using values from Weinberg et al. (2017)\n", "oz.initial()\n", "oz.min_dt_Ia= 0.05*u.Gyr\n", "oz.tau_Ia= 0.25*u.Gyr\n", "oz.tau_Ia_2= 3.5*u.Gyr\n", "oz.frac_Ia_2= 0.507\n", "subplot(1,2,1)\n", "semilogx(ts,oz.Fe_H(ts),label=r'$t_d = 0.05\\,\\mathrm{Gyr}, 2-\\mathrm{exp}$')\n", "subplot(1,2,2)\n", "plot(oz.Fe_H(ts),oz.O_Fe(ts))\n", "subplot(1,2,1)\n", "legend(frameon=False)\n", "tight_layout();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also compute the distribution of $[\\mathrm{Fe/H}]$, $[\\mathrm{O/H}]$, and $[\\mathrm{O/Fe}]$. For example, we can re-create Fig. 5 in Weinberg et al. (2017):" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAFgCAYAAAAo31N4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABW60lEQVR4nO3deXzV1bn3/e9FBkKCAcMgKaMcLCEBb5A4YlvHiggKgsUCgoCirfWo5/E51upDveuDVW/rS2ixR44KDkVAPYJEDmprexSrDBYsEEOxGCYZBUkIbBOSdf+REJPs387Envfn/XrlZX5r7f3bVwaWufZa61rmnBMAAAAAAIisNpEOAAAAAAAAkKADAAAAABAVSNABAAAAAIgCJOgAAAAAAEQBEnQAAAAAAKIACToAAAAAAFGABB0AAAAxycyeN7P9ZrapTluWmb1rZltr/nt6JGMEgJYgQQcAAECsWiBpeIO2n0v6k3PuLEl/qrkGgJhgzrlIxwAAAAC0ipn1kVTgnBtYc71F0iXOuT1mli3pL865/pGMEQCaKznSAYSCmY2SNOq000679bvf/W6kwwGQAD755JODzrkukY6jMYyNACIhAuPjGc65PTWf75V0RqAHmtkMSTMkKSMjY2hOTk4YwgOAwGNjXM+g5+fnu3Xr1kU6DAAJwMw+cc7lRzqO5mBsBBBOoR4fPWbQv3bOdazTf9g51+Q+dMZGAOEUaGxkDzoAAADiyb6ape2q+e/+CMcDAM1Ggg4AAIB48qakKTWfT5G0LIKxAECLkKADAAAgJpnZK5I+ktTfzHaZ2XRJj0q60sy2Srqi5hoAYkJcFokDAABA/HPO/ThA1+VhDQQAgoQZdAAAAAAAogAJOgAAAAAAUSAuE3QzG2Vm844cORLpUAAAAAAAaJa4TNCdc8udczM6dOgQ6VAAAAAAAGiWuEzQAQAAAACINSToAAAAAABEARJ0AAAAAAF9/fXXGjdunHJycjRgwAB99NFH9fr37dunCRMmqG/fvho6dKguvPBCvfHGG0F7/aSkJA0ePLj249FHOdoe8Ytz0AEAAAAEdNddd2n48OF67bXXVF5ermPHjtX2Oec0evRoTZkyRQsXLpQkbd++XW+++Waz7u2ck3NObdoEnjds166dNmzYcEpfAxArmEEHAAAAolRJSYmGDBmivLw8paena/DgwbrgggtUVVUVltc/cuSI3n//fU2fPl2SlJqaqo4dO9b2v/fee0pNTdXtt99e29a7d2/deeedkqSZM2fqqaeequ174IEHNHv2bPXv31+TJ0/WwIEDtXPnzlbFtnbtWp199tny+XwqKytTXl6eNm3apOLiYuXk5GjixIkaMGCAxo0bV+9NBSCaMYMOAAAANOF/L9+swi9LgnrP3O9k6pej8hp9TGZmptavX681a9Zo1qxZWrZsWdBe/3vf+55KS0v92p944gldccUVkqQvvvhCXbp00dSpU/Xpp59q6NChmj17tjIyMiRJmzdv1jnnnBPwNaZNm6brr79ed999t6qqqrRo0SItWbJE99xzj1544QVdcMEFTcZ5/PhxDR48uPb6/vvv1/jx43Xuuefq2muv1YMPPqjjx49r0qRJGjhwoIqLi7VlyxY999xzGjZsmKZNm6ann35a9957bwu/Q0D4kaADAAAAUW7Tpk3Ky/s2md+8ebNmzZqlzp07q0ePHuratauWLFmiXr16afjw4fr666/VuXNnjRw5UkVFRVq0aJEeeuihevf84IMPmnzdEydO6G9/+5t++9vf6vzzz9ddd92lRx99VA8//LDn4++44w6tWrVKqampWrt2rfr06aNOnTpp/fr12rdvn4YMGaJOnTqpd+/ezUrOpcaXuM+cOVPnnnuu0tLSNGfOnNr2nj17atiwYZKkSZMmac6cOSToiAkk6ECcOrx4iUoKCgL2Z44cqdPH/yiMEQEAELuamukOtcLCwnoz1e+8845uuukmXX311ZKkBQsW6Kc//alGjhxZe92U5syg9+jRQz169ND5558vSRo3bly9Im15eXl6/fXXa6/nzp2rgwcPKj8/v7btlltu0YIFC7R3715NmzZNkmpn4E/VV199paNHj6qiokI+n6/2vmZW73ENr4FoFZd70M1slJnNO3LkSKRDASKmpKBAvqIizz5fUVGjyTsAAIguX375pbp161Z7PX36dK1atUrTp0/XM888I0l6+umndfvtt+vTTz+td91w5vykDz74QBs2bPD7OJmcS1K3bt3Us2dPbdmyRZL0pz/9Sbm5ubX9l112mXw+n37/+9/XtjXc7z1mzBitXLlSa9eu1VVXXRXwa7z88su1e/fuZn5Hqt122216+OGHNXHiRN1333217Tt27KitNr9w4UJdfPHFLbovEClxOYPunFsuaXl+fv6tkY4FiKS0nBz1fulFv/btN02OQDQAAKC1rrrqKk2fPl0LFizQD37wA2VmZmrWrFmSpGuuuUZjx46tN4O+fv362uuTS9xb67e//a0mTpyo8vJy9e3bV/Pnz6/tMzMtXbpU99xzjx5//HF16dJFGRkZeuyxx2ofk5qaqksvvVQdO3ZUUlKS52tUVVXp888/V1ZWll9fwz3ow4cP16OPPqoXX3xRKSkpmjBhgiorK3XRRRfpvffeU9++fdW/f3/NnTtX06ZNU25urn7yk5+0+usHwikuE3QAAAAgnkyZMkVTpkypvV66dKnefvttJScnKzc3t9Fjyk7V4MGDtW7duoD92dnZjb4BUFVVpY8//livvvqqJKlPnz7atGlTvccUFhZq7Nixateund/zKysrPe87efJkTZ5cPemQlJSk1atXS5KKi4uVnJysl19+ufEvDIhCJOgAAABAjBk9erRGjx4dsP/mm2+u/TwnJyfgMvdQKyws1MiRIzVmzBidddZZAR83cOBAPfnkk2GMDIhOJOgAAAAAQiI3N1fbtm0L62t6zdADsSIui8QBAAAAABBrSNABIIaZWV8ze87MXot0LAAAADg1JOgAEGXM7Hkz229mmxq0DzezLWb2uZn9XJKcc9ucc9MjEykAAACCiQQdAKLPAknD6zaYWZKkuZKulpQr6cdmluv/VAAAAMQqEnQAiDLOufclHWrQfJ6kz2tmzMslLZJ0XdiDAwAAQMiQoANAbOguaWed612SuptZJzP7D0lDzOz+QE82sxlmts7M1h04cCDUsQIAAKAVOGYNAGKYc+4rSbc343HzJM2TpPz8fBfquAAAANByzKADQGzYLalnneseNW0AAACIEyToABAb1ko6y8zONLNUSTdKejPCMQEAEkRlZaWGDBmikSNH1ratXLlS/fv3V79+/fToo4/6PWffvn2aMGGC+vbtq6FDh+rCCy/UG2+8EdS4kpKSNHjw4NoPrziAWMISdwCIMmb2iqRLJHU2s12Sfumce87MfibpbUlJkp53zm1u4X1HSRrVr1+/YIcMAIhzs2fP1oABA1RSUiKpOmG/44479O6776pHjx4699xzde211yo3t/qAEeecRo8erSlTpmjhwoWSpO3bt+vNN5v/3rJzTs45tWkTeE6xXbt22rBhQ+u/MCDKxOUMupmNMrN5R44ciXQoANBizrkfO+eynXMpzrkezrnnatpXOOe+65z7F+fcrFbcd7lzbkaHDh2CHzQQbuvmS/OvCfyxbn6kIwSCoqSkREOGDFFeXp7S09M1ePBgXXDBBaqqqgpbDLt27dJbb72lW265pbZtzZo16tevn/r27avU1FTdeOONWrZsWW3/e++9p9TUVN1++7dlUnr37q0777xTkjRz5kw99dRTtX0PPPCAZs+ereLiYvXv31+TJ0/WwIEDtXNn3fqozbN27VqdffbZ8vl8KisrU15enjZt2qTi4mLl5ORo4sSJGjBggMaNG6djx4614jsChE5czqA755ZLWp6fn39rpGMBAAAhsPE1ae9Gqdsg/769G6v/mz81vDEhvv33z7/93QqWboOkqxtfkp2Zman169drzZo1mjVrVr0k+FR973vfU2lpqV/7E088oSuuuKL2+u6779bjjz9e77G7d+9Wz57flkbp0aOHVq9eXXu9efNmnXPOOQFfe9q0abr++ut19913q6qqSosWLdKaNWtUWlqqrVu36oUXXtAFF1zQ5Ndw/PhxDR48uPb6/vvv1/jx43XttdfqwQcf1PHjxzVp0iQNHDhQxcXF2rJli5577jkNGzZM06ZN09NPP6177723ydcBwiUuE3QAAJAAug2Spr7l3z7/mvDHAoTYpk2blJeXV3u9efNmzZo1S507d1aPHj3UtWtXLVmyRL169dLw4cP19ddfq3Pnzho5cqSKioq0aNEiPfTQQ/Xu+cEHHzT5ugUFBeratauGDh2qv/zlL62O/4477tCqVauUmpqqtWvXqk+fPurUqZPWr1+vffv2aciQIerUqZNKS0vVu3fvZiXnUuAl7jNnztS5556rtLQ0zZkzp7a9Z8+eGjZsmCRp0qRJmjNnDgk6ogoJOgAAANCUJma6Q62wsLDejPQ777yjm266SVdffbUkacGCBfrpT39aW8RtwYIFTd6zOTPoH374od58802tWLFCPp9PJSUlmjRpku644456y8937dql7t27117n5eXp9ddfr72eO3euDh48qPz8/Nq2W265RQsWLNDevXs1bdq02vaMjIwmY2/KV199paNHj6qiokI+n6/2nmZW73ENr4FIi8s96AAAf9TnAIDY9eWXX6pbt26119OnT9eqVas0ffp0PfPMM5Kkp59+Wrfffrs+/fTTetcNZ85P+uCDD7Rhwwa/j7rL23/9619r165dKi4u1qJFi3TZZZfp5Zdf1rnnnqutW7fqiy++UHl5uRYtWqRrr7229nmXXXaZfD6ffv/739e2NdzvPWbMGK1cuVJr167VVVdd1eT34PLLL9fu3c07YfS2227Tww8/rIkTJ+q+++6rbd+xY4c++ugjSdLChQt18cUXN+t+QLgwgw4ACYL6HAAQu6666ipNnz5dCxYs0A9+8ANlZmZq1qzqeqHXXHONxo4dW28Gff369bXXJ5e4B1NycrJ+97vf6aqrrlJlZaWmTZtWbwm+mWnp0qW655579Pjjj6tLly7KyMjQY489VvuY1NRUXXrpperYsaOSkpIafb2qqip9/vnnysrKqtfecA/68OHDlZubq5SUFE2YMEGVlZW66KKL9N5776lv377q37+/5s6dq2nTpik3N1c/+clPgvMNAYKEBB0AAACIclOmTNGUKVNqr5cuXaq3335bycnJys3NbfQosmC55JJLdMkll9RejxgxQiNGjAj4+Ozs7EbfGKiqqtLHH3+sV199tbatT58+2rRpk99jCwsLNXbsWLVr165ee2Vlpee9J0+eLKn6nPSTxeuKi4uVnJysl19+OWBMQKSRoAMAAAAxZvTo0Ro9enTA/ptvvrn285ycnIDL3COlsLBQI0eO1JgxY3TWWWc1+fiBAwfqySefDENkQGSRoAMAAAAIq9zcXG3bti2srxlodh6IJhSJA4AEQZE4AACA6EaCDgAJwjm33Dk3o0OHDpEOBQAAAB5I0AEAAAAAiAIk6AAAAAAARAGKxAEAgISxcPUOLduwO2D/dYO7a8L5vcIYEQAE2br50sbXvPsGjZPyp4Y3HrQIM+gAACBhLNuwW4V7Sjz7CveUNJq8A0BM2PiatHejf/vejYETd0QNZtABIEGY2ShJo/r16xfpUICIys3O1OLbLvRrH//MRxGIBgBCoNsgaepb9dvmXxOZWNAizKADQIKgijsAAEB0I0EHAAAA4Gnnzp269NJLlZubq7y8PM2ePdvzcX369NGgQYM0ePBg5efn+/Xv27dPEyZMUN++fTV06FBdeOGFeuONN4Iaa1JSkgYPHlz78eijjwb1/kA4sMQdAAAAgKfk5GT95je/0TnnnKPS0lINHTpUV155pXJzc/0e++c//1mdO3f2a3fOafTo0ZoyZYoWLlwoSdq+fbvefPPNZsfhnJNzTm3aBJ5fbNeunTZs2NDsewLRiBl0AAAAIEqVlJRoyJAhysvLU3p6ugYPHqwLLrhAVVVVYXn97OxsnXPOOZKk0047TQMGDNDu3S0rpvjee+8pNTVVt99+e21b7969deedd0qSZs6cqaeeeqq274EHHtDs2bNVXFys/v37a/LkyRo4cKB27tzZ4vjXrl2rs88+Wz6fT2VlZcrLy9OmTZtUXFysnJwcTZw4UQMGDNC4ceN07NixFt8fCDZm0AEAAIAmPLbmMRUdKgrqPXOycnTfefc1+pjMzEytX79ea9as0axZs7Rs2bKgvf73vvc9lZaW+rU/8cQTuuKKK/zai4uLtX79ep1//vl+fWamH/7whzIz3XbbbZoxY0Zt3+bNm2uTfC/Tpk3T9ddfr7vvvltVVVVatGiR1qxZo9LSUm3dulUvvPCCLrjggia/nuPHj2vw4MG11/fff7/Gjx+va6+9Vg8++KCOHz+uSZMmaeDAgSouLtaWLVv03HPPadiwYZo2bZqefvpp3XvvvU2+DhBKMZOgm1lfSQ9I6uCcGxfpeAAAAIBw2bRpk/Ly8mqvN2/erFmzZqlz587q0aOHunbtqiVLlqhXr14aPny4vv76a3Xu3FkjR45UUVGRFi1apIceeqjePT/44INmv/7Ro0c1duxYPfXUU8rMzPTrX7Vqlbp37679+/fryiuvVE5Ojr7//e973uuOO+7QqlWrlJqaqrVr16pPnz7q1KmT1q9fr3379mnIkCHq1KmTSktL1bt372Yl51LgJe4zZ87Uueeeq7S0NM2ZM6e2vWfPnho2bJgkadKkSZozZw4JOiIuogm6mT0vaaSk/c65gXXah0uaLSlJ0rPOuUedc9skTTczDu8DgFbgmDUAaL2mZrpDrbCwsN4s9DvvvKObbrpJV199tSRpwYIF+ulPf6qRI0fWXjeluTPoFRUVGjt2rCZOnKjrr7/e817du3eXJHXt2lVjxozRmjVrahP0vLw8vf7667WPnTt3rg4ePFivmNwtt9yiBQsWaO/evZo2bVpte0ZGRpNfR1O++uorHT16VBUVFfL5fLX3NLN6j2t4DURCpPegL5A0vG6DmSVJmivpakm5kn5sZv5VKAAALcIxawAQu7788kt169at9nr69OlatWqVpk+frmeeeUaS9PTTT+v222/Xp59+Wu+64cz5SR988IE2bNjg91E3OXfOafr06RowYID+7d/+zfM+ZWVltYl+WVmZ3nnnHQ0cWDv3pssuu0w+n0+///3va9sa7vceM2aMVq5cqbVr1+qqq64K+H24/PLLW7wH/rbbbtPDDz+siRMn6r77vn2jZceOHfroo48kSQsXLtTFF1/covsCoRDRGXTn3Ptm1qdB83mSPq+ZMZeZLZJ0naTC5tzTzGZImiFJvXr1Cl6wAAAAiBlmdo+kWyQ5SRslTXXO+SIbVetdddVVmj59uhYsWKAf/OAHyszM1KxZsyRJ11xzjcaOHVtvBn39+vW11yeXuLfGhx9+qJdeeqn2CDVJeuSRRzRixAiNGDFCzz77rHw+n8aMGSNJOnHihCZMmKDhw7+dgzMzLV26VPfcc48ef/xxdenSRRkZGXrsscdqH5OamqpLL71UHTt2VFJSkmcsVVVV+vzzz5WVleXZ33AP+vDhw5Wbm6uUlBRNmDBBlZWVuuiii/Tee++pb9++6t+/v+bOnatp06YpNzdXP/nJT1r1PQKCKRr3oHeXVLdE4y5J55tZJ0mzJA0xs/udc7/2erJzbp6keZKUn5/vQh0sAAAAoouZdZf0r5JynXPHzWyJpBtVvXozJk2ZMkVTpkypvV66dKnefvttJScnKzc3t9Hjx07FxRdfLOe8/6ResWJF7ecnZ+0Dyc7ObvRNgqqqKn388cd69dVXa9v69OmjTZs21V4XFhZq7Nixateunec9KisrPdsnT54sqfqc9NWrV0uqLniXnJysl19+udG4gXCLxgTdk3PuK0m3N/lAAAAAoPrv3HZmViEpXdKXEY4nqEaPHq3Ro0cH7L/55ptrP8/JyQm4zD0aFBYWauTIkRozZozOOuusgI8bOHCgnnzyyTBGBoRfNCbouyX1rHPdo6YNAAAAaJJzbreZPSFph6Tjkt5xzr3T8HFsjYwOubm52rZtW1hfs+HsPBAtIl0kzstaSWeZ2Zlmlqrq5UhvtuQGZjbKzOYdOXIkJAECAAAgepnZ6aquYXSmpO9IyjCzSQ0f55yb55zLd87ld+nSJdxhAoCfiCboZvaKpI8k9TezXWY23Tl3QtLPJL0t6TNJS5xzm1tyXyoVAwAAJLQrJH3hnDvgnKuQ9F+SLopwTADQpEhXcf9xgPYVklZ49QEAAABN2CHpAjNLV/US98slrYtsSADQtGhc4g4ACAG2/wBIFM651ZJek/Q3VR+x1kY1p/wAQDSLxiJxp8zMRkka1a9fv0iHAoTU4cVLVFJQ4NnnKypSWk5OmCNCNHPOLZe0PD8//9ZIxwIAoeac+6WkX0Y6DgBoibhM0PkjFImipKAgYCKelpOjzJEjIxAVAATRuvnSxtf82/dulLoNavHthv79Lxq0ZbW2r8r067t5T4k29j9f0oWtCBQAgFMXlwk6kEjScnLU+6UXIx0GAITGxte8k/Fug6RB41p8u0FbVqvbgR1S9kC/vj67tqjPri3aftNnns/NHDlSp4//UYtfEwCA5iJBBwAA0a3bIGnqW0G73d4uvTTE443Nx+/4tQZtWa1cj+f4iookiQQdABBSJOgAACCuHN5QopLCo9J7k/36uh3Yob1denk+75OzL9EnZ1+ixbf5L3HffpP/vYBEsHPnTk2ePFn79u2TmWnGjBm66667/B7Xp08fnXbaaUpKSlJycrLWratfNH/fvn2655579PHHH+v0009Xamqq/v3f/11jxowJWqzt27fX0aNH67VddNFF+utf/xqU+yclJWnQoG9X89x44436+c9/HpR7AyfFZYJOkTgAABJXSeFR+faXK62bf9/eLr20sf/5ujr8YQExKTk5Wb/5zW90zjnnqLS0VEOHDtWVV16p3Fz/tSZ//vOf1blzZ79255xGjx6tKVOmaOHChZKk7du3680332x2HM45OefUpk3LDqEKVnIuSe3atdOGDRuCdj/AS1wes+acW+6cm9GhQ4dIhwIAACIgrWuqer/0ot/Hghvu0ydnXxLp8IBmKykp0ZAhQ5SXl6f09HQNHjxYF1xwgaqqqsLy+tnZ2TrnnHMkSaeddpoGDBig3bt3t+ge7733nlJTU3X77bfXtvXu3Vt33nmnJGnmzJl66qmnavseeOABzZ49W8XFxerfv78mT56sgQMHaufOnS2Ov3379pKk4uJiDRgwQLfeeqvy8vL0wx/+UMePH2/x/Rpau3atzj77bPl8PpWVlSkvL0+bNm1ScXGxcnJyNHHiRA0YMEDjxo3TsWPHTvn1EP/icgYdAAAkrvLKKlVUVmn8Mx/59RXuKVFutn8Fd6Apex95RN98VhTUe7YdkKNuv/hFo4/JzMzU+vXrtWbNGs2aNUvLli0L2ut/73vfU2lpqV/7E088oSuuuMKvvbi4WOvXr9f555/v12dm+uEPfygz02233aYZM2bU9m3evLk2yfcybdo0XX/99br77rtVVVWlRYsWac2aNSotLdXWrVv1wgsv6IILLmjlV/mtrVu36pVXXtF//ud/6kc/+pFef/11TZo0qdnPP378uAYPHlx7ff/992v8+PG69tpr9eCDD+r48eOaNGmSBg4cqOLiYm3ZskXPPfechg0bpmnTpunpp5/Wvffee8pfB+IbCToAAIgrFZVVqqpynn252Zm6bnD3MEcEnLpNmzYpLy+v9nrz5s2aNWuWOnfurB49eqhr165asmSJevXqpeHDh+vrr79W586dNXLkSBUVFWnRokV66KGH6t3zgw8+aPbrHz16VGPHjtVTTz2lzEz/N7lWrVql7t27a//+/bryyiuVk5Oj73//+573uuOOO7Rq1SqlpqZq7dq16tOnjzp16qT169dr3759GjJkiDp16qTS0lL17t07KMm5JJ155pm1CfbQoUNVXFxc23fFFVdo7969fs+ZNWuWrrvuOkmBl7jPnDlT5557rtLS0jRnzpza9p49e2rYsGGSpEmTJmnOnDkk6GgSCToAAIg5hxcvUUlBgXfnoUq1yUryLPZ2KnxFRZ7F4jh+LTE0NdMdaoWFhfVmod955x3ddNNNuvrq6ooKCxYs0E9/+lONHDmy9ropzZ1Br6io0NixYzVx4kRdf/31nvfq3r36ja+uXbtqzJgxWrNmTW2CnpeXp9dff732sXPnztXBgweVn59f23bLLbdowYIF2rt3r6ZNm1bbnpGR0eTX0Vxt27at/TwpKaneEvc//vGPrb7vV199paNHj6qiokI+n682ZjOr97iG14CXuEzQKRKHhFG6Vyo7IM2/xrt/0Dgpf2p4Y0LUYmxEPCkpKJCvqEhpOTn+nVlJcme29W8/BZk1SU9DHL+GcPnyyy81YsSI2uvp06frscce02uvvabzzjtPbdu21dNPP62CggL95Cc/kaTa66+//lo5Hv9WmjOD7pzT9OnTNWDAAP3bv/2b52PKyspUVVWl0047TWVlZXrnnXc0c+bM2v7LLrtMv/jFL/T73/++NraG+7HHjBmjmTNnqqKioraQnJfLL79cL774Yu0bAtHgtttu08MPP6wvvvhC9913n373u99Jknbs2KGPPvpIF154oRYuXKiLL744wpEiFsRlgu6cWy5peX5+/q2RjgUIqbIDUnmZd9/ejdX/JUFHDcZGxJu0nBz19jjPfPMjwf8j+PTxP/JMwjl+DeFy1VVXafr06VqwYIF+8IMfKDMzU7NmzZIkXXPNNRo7dmy9GfT169fXXp9c4t4aH374oV566SUNGjSodnn4I488ohEjRmjEiBF69tln5fP5ao9LO3HihCZMmKDhw4fX3sPMtHTpUt1zzz16/PHH1aVLF2VkZOixxx6rfUxqaqouvfRSdezYUUlJSZ6xVFVV6fPPP1dWVpZn/7Fjx9SjR4/a60BvKLRWwz3ow4cPV25urlJSUjRhwgRVVlbqoosu0nvvvae+ffuqf//+mjt3rqZNm6bc3NzaNyeAxsRlgg4klNQMaepb/u2BZtUBAEDMmTJliqZMmVJ7vXTpUr399ttKTk5Wbm5ui48fa66LL75YznnXdFixYkXt559++mmj98nOzm70TYKqqip9/PHHevXVV2vb+vTpo02bNtVeFxYWauzYsWrXrl3AezR0MklveK/W7AWvrKz0bJ88ufqNuqSkJK1evVpSdUG95ORkvfzyyy1+HSQ2EnQAAAAgxowePVqjR48O2H/zzTfXfp6Tk+NXIC6aFBYWauTIkRozZozOOuusgI8bOHCgnnzyyTBGBoQfCToAAACAiMnNzdW2bdsiHUZQNZyxB5qLBB0AAEStwxtKVFJ4VHqv/l7vgAXiAACIYaHZrBJhZjbKzOYdOXIk0qEAAIBTUFJ4VL795X7taTk5ASurAwAQq+JyBp1KxQAAxI+0rqme1doBAIg3cTmDDgAAAABArCFBBwAAAAAgCpCgAwAAAAAQBeJyDzoAAIgh6+ZLG1/z7isvk1IzwhsPAAARQoIOAAAia+Nr0t6NUrdB/n2pGVJGF7/mhat3aNmG3Z63u7e8UumpScGOEgCAkCNBBwAAEVV91nknqVsnvz7f1weU1q2bX/uyDbtVuKdEudmZfn3pqUnq3L5tSGIFACCU4jJBN7NRkkb169cv0qEAAIAmnDzrPM0/D2/0vPPc7Ewtvu1C/475HYIcIQAA4RGXCTrnoAMAEFs46xwAAKq4A0DCMLNRZjbvyJEjkQ4FAAAAHkjQASBBOOeWO+dmdOjA8l8AAIBoRIIOAAAAAEAUIEEHAAAAACAKkKADAAAAABAF4rKKOwAAiC6HFy9RSUGBZ59vf7nSuqaGOSIAAKIPM+gAACDkSgoK5Csq8uxL65qqzNz2YY4IAIDowww6AAAIi7ScHO+zzudfE/5gAACIQnGZoJvZKEmj+vXrF+lQAADAKVi4eoeWbdjt1164p0S52ZkRiAgAgNCJywTdObdc0vL8/PxbIx0LECmv6qhWWJm0cqpf342HitSpXSf1jkBcANASyzbs9kzGc7Mzdd3g7hGKCgCA0IjLBB2AtMLKtEXl6u/Rd+zEcen4V2GPCUACK90rlR3wXs6+d6PUbVDAp+ZmZ2rxbReGMDgAAKIDCToQx/orVfOHz/drf/u350UgGgAJreyAVF7m3ddtkDRoXHjjAQAgCpGgAwCA8EjNkKa+FekoAACIWhyzBgAAAABAFGAGHQAABMXhxUtUUlDg2efbX660rqlhjggAgNhCgg5EOf7gBRArSgoK5CsqUlpOjl9fWtdUZea2j0BUAADEDhJ0IMrxBy+AWJKWk6PeL73o3+FVvR0AANRDgg7EAP7gBQAAAOIfCToAAIiohat3aNmG3Z59hXtKlJudGeaIAACIDKq4AwCAiFq2YbcK95R49uVmZ+q6wd3DHBEAAJHBDDoQw/aV+nTw6Df61TMf+fU5O6GUJN6DAxAbcrMztfi2CyMdBgAAEUWCDsSwg0e/0bHySs++qiqnClWFOSIAAAAArUWCDsS49NQkz1mnH82zCEQDIKGV7pXKDngXsNy7Ueo2KPwxAQCa1FgtEEm6bnB3TTi/VxgjSlxxmaCb2ShJo/r16xfpUAAAiDuHFy9RSUGBX7vvi91K61jh/aRug6RB40IcGQCgNU7WAvEqynmyRggJenjEZYLunFsuaXl+fv6tkY4FAELJzDIkPS2pXNJfnHN/iHBISAAlBQXyFRUpLSenXnta11Rl5mZJU9+KUGQAgNYKVAtkvEetI4ROXCboABDLzOx5SSMl7XfODazTPlzSbElJkp51zj0q6XpJrznnlpvZYkkk6AiLtJwc9X7pxfqNXkvbAQBAs1HiGQCizwJJw+s2mFmSpLmSrpaUK+nHZpYrqYeknTUP864YCAAJyMw6mtlrZlZkZp+ZGccEAIh6zKADQJRxzr1vZn0aNJ8n6XPn3DZJMrNFkq6TtEvVSfoGNfKmq5nNkDRDknr1Yg8Zwq+xAkSB9j0Cp2i2pJXOuXFmliopPdIBAUBTSNABIDZ017cz5VJ1Yn6+pDmSfmdm10haHujJzrl5kuZJUn5+vgthnICnxgoQ5WZn6rrB3SMQVfO9+o9XtWLbCr/2Gw8VqVO7TuodgZgQmJl1kPR9STdLknOuXNW1OgAgqpGgA0AMc86VSZoa6TiA5ghUgChaHE56X0eS1mjqSv83EdbtWydJyj8jv157aUWpSitKNXel9z/DEX1H6Ibv3hD8YNGUMyUdkDTfzP6XpE8k3VUzZtZidRGAaEOCDgCxYbeknnWue9S0AQiSI0lr5LOdkvL8+vLPyPdMttc9e7W+Ov6V5/22HNoiSSTokZEs6RxJdzrnVpvZbEk/l/T/1X0Qq4sARBsSdACIDWslnWVmZ6o6Mb9R0oTIhgTEnkBL1SXJZzuV5npq/vD5zb5fl3Zd1KVdF8/nTA0wq46w2CVpl3Nudc31a6pO0AEgqlHFHQCijJm9IukjSf3NbJeZTXfOnZD0M0lvS/pM0hLn3OYW3neUmc07cuRI8IMGYsSKbStqZ7YbSnM91aHyvDBHhFBwzu2VtNPM+tc0XS6pMIIhAUCzMIMOAFHGOffjAO0rJHlP/TXvvsslLc/Pz7+1tfdA4ji8eIlKCgo8+3yb/660TuZ/7vnejVK3QWGIrnGv6qhWWJnkMYO95dAW9c/q7znjPf6Zj4Iey5ZDWwLOpLM/PeTulPSHmgru20S9DgAxgAQdAAD4KSkokK+oSGk5OX59aZ1MmT2OSPpO/Y5ug6RB48ITYCNWWJm2qFz9Pfr6Z/XXiL4jwhJHY6/D/vTQc85tkJTf1OMAIJqQoAMAAE9pOTnq/dKL/h3zr5H0HWnqW2GPqbn6K7VFe8lD4Ybv3hAwAWd/OgDACwk6ACQIMxslaVS/fv0iHQri1MLVO7Rsg/fhAoHOQG+txoq9Vc+epwbttQAACBeKxAFAgnDOLXfOzejQoUOkQ0GcWrZhtwr3lHj25WZn6rrB3YP2Wo0Ve+uvVI1wGUF7LQAAwoUZdAAAEDS52ZlafNuFYXmtQMXe/IrXAQAQI5hBBwAAAAAgCjCDDkS70r1S2QHPGaE+FdtUnNI3AkEBQHgE2mt+8rg0AADiCTPoQLQrOyCVl3l2Faf01YftLg1zQAAQPoH2mofzuDQAAMKl2TPoZtZW0lhJfeo+zzn3q+CHBaCe1AzP44x+9cxHkqQZ4Y4HMYkq7ohVAfeaAwAQZ1qyxH2ZpCOSPpH0TWjCARLX4cVLVFJQ4Nfu21+utK4cF4RT55xbLml5fn7+rZGOBTGgke012rtR6jYo/DEBABDnWpKg93DODQ9ZJE0wswxJT0sql/QX59wfIhULEAolBQXyFRUpLSenXnta11Rl5raPUFQA4lmgNwYlyffFbqV1rPDs25dxlpZ9fY7+VLOK56TWnnXe6Jnm7DUHACSQliTofzWzQc65jcF6cTN7XtJISfudcwPrtA+XNFtSkqRnnXOPSrpe0mvOueVmtlgSCTriTlpOjnq/9GL9Ro4LAhAigd4YlE6+OZjlub3mX5/5qDoZT6/f3tqzzk/uM/dKxNlrDgBIJC1J0C+WdLOZfaHqJe4myTnnzj6F118g6XeSajMSM0uSNFfSlZJ2SVprZm9K6iHp5JsDlafwmgAAoIbnG4NSk28OBvu8c/aZAwDQsgT96mC/uHPufTPr06D5PEmfO+e2SZKZLZJ0naqT9R6SNqiR6vNmNkM1NbN69eoV7JABAACCYsuhLZq6cqpn34i+I3TDd28Ic0QAgEhrdoLunNseykDq6C5pZ53rXZLOlzRH0u/M7BpJywM92Tk3T9I8ScrPz3chjBMAYgpV3IHo0diy/ZPHypGgA0DiackMuszsf0n6Xs3lB865T4MfkjfnXJkk77eZgQR1OOl9HUlao6kr/YsybU+pVO+KpAhEhWhFFXdEEoXg6rvhuzcETMADzaoDAOJfwKXiDZnZXaouzNa15uNlM7szBDHtltSzznWPmjYADRxJWiOf7fTs612RpGHHOJ4NQHQ4WQjOC4XgAACo1pIZ9OmSzq+ZyZaZPSbpI0m/DXJMayWdZWZnqjoxv1HShJbcgGWcSCRprqdnYaXNj1wcgWgAIDAKwQEA0LiWJOim+tXTK2vaWs3MXpF0iaTOZrZL0i+dc8+Z2c8kva3qY9aed85tbsl9WcaJeLKv1KeDR7/RrxqcNyxJx9wJpbdt0U4VAPhW6V6p7IBnxfby3Z9qa5s+nmNPa887BwAAjWvJX/bzJa02szdUnZiPlvT8qby4c+7HAdpXSPLeqAYkmINHv9Gxcu+TBdPbJqtzRtswRwQgbpQdkMrLPLu2tumj18q9j1Fr7XnnAACgcS2p4v6kmf1F0rCapinOuQ2hCApAfempSZ7nDXsVhwOAFknNkKa+5dd8cua8JWedUwgOAIBT02SCbmarnHMXm1mpJKc6y9rNzDnnoi5DYA86APhjbExMhxcvUUlBgWefb3+50roGr5jkyUJwXok4heAAAGhakwm6c+7imv+eFvpwgoM96ADgj7ExMZUUFMhXVKS0nBy/vrSuqcrMbR/U16MQHAAArdfsJe5m9phz7r6m2gAAQHRJy8lR75de9O/wKA4HAAAip9nnoEu60qPt6mAFAgAAAABAImvOHvSfSPqppL5m9vc6XadJ+jBUgQEAgOgUqBgcheAAADg1zVnivlDSf0v6taSf12kvdc4dCklUp4hCSAAANG1fqU8Hj37T4rPOAxWDoxAcAACnpjlF4o5IOiLJ88zyaEQhJAAAapTurT7v3GO/efvDn2mH6+35tKbOOqcYHAAAwdeSInEvSLrLOfd1zfXpkn7jnJsWotgAAMCpKjsglZd5dhWn9NX6dpe26KxzAAAQOs1O0CWdfTI5lyTn3GEzGxL8kIAEFWCWq0/FNhWn9I1QUADiQmqGNPUtv+aTS9tnhDseAADgqSUJehszO905d1iSzCyrhc8HEt7hxUtUUlDg2ef7YrfSOlb4tRen9NWH7S5VXqiDQ9yjPgcAAEB0a0mC/RtJH5nZq5JM0jhJs0IS1Snij1BEq5KCAvmKipSWk+PXl9Y1VZm5WX6zXMxwIViozxG/Gn3zb3+50rqmtviegSq1S1RrBwAgVJqdoDvnXjSzdZIuq2m63jlXGJqwTg1/hCKapeXkqPdLL/p3eBRwAoDmaPrNv/YtvmegSu0S1doBAAiVli5R3yNpjaQ0SZ3N7PvOufeDHxaAkw4nva8jSWs0daX/cUfMYgE4KdCbf/vmXK4vj36j21t4lJpEpXYAAMKtJVXcb5F0l6QekjZIukDSR/p2Rh1ACBxJWiOf7ZQ8dqEziwWgKQePfqNj5ZWefU0dpQYAAMKrJTPod0k6V9LHzrlLzSxH0iOhCQtAXWmuJ7NYAAJr5KzzPhXbVJzal6PUAACIAS1J0H3OOZ+ZyczaOueKzIy1tUCQ7Cv16eDRb2qLwp10zJ1QelsOTADQiCbOOg90EgSF4AAAiC4t+at/l5l1lLRU0rtmdljS9lAEdaqo4o5YFGgZanrbZHXOaBuBiADElFacdU4hOAAAokuzEnQzM0n/6pz7WtJDZvZnSR0krQxhbK1GFXfEqvTUJL9lqF7F4QAgWCgEBwBA9GhWgu6cc2a2QtKgmuv/CWlUAAAAAAAkmJYscf+bmZ3rnFsbsmgAAECLlVdWqaKySuNbcZQaAACIHi1J0M+XNNHMtksqk2Sqnlw/OySRAQCCivoc8auiskpVVc6zj6PUAACIHU0m6Gb2knPuJkn/IemN0IcEAAgF6nPEvsOP36WSd9/3a29zqELKSvE8Sq26Uvs8vetRNYZK7QAARJc2zXjMUDP7jqSpkkoklTb4AAAAYVDy7vvy7T3u116VlaLPv+u9oO1kpXYvVGoHACC6NGeJ+39I+pOkvpI+UfXS9pNcTTuA5ijdW31e8fxr/Lr6VGxTcQr/nAA0Lq1bO/V+d329tpN7z68N8BwqtQMAEBuanEF3zs1xzg2Q9Lxzrq9z7sw6H1GZTZjZKDObd+TIkUiHAtRXdkAqL/PsKk7pqw/bXRrmgAAAAABEi2YXiXPO/SSUgQQT+ywR1VIzpKlv+TXf8+xjOpK0Rh+tnFqvnT2iAAAAQGJoSRV3ACF0JGmNfLZTUl69dvaIAjgp0HFqHKUGAEB8IEEHguzw4iUqKSjw7PPtL1da19SAz01zPdknCiCgQMepZffYoKOZn2rqynl+fazCAQAgdpCgA0FWUlAgX1GR0nJy/PradErW0e5JfrNfknTMnVB6W/5JAmhcmzbmd5za1JXztOVQsbrKPxFnFQ4AALGDbAAIgbScHPV+6UW/9s2PXKxj5ZWez0lvm6zOGW1DHRqAaLduvrTxNc+uNOeTz9I8+6jUDgBA7CNBB8IsPTXJb/ZLkqauZP8oAFUn53s3St0G+XX5LE1H2nQMf0wAACAsSNABAIg23QZ5nvaw/Q+jwx8LEMPMLEnSOkm7nXMjIx0PADSFBB0AgCiy/eOvVFZU5pmMd9m/TTvPSNFUjmMEmusuSZ9JYpkagJjQJtIBAACAb5UVlUmHTnj27TwjRX8d6F/FnUJwgD8z6yHpGknPRjoWAGiuuJxBN7NRkkb169cv0qEgEZXulcoOSPOv8evqU7FNxSl9IxAUgJiSlayr/7jUr/nkzDnF4IBmeUrSv0s6LdADzGyGpBmS1KtXr/BEBQCNiMsE3Tm3XNLy/Pz8WyMdCxJQ2QGpvMyz69kOPfTf7ZOV3WB5qsQSVSChtLJSO4DmMbORkvY75z4xs0sCPc45N0/SPEnKz8/3X54CAGEWlwk6EHGpGZ4FnhbOHyuf7VS2x1NYoopQY3VRFKFSOxBqwyRda2YjJKVJyjSzl51zkyIcFwA0igQdCLM015PlqYgIVhdFGSq1AyHjnLtf0v2SVDODfi/JOYBYQIIOBFl5ZZUqKqs0/pmP/PqOuRNKb8s/OwCBVehrVVqpX6V2ia0wAADEOzIFIMgqKqtUVeW9jS29bbI6Z7QNc0QAos2+Up8OHv1Gv/J4I+8GVyKzcs/nsRUGaDnn3F8k/SXCYQBAs5CgAyHQpo1p8W0X+rVPXckxrACkg0e/0bHySs++pDamlKR2bIUBACABkaADABAB6alJnm/kvf1mUgSiAQAA0YAEHQCAUGjkKLU+FdtUnNI3zAEBAIBoR4IOtMLhxUtUUlDg3XmoUspiBgxIeI0cpfbfu7uq7bYS7frwPL++zruO6mCP9uGIEAAASdLQv/9Fg7as1vZV/tsxb95Too39z5fkv+oLwUeCDrRCySvPyvfFbqV1TfXrO9q5Un/OS9L/oQIzgABHqSUtHKrsA9/oqx5pfn0He7RX0lWXhiM6AECsamSVVqA3hxszaMtqdTuwQ8oe6NfX7cCO1kSIViJBB1qj7IDSOlao94Q+fl3/b8Vu/TPFdLbH06jADCSORiu1Vznt7JquMW+tiUBkAICY18gqLXUbJA0a1+Jb7u3SS0NeetGvvfCK0ep2YIe23zTZ83mZI0fq9PE/avHrwRsJOtBaqRmeM2Pb549VskQFZiDBNV2pvU2YIwIAxJUAq7SCrXp5u5Tl0ecrKpIkEvQgIkEHWqG8skoVlVUa7zEzdsydUHpb/mkBoFI7ACD2fXL2Jfrk7Es8/38WaFYdrUcWAbRCRWWVqqqcZ19622R1zmgb5ogAREyAfYBUagcAAC0Vlwm6mY2SNKpfv36RDgVxrE0b83wncepK/+qXAOJYgH2Az3boof9un6xsj4KR1544rvTkduGKEAAAxIi4TNCdc8slLc/Pz7810rEAABKAxz7AhfPHymc7le3x8PTkdurUrlN4YgMAADEjLhN0AADCJVC19up6FD09C0Zu/wN79gAA4XV4Q4lKCo9K7/n/P6jbgR3a26VXBKJCQyToQCCNnC95tE25DiZx1jmAwNXaqUcBAIgmJYVH5dtfrrRu/n17u/TSxv7n6+rwh4UGSNCBQBo5X/JgUpJ85v00zjoHEo9XtXbqUQAAok1a11T19jjr/N89TiZCZJCgA40JcL7kNwuHysRZ50DCaGRFzYa2u7XstA7KaLCi5ox3/65Li5I8l7P7ioqUlpMTklABAEDsIkEHAgi0r1SSbqhySmoTYAodQPxpZEXNstM66J8pprMbtF9alKTueyukLP/bpeXkKHPkyNDECgAAYhYJOhBAoH2lkpTUxpSS1CbMEQGIlH2lPh10vfSr8gf9+j5zjypdyX4rarb/YbKUJc+lhAAAAF5I0IFA/uFTxhff6PFev/frOnTgG+3vnh6BoABEQmNv2FEMDgAABAsJOhCAffGNdKhS8jhxYn/3dH02tLOuCn9YACLEqxCcRDE4AEBsKK+sUkVllcZ7bN8s3FOi3Gz+fxYNSNCBAA63cTpyhvTqxCS/vi2HktU/64wIRAUAAAC0XEVllaqqnGdfbnamrhvcPcwRwQsJOhCgOnNp0gl9Y96F4DhKDdHCzPpKekBSB+fcuEjHE6/+mF6uD9PL/Sq1S9KWQ1vUP6t/BKICAKBl2rQxz9VgiB4k6ECA6sxVaqNk51/4CQgWM3te0khJ+51zA+u0D5c0W1KSpGedc48Guodzbpuk6WbmfQYYmq+Ro9Q+aVei7SkpyvXo4w07AAAQLCToSHiBqjPf4O7gKDWE2gJJv5NUW+bbzJIkzZV0paRdktaa2ZuqTtZ/3eD505xz+8MTagJo5Cg1n6Xp9MqOvGEHAIh6hxcvUUlBgX/HoUopy3/rJqILCToSXqDqzBylhlBzzr1vZn0aNJ8n6fOamXGZ2SJJ1znnfq3q2fZWMbMZkmZIUq9eHpUP0fRRain8LxMAEP1KCgrkKypSWk5O/Y6sJLkzg3/qiK+oSNtvmuzXnjlypE4f/6Ogv168468NQN7Vmd9+k3cYERHdJe2sc71L0vmBHmxmnSTNkjTEzO6vSeT9OOfmSZonSfn5+d4VYhIcR6kBAOJFWk6Oer/0Yr22zY9cHPTXyRzpPXfgKyqSJBL0ViBBR8ILVPzp2hPHlZ7cLkJRAc3jnPtK0u2RjiMe/DG9XB92LldGr3l+fUmH9qhrpnchuEBLCT1nLwAAiCOnj/+RZxLuNaOO5iFBR2JoRfGn9OR26tSuU+hjA+rbLalnneseNW0IsQ/Ty7U9pbLFheACLSVMy8kJOLMAAADghQQdiaEVxZ+2/4F3/hARayWdZWZnqjoxv1HShGDc2MxGSRrVr1+/YNwuLvWuSGpVITivpYQAAAAtRYKOhEDxJ0QjM3tF0iWSOpvZLkm/dM49Z2Y/k/S2qiu3P++c2xyM13POLZe0PD8//9Zg3C8mNbKaJs355LO0MAcEAADwLbISJASKPyEaOed+HKB9haQVYQ4nIez768tqf/gzFaf09es7ltVWR5M6hj8oAACAGjGToJtZX0kPSOrgnBsX6XgQe7wqtUvSUzOPa8AnO7V9ef0l7RR4AuLPwaPfaIfrrSc6/R+/vp2pT/BmHQAAiKiwJOhm9ryqz+/d75wbWKd9uKTZql7G+axz7tFA96g5E3i6mXmvTQQaEahSuyRdu3qnuu5zUlb9dgo8AfEp0Jt1U1dmRiAaAACAb4VrBn2BpN9Jqq2gY2ZJkuZKulLV5/yuNbM3VZ2sNzzHd5pzbn94QkU8aqw6c3pyO1X260SBJ8Q9isQ1/mbdlkNb1D/L+yg1AACAcAhLgu6ce9/M+jRoPk/S5zUz4zKzRZKuc879WtWz7a1iZjMkzZCkXr16tfY2iEVNFH/qXZHmWZ2Zau1IFBSJa/1RagAAAOEQyT3o3SXtrHO9S9L5gR5sZp0kzZI0xMzur0nk/Tjn5kmaJ0n5+fkueOEi2lH8CYCkVr9ZBwAAEGkxUyTOOfeVpNsjHQeiF8WfAEi8WQcAAGJXJBP03ZJ61rnuUdMGtBrFnwCE4s26w4uXqKSgwLOPEx8AAOF2eEOJSgqPSu/5b9Xk/0uxLZIJ+lpJZ5nZmapOzG+UNCEYN6YQUmKi+BPQuEQZG/+YXq4PO5cro9c8v76kQ3vUNbPlY0FJQUHAP3g48QEAEG4lhUfl21+utG7+ffx/KbaF65i1VyRdIqmzme2S9Evn3HNm9jNJb6u6cvvzzrnNwXg9CiElJoo/AY1LlLExVGNBWk4Opz0AAKJGWtdU/r8Uh8JVxf3HAdpXSFoRjhgQJyj+BKAZelckMRYAAICYEzNF4gCJ4k8A6gjwhl2a88lnaREICAAA4NTEZYKeKPssExGV2gGcFOgNO96sAwAAsSouE/RE2WeZiFpb/IkKzED8CfSGHW/WAQCAWBWXCTriV2uLP1GBGYi/1UWB3rBrbaV2AACASCNBR3RqZG9pawvBUYEZiS7eVhcFesOOUxsAAECsIkFHdNr4mrR3o9RtUL1mn6WppE3HyMQEIOpQrR0AAMSTuEzQ420ZZyLaV+rTQddLvyp/sF77Z+5RpafE5a8tAC9NHK1ItXYAQNxq5P+BKi+TUjPCGw/CIi4znXhbxpmIFlWV6oOsb7Qz9Yl67W1sjzqn88YLkCjCebQixSQBAFElwIpSSdXJeUaX8MeEkIvLBB2x78P0cu1MqVJudmaDnjz2lgIJJJxHK1JMEgAQdboNkqa+5d/+3uTwx4KwIEFH1GJvKYDWHq3YWhSTBABEi8MbSlRSeNQzGW9sZdfC1Tu0bMNuv/Z7yyuVnpoU9DgRXCToiBz2lgJoQmuPVgQAINaVFB6Vb3+50rr59zW2smvZht0q3FPitxI1PTVJndsHb+UZQiMuE3SKxMWGcO4tBRC7YyOraQC0lJn1lPSipDMkOUnznHOzIxsV0HJpXVNbtbIrNztTi2+7sH7j/A5BigqhFJcJOkXiYsOiqlJ9cEYX7Wx7hl+fz8rVI/07EYgKiF9ROzaymgZA8J2Q9P845/5mZqdJ+sTM3nXOFUY6MABoTFwm6IgNgQvBSRSDAxIHq2kABJtzbo+kPTWfl5rZZ5K6SyJBBxDVSNARUcFcusoRSUBsYjUNgFAysz6Shkha7dE3Q9IMSerVq1d4AwMADyToCK0wLl3liCQgNrGaBkComFl7Sa9Luts5V9Kw3zk3T9I8ScrPz3dhDg8A/JCgI6TCvXSVI5KA2EQhOADBZmYpqk7O/+Cc+69IxwMAzRGXCXqsViqORyxdBRBN2AoDJAYzM0nPSfrMOfdkpOMBgOaKywQ9aisVJyCWrgKQpNWv/kbtt77h2ZeW5ZOvTXgqtbMVBkgYwyTdJGmjmW2oafuFc25F5EICgKbFZYKO6MLSVSA6RHJ10ce7F+uTrBLPRHx7Sop6JHcOWyxshQHin3NulSSLdBwA0FIk6Dh1nGEMxIRIri76ML1c21NSlJs9xK8vV2I1DQAAgEjQEQScYQygOVhNAwBAfY3WRtlfrrSuqWGOCJFGgo5TRiE4AAAAoOUarY3SNVWZue0jEBUiiQQdp4xCcAAksd0FAIBWCFgbZf414Q8GEUeCjqBg6SoAtrsAAACcmrhM0DkHPQSiZGaMM4yB6MV2FwAAwmPh6h1atmG3Z1/hnpIAK1sRC+IyQecc9OCLlpkxzjAGohfbXQAACI9lG3YHTMRzszN13eDuEYgKwRCXCTqCL5pmxjjDGIhebHcBAKAFSvdKZQe895vv3Sh1GxTwqbnZmVp824UhDA6RQIKOZmFmDECtAFteoqUQHFthAAAxo+yAVF7m3ddtkDRoXHjjQcSRoKPZmBkDIAXe8hItheDYCgMAiCmpGdLUtyIdBaIECTrqi/KZMQCRF2jLSzQVgmMrDAAAiEUk6KjnubX/qf9pc8gvGS9OSVFWVcfIBAUgKIJ1wkXgLS9sdwEAADgVJOio5+2kYypOTpHZv9RrN0mDev4wMkEBCIpgnnDBlhcAAJqn0doo+8uV1jU1zBEhmpGgw0+fE0laMuP1SIcBAAAAxLxGa6N0TVVmbvsIRIVoRYIOAPCz+tXfqP3WNzz70rJ88rWhJgUAAM0VsDaK1/FqSGhxmaAHa59lvIqFP7wDLQXiiCQgPD7evVifZJV4jgfbU1LUI7lzBKICAACIb3GZoAdzn2U8ioU/vAMtBeKIJCA8Pkwv1/aUFOVmD/Hry5UoBgcAQIgtXL1Dyzbs9uwr3FPiUawV8SAuE3Q0Llb+8OaYJCCyKAQHAEDkLNuwO2AinpudqesGd49AVAg1EvQExR/eAAAAQHTLzc7U4tsujHQYCCMS9Hi1br608TXPrjTn8zvnHEDiiYV6FI2hVgUAICaU7pXKDngXhNu7Ueo2KPwxIWqRoMepfX99We0Pf6bilL5+fcey2upoUsfwBwUgqsRCPYrGUKsCABATyg5I5WXefd0GSYPGhTceRDUS9Di1qKpUH5zRRTvbnuHX57Ny9Uj/TgSiAhBNYqUeRWOoVQEAiBYBV3btL1da1wxp6lsRiAqxhgQ9Tn2YXq6dKVUBqjvmxcQf3gBCj3oUAAAER8CVXV1TlZnbPkJRIdaQoMcx/vAGAAAAwsdzZZfX3nMgABL0GBbrBZ4ARMbxPUXa/MjFjBMAAERYrJ91/uo/XtWKbSv82m88VKRO7TqpdwRiinUk6DEs1gs8BdqnI1GFGQilPclV+t+dj8bEOAEAQDyLhbPODye9ryNJazR1pX+M6/atkyTln5Ffr720olSlFaWau3Kq5z1H9B2hG757Q/CDjQMk6DEs1gs8BdqnI1GFGQilNm3TldFrSEyMEwAAxLtoOOs80Ey4JO1JWVfzWb5fX/4Z+Z7J9rpnr9ZXx7/yvN+WQ1skiQQ9ABL0GBfr+8ypwAyEj5mNkjSqX79+MT1uAAAQlQKddx4DZ52v2LZCWw5tUf+s/n596VXfVYfK8zR/+H3Nvl+Xdl3UpV0Xz783pgaYVUc1EvRYsG6+tPE1v+Y055PP2D8KoHmcc8slLc/Pz7810rEAABCLGt2i+cVupXWs8O+IkrPOX9VRrbAyySNBPpmceyXU45/5KOixbDm0JWCinujL30nQY8Bza/9T/9PmkF8yXpySoqyqjpEJCgAAAEgwjW7R7JqqzNwsv/POF67eoWWf7JY+8U90w1kIboWVaYvK5T9HLvXP6h+2bW+NvQ7L3+M0Qa+7jDMevJ10TMXJKTL7l3rtJmlQzx9GJigACAOKSQIAok3ALZoBjlMLdyG4QPvJq5Pz1Ihvc7vhuzcETMBZ/h6nCXo8LuPscyJJS2a8HukwACCsKCYJAIgH4SwEF2g/eX+laoTLCEsMaL24TNABAPGDYpIAANTXWNX1gPvJA8zwI7qQoEeJ1a/+Ru23vuHZl5bl8zzrHAAAAEAYBarULoW1WntjVdfDuZ8cwUeCHiU+3r1Yn2SVeCbi21NS1CO5cwSiAgAAABJLqyq1S9qXcZaWfX2O/tSg6nlrC8G1apYcMY8EPUp8mF6u7Skpys0e4teXq8arHUYzCjwBAAAglrSmUrsk/eszH1Un4+n121tbCC5RZ8kT/Qg2EvQo0rsiKe7eBaPAEwAAAGJNSyu1n9TSYnDMktfHEWwk6OG1br608TXPrjTn8zvnPF5Q4AkAAAAxo5F95uW7P9XWNn30q2eCc6Z5os6SB8IRbCToYfXc2v/U/7Q55JmIF6ekKKuqY/iDAgAAABJMa/eZb23TR6+Ve8+QB1rKziw5WoIEPYzeTjqm4uQUmf2LX59JGtTzh+EPCgAAAEgwrd1nfnLmvCXL2JklR0uQoIdZnxNJWjLj9UiHAQBRg2KSAICwK92rtI4V6n3ZV35d5bsPaGubDN3ewmXsgWbKmSVHS7SJdAAAgMR2chbDC8UkAQAhUXZAKi/z7GrNMnbp25nyhpglR0swgx5kj78yQ+tK13j27UyuUM8TKWGOCACiH8UkAQDB1tgKreP7vlHV6W01vvxBv77C8pKA1dirZ8nn6d2V/vdkphzBQIIeZOtK1wRMxHueSFH+aedFICoAAAAgsZS88mx1wbeuqX59qR0rdKSn9wlK2T026Gjmp5q6cp5f37p96yRJ+Wfk+/UxU45gIEEPgZ4nUrRkxoZIhwEAAAAkrPKSfUrpUK6jl57u17eibZL+1KG9snv4J+GF+9ZJx6Wumf5JeP4Z+RrRd0Tcn8WNyCFBxymjwBMAAAAi5W//fqvSVn/s197mUIV8Hdvq/+/0f/z6ilOfUGXybmV73I8kHJFEgt4Kq1/9jdpvfcOzLy3LJ18b7+Uy8arRYyoo8AQAAIBTtW6+tPE1z65OH30m39cpqsyqv5T9q87Jen/waUrv7T9LnnRoj3KzBrBfHFGHBL0VPt69WJ9klXgm4ttTUtQjuXMEooosCjwBAADglDSShP/xw02q/KKdKs3/EKpuR9pq9xkp+q97h9a/3b51ko7Kf6E6+8URvUjQW+HD9HJtT0lRbvYQv75ciX/sAAAAgIfGVqLu2bYzYBJ+5q50SVJRz3Z+fdvPkDYO6eTXzlJ1xCIS9FbqXZHEkhgAAAAkrkZmvJ/zHdbbScf82i/69JgGFLVpcRJe1FP66qILdcv//p3n641pSdxAFCNBb0Sgd/gScZ85AAAA4lNjs9p/TC/Xh+nlnn0ZVWWSpLI2GX5939lSoR8VVim9yuq1n7krSZK041/a+z1nx79ISVddqjH/+liL4gfiScwk6GY2WtI1kjIlPeeceyfUrxlor3mi7jMHEH0iMTa2Bqc9AAg3MxsuabakJEnPOucejXBIQfP4KzO0rnRN0O6XUVUmZQVItAu9E+1qKapUsk5Ykl9Pzs5vJEnp5zbYAZ4tZY4cqQHjfxSM0IG4E5YE3cyelzRS0n7n3MA67c0eOJ1zSyUtNbPTJT0hKeR/hAbaa84+cwDBEKtjY2tw2gOAcDKzJElzJV0paZektWb2pnOuMNBzth0o1I/mDQ5ThKem8aS5NVKkNilKSkn16+n1zwCJdlO6VSfip5OIAy0Srhn0BZJ+J6m2zHeggVPVf5D+usHzpznn9td8/mDN88KCveYAQmiBYnRsbA1OewAQRudJ+tw5t02SzGyRpOskBUzQOx12unmJ91LuaHPmLiepFUlza2SRaMeVvRul+de06CkzvzqiY+WV2vyI/0qJQGzHEelQpQp/MKilEQZ0Q0qlvjGnFU/kBu2e0cicc+F5IbM+kgpOzhKZ2YWSHnLOXVVzfb8kOeca/gF68vkm6VFJ7zrn/tjI68yQNKPmcqCkTcH6Gk5BZ0kHiUEScTREHPXFchy9nXNdWvpCjI0x+/OOxxgk4miIOOprbRytGh9PhZmNkzTcOXdLzfVNks53zv2sweMYGwMjjuiKQSKOhmI9Ds+xMZJ70LtL2lnnepek8xt5/J2SrpDUwcz6Oef+w+tBzrl5kuZJkpmtc86F4a3FxkVDHNEQA3EQB3E0C2NjAsYRDTEQB3HEShzBxNhIHLESA3EkThwxUyTOOTdH0pxIxwEA0YSxEQA87ZbUs851j5o2AIhq/gcQhg8DJwD4Y2wEgFO3VtJZZnammaVKulHSmxGOCQCaFMkEPRwD57wg36+1oiGOaIhBIo6GiKM+4mBsjIRoiCMaYpCIoyHiqC9a4miSc+6EpJ9JelvSZ5KWOOc2N/G0aPn6iKO+aIgjGmKQiKOhuIwjLEXizOwVSZeoegP9Pkm/dM49Z2YjJD2l6urEzzvnZoU8GACIEoyNAAAAqCtsVdwBAAAAAEBgkVziDgAAAAAAasR0gm5mN5jZZjOrMrOApe3NrNjMNprZBjNbV6c9y8zeNbOtNf89PVRxmFlPM/uzmRXWPPauOn0Pmdnumvg21CxvDUkcNY8bbmZbzOxzM/t5nfZgfT+avI+Z9a/z9W4wsxIzu7umL1jfj2Z9PWH4/WjO9yNkvx+Bft51+s3M5tT0/93Mzmnuc4MYw8Sa195oZn81s/9Vp8/z5xOiOC4xsyN1vtczm/vcaMLY2PI4ah7H2Fj/cYyNIR4bmxlHyMfHRBkbpegYHxkb/e7P2NjCOBgb43xsdM7F7IekAZL6S/qLpPxGHlcsqbNH++OSfl7z+c8lPRaqOCRlSzqn5vPTJP1DUm7N9UOS7g3H90PVe1r/KamvpFRJn9aJI1jfjxbdpyamvZJ6B/n70aw4wvD70eR9QvX70djPu85jRkj6b0km6QJJq5v73CDGcJGk02s+v/pkDI39fEIUxyWSClrz3Gj6aM5YEKbffcbGU/i+irExZL8fzRwPQjo2tiCOkI6PzYzhEsXB2FgTc8THx+bEEKrf/VbEwdgYxt+N5t4nVL8fzRwPGBu/fcwlCsHYGNMz6M65z5xzW07hFtdJeqHm8xckjQ5VHM65Pc65v9V8XqrqiqLdW/N6pxKHpPMkfe6c2+acK5e0SNXfBylI349W3OdySf90zm1v5esFK45gP7/Z9wnh70djP++68b3oqn0sqaOZZTfzuUGJwTn3V+fc4ZrLj1V9tFiwncrXE6zvRVgwNrY8DjE2hvP5zb5PnI+NzYojDONjwoyNUnSMj4yNfhgbW3gfxsb4HhtjOkFvASfpHTP7xMxm1Gk/wzm3p+bzvZLOCEcwZtZH0hBJq+s0/6xmmcbzrV0S00zdJe2sc71L3/6DDtb3o6X3uVHSKw3agvH9aG4cof79aNF9gvz70djPu6nHNOe5wYqhrumqfmf2pEA/n1DFcaGZfWpm/21meS18bqxhbPwWY6M/xsbQjo3NjaOuUIyPjI3eomZ8ZGz0w9hYB2OjpDgbG5NbGmm4mdkfJXXz6HrAObesmbe52Dm328y6SnrXzIqcc+/XfYBzzpmZC3EcMrP2kl6XdLdzrqSm+feSHlb1L9PDkn4jaVoo42jKqXw/WnifVEnXSrq/TnNQvh8tiCOkvx8tvM8p/X7EOjO7VNWD7MV1mpv8+QTR31S9ZO6oVe/ZWirprBC91ilhbAxNHE1hbGRsjJQIj48xMzZK0TE+MjY2P44W3oexsf59GBvjcGyM+gTdOXdFEO6xu+a/+83sDVUvO3hf0j4zy3bO7bHqpRn7QxmHmaWo+h/RH5xz/1Xn3vvqPOY/JRWEMI7dknrWue5R0yYF6fthZs2+j6r3jPyt7vcgWN+P5sYR6t+P5sYRjN8PD439vJt6TEoznhusGGRmZ0t6VtLVzrmvTrY38vMJehx1/ucm59wKM3vazDo392sIJ8bGoMfB2Oh/D8bG0I6NzY0j1ONjXI2NUnSMj4yNzY+DsbF1cTA2xu/YGPdL3M0sw8xOO/m5pB9K2lTT/aakKTWfT5EUtHcSPeIwSc9J+sw592SDvuw6l2PqxBcKayWdZWZn1rwLeaOqvw9S8L4fLbnPj9VgmVIQvx9NxhGm34/mxBGq34/Gft5145ts1S6QdMRVL61qznODEoOZ9ZL0X5Jucs79o057Yz+fUMTRreZnITM7T9Vj5FfNeW6sYWz0w9hY/7UYG0M/NjYrjjCMj4yNDUTD+MjYGBBjoxgbpTgfG90pVjyM5Ieqf+l2SfpG0j5Jb9e0f0fSiprP+6q6ct6nkjareknPyed3kvQnSVsl/VFSVgjjuFjVS03+LmlDzceImr6XJG2s6XtTUnao4qi5HqHqao//DNH3w/M+HnFk1PwSd2jw/GB9P5qMI0y/H82JI2S/H14/b0m3S7q95nOTNLemf6PqVHIN9LvSiu9BUzE8K+lwna99XVM/nxDF8bOa1/lU1QVHLgr29yIcH2JsbHEcjf2Mg/j9YGxseRxxPTY2M46Qj4/NiCEuxsaaeCM+PjYzBsZGxkbGxgQdG63mBgAAAAAAIILifok7AAAAAACxgAQdAAAAAIAoQIIOAAAAAEAUIEEHAAAAACAKkKADAAAAABAFSNABAAAAAIgCJOgAAAAAAEQBEnTENTPrY2bHzWxDzXUPM1tmZlvN7J9mNtvMUhs85z/MbFjN50cb9N1sZr8zs3ZmtsHMys2sc9i+IAA4BR5jYmXNWHbyo08z7sEYCSCuMDYimpCgIxH80zk32MxM0n9JWuqcO0vSdyW1lzSrweMvkPRxYzd0zh13zg2W9GUI4gWAUPpnzfglScedc4PrfBQ34/mMkQDiEWMjogIJOhLJZZJ8zrn5kuScq5R0j6RpZpYuSWY2QNI/avoAICGZ2SQzW1Mz0/OMmSXVtDNGAkhYjI0Ih+RIBwCEUZ6kT+o2OOdKzGyHpH6S/i7pakkr6zyk3cnlTjWyJL0Z4jgBIFzqjnFfOOfG1PyhOV7SMOdchZk9LWmipBfFGAkgMTA2ImJI0IH6rpI0tc718TrLnWRmN0vKD3NMABAq9ca4GpdLGippbfXOILWTtL+mjzESQCJgbETEkKAjkRRKGle3wcwyJfWS9HnNMveOzjn2BQFIZCbpBefc/fUaGSMBJDbGRoQFe9CRSP4kKd3MJktSzb6h30ha4Jw7JulSSX+OYHwAEA3+JGmcmXWVJDPLMrPeYowEkNgYGxEWJOhIGM45J2mMpBvMbKukf0jySfpFzUMa7h8CgITjnCuU9KCkd8zs75LelZQtxkgACYyxEeFi1TkLEJ9qzq0scM4NbMZj/ybpfOdcRQvuXywp3zl3sNVBAkCYtGRM9HguYySAuMTYiGjCDDriXaWkDg0qaXpyzp3T3MHVzE5W50yRVHVKEQJA+DR7TGyIMRJAHGNsRNRgBh0AAAAAgCjADDoAAAAAAFGABB0AAAAAgChAgg4AAAAAQBQgQQcAAAAAIAqQoAMAAAAAEAVI0AEAAAAAiAIk6AAAAAAARIH/C/1lyKrrDM5lAAAAAElFTkSuQmCC", "text/plain": [ "<Figure size 1008x360 with 3 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "figsize(14,5)\n", "FeHs= numpy.linspace(-1.525,1.025,52)\n", "OHs= numpy.linspace(-1.525,1.025,52)\n", "oz.default()\n", "oz.tau_SFH= 6.*u.Gyr\n", "oz.sfh= 'exp'\n", "y= [oz.O_H_DF(f)/4. for f in OHs]\n", "subplot(1,3,1)\n", "step(OHs,y)\n", "y= [oz.Fe_H_DF(f)/4. for f in FeHs]\n", "subplot(1,3,2)\n", "step(FeHs,y)\n", "subplot(1,3,3)\n", "step(FeHs,y,\n", " label=r'$\\tau_{\\mathrm{SFH}} = 6\\,\\mathrm{Gyr},\\, \\mathrm{Exp}$')\n", "oz.tau_SFH= 40*u.Gyr\n", "y= [oz.O_H_DF(f)/4. for f in OHs]\n", "subplot(1,3,1)\n", "step(OHs,y)\n", "y= [oz.Fe_H_DF(f)/4. for f in FeHs]\n", "subplot(1,3,2)\n", "step(FeHs,y)\n", "subplot(1,3,3)\n", "step(FeHs,y,\n", " label=r'$\\tau_{\\mathrm{SFH}} = 40\\,\\mathrm{Gyr}\\,, \\mathrm{Exp}$')\n", "oz.tau_SFH= 2.5*u.Gyr\n", "y= [oz.O_H_DF(f)/4. for f in OHs]\n", "subplot(1,3,1)\n", "step(OHs,y)\n", "y= [oz.Fe_H_DF(f)/4. for f in FeHs]\n", "subplot(1,3,2)\n", "step(FeHs,y)\n", "subplot(1,3,3)\n", "step(FeHs,y,\n", " label=r'$\\tau_{\\mathrm{SFH}} = 2.5\\,\\mathrm{Gyr},\\, \\mathrm{Exp}$')\n", "oz.sfh= 'lin-exp'\n", "y= [oz.O_H_DF(f)/4. for f in OHs]\n", "subplot(1,3,1)\n", "step(OHs,y)\n", "y= [oz.Fe_H_DF(f)/4. for f in FeHs]\n", "subplot(1,3,2)\n", "step(FeHs,y)\n", "subplot(1,3,3)\n", "step(FeHs,y,\n", " label=r'$\\tau_{\\mathrm{SFH}} = 2.5\\,\\mathrm{Gyr},\\, \\mathrm{Lin\\!-\\!Exp}$')\n", "subplot(1,3,1)\n", "xlabel(r'$[\\mathrm{O/H}]$')\n", "ylabel(r'$\\mathrm{fraction}$')\n", "xlim(-1.5,0.6)\n", "ylim(0.01,50.)\n", "yscale('log')\n", "subplot(1,3,2)\n", "xlabel(r'$[\\mathrm{Fe/H}]$')\n", "xlim(-1.5,0.6)\n", "ylim(0.01,20.)\n", "yscale('log')\n", "subplot(1,3,3)\n", "xlabel(r'$[\\mathrm{Fe/H}]$')\n", "xlim(-1.5,0.6)\n", "ylim(0.0,10.)\n", "legend(frameon=False)\n", "tight_layout();" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsgAAAFgCAYAAACmDI9oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABDLklEQVR4nO3de3xU5b33/c/PxHCSIBAQylE2SkjABgkFRetZEIOA0GoBQRKLWOut9vapWn1R79snbvS2PkILbtke0FqKqC2Im+2h0t6VVjm0YIEUKtWgIAfByjkiye/5I8M4SSZkkkzmlO/79ZpXZl1rzVq/JGTxnWuudS1zd0REREREpNIp8S5ARERERCSRKCCLiIiIiIRQQBYRERERCaGALCIiIiISQgFZRERERCSEArKIiIiISAgFZBGRFGBmz5jZHjPbWK39NjPbbGabzOyRkPZ7zWyrmW0xsxGxr1hEJHGlx7sAERGJigXAL4DnTzSY2SXAGOCb7v6lmXUOtOcA1wO5wDeA35nZ2e5eHvOqRUQSkHqQRURSgLv/Efi8WvMtwCx3/zKwzZ5A+xhgkbt/6e4fAVuBb8WsWBGRBJfUPchmNhoY3bZt2++fffbZ8S5HRCRif/nLX/a6e6cmPszZwIVmVgyUAXe5+xqgG/BeyHbbA201mNl0YDpAmzZtBmdnZzdtxSIiUdTQc21SB2R3XwYsy8/P//7atWvjXY6ISMTMbFsMDpMOdACGAUOAxWbWpz47cPf5wHyA/Px817lWRJJJQ8+1GmIhIpK6tgO/8UqrgQogC9gB9AjZrnugTUREUEAWEUllS4BLAMzsbCAD2Au8ClxvZi3M7EzgLGB1vIoUEUk0ST3EQkREKpnZr4GLgSwz2w78FHgGeCYw9dsxYKq7O7DJzBYDJcBx4FbNYCEi8jUFZBGRFODu36tl1eRati8GipuuIhGR5KUhFiIiIiIiIRSQRURERERCKCCLiIiIiIRQQBYRERERCaGALCIiIiISQgFZRERERCSEArKI8MUXXzBhwgSys7Pp378/7777bpX1u3fvZuLEifTp04fBgwdz3nnn8dvf/jZqx09LSyMvLy/4mDVrVtT2LSIiUl+aB1mib+2zsOHlmu0DJ0D+tNjXI3W6/fbbGTlyJC+//DLHjh3jyJEjwXXuztixY5k6dSoLFy4EYNu2bbz66qsR7dvdcXdOOaX29+OtWrVi/fr1jfoeRJoVnWdFmpR6kCX6NrwMuzZUbdu1IfzJXDhw4ACDBg0iNzeX1q1bk5eXx7Bhw6ioqIjJ8ffv388f//hHioqKAMjIyOD0008Prl+xYgUZGRnMmDEj2NarVy9uu+02AGbOnMnjjz8eXHffffcxe/Zs+vXrx5QpUxgwYACffPJJg2pbs2YN55xzDmVlZRw+fJjc3Fw2btxIaWkp2dnZTJo0if79+zNhwoQqoV4k5ek8K9Kk1IMsTaPLQJj2X18vP3t1/GqJ0P9atomSTw9EdZ8538jkp6NzT7pNZmYm69atY/Xq1RQXF7N06dKoHf/CCy/k4MGDNdofffRRLr/8cgA++ugjOnXqxLRp03j//fcZPHgws2fPpk2bNgBs2rSJc889t9ZjFBYWcu2113LHHXdQUVHBokWLWLx4MXfeeSfPPfccw4YNq7POo0ePkpeXF1y+9957ue666xgyZAjXXHMN999/P0ePHmXy5MkMGDCA0tJStmzZwtNPP83w4cMpLCxk3rx53HXXXfX8CYkksSQ8z4okCwVkkQSxceNGcnO/DtObNm2iuLiYrKwsunfvTufOnVm8eDE9e/Zk5MiRfPHFF2RlZVFQUMDmzZtZtGgRDzzwQJV9vvPOO3Ue9/jx4/z1r3/l5z//OUOHDuX2229n1qxZPPjgg2G3v/XWW1m5ciUZGRmsWbOG3r1707FjR9atW8fu3bsZNGgQHTt2pFevXhGFYzj5EIuZM2cyZMgQWrZsyZw5c4LtPXr0YPjw4QBMnjyZOXPmKCCLiEhUKCCLBNTV09vUSkpKqvTUvvnmm9xwww1cddVVACxYsIAf/OAHFBQUBJfrEkkPcvfu3enevTtDhw4FYMKECVUuksvNzeWVV14JLs+dO5e9e/eSn58fbLvppptYsGABu3btorCwECDYA91Y+/bt49ChQ3z11VeUlZUF92tmVbarviwiItJQGoMskiA+/fRTunTpElwuKipi5cqVFBUV8eSTTwIwb948ZsyYwfvvv19luXrP8QnvvPMO69evr/E4EY4BunTpQo8ePdiyZQsAb7/9Njk5OcH1l156KWVlZTzxxBPBturjfceNG8frr7/OmjVrGDFiRK3f42WXXcaOHTsi/IlUuvnmm3nwwQeZNGkSd999d7D9448/Ds62sXDhQi644IJ67VdERKQ26kEWSRAjRoygqKiIBQsWcNFFF5GZmUlxcTEAV199NePHj6/Sg7xu3brg8okhFg3185//nEmTJnHs2DH69OnDs88+G1xnZixZsoQ777yTRx55hE6dOtGmTRsefvjh4DYZGRlccsklnH766aSlpYU9RkVFBVu3bqVDhw411lUfgzxy5EhmzZrF888/z6mnnsrEiRMpLy/n/PPPZ8WKFfTp04d+/foxd+5cCgsLycnJ4ZZbbmnw9y8iIhJKAVkkQUydOpWpU6cGl5csWcIbb7xBeno6OTk5J50mrbHy8vJYu3Ztreu7du160gBeUVHBe++9x0svvQRA79692bhxY5VtSkpKGD9+PK1atarx+vLy8rD7nTJlClOmTAEq50petWoVAKWlpaSnp/PCCy+c/BsTERFpAAVkkQQ1duxYxo4dW+v6G2+8Mfg8Ozu71mEWTa2kpISCggLGjRvHWWedVet2AwYM4LHHHothZSIiIg2jgCwijZKTk8OHH34Y02OG66EWERGJFl2kJyIiIiISQgFZRERERCSEArKIiIiISAgFZBERERGREArIIiIiIiIhFJBFREREREIoIIuIiIiIhFBAFhEREREJkZAB2czGmtl/mtmLZnZlvOsRaQ7Ky8sZNGgQBQUFwbbXX3+dfv360bdvX2bNmlXjNbt372bixIn06dOHwYMHc9555/Hb3/42qnWlpaWRl5cXfISrQ0REJJpidic9M3sGKAD2uPuAkPaRwGwgDXjK3We5+xJgiZm1Bx4F3oxVnSLN1ezZs+nfvz8HDhwAKgPzrbfeyltvvUX37t0ZMmQI11xzDTk5OQC4O2PHjmXq1KksXLgQgG3btvHqq69GfEx3x9055ZTa36u3atWK9evXN/wbExERqadY9iAvAEaGNphZGjAXuArIAb5nZjkhm9wfWC+Ssg4cOMCgQYPIzc2ldevW5OXlMWzYMCoqKmJWw/bt2/mv//ovbrrppmDb6tWr6du3L3369CEjI4Prr7+epUuXBtevWLGCjIwMZsyYEWzr1asXt912GwAzZ87k8ccfD6677777mD17NqWlpfTr148pU6YwYMAAPvnkk3rXu2bNGs455xzKyso4fPgwubm5bNy4kdLSUrKzs5k0aRL9+/dnwoQJHDlypAE/keRjZs+Y2R4zq3EPbjP7n2bmZpYV0navmW01sy1mNiK21YqIJLaY9SC7+x/NrHe15m8BW939QwAzWwSMMbO/A7OA/3b3v8aqRmnm/vse2LUhuvvsMhCuOvmQgMzMTNatW8fq1aspLi6uEkIb68ILL+TgwYM12h999FEuv/zy4PIdd9zBI488UmXbHTt20KNHj+By9+7dWbVqVXB506ZNnHvuubUeu7CwkGuvvZY77riDiooKFi1axOrVqzl48CAffPABzz33HMOGDavzezh69Ch5eXnB5XvvvZfrrruOa665hvvvv5+jR48yefJkBgwYQGlpKVu2bOHpp59m+PDhFBYWMm/ePO666646j5MCFgC/AJ4PbTSzHsCVwMchbTnA9UAu8A3gd2Z2truXx6xaEZEEFrOAXItuQGj30XZgKHAbcDnQzsz6uvt/VH+hmU0HpgP07NkzBqWKNK2NGzeSm5sbXN60aRPFxcVkZWXRvXt3OnfuzOLFi+nZsycjR47kiy++ICsri4KCAjZv3syiRYt44IEHquzznXfeqfO4r732Gp07d2bw4MH84Q9/aHD9t956KytXriQjI4M1a9bQu3dvOnbsyLp169i9ezeDBg2iY8eOHDx4kF69ekUUjqH2IRYzZ85kyJAhtGzZkjlz5gTbe/TowfDhwwGYPHkyc+bMaRYBuZZOCID/D/gxEPrOawywyN2/BD4ys61Udli82+SFiogkgXgH5LDcfQ4wp45t5gPzAfLz8z0WdUmKq6Ont6mVlJRU6ZF98803ueGGG7jqqqsAWLBgAT/4wQ+CF9EtWLCgzn1G0oP8pz/9iVdffZXly5dTVlbGgQMHmDx5MrfeemuV4Q/bt2+nW7duweXc3FxeeeWV4PLcuXPZu3cv+fn5wbabbrqJBQsWsGvXLgoLC4Ptbdq0qbP2uuzbt49Dhw7x1VdfUVZWFtynmVXZrvpyc2JmY4Ad7v5+tZ9DN+C9kOXtgbZw+1BnhIg0O/GexWIH0CNkuXugTaTZ+fTTT+nSpUtwuaioiJUrV1JUVMSTTz4JwLx585gxYwbvv/9+leXqPccnvPPOO6xfv77GI3R4xb//+7+zfft2SktLWbRoEZdeeikvvPACQ4YM4YMPPuCjjz7i2LFjLFq0iGuuuSb4uksvvZSysjKeeOKJYFv18b7jxo3j9ddfZ82aNYwYUfcw18suu4wdOyI7Bdx88808+OCDTJo0ibvvvjvY/vHHH/Puu5UdoQsXLuSCCy6IaH+pxsxaAz8BZjZmP+4+393z3T2/U6dO0SlORCTBxbsHeQ1wlpmdSWUwvh6YGN+SROJjxIgRFBUVsWDBAi666CIyMzMpLi4G4Oqrr2b8+PFVepDXrVsXXD4xxCKa0tPT+cUvfsGIESMoLy+nsLCwyhAQM2PJkiXceeedPPLII3Tq1Ik2bdrw8MMPB7fJyMjgkksu4fTTTyctLe2kx6uoqGDr1q106NChSnv1McgjR44kJyeHU089lYkTJ1JeXs7555/PihUr6NOnD/369WPu3LkUFhaSk5PDLbfcEp0fSPL5N+BM4ETvcXfgr2b2LdQ5ISJyUrGc5u3XwMVAlpltB37q7k+b2Q+BN6ic5u0Zd98Uq5pEEsnUqVOZOnVqcHnJkiW88cYbpKenk5OTc9Kp0KLl4osv5uKLLw4ujxo1ilGjRtW6fdeuXU8azCsqKnjvvfd46aWXgm29e/dm48YaEy1QUlLC+PHjadWqVZX28vLw141NmTIFqJwn+cTFg6WlpaSnp/PCCy/UWlNz4e4bgM4nls2sFMh3971m9iqw0Mweo/IivbOA1XEpVEQkAcVyFovv1dK+HFjekH2a2WhgdN++fRtTmkhCGjt2LGPHjq11/Y033hh8np2dXeswi3gpKSmhoKCAcePGcdZZZ9W5/YABA3jsscdiUFlqqq0TIty27r7JzBYDJcBx4FbNYCEi8rV4D7FoFHdfBizLz8//frxrEZGqcnJy+PDDD2N6zNp6p5uD2johQtb3rrZcDBQ3ZU0iIskq3hfpiYiIiIgkFAVkEREREZEQCsgiIiIiIiEUkEVEREREQiR1QDaz0WY2f//+/fEuRURERERSRFIHZHdf5u7T27VrF+9SRERERCRFJHVAFhERERGJNgVkEREREZEQSX2jEGk6C1d9zNL1O2q0j8nrxsShPeNQkTSVTz75hClTprB7927MjOnTp3P77bfX2K537960bduWtLQ00tPTWbt2bZX1u3fv5s477+S9996jffv2ZGRk8OMf/5hx48ZFrda0tDQGDhwYXL7++uu55557orZ/ERERUECWWixdv4OSnQfI6ZoZbCvZeQBAATnFpKen87Of/Yxzzz2XgwcPMnjwYK644gpycnJqbPv73/+erKysGu3uztixY5k6dSoLFy4EYNu2bbz66qsR1+HuuDunnFL7B1utWrVi/fr1Ee9TRESkITTEQmqV0zWTF28+L/gIDcsSPQcOHGDQoEHk5ubSunVr8vLyGDZsGBUVFTE5fteuXTn33HMBaNu2Lf3792fHjpqfHpzMihUryMjIYMaMGcG2Xr16cdtttwEwc+ZMHn/88eC6++67j9mzZ1NaWkq/fv2YMmUKAwYM4JNPPql3/WvWrOGcc86hrKyMw4cPk5uby8aNGyktLSU7O5tJkybRv39/JkyYwJEjR+q9fxERaX6SugfZzEYDo/v27RvvUiQFPLz6YTZ/vjmq+8zukM3d37r7pNtkZmaybt06Vq9eTXFxMUuXLo3a8S+88EIOHjxYo/3RRx/l8ssvr9FeWlrKunXrGDp0aI11ZsaVV16JmXHzzTczffr04LpNmzYFQ3Y4hYWFXHvttdxxxx1UVFSwaNEiVq9ezcGDB/nggw947rnnGDZsWJ3fz9GjR8nLywsu33vvvVx33XVcc8013H///Rw9epTJkyczYMAASktL2bJlC08//TTDhw+nsLCQefPmcdddd9V5HBERad6SOiC7+zJgWX5+/vfjXYtIY23cuJHc3Nzg8qZNmyguLiYrK4vu3bvTuXNnFi9eTM+ePRk5ciRffPEFWVlZFBQUsHnzZhYtWsQDDzxQZZ/vvPNOxMc/dOgQ48eP5/HHHyczs+anBStXrqRbt27s2bOHK664guzsbL797W+H3dett97KypUrycjIYM2aNfTu3ZuOHTuybt06du/ezaBBg+jYsSMHDx6kV69eEYVjqH2IxcyZMxkyZAgtW7Zkzpw5wfYePXowfPhwACZPnsycOXMUkEVEpE5JHZBFoqmunt6mVlJSUqUX9s033+SGG27gqquuAmDBggX84Ac/oKCgILhcl0h7kL/66ivGjx/PpEmTuPbaa8Puq1u3bgB07tyZcePGsXr16mBAzs3N5ZVXXgluO3fuXPbu3Ut+fn6w7aabbmLBggXs2rWLwsLCYHubNm3q/D7qsm/fPg4dOsRXX31FWVlZcJ9mVmW76ssiIiLhaAyySIL49NNP6dKlS3C5qKiIlStXUlRUxJNPPgnAvHnzmDFjBu+//36V5eo9xye88847rF+/vsYjNBy7O0VFRfTv358f/ehHYfdz+PDhYNA+fPgwb775JgMGDAiuv/TSSykrK+OJJ54ItlUf7ztu3Dhef/111qxZw4gRI2r9OVx22WX1HgN988038+CDDzJp0iTuvvvrNzoff/wx7777LgALFy7kggsuqNd+RUSkeVIPskiCGDFiBEVFRSxYsICLLrqIzMxMiouLAbj66qsZP358lR7kdevWBZdPDLFoiD/96U/88pe/ZODAgcHxvQ899BCjRo1i1KhRPPXUU5SVlQWnazt+/DgTJ05k5MiRwX2YGUuWLOHOO+/kkUceoVOnTrRp04aHH344uE1GRgaXXHIJp59+OmlpaWFrqaioYOvWrXTo0CHs+upjkEeOHElOTg6nnnoqEydOpLy8nPPPP58VK1bQp08f+vXrx9y5cyksLCQnJ4dbbrmlQT8jERFpXhSQRRLE1KlTmTp1anB5yZIlvPHGG6Snp5OTk3PS6c8a44ILLsDdw65bvnx58PmJXuvadO3a9aQhvaKigvfee4+XXnop2Na7d282btwYXC4pKWH8+PG0atUq7D7Ky8vDtk+ZMgWonCd51apVQOUFh+np6bzwwgsnrVtERKQ6BWSRBDV27FjGjh1b6/obb7wx+Dw7O7vWYRaJoKSkhIKCAsaNG8dZZ51V63YDBgzgsccei2FlIiIiNSV1QNY0byLJIScnhw8//DCmx6zeOy0iIhKppL5Iz92Xufv0du3axbsUEREREUkRSR2QRURERESiTQFZRERERCSEArKIiIiISAgFZBERERGREArIIiIiIiIhFJBFREREREIoIIuIiIiIhEjqgGxmo81s/v79++NdikjS+uSTT7jkkkvIyckhNzeX2bNnh92ud+/eDBw4kLy8PPLz82us3717NxMnTqRPnz4MHjyY8847j9/+9rdRrfW0006r0Xb++edHbf9paWnk5eUFH7NmzYravpuamT1jZnvMbGNI2/8xs81m9jcz+62ZnR6y7l4z22pmW8xsRFyKFhFJUEl9Jz13XwYsy8/P/368axFJVunp6fzsZz/j3HPP5eDBgwwePJgrrriCnJycGtv+/ve/Jysrq0a7uzN27FimTp3KwoULAdi2bRuvvvpqxHW4O+7OKafU7337n//853ptfzKtWrVi/fr1UdtfjC0AfgE8H9L2FnCvux83s4eBe4G7zSwHuB7IBb4B/M7Mznb38hjXLCKSkJK6B1kkFRw4cIBBgwaRm5tL69atycvLY9iwYVRUVMTk+F27duXcc88FoG3btvTv358dO3bUax8rVqwgIyODGTNmBNt69erFbbfdBsDMmTN5/PHHg+vuu+8+Zs+eTWlpKf369WPKlCkMGDCATz75pN71n+hVLi0tpX///nz/+98nNzeXK6+8kqNHj9Z7f9WtWbOGc845h7KyMg4fPkxubi4bN26ktLSU7OxsJk2aRP/+/ZkwYQJHjhxp9PEayt3/CHxere1Ndz8eWHwP6B54PgZY5O5fuvtHwFbgWzErVkQkwSV1D7JINO166CG+/PvmqO6zRf9suvzkJyfdJjMzk3Xr1rF69WqKi4tZunRp1I5/4YUXcvDgwRrtjz76KJdffnmN9tLSUtatW8fQoUNrrDMzrrzySsyMm2++menTpwfXbdq0KRiywyksLOTaa6/ljjvuoKKigkWLFrF69WoOHjzIBx98wHPPPcewYcMa+F1+7YMPPuDXv/41//mf/8l3v/tdXnnlFSZPnhzx648ePUpeXl5w+d577+W6667jmmuu4f777+fo0aNMnjyZAQMGUFpaypYtW3j66acZPnw4hYWFzJs3j7vuuqvR30cTKQReDDzvRmVgPmF7oK0GM5sOTAfo2bNnU9YnIpIwFJBFEsTGjRvJzc0NLm/atIni4mKysrLo3r07nTt3ZvHixfTs2ZORI0fyxRdfkJWVRUFBAZs3b2bRokU88MADVfb5zjvvRHz8Q4cOMX78eB5//HEyMzNrrF+5ciXdunVjz549XHHFFWRnZ/Ptb3877L5uvfVWVq5cSUZGBmvWrKF379507NiRdevWsXv3bgYNGkTHjh05ePAgvXr1iko4BjjzzDODAXfw4MGUlpYG111++eXs2rWrxmuKi4sZM2YMUPsQi5kzZzJkyBBatmzJnDlzgu09evRg+PDhAEyePJk5c+YkZEA2s/uA48Cv6vtad58PzAfIz8/3KJcmIpKQFJBFAurq6W1qJSUlVXph33zzTW644QauuuoqABYsWMAPfvADCgoKgst1ibQH+auvvmL8+PFMmjSJa6+9Nuy+unWr7GDs3Lkz48aNY/Xq1cGAnJubyyuvvBLcdu7cuezdu7fKxXw33XQTCxYsYNeuXRQWFgbb27RpU+f3EakWLVoEn6elpVUZYvG73/2uwfvdt28fhw4d4quvvqKsrCxYs5lV2a76ciIwsxuBAuAydz8RcHcAPUI26x5oExERNAZZJGF8+umndOnSJbhcVFTEypUrKSoq4sknnwRg3rx5zJgxg/fff7/KcvWe4xPeeecd1q9fX+MRGo7dnaKiIvr378+PfvSjsPs5fPhwMGgfPnyYN998kwEDBgTXX3rppZSVlfHEE08E26qPxx03bhyvv/46a9asYcSI2idNuOyyy+o9Brqp3XzzzTz44INMmjSJu+++O9j+8ccf8+677wKwcOFCLrjggniVGJaZjQR+DFzj7qG/kFeB682shZmdCZwFrI5HjSIiiUg9yCIJYsSIERQVFbFgwQIuuugiMjMzKS4uBuDqq69m/PjxVXqQ161bF1w+McSiIf70pz/xy1/+MjiFG8BDDz3EqFGjGDVqFE899RRlZWWMGzcOgOPHjzNx4kRGjhwZ3IeZsWTJEu68804eeeQROnXqRJs2bXj44YeD22RkZHDJJZdw+umnk5aWFraWiooKtm7dSocOHcKuP3LkCN27dw8u1xboG6r6GOSRI0eSk5PDqaeeysSJEykvL+f8889nxYoV9OnTh379+jF37lwKCwvJycnhlltuiWo99WFmvwYuBrLMbDvwUypnrWgBvBXo3X7P3We4+yYzWwyUUDn04lbNYCEi8jUFZJEEMXXqVKZOnRpcXrJkCW+88Qbp6enk5OTUe/qzSF1wwQV8/cl7VcuXLw8+P9FrXZuuXbueNKRXVFTw3nvv8dJLLwXbevfuzcaNwWl7KSkpYfz48bRq1arWfVR3IiRX31dDxgKXl4fPiFOmTAEqh22sWrUKqLygMT09nRdeeKHex2kK7v69MM1Pn2T7YqC46SoSEUleCsgiCWrs2LGMHTu21vU33nhj8Hl2dnatwywSQUlJCQUFBYwbN46zzjqr1u0GDBjAY489FsPKREREalJAFpEml5OTw4cffhjvMqKqeo+1iIikjqS+SE+3mhYRERGRaEvqgOzuy9x9ert27eJdioiIiIikiKQOyCIiIiIi0aaALCIiIiISQgFZRERERCSEArKIiIiISAgFZBERERGREArIIiIiIiIhFJBFREREREIoIIuIiIiIhFBAFhEREREJoYAsIiIiIhJCAVlEREREJIQCsoiIiIhICAVkEREREZEQSR2QzWy0mc3fv39/vEsRERERkRSR1AHZ3Ze5+/R27drFuxQRERERSRFJHZBFRERERKJNAVlEREREJIQCsoiIiIhICAVkEREREZEQCsgiIiIiIiEUkEVEREREQiggi4iIiIiEUEAWEUkBZvaMme0xs40hbR3M7C0z+yDwtX3IunvNbKuZbTGzEfGpWkQkMSkgi4ikhgXAyGpt9wBvu/tZwNuBZcwsB7geyA28Zp6ZpcWuVBGRxKaALCKSAtz9j8Dn1ZrHAM8Fnj8HjA1pX+TuX7r7R8BW4FuxqFNEJBkoIIuIpK4z3H1n4Pku4IzA827AJyHbbQ+0iYgICsgiIs2Cuzvg9X2dmU03s7Vmtvazzz5rgspERBKPArKISOrabWZdAQJf9wTadwA9QrbrHmirwd3nu3u+u+d36tSpSYsVEUkUCsgiIqnrVWBq4PlUYGlI+/Vm1sLMzgTOAlbHoT4RkYSUHu8CRESk8czs18DFQJaZbQd+CswCFptZEbAN+C6Au28ys8VACXAcuNXdy+NSuIhIAlJAFhFJAe7+vVpWXVbL9sVAcdNVJCKSvDTEQkREREQkhAKyiIiIiEiIpA7IZjbazObv378/3qWIiIiISIpI6oDs7svcfXq7du3iXYqIiIiIpIikDsgiIiIiItGmgCwiIiIiEkIBWUREREQkhAKyiIiIiEgIBWQRERERkRAKyCIiIiIiIRSQRURERERCKCCLiIiIiIRQQBYRERERCaGALCIiIiISQgFZRERERCSEArKIiIiISAgFZBERERGREArIIiIiIiIhFJBFREREREIoIIuIiIiIhEiPdEMzawGMB3qHvs7d/3f0yxIRERERiY+IAzKwFNgP/AX4smnKERERERGJr/oE5O7uPrLJKhEREWnm/vXiYg689lrdG+76lMyc02jf9CWJNEv1GYP8ZzMb2GSViIiINHMHXnuNss2b69yubM8xDpQcikFFIs1TfXqQLwBuNLOPqBxiYYC7+zlNUpmknl0b4Nmrq7YNnAD50+JTj4hIAmqZnU2vXz5/0m22XTEoRtWINE/1CchXNVkVkvoGTqjZtmtD5VcFZBEREUkgEQdkd9/WlIVIisufVjMIV+9NFhFpRsKNNy7bvJmW2dkRvb5szzG23TDl6waNSxaJmnrNg2xm3zSzHwYe32yqokREJHrM7E4z22RmG83s12bW0sw6mNlbZvZB4KtyVYyFG2/cMjubzIKCOl+bmXMaLTtnVGnTuGSR6KnPPMi3A98HfhNoesHM5rv7z5ukMhERaTQz6wb8DyDH3Y+a2WLgeiAHeNvdZ5nZPcA9wN1xLLVZimS8cTjt8zJpn5cJ075+rcYli0RPfXqQi4Ch7j7T3WcCw6gMzCIiktjSgVZmlg60Bj4FxgDPBdY/B4yNT2kiIomnPgHZgPKQ5fJAm4iIJCh33wE8CnwM7AT2u/ubwBnuvjOw2S7gjHCvN7PpZrbWzNZ+9tlnMalZRCTe6hOQnwVWmdkDZva/gFXAM01TloiIRENgbPEY4EzgG0AbM5scuo27O+DhXu/u8909393zO3Xq1OT1iogkgvrMYvGYmf0BGB5omuru65uiKBERiZrLgY/c/TMAM/sNcD6w28y6uvtOM+sK7IlnkRIdNWa2ADILCmh/3XfjVJFIcqozIJvZSne/wMwOUtnDYCHr3N0zo1mQmfUB7gPauXuYyXNFRKQePgaGmVlr4ChwGbAWOAxMBWYFvi6NW4USFZk5pwFVZ7E4MUuGArJI/dQZkN39gsDXtg09iJk9AxQAe9x9QEj7SGA2kAY85e6z3P1DoMjMXm7o8UREpJK7rwqcT/8KHAfWAfOB04DFZlYEbAOUoJJc2JktqvUmi0hkIh6DbGYPR9JWiwXAyGqvTQPmUnmHvhzge2aWE2k9IiISGXf/qbtnu/sAd7/B3b90933ufpm7n+Xul7v75/GuU0QkUdTnVtNXUHOOzKvCtNXg7n80s97Vmr8FbA30GGNmi6i8kKSkHjWJiIgkvMbeNU9EYqvOHmQzu8XMNgD9zOxvIY+PgL814tjdgE9ClrcD3cyso5n9BzDIzO49SV2aekhERJJCY+6aJyKxF0kP8kLgv4F/p/JOSyccbIqP5Nx9HzAjgu3mUzmOjvz8/LDTE4mIiCSKht41T0RiL5KL9PYD+4HvRfnYO4AeIcvdA20iIiIiInET8RhkM3sOuN3dvwgstwd+5u6FDTz2GuAsMzuTymB8PTCxgfsSERGRMMo2b9bcyCL1VJ876Z1zIhwDuPu/gEGRvNDMfg28S+U45u1mVuTux4EfAm8AfwcWu/umetQjIiIiJ5FZUFDjQsCyzZtrXDAoIlXVZxaLU8ysfSAYY2YdIn29u4cdnuHuy4Hl9aihCjMbDYzu27dvQ3chIiKSstpf990aPcWaG1mkbvXpQf4Z8K6ZPWhm/y/wZ+CRpikrMu6+zN2nt2vXLp5liIiIiEgKibgH2d2fN7O1wKWBpmvdXXMWi4iINMDCVR+zdH3Na9PH5HVj4tCecahIRE6oTw8ywE5gNZXzH2eZ2bejX5KIiEjqW7p+ByU7D1RpK9l5IGxoFpHYqs8sFjcBt1M5Hdt6YBiVF95depKXiYiISC1yumby4s3nBZeve/LdOFYjIifUpwf5dmAIsM3dL6FyBosvmqIoEREREZF4qU9ALnP3MgAza+Hum4F+TVNWZMxstJnN379/fzzLEBEREZEUUp9p3rab2enAEuAtM/sXsK0pioqUuy8DluXn538/nnU0JyU7D9T4CFAXlIiIJJdwNw8B3UBE5ISIArKZGfA/AjcKecDMfg+0A15vwtokwYzJ61aj7cQFJgrIIiLJIbOgIGx72ebNAArIIkR+ow83s+XAwMDy/23SqiQhTRzas0YQ1gUlIiLJJdzNQ0A3EBEJVZ8xyH81syFNVomIiIiISAKozxjkocAkM9sGHAaMys7lc5qkMhERERGROKgzIJvZL939BuA/gN82fUmRM7PRwOi+ffvGuxQREREA/vXiYg689lqVtrLNm2mZnR2nikSkviIZYjHYzL4BTAMOAAerPeLG3Ze5+/R27drFswwREZGgA6+9Frzg7YSW2dm1XhwnIoknkiEW/wG8DfQB/kLl0IoTPNAuIiIiAS2zs+n1y+fjXYaINFCdAdnd5wBzzOwJd78lBjVJc7JrAzx7ddW2gRMgf1p86hEREZFmL+KL9BSOJeoGTqjZtmtD5VcFZBEREYmT+sxiIRJd+dNqBuHqvckiIhIz4e6wp7vrSXOkgCwiIiJhLyLU3fWkuVJAFhERkbB32NPd9aS5qs+d9BKOmY02s/n79++PdykiIiIikiKSOiBrHmQRkbqZ2elm9rKZbTazv5vZeWbWwczeMrMPAl/bx7tOEZFEkdQBWUREIjIbeN3ds4FvAn8H7gHedvezqJzr/p441iciklAUkEVEUpiZtQO+DTwN4O7H3P0LYAzwXGCz54Cx8ahPRCQRKSCLiKS2M4HPgGfNbJ2ZPWVmbYAz3H1nYJtdwBnhXmxm081srZmt/eyzz2JUsohIfCkgi4iktnTgXOAJdx8EHKbacAp3d8DDvdjd57t7vrvnd+rUqcmLFRFJBArIIiKpbTuw3d1XBZZfpjIw7zazrgCBr3viVJ+ISMLRPMgiIinM3XeZ2Sdm1s/dtwCXASWBx1RgVuDr0jiWKQlMd9eT5kgBWUQk9d0G/MrMMoAPgWlUfoK42MyKgG2A0o7UoLvrSXOV1AHZzEYDo/v27RvvUkREEpa7rwfyw6y6LMalSJLR3fWkuUrqMci6UYiIiIiIRFtS9yBLYijZeYDrnnw3uDxz336yTmsRfs4oERERkQSngCyNMiavW422I8fK2XvoSwVkERERSUoKyNIoE4f2ZOLQnlXaNj2UFqdqRERERBovqccgi4iIiIhEm3qQJfHs2gDPXl21beAEyJ8Wn3pERESkWVFAlsQycELNtl0bKr8qIIuIJATdPERSnQKyROxfLy7mwGuv1bmdfbwfP7NFww6SP61mEK7emywikiDCnRfLNm+mZXZ2nCpqerp5iDQHCsgS1uC//YGBW1axbWVmsO3ImjUAtB4y5KSvtd3Hsd3H1bsgIinvwGuv1QjELbOzw4bIVKGbh0hzoIAsYQ3csooun30MXQcE21oPGRJRyN10Yz720ZdV2tS7ICKpqmV2Nr1++Xy8yxCRKErqgKxbTTetXZ16MqghJ/2zW+Jnt6TXT75+7bYbpmjMmoiIiCSFpJ7mTbeaTh6ZBQU1xuSVbd4c0ZhmERERkVhK6h5kiY5wF5l0+exjdnXqWcsr6k9j1kRERCRZKCBL2ItMdnXqyYZ+Q7mqiY+tYRciIiKSaBSQBah5kcmPn3y3yY+pqYJEREQkESkgS9xo2IWIiIgkIgVkERERaTQNmZNUooAsTeLIsXKuqzZMY0xeNyYOrfvCvxon2V2fkplzGu2jXaSIiESFhsxJqlFAlqjLOq0Few9VvVFIyc4DAHUG5LAn2T3HgEMKyCIiCUpD5iTVKCA3I+GmcwNqzGDRWGe0bckZbVvy4rTzgm3Ve5NrE/Yke8UgOHYYnr266sYDJ0D+tEbXKyIiIhIqqW8UIvVzYjq36lpmZ4ftuU0YbTpBRpuqbbs2wIaX41OPiIiIpDT1IDcz1adzSwptu1C24wu2rej4dduujmTmHNCwCxEREYk6BWRJeBqXLCIiIrGkgCwJr9ZxySIiIiJNQGOQRURERERCJHUPspmNBkb37ds33qVIHJTtOaZJ6UVEEphuHiLJKql7kN19mbtPb9euXbxLkRjLzDmNlp0zqrSVbd4cdho7ERGJvcyCghpTiOo8LckiqXuQpflqn5dJ+7xMmPb1jByalF4kPDNLA9YCO9y9wMw6AC8CvYFS4Lvu/q/4VSipSDcPkWSmgCwxU7LzQINvPy0ijXI78HcgM7B8D/C2u88ys3sCy3fHqzgRkUST1EMsJHmMyetGTtfMKm0lOw+wdP2OOFUk0jyYWXfgauCpkOYxwHOB588BY2NclohIQlMPssTExKE9a/QUR3r76frQBSEiNTwO/BhoG9J2hrvvDDzfBZxR24vNbDowHaBnT33aIyLNgwJyivrXi4trXAhRtnlzjQsmktquDfDs1cHFzA4HoNvpVTY5cWttBWRpjsysANjj7n8xs4vDbePubmZe2z7cfT4wHyA/P7/W7UREUokCcoo68NprNQJxy+zssHelS0oDJ9Roat9lG+3zBurCPZGvDQeuMbNRQEsg08xeAHabWVd332lmXYE9ca1SRCTBKCCnsJbZ2fT65fN1b5iM8qdVPkKF9CaLCLj7vcC9AIEe5LvcfbKZ/R9gKjAr8HVpvGqU5kdD4SQZKCCLiDQ/s4DFZlYEbAOUTCQmwn2KqaFwkogUkCXlqbdCBNz9D8AfAs/3AZfFsx5pnjQ3siQLBWRJaeqtEBERkfpSQJa4auqbh6i3QkREROpLAVniZkxetxptJTsPAOjueiIiIhI3CsgSN7G6eYiIiIhIfSggS2qpdvMQoHLO5OpTwomIiIjUQgFZUkeYm4ewa0Pl12oBWTNbiIgkDp2TJdEoIEvqiPDmIZrZQkQkceicLIlIAVmaHc1sISKSOHROlkSkgCwJp6mnfhMRERE5maQOyGY2Ghjdt2/feJciUaKp30RERCTekjogu/syYFl+fv73412LRIemfhMREZF4S+qALBJNuopaREREQAFZmoMI5kbWVdQiIiJyggKypLYI50bWVdQiIolFn+pJPCkgS2qLcG5kERFJHPpUT+JNAVmSgqZ+ExFpPvSpnsSbArIkPE39JiIiIrGkgCwJL55Tv2kMnIiISPOjgCzNk2a2EBERkVooIEvzo5ktRERE5CQUkCVpNfjCPc1sISKSlDTsTWJFAVmSki7cExFpXjTsTWJJAVmSUjwv3BMRkdjTsDeJJQVkkRMiuHBPRESSz0v/eInlHy6v0T6qzyi+c/Z34lCRJDoFZBGI+MI90Bg4EZFks/zD5Wz5fAv9OvQLtm35fAuAArKEpYAsKaWpL9zTGDgRkeTUr0M/nh35bHB52uv6dFBqp4AsKSMWF+5pDJwkGzPrATwPnAE4MN/dZ5tZB+BFoDdQCnzX3f8VrzpFGkqf6klTUECWlKEL90TCOg78T3f/q5m1Bf5iZm8BNwJvu/ssM7sHuAe4O451itSbPtWTpqKALHIyTX3h3tpnYcPLNdt1caBEibvvBHYGnh80s78D3YAxwMWBzZ4D/oACsiQZfaonTUUBWVJeg8cl1+PCvQbb8HLlPrsMbLpjiASYWW9gELAKOCMQngF2UTkEQ0REUECWFNeoccmxuuNel4Ew7b+a9hjS7JnZacArwB3ufsDMguvc3c3Ma3nddGA6QM+euglPJGqbUqy60ozKc9G01zOrtLUr/xZwXlOVJyIRUECWlNYk45KrD7vY9Sll+7xBF4nsPljG3kNf8r9Dapq5bz9Zp7VQd55EjZmdSmU4/pW7/ybQvNvMurr7TjPrCuwJ91p3nw/MB8jPzw8bopuzz45+xr6j+3ggZEaEtbvXApB/Rn6993fklH9w5JR/MO31zSff0HYzytugCcpqCvc7qT7Fm0hdFJBF6iPMsIvM7vuBdlXaIr1IZO+hLzlyrLxK25Fj5ew99KUCskSFVXYVPw383d0fC1n1KjAVmBX4ujQO5SWVcD3DVx8orbFd/hn5Ed2A4sSb9WdHft1bfOVTD7M/bXWdtay1L1lrX7I8dKoyhWYA9h3dx5HjR6u09evQj1F9RsWpIklGCsjSLEVzvuT2XE17gGnPB9vqc5FI64w0Xrz56/8gNz2UFvFrRSIwHLgB2GBm6wNtP6EyGC82syJgG6BL/usQ7mYTbU9tS8dWHavMr9sY7cu/Tfvyb1cJzeG89OxFLLfDVdrChuZapMod5MK9abnm+FF673Ye+FXVzofMAoezY1mdJDMFZGl2mmS+5DDDLmjTqWH7Eokid18JWC2rL4tlLckkXPA6EY5Dw/C2X8VnxoTvcBrf8dMgpJZwoTmctbvXsnb32pS49XK4Ny3bhvagR0nV0UCa+k3qSwFZmp2oj0sON9tF2f7KRx0X3K1vsYOlbdvRJqTH53DWIYYfySC34RWJSCOFC16J/jF9uNAcTm0XEZ4sOEcimuE60gsdw71pYWTN7TT1m9SXArJIQFRvU730Sjj8WZ3HXNq2Hf881TgnpG3bqeXQ+hi3R1i3iDSNGsErRXzn7O+EDbKRhtJwGhuuw+0P6r7QMdHftEjyUkAWoQmGXbTtUvkIGZcczrZnx5MOVf4T/u78vPofT0Qa7GTDKZqT2oJzJBoTrsOJ9ELH+qh+S+rrP9/M3wdnhe1xFlFAFqH2YRcN7lUWkaSRjMMpEk1jwnUshLsldecdR4C9sS9GkoICskgtGturXL23YvfBL/lDtzz+cs7FwbYjfpzWLfRnKBJvqTqcQiqFuyX15qu/FadqJBkk3P/MZtYGmAccA/7g7r+Kc0nSTDWmVzlcb8WpH31An32HqwTk1i3SyWrTIrqFi4iISKPEJCCb2TNAAbDH3QeEtI8EZgNpwFPuPgu4FnjZ3ZeZ2YuAArIkjHC9yqs++pxVH33O0vU7Qlp7wAW3VNnuO6XFtGmRXmXO49BbzIpI09N4YxGJRKx6kBcAvwCCVyyZWRowF7gC2A6sMbNXge7AhsBmVWf5FomzcL3KC1d9XC0ch9emRTodT1NvsUg8pfx44+pzskPlVJTVZ9oRkZOKSUB29z+aWe9qzd8Ctrr7hwBmtggYQ2VY7g6sB06pbZ9mNh2YDtCzpy6YkvgJF5rD2bZSvcUiiSBlxxuHm5N9V6C/SQFZpF7iOQa5G/BJyPJ2YCgwB/iFmV0NLKvtxe4+H5gPkJ+f77VtJyIi0iyEm5O9jpsViUh4CXeRnrsfBvRWt5E+O/oZ+47u44HXG/ajLM2onK2h+hjZZLsNqYiIiEh9xTMg7wB6hCx3D7RJFOw7uo8jx49GdZ8R3ynJdjPK26AYXVW4Ny26OEhERCTxxDMgrwHOMrMzqQzG1wMT41hP0gp3VfY1x4/SOr1Vg8fZnZjG7NmRX8+4EOmdktbal6y1L1lerfe6ufc+h3vTklIXB4mIiKSIWE3z9mvgYiDLzLYDP3X3p83sh8AbVE7z9oy7b6rnfkcDo/v27RvtkpNKuKuyW6e3omOrjlE9TqR3Snrp2YtYboertNXW+9zcQnPv3c4Dv6o6OUtmgcPZcSpIREREaojVLBbfq6V9OdDgm7e7+zJgWX5+/vcbuo9UUf2q7G2/mnKSrZvWdziN7/hpEFJPuN7n5haa/z44C9hLh5C2ss2bAWrc4UlERETiJ+Eu0pOTS9ZJ7sP1PqdyaA77e8r+gn7n51Z9I3ND/N7IiIiISHgKyEkmlSa5T+XQnEq/JxGJrUhuZy8iTUsBOQml7CT3JGdoPlmvfqr+nkSkaYS7nX3JzsppNxWQRWJHAVkSXmNDcziRBOmIZ+3YvRaA/DPyg23qLRaRhgh3Z87qvcn1pttPi9RbUgdkzWLRfEUamsOJNEiHC77h5J+Rn9DDPUSkGdPtp0UaJKkDcqrPYpGsF+TFS8TT0EUYpBV8RSTp6fbTIg2S1AE51elCr6YRaZCOlbLNm6vMZnHjzmNsyE6LY0UikmiqX7g3c99+sk5rwRlxrEkklSkgJzhd6JXaMgsKarR1+cyB8pobi0izFO7CvSPHytl76MuGB+Rw45JBY5NFAhSQReKo/XXfrXGTkE2X58SpGhFJROEu3Nv0UBpHjpU3bDq4cOOSQWOTRUIoIIuIiCSZrNNasPfQl1XaVn30Oas++pyl63dUaa8RmsONS4bKHmXNeCECKCCLiIgknTPatuSMti15cdp5wbaFqz6uEY4jDs0Qvmd528rKx4aXa26r0CwpLKkDsqZ5ExERqRRuKEZ9QjNkA/dXabms3XLGpP256ljn2kJzpBSuJQkkdUBO9WneRESakpmNBGYDacBT7j4rziVJlEUammvz0O5hPMQwhp7ZIdh2WbvlDD/6e9i5v9715B7bANtWsunNp+v9WqgcWnJG25Yn3Wb3wbIaw0/CKf/yEJxyaoPqkNSX1AFZREQaxszSgLnAFcB2YI2ZveruJfGtTJpauNBcm3Bh+u3Wo3i7dcOmG73sSCBcN8DBsuMcLDteZ/g9WHYcgLYtTx5xTvEKKiq+alAtkvoUkBOEbgoiIjH2LWCru38IYGaLgDFArQF5/z82sTzJZ1m5xpwWbpT8+8Do7PDzcuiQxqaHLqj3S+86Vk7rjDR4tl39j7trA3SJ0vdwEvUJ05E5r+5NalGfnu9IZvPYtiKHMz7zpP83LU1DATlB6KYgIhJj3YBPQpa3A0Orb2Rm04HpAH3r+Gg7GbRwo135KdHbYYc0/MwWDXpp64w0sk5r2GvpMrD26dpSVLTD+oG8f4P1/4za/iS1KCAnEN0UREQSjbvPB+YD5Ofn+6jfrY1zRSLRcf2jy+JdgsSCWYNeFsW30SIikkR2AD1ClrsH2kREmj0FZBGR5mkNcJaZnWlmGcD1wKtxrklEJCEkdUA2s9FmNn///vpPNSMi0py5+3Hgh8AbwN+Bxe6+Kb5ViYgkhqQOyO6+zN2nt2vXgCuARUSaOXdf7u5nu/u/uXtxvOsREUkUSR2QRURERESiTQFZRERERCSEArKIiIiISAgFZBERERGREArIIiIiIiIhFJBFREREREIoIIuIiIiIhEjqgKwbhYiIiIhItJm7x7uGRjOzz4BtUdxlFrA3ivuLtkSvDxK/RtXXOIleHyR+jf3cvW28i6gPnWsTTqLXB4lfo+prnESvDxp4rk1vikpizd07RXN/ZrbW3fOjuc9oSvT6IPFrVH2Nk+j1QeLXaGZr411Dfelcm1gSvT5I/BpVX+Mken3Q8HNtUg+xEBERERGJNgVkEREREZEQCsjhzY93AXVI9Pog8WtUfY2T6PVB4teY6PXFQqL/DFRf4yV6jaqvcRK9PmhgjSlxkZ6IiIiISLSoB1lEREREJIQCsoiIiIhICAVkwMw6mNlbZvZB4Gv7k2ybZmbrzOy1RKrPzHqY2e/NrMTMNpnZ7TGoa6SZbTGzrWZ2T5j1ZmZzAuv/ZmbnNnVNDahxUqC2DWb2ZzP7ZiLVF7LdEDM7bmYTEq0+M7vYzNYH/t3930Sqz8zamdkyM3s/UN+0GNf3jJntMbONtayP+99ILOlc2+C6Evpcq/Ns4+lc2+j6on+udfdm/wAeAe4JPL8HePgk2/4IWAi8lkj1AV2BcwPP2wL/AHKasKY04J9AHyADeL/68YBRwH8DBgwDVsX49xpJjecD7QPPr4pljZHUF7LdCmA5MCGR6gNOB0qAnoHlzglW309O/L0AnYDPgYwY1vht4FxgYy3r4/o3EuuHzrUNqimhz7U6z8bsZ6hz7clrjPq5Vj3IlcYAzwWePweMDbeRmXUHrgaeik1ZQXXW5+473f2vgecHgb8D3Zqwpm8BW939Q3c/BiwK1BlqDPC8V3oPON3MujZhTfWu0d3/7O7/Ciy+B3RPpPoCbgNeAfbEsDaIrL6JwG/c/WMAd49ljZHU50BbMzPgNCpP2sdjVaC7/zFwzNrE+28k1nSurb9EP9fqPNt4Otc2UlOcaxWQK53h7jsDz3cBZ9Sy3ePAj4GKWBQVItL6ADCz3sAgYFUT1tQN+CRkeTs1/5OIZJumVN/jF1H5DjNW6qzPzLoB44AnYljXCZH8/M4G2pvZH8zsL2Y2JWbVRVbfL4D+wKfABuB2d4/13+/JxPtvJNZ0rq2/RD/X6jzbeDrXNr16/42kxK2mI2FmvwO6hFl1X+iCu7uZ1Zj7zswKgD3u/hczuzjR6gvZz2lUvgu+w90PRLfK1GVml1B54r4g3rVU8zhwt7tXVL4xTzjpwGDgMqAV8K6Zvefu/4hvWUEjgPXApcC/AW+Z2Tv622g6OtdKbXSebRSda2Os2QRkd7+8tnVmttvMurr7zkCXe7iPLoYD15jZKKAlkGlmL7j75ASpDzM7lcoT9q/c/TfRqOskdgA9Qpa7B9rqu01Tiuj4ZnYOlR/lXuXu+2JUG0RWXz6wKHDSzgJGmdlxd1+SIPVtB/a5+2HgsJn9EfgmleMyE6G+acAsrxyEttXMPgKygdUxqC8S8f4biTqda6Mu0c+1Os82ns61Ta/+fyP1GQSdqg/g/1D1woxH6tj+YmJ74Uid9VE58Px54PEY1ZQOfAicydeD9nOrbXM1VQfFr47x7zWSGnsCW4Hz4/Dvrs76qm2/gNhepBfJz68/8HZg29bARmBAAtX3BPBA4PkZgRNiVox/z72p/cKRuP6NxPqhc22Dakroc63OszH7GepcW3edUT3XxvQfaqI+gI6Bf3gfAL8DOgTavwEsD7N9rE/addZH5UdWDvyNyo851gOjmriuUVS+e/0ncF+gbQYwI/DcgLmB9RuA/Dj8buuq8SngXyE/s7WJVF+1beNx4q6zPuD/ofLq6o1UftycMPUF/kbeDPz72whMjnF9vwZ2Al9R2QNUlGh/IzH+eehc27C6Evpcq/NsbGrUufak9UX9XKtbTYuIiIiIhNAsFiIiIiIiIRSQRURERERCKCCLiIiIiIRQQBYRERERCaGALCIiIiISQgFZRERERCSEArKIiIiISAgFZEl5ZtbbzI6a2frAcnczW2pmH5jZP81stpllVHvNf5jZ8MDzcjNbH/LofZJjtQpsc8zMspry+xIRSSQ610oqUUCW5uKf7p5nZgb8Blji7mcBZwOnAcXVth8GvBd4ftTd80IepbUdxN2Punse8GnUvwMRkcSnc62kBAVkaW4uBcrc/VkAdy8H7gQKzaw1gJn1B/4RWBeWmU02s9WBHownzSwtFsWLiCQJnWslqSkgS3OTC/wltMHdDwAfA30DTVcBr4ds0irkI7/fBk7q1wHDAz0Y5cCkJq9cRCR56FwrSS093gWIJKARwLSQ5RMf5QFgZj8EBgNrKj9FpBWwJ5YFioikAJ1rJWEpIEtzUwJMCG0ws0ygJ7A18NHf6e5+snFtBjzn7vc2XZkiIklN51pJahpiIc3N20BrM5sCEBjP9jNggbsfAS4Bfh/BPiaYWefAPjqYWa8mrFlEJNnoXCtJTQFZmhV3d2Ac8B0z+wD4B1AG/CSwSfUxceH2UQLcD7xpZn8D3gK6NlnRIiJJRudaSXZW+W9YJHUF5tJ8zd0HRLDtX4Gh7v5VI49ZCuS7+97G7EdEJFnoXCupRD3I0hyUA+1OTF5/Mu5+bmNO2CcmrwdOBSoauh8RkSSkc62kDPUgi4iIiIiEUA+yiIiIiEgIBWQRERERkRAKyCIiIiIiIRSQRURERERCKCCLiIiIiIRQQBYRERERCaGALCIiIiIS4v8HRxjJ6b2QP80AAAAASUVORK5CYII=", "text/plain": [ "<Figure size 720x360 with 2 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "figsize(10,5)\n", "OFes= numpy.linspace(-0.5,1.,61)\n", "oz.default()\n", "oz.tau_SFH= 6.*u.Gyr\n", "oz.sfh= 'exp'\n", "y= [oz.O_Fe_DF(f)/4. for f in OFes]\n", "subplot(1,2,1)\n", "step(OFes,y,\n", " label=r'$\\tau_{\\mathrm{SFH}} = 6\\,\\mathrm{Gyr},\\, \\mathrm{Exp}$')\n", "subplot(1,2,2)\n", "step(OFes,y,\n", " label=r'$\\tau_{\\mathrm{SFH}} = 6\\,\\mathrm{Gyr},\\, \\mathrm{Exp}$')\n", "oz.tau_SFH= 40*u.Gyr\n", "y= [oz.O_Fe_DF(f)/4. for f in OFes]\n", "subplot(1,2,1)\n", "step(OFes,y,\n", " label=r'$\\tau_{\\mathrm{SFH}} = 40\\,\\mathrm{Gyr}\\,, \\mathrm{Exp}$')\n", "subplot(1,2,2)\n", "step(OFes,y,\n", " label=r'$\\tau_{\\mathrm{SFH}} = 40\\,\\mathrm{Gyr}\\,, \\mathrm{Exp}$')\n", "oz.tau_SFH= 2.5*u.Gyr\n", "y= [oz.O_Fe_DF(f)/4. for f in OFes]\n", "subplot(1,2,1)\n", "step(OFes,y,\n", " label=r'$\\tau_{\\mathrm{SFH}} = 2.5\\,\\mathrm{Gyr},\\, \\mathrm{Exp}$')\n", "subplot(1,2,2)\n", "y= numpy.array(y)*20\n", "step(OFes,y,\n", " label=r'$\\tau_{\\mathrm{SFH}} = 2.5\\,\\mathrm{Gyr},\\, \\mathrm{Exp}$')\n", "oz.sfh= 'lin-exp'\n", "y= [oz.O_Fe_DF(f)/4. for f in OFes]\n", "subplot(1,2,1)\n", "step(OFes,y,\n", " label=r'$\\tau_{\\mathrm{SFH}} = 2.5\\,\\mathrm{Gyr},\\, \\mathrm{Lin\\!-\\!Exp}$')\n", "subplot(1,2,2)\n", "y= numpy.array(y)*20\n", "step(OFes,y,\n", " label=r'$\\tau_{\\mathrm{SFH}} = 2.5\\,\\mathrm{Gyr},\\, \\mathrm{Lin\\!-\\!Exp}$')\n", "subplot(1,2,1)\n", "xlabel(r'$[\\mathrm{O/Fe}]$')\n", "ylabel(r'$\\mathrm{fraction}$')\n", "xlim(-0.5,1.)\n", "yscale('log')\n", "legend(frameon=False)\n", "subplot(1,2,2)\n", "xlabel(r'$[\\mathrm{O/Fe}]$')\n", "xlim(-0.5,1.)\n", "tight_layout();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also re-create Fig. 6:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+gAAAFgCAYAAAAo31N4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABLgUlEQVR4nO3de5hU1Z3/+8+X1lZpaVQu0gNCwwGBbh1BS8DjJWpMRGwOYNCoGUVAidF41DnzZJL4+xnPzDCRPOZ3JAaN/FQwmdFWdOTi9KhJvGJEGgIG6EB0EAQU1BhpFAlIr/NHF0VfdnVXdV327f16nn7oWrW76ru7YLG/e63vWuacEwAAAAAA8Fc3vwMAAAAAAAAk6AAAAAAABAIJOgAAAAAAAUCCDgAAAABAAJCgAwAAAAAQACToAAAAAAAEAAk6AAAAIsfMjjOzp8xso5n90czO8jsmAOjMEX4HAAAAABTAXEnPOeemmlmppO5+BwQAnTHnnN8xAAAAAHljZj0lrZU0xHGxCyBEIjmCbmYTJU3s0aPHDSeffLLf4QCIgdWrV3/snOvjdxwdoW8E4Aef+sfBkj6StMDMTpO0WtKtzrnPWx5kZrMkzZKksrKyM0aMGFHkMAHEVbq+MdIj6IlEwq1atcrvMADEgJmtds4l/I4jE/SNAIrJj/7RzBKSVkg62zn3ppnNldTonPuf6X6GvhFAMaXrG1kkDgAAAFGzXdJ259ybycdPSTrdx3gAICMk6AAAAIgU59xOSdvMbHiy6auSGnwMCQAyEskadAAAAMTeLZL+PbmC+2ZJ032OBwA6RYIOAACAyHHOrZUUirVBAOAQprgDAAAAABAAJOgAAAAAAARAJBN0M5toZvN3797tdygAAAAAAGQkkgm6c26Zc25Wz549/Q4FAAAAAICMRDJBBwAAAAAgbEjQAQAAAAAIABJ0AAAAAGl9+umnmjp1qkaMGKGRI0fqjTfeaPX8rl27dPXVV2vIkCE644wzdNZZZ+mZZ57xKVog3EjQAQAAAKR16623avz48dq4caPeeustjRw5MvWcc06TJ0/Weeedp82bN2v16tWqra3V9u3bM3pt55yampoKFToQOiToAAAAQEA1NjZq9OjRqq6uVvfu3TVq1CiNGzeuaEnt7t279eqrr2rmzJmSpNLSUh133HGp51988UWVlpbqxhtvTLUNGjRIt9xyiyTpzjvv1L333pt67o477tDcuXM1fPhwXXvttTrllFO0bdu2opwLEAZH+B0AAAAAEHT/77INani/Ma+vWfU35frRxOoOjykvL9eaNWu0cuVKzZ49W0uWLMnb+5977rnas2dPu/Z77rlHF110kSTp3XffVZ8+fTR9+nS99dZbOuOMMzR37lyVlZVJkjZs2KDTTz897XvMmDFDl112mW677TY1NTWptrZWTz75pG6//XY9+uijGjduXN7OB4gCEnQAAAAg4NavX6/q6sPJ/IYNGzR79mz17t1bAwYMUN++ffXkk09q4MCBGj9+vD799FP17t1bNTU12rhxo2pra3XXXXe1es3XXnut0/f98ssv9fvf/1733Xefxo4dq1tvvVV33323/vmf/9nz+JtvvlnLly9XaWmp6uvrVVlZqV69emnNmjXatWuXRo8erV69emnQoEEk54AHEnQAAACgE52NdBdaQ0NDq5HqF154Qddcc40uueQSSdLChQt10003qaamJvW4M5mMoA8YMEADBgzQ2LFjJUlTp07V3XffnTq2urpaTz/9dOrxvHnz9PHHHyuRSKTarr/+ei1cuFA7d+7UjBkzJCk1Ag+gtUgm6GY2UdLEoUOH+h0KAAAAkLP3339fEyZMSD2eOXOm5syZo6eeekpjxozRUUcdpfvvv1/PPvusvvOd70hS6vGnn36qESNGtHvNTEbQ+/Xrp5NOOkmbNm3S8OHD9dvf/lZVVVWp5y+88EL98Ic/1AMPPJB6371797Z6jSlTpujOO+/UgQMH9Nhjj1FzDnQgkgm6c26ZpGWJROIGv2MBAAAAcnXxxRdr5syZWrhwob7yla+ovLxcs2fPliRdeuml+sY3vtFqBH3NmjWpx4emuHfVfffdp29961vav3+/hgwZogULFqSeMzMtXrxYt99+u37yk5+oT58+Kisr05w5c1LHlJaW6oILLtBxxx2nkpKSLscBxEEkE3QAAAAgSqZNm6Zp06alHi9evFjPP/+8jjjiCFVVValbt8JtzjRq1CitWrUq7fMVFRUd3gBoamrSihUrtGjRIklSZWWl1q9fn/c4gSggQQcAAABCZvLkyZo8eXLa56+77rrU9yNGjGi3QFyxNDQ0qKamRlOmTNGwYcN8iQEIExJ0AAAAAAVRVVWlzZs3+x0GCuixN9/TkrU72rVPGtVfV48d6ENE4Va4uTAAAAAAgEhbsnaHGj5obNXW8EGjZ9KOzjGCDgAhZmZDJN0hqadzbqrf8QAAgPipqijXE98+K/X4mw++4WM04cYIOgAEjJk9YmYfmtn6Nu3jzWyTmb1jZt+XJOfcZufcTH8iBQAAQD6RoANA8CyUNL5lg5mVSJon6RJJVZKuMrOq9j8KAACAsCJBB4CAcc69KumTNs1jJL2THDHfL6lW0qSiBwcAAICCIUEHgHDoL2lbi8fbJfU3s15m9gtJo83sB+l+2MxmmdkqM1v10UcfFTpWAAAAdAGLxAFAiDnn/izpxgyOmy9pviQlEglX6LgAAACQPUbQASAcdkg6qcXjAck2AAAARAQJOgCEQ72kYWY22MxKJV0paanPMQEAIm7btm264IILVFVVperqas2dO7fdMbt27dLVV1+tIUOG6IwzztBZZ52lZ555xodogfAjQQeAgDGzxyW9IWm4mW03s5nOuS8lfVfS85L+KOlJ59yGLF93opnN3717d/6DBgBE0hFHHKGf/vSnamho0IoVKzRv3jw1NDSknnfOafLkyTrvvPO0efNmrV69WrW1tdq+fXtGr++cU1NTU6HCB0Inkgk6F6EAwsw5d5VzrsI5d6RzboBz7uFke51z7mTn3P/hnJvdhddd5pyb1bNnz/wHDQAoiMbGRo0ePVrV1dXq3r27Ro0apXHjxhUtqa2oqNDpp58uSerRo4dGjhypHTsOV1i9+OKLKi0t1Y03Hl4OZdCgQbrlllskSXfeeafuvffe1HN33HGH5s6dq+HDh+vaa6/VKaecom3bWq6BCsRbJBeJc84tk7QskUjc4HcsAAAAiID/+r60c11+X7PfqdIld3d4SHl5udasWaOVK1dq9uzZWrJkSd7e/txzz9WePXvatd9zzz266KKL2rVv2bJFa9as0dixY1NtGzZsSCXwXmbMmKHLLrtMt912m5qamlRbW6snn3xSt99+ux599FGNGzcuPycDREQkE3QAAAAgStavX6/q6urU4w0bNmj27Nnq3bu3BgwYoL59++rJJ5/UwIEDNX78eH366afq3bu3ampqtHHjRtXW1uquu+5q9ZqvvfZaxu//2Wef6Rvf+IbuvfdelZeXpz3u5ptv1vLly1VaWqr6+npVVlaqV69eWrNmjXbt2qXRo0erV69eGjRoEMk54IEEHQAAAOhMJyPdhdbQ0NBqpPqFF17QNddco0suuUSStHDhQt10002qqalJPe5MpiPoBw4c0De+8Q1961vf0mWXXdbq2Orqaj399NOpx/PmzdPHH3+sRCKRarv++uu1cOFC7dy5UzNmzJAklZWVZXDWQPyQoANATJjZREkThw4d6ncoAIAsvf/++5owYULq8cyZMzVnzhw99dRTGjNmjI466ijdf//9evbZZ/Wd73xHklKPP/30U40YMaLda2Yygu6c08yZMzVy5Ej9/d//fbvnL7zwQv3whz/UAw88kHrfvXv3tjpmypQpuvPOO3XgwAE99thj1JwDHYjkInEAgPZYJA4Awuviiy/WzJkz9corr0hqrk2fPXu2Hn74YS1dulRNTU266aab9Itf/EKnnXaaJKUet53ano3XX39dv/rVr/Tiiy9q1KhRGjVqlOrq6lLPm5kWL16sV155RYMHD9aYMWM0bdo0zZkzJ3VMaWmpLrjgAl1xxRUqKSnpcixAHDCCDgAAAATctGnTNG3atNTjxYsX6/nnn9cRRxyhqqoqdetWmHG3c845R865Do+pqKhQbW1t2uebmpq0YsUKLVq0SJJUWVmp9evX5zVOICpI0AEAAICQmTx5siZPnpz2+euuuy71/YgRI3IaRc9FQ0ODampqNGXKFA0bNsyXGIAwIUEHAAAAUBBVVVXavHmz32EAoUENOgDEhJlNNLP5u3fv9jsUAAAAeCBBB4CYYJE4AACAYCNBBwAAAAAgAEjQAQAAAAAIABJ0AAAAAAACgFXcAQAAEDlmtkXSHkkHJX3pnEv4GxEAdI4EHQBiwswmSpo4dOhQv0MBgGK5wDn3sd9BAECmmOIOADHBKu4AAADBxgg6AABABh578z0tWbujXfukUf119diBPkSETjhJL5iZk/Sgc25+2wPMbJakWZI0cCCfYTozZszQs88+q759+2r9+vVdOmbXrl26/fbbtWLFCh1//PEqLS3V9773PU2ZMqXQ4QOhwgg6AABABpas3aGGDxpbtTV80OiZtCMQznHOnS7pEkk3m9l5bQ9wzs13ziWcc4k+ffoUP8KQuO666/Tcc891+RjnnCZPnqzzzjtPmzdv1urVq1VbW6vt27dnHINzTk1NTVnFDYQRI+gAAAAZqqoo1xPfPiv1+JsPvuFjNOiIc25H8s8PzewZSWMkvepvVNlrbGzUV77yFe3fv1/vvvuuTj75ZB199NH63e9+p27dijPWdt5552nLli1dPubFF19UaWmpbrzxxlTboEGDdMstt0iS7rzzTp1wwgm67bbbJEl33HGH+vbtq0mTJuniiy/W2LFjtXr1atXV1WnQoEH5OCUgsEjQAQAAEClmViapm3NuT/L7r0v6p1xec87KOdr4yca8xHfIiBNG6B/H/GOHx5SXl2vNmjVauXKlZs+erSVLluTt/c8991zt2bOnXfs999yjiy66KG/vs2HDBp1++ulpn58xY4Yuu+wy3XbbbWpqalJtba1WrlypPXv26O2339ajjz6qcePG5S0eIMhCk6Cb2RBJd0jq6Zyb6nc8AAAACKwTJT1jZlLz9e5jzrmO52gH3Pr161VdXZ16vGHDBs2ePVu9e/fWgAED1LdvXz355JMaOHCgxo8fr08//VS9e/dWTU2NNm7cqNraWt11112tXvO1114r8lk0u/nmm7V8+XKVlpaqvr5elZWV6tWrl9asWaNdu3Zp9OjR6tWrl/bs2aNBgwaRnCNWfE3QzewRSTWSPnTOndKifbykuZJKJD3knLvbObdZ0kwze8qfaAEg3NhmDUBcJK8bT8vna3Y20l1oDQ0NrUahX3jhBV1zzTW65JJLJEkLFy7UTTfdpJqamtTjzhRrBL26ulpPP/106vG8efP08ccfK5E4vDX99ddfr4ULF2rnzp2aMWNGqr2srCxvcQBh4PcicQsljW/ZYGYlkuapeUGPKklXmVlV8UMDgGhhmzUACK/3339f/fr1Sz2eOXOmli9frpkzZ+rBBx+UJN1///268cYb9dZbb7V63Hbk/JDXXntNa9eubfeVz+Rcki688ELt27dPDzzwQKpt7969rY6ZMmWKnnvuOdXX1+viiy/O6/sDYeJrgu6ce1XSJ22ax0h6xzm32Tm3X1KtpEmZvqaZzTKzVWa26qOPPspjtAAAAIA/Lr74Ys2cOVOvvPKKpOba9NmzZ+vhhx/W0qVL1dTUpJtuukm/+MUvdNppzZMHDj1Ol6Bn6qqrrtJZZ52lTZs2acCAAXr44YclSRMmTND777/f4TGSZGZavHixXnnlFQ0ePFhjxozRtGnTNGfOnNQxpaWluuCCC3TFFVeopKQkp3iBMAtiDXp/SdtaPN4uaayZ9ZI0W9JoM/uBc+7HXj+c3ONyviQlEglX6GABAACAQps2bZqmTZuWerx48WI9//zzOuKII1RVVVXQFd0ff/xxz/a6urpOjzmkoqJCtbW1aZ9vamrSihUrtGjRolRbZWVl2n3XgagKYoLuyTn3Z0k3dnogAAAAEHGTJ0/W5MmT0z5/3XXXpb4fMWJEzqPohdTQ0KCamhpNmTJFw4YN8zscwFdBTNB3SDqpxeMByTYAAAAAEVNVVaXNmzf7HQYQCH4vEuelXtIwMxtsZqWSrpS0NJsXMLOJZjZ/9+7dBQkQAAAAAIB88zVBN7PHJb0habiZbTezmc65LyV9V9Lzkv4o6Unn3IZsXpeVigEAAAAAYePrFHfn3FVp2usk1Xk9BwAAAABAFAVxijsAoAAo/wEAAAi2SCboXIQCQHuU/wAAAARbJBN0LkIBAAAAAGETyQQdAAAAAICwIUEHAAAAACAASNABAACAmDp48KBGjx6tmpoaz+crKyt16qmnatSoUUokEu2e37Vrl66++moNGTJEZ5xxhs466yw988wzhQ4biCxft1krFDObKGni0KFD/Q4FAAAACKy5c+dq5MiRamxsTHvMSy+9pN69e7drd85p8uTJmjZtmh577DFJ0tatW7V06dKM3985J+ecunVj3BCQIjqCziJxAAAAiILGxkaNHj1a1dXV6t69u0aNGqVx48apqakp59fevn27/vM//1PXX399l37+xRdfVGlpqW688cZU26BBg3TLLbdIku68807de++9qefuuOMOzZ07V1u2bNHw4cN17bXX6pRTTtG2bdtyOg8gSiI5gg4AAADk085//Vf99Y8b8/qaR40coX4//GGHx5SXl2vNmjVauXKlZs+erSVLlnR4/Lnnnqs9e/a0a7/nnnt00UUXtWq77bbb9JOf/MTz+EPMTF//+tdlZvr2t7+tWbNmpZ7bsGGDTj/99LQ/O2PGDF122WW67bbb1NTUpNraWq1cuVJ79uzR22+/rUcffVTjxo3r8HyAuCFBBwAAAAJu/fr1qq6uTj1uaGjQypUr9dWvflXHHXecevToIUl67bXXMnq9Z599Vn379tUZZ5yhl19+Oe1xy5cvV//+/fXhhx/qa1/7mkaMGKHzzjvP89ibb75Zy5cvV2lpqerr61VZWalevXppzZo12rVrl0aPHq1evXppz549GjRoEMk54IEEHQAAAOhEZyPdhdbQ0NBqtPrAgQO677771NjYmJpSLmU+gv76669r6dKlqqur0759+9TY2Ki/+7u/07/927+1+rn+/ftLkvr27aspU6Zo5cqVqQS9urpaTz/9dOrYefPm6eOPP261mNz111+vhQsXaufOnZoxY0aqvaysrKu/CiDSIlmDbmYTzWz+7t27/Q4FAAKDvhEAwuv9999Xv379Uo+3bdum6dOna+jQoa0S8tdee01r165t99V2evuPf/xjbd++XVu2bFFtba0uvPDCdsn5559/nnrtzz//XC+88IJOOeWU1PMXXnih9u3bpwceeCDVtnfv3lavMWXKFD333HOqr6/XxRdfnPsvAoi4SI6gO+eWSVqWSCRu8DsWAAgK+kYgc4+9+Z6WrN3Rqq3hg0ZVVZT7FBHi7uKLL9bMmTO1cOFCfeUrX1FNTY127tzZKmnPlwkTJuihhx7Svn37NGXKFEnSl19+qauvvlrjx49PHWdmWrx4sW6//Xb95Cc/UZ8+fVRWVqY5c+akjiktLdUFF1yg4447TiUlJXmPFYiaSCboADLndREqSZNG9dfVYwf6EBEA+G/J2h3tEvKqinJNGtXfx6gQZ9OmTdO0adNateUrOT///PN1/vnnpx7X1dWlvn/rrbc6/NmKigrV1tamfb6pqUkrVqzQokWLUm2VlZVav3591wMGIowEHYg5r4vQhg+a90IlQQcQZ1UV5Xri22f5HQYQWg0NDaqpqdGUKVM0bNgwv8MBQoEEHUC7i9BvPviGj9EAAIAoqKqq0ubNm/0OAwiVSC4SBwAAAABA2EQyQWelYgAAAABA2EQyQXfOLXPOzerZs6ffoQAAAAAAkJFIJugAAAAAAIQNCToAAAAAAAFAgg4AAAAAQACQoAMAAAAAEAAk6AAAAAAABAAJOgAAAAAAARDJBJ190AEAAAAAYXOE3wEUgnNumaRliUTiBr9jAQAAwfbYm+9pydodrdoaPmhUVUW5TxEBAOIqkiPoAID2mF0EeFuydocaPmhs1VZVUa5Jo/r7FBEAIK4iOYIOAGiP2UVAelUV5Xri22f5HQYAIOYYQQcAAAAAIABI0AEAAAAACAASdAAAAAAAAoAEHQAAAACAACBBBwAAQCSZWYmZrTGzZ/2OBQAyQYIOAACAqLpV0h/9DgIAMhXJBJ29fgEAAOLNzAZIulTSQ37HAgCZiuQ+6Oz1CwAA2nrszfe0ZO2Odu0NHzSqqqLch4hQYPdK+p6kHukOMLNZkmZJ0sCBA4sTFQB0IJIj6AAAAG0tWbtDDR80tmuvqijXpFH9fYgIhWJmNZI+dM6t7ug459x851zCOZfo06dPkaIDgPQiOYIOAADgpaqiXE98+yy/w0DhnS3p/zKzCZKOllRuZv/mnPs7n+MCgA4xgg4AAIBIcc79wDk3wDlXKelKSS+SnAMIAxJ0AAAAAAACgCnuAAAAiCzn3MuSXvY5DADICAk6EBOsXgwAAAAEG1PcgZhg9WIAAAAg2BhBB2KE1YsBxIXXrCFmDAEAgo4RdAAAEDles4aYMQQACDpG0AEAQCTle9bQX554Uo3PPtuq7brkTYCtyzMbmS+vqdHx37wibzEBAKKFBB0AAKANr2R8b329JKn7mWd26TX31tdrb319u9claQcAHEKCDgAAYi3TZLz7mWe2S6a/9+AbkpTRSL3X++zbuFGSSNABAJJI0AEAQEx4JchS5sl4ro7/5hXtXm/rNddq38aN2nrNta3aGVUHgHiKZIJuZhMlTRw6dKjfoQAAgALLdMX2xmef1b6NG3X0iBGt2guRjGeqvKamXRuj6gAQX5FM0J1zyyQtSyQSN/gdCwAUkpmVSbpf0n5JLzvn/t3nkICiO7Rie8uE/JqPfq/z167V1uUPpNoOJeeDfvVLP8L0lG5UHQAQT5FM0AEgzMzsEUk1kj50zp3Son28pLmSSiQ95Jy7W9Jlkp5yzi0zsyckkaAjltqu2L71mge0b8e7UovR8qNHjPAcsQYAIChI0AEgeBZK+rmk1DCfmZVImifpa5K2S6o3s6WSBkhalzzsYHHDBILhjD+8rFM3vdlqq7MgjpYDANAZEnQACBjn3KtmVtmmeYykd5xzmyXJzGolTVJzsj5A0lpJ3dK9ppnNkjRLkgYOHJj/oIEiSLfI28TkIm+qOLzIG6PlAIAwIkEHgHDoL2lbi8fbJY2V9DNJPzezSyUtS/fDzrn5kuZLUiKRcAWMEyiYdIu8bRkwXOuGj9X35v3Ap8gAAMgPEnQACDHn3OeSpvsdB5BvXqPljRsatP2EAVp4zndatXut2A4AQBilnQ4JAAiUHZJOavF4QLINiKRDo+UtbT9hgJ7vd1q7Y6sqyjVpVP9ihQYAQMEwgg6gHa8Flzri1/7BMVMvaZiZDVZzYn6lpKv9DQnID6/Rcq9F3r734BuS1Gq1dgAAooQEHYigx958T0vWth5cTTcF1OvC2GvBpXT21tdrb319u9cgae86M3tc0vmSepvZdkk/cs49bGbflfS8mrdZe8Q5tyHL150oaeLQoUPzHTKQE6/achZ5AwDEEQk6EEFL1u5ol5Bf89Hvdf7atdq6/IFWx+5NJuPdzzycjGez4FK6kS9JJOhd5Jy7Kk17naS6HF53maRliUTihq6+BlAobIkGAAAJOhBJZ/zhZV236c1WCfqhRFxnth4V737mme1Guw9NI83E8d+8ol0ivvWaa7Vv40ZtvebaVu2MqgPoaDo7AABxR4IORNCpm95Uv4/ekypOSbV5JeKF4jUtlVF1AFLm09mzKdUBACAqSNCBkPMajer30Xva2WegRvs0XTTdqDr8RQ06ismrb5K8F3/z4lWqw2rtAICoI0EHQs5rNGpnn4FaN3ysLvExLi9Me/cXNegoJq++Scpu8beqinJWbAcAxAoJOhAi2W5FFCRMeweiK9O+CQAAdIwEHQiRMG9FxLR3ILrC3DcBABAkJOhAyDAiBcBPhRgtZ0E4AACakaADAdTZ4kqhtGqBtO6p1m0735fK+vgTD4AuKcRoOQvCAQDQLOME3cyOkvQNSZUtf84590/5DwuIt3wsrhQ4656Sdq6T+p16uG3/5/7FE0Os4o58KcRMHhaEAwAguxH0JZJ2S1ot6a+FCQeIn1yni4Zqami/U6Xp/3n48WOj/YslhljFHdnqqH8CAAD5l02CPsA5N75gkXTCzMok3S9pv6SXnXP/7lcsQD7lOl2UqaEACoXF3wAAKK5sEvTfmdmpzrl1+XpzM3tEUo2kD51zp7RoHy9prqQSSQ855+6WdJmkp5xzy8zsCUkk6IiMXKeLBm5qqGe9eZvp7QACo7N1L/I5nT1Us34AACiybBL0cyRdZ2bvqnmKu0lyzrm/zeH9F0r6uaTU//xmViJpnqSvSdouqd7MlkoaIOnQzYGDObwn4JvYTBf1qjfvd6p06lT/YgKQVjHXvWDWDwAA6WWToF+S7zd3zr1qZpVtmsdIesc5t1mSzKxW0iQ1J+sDJK2V1C3da5rZLEmzJGngwIH5DhnISaymi7atNwcQaMXcwjFws34AAAiIjBN059zWQgbSQn9J21o83i5prKSfSfq5mV0qaVm6H3bOzZc0X5ISiYQrYJxAl7CPOfzCKu6QYjSTBwCAEMpqH3QzO03SucmHrznn3sp/SN6cc59Lml6s9wNyFZuLYOrNQ4NV3CEVbyaPV625RL05AAAdyWYf9Fsl3SDpP5JN/2Zm851z9+U5ph2STmrxeECyDQiV2Exnp94cCKxct3HMhVetuUS9OQAAHclmBH2mpLHJkWyZ2RxJb0jKd4JeL2mYmQ1Wc2J+paSrs3kBpnEiKGIznZ16cyCQ/L5RSK05AADZySZBN7VePf1gsq3LzOxxSedL6m1m2yX9yDn3sJl9V9Lzat5m7RHn3IZsXpdpnCimzrYnAgA/xeZGIQAAEZBNgr5A0ptm9oyaE/PJkh7J5c2dc1elaa+TVJfLawPFUsztiXzdP9ir1lyi3hwIAG4UAgAQDdms4v6/zOxlSWcnm6Y559YWIiggbIo1QuXr/sFeteYS9eZAABTzRqEXX28eAgAQIZ0m6Ga23Dl3jpntkeTUYlq7mTnnXOD+96UGHVHma00nteahRt8YDX4u/JaOrzcPAQCIkE4TdOfcOck/exQ+nPygBh2FEput0xBJ9I3R4PfCb+mwIByCxMyOlvSqpKPUfL37lHPuR/5GBQCdy2abtTnOuX/srA2IsqBeGOfbV/fW6ewvXpIW9DzcSK05EBgs/AZ06q+SLnTOfWZmR0pabmb/5Zxb4XdgANCRbBaJ+5qktsn4JR5tQKTF4cL47C9eUuWBzZJGH26k1hwouiDO2qHeHGHgnHOSPks+PDL55fyLCAAyk0kN+nck3SRpiJn9ocVTPSS9XqjAAL8F8cK4mLYcOUTV1JsDvgrirB3qzREWZlYiabWkoZLmOefe9DhmlqRZkjRw4MDiBggAHjIZQX9M0n9J+rGk77do3+Oc+6QgUeWIhZCQD0G8MAYQXUFc/C0d6s0RBs65g5JGmdlxkp4xs1Occ+vbHDNf0nxJSiQSjLAD8F0mi8TtlrRbkuee5UHEQkjIF78ujL2mkEoFmkbqsb955YHN2nLkkPy+D4AOcVMQKAzn3Kdm9pKk8ZLWd3Y8APgpm0XiHpV0q3Pu0+Tj4yX91Dk3o0CxAUXhNWol+Tud3WsKqVSgaaQe+5tvOXKIXj/mAlXn950AdCJoo+XUmyOszKyPpAPJ5PwYNa+lNMfnsACgU9ksEve3h5JzSXLO/cXMRndwPBAKXqNWkv8jV0WdQtpmf/N/evANScmiPAB5FcSbgulQb44Qq5D0aLIOvZukJ51z7f/hAUDAZJOgdzOz451zf5EkMzshy58HAitoo1ZAIbA+RzAE9aZgOtSbI4ycc39Qq61IACAcskmwfyrpDTNbJMkkTZU0uyBR5YiLUABoj/U5goObggCAMKL0qfAyTtCdc780s1WSLkw2XeacayhMWLnhIhTpxHrrNI/F4CS1qz8HkD+x7nOCKF0/mIM7/7xbrx9zgSRmGQCIPkqfCi/bKeofSFop6WhJvc3sPOfcq/kPCyiMWK+S7LEYnKTmx6dO9ScmIOLC0ucUdeeIQsg08d66vPnPQefk7a2r969T9f510oLft3/y1KlSYnre3gsAgoDSp8LKZhX36yXdKmmApLWSxkl6Q4dH1IFQCNrU0qJOFWqzGByAwgtan+OlqDtH5CJdIp5p4j3onLwnzfP/v/+ps794qf2uF1uXN3+1jZekHQDQgWxG0G+VdKakFc65C8xshKR/LUxYQO7CMrWUqUJANISlz0knFCMi6WYCFSDxztRvu0/Qb7tP0BPT2/zuvG4m7FzX/CcJOgAgjWwS9H3OuX1mJjM7yjm30cyGFywyIEdhmVoqFeDCON2FIbXmQMGEqc8JhY76sTDMBEpMb5+IL7i0+RwWXNq6nVF1AEBSNgn6djM7TtJiSb82s79I2lqIoHLFKu44JAxTSwvCa5SJWnMgLzrbxzzofU4gV+D1Ssa9pq2HvR/zip1RdQBACxkl6GZmkv5v59ynku4ys5ck9ZT0XAFj6zJWcQcUnlEmIGTCto95W4Esq/G6qejjtPWCyXRUfef7Ulmf4sYGAAiEjBJ055wzszpJpyYfv1LQqIAshb32E0C4hGGkvCO+1puHfep6vnmNqu//vPhxAAACIZsp7r83szOdc/UFiwbooljXflJvDhQMN/9ykM2K62Gfup4Lr1H1x0b7EwsAwHfZJOhjJX3LzLZK+lySqXlw/W8LEhmQpTCMaBWk9pN6c2SI9TmyF/abf77WmwdwxXUAAIKu0wTdzH7lnLtG0i8kPVP4kIDoKljtZ1ynhiIrrM/RNWG4+ZdO0erNmbaef/s/b7/au8TNDQCIuExG0M8ws7+RNF3So2oeOQd80dnqyWEQir2GgRiK6nT2ovQ5zOTJr3QLxLHiOwBEXiYJ+i8k/VbSEEmr1TpBd8l2oCjCvnpyzqg3Bwom7NPZi4bR8sLr0a/5a3qbmRteI+oAgEjpNEF3zv1M0s/M7AHn3HeKEFPOqLOMtjBPN80Zo1RAQYW1f/GqNZcKVG9OPwQAQMFkvEhcWJJziTrLqIjqdNOcMUoF5Cxq/YtXrblUwP3N6YcAACiIbFZxB4oq7NNNfV09GUCHwt6/eClIrTllNcGzc137qe4sHAcAkUGCjkAL63RTKcfVk9PtH8yFMZA3Ye5fiobp7MHi9Xtn4TgAiBQSdKCAujyilW7/YC6MgaxEYeeHtgoyO6ezm4JMZw+GxPT2iTgLxwFApJCgIxCiVg+aF1wUAzmL4s4PBdnbnJuCAAAEAgk6AiGK9aAAgiGKU9lzqjdnmzQAAAKLBB2BEcWL6IywCBOQF8zEyRB15QAABBYJOpCjnPcf5mIZyIsozsQp2G4QjJZHCyu7A0BkkKCj6KI2ypWX/Ye5WAbyImozcXKuN2eGTvSxsjsAREokE3Qzmyhp4tChQ/0OBR6iOMpVkP2HAaQVtRt9Hcmpf2GGTvSxsjsAREokE3Tn3DJJyxKJxA1+xwJvURvlyhijWUBeRPFGX8EwQwcAgNCIZIIOBBajWfBR1GYXRe1GX0715p3tYw4AAEKBBB0F4zUFVQr3NNS8LNjEaBZ8wuyiYMup3px9zAEAiAQSdBSM1xRUKdzTUHNesAlA1qg3zxA3/wAACD0SdBRU1KagSllcQFNvDuQF9eZt0LcAABBZJOjIiziNcGUsJPXmi/60SHWb61q1bSltVM+DYySxMj2CIUo3+7xKZaQsymVC0rfAZ157o0vsjw4AAUeCjrxghCsNn6aceiXd6azatUqSlDgxkWrb2+1P2tvtT5r+3MZWx04YMkGXn3x5/gIFWojiuhVevEplpCzLZZjOjo6ku1nD/ugAEHgk6MibKI1wSXlaEK4IvJJxr6Q7ncSJiXaJ99cfmqPdJSvbveaqXas8E38Sd+RDFNetSCdqpTLZ3BTMFf1NBrz2RpfYHx0AQoAEHUgj4wXhfN7eqG5znTZ9sknDTxieavNKurNx/MHzdPzB87Rg/OEEIt0FeLrEnYtodEXUbvTlzOfp7Jkm3tncFMwFNwoBAFFHgo6sxanePKNRriJub+R1sXwoOV8wfkFe36uty0++3PPiN11Mh34G8BKXfiQsWzN2dANO6jzxzvWmYKa4UQgAiDoSdGSNenMPeb6AzuZiefgJwzVhyIS8vXe2vBL36c9R34iOxaUfyWprxiJNZ8+mLKZYiXemsrlRSNIOAAgjEnR0CdNQC8tr2roUvIvljmz6ZFO7RD0ssaM44tKPZFxvXqTp7IUoi/GbV+LO7B4AQBiRoAPZKMAIl5/T1gvFa0SfC2MgA0WYjRP2/iVT6Wb3eN08lLiBCAAIBhJ0pBWXLY+y2pO4ACNcXqNZfk9bzxXT3tES9eZt+pECLCwZprIYP6U7b24gAgCCIpIJuplNlDRx6NChfocSanHZ8ijrPYkLsGBTHEazpPbT3q/UfvVSiQb5GBMKj3rzNv1IARaWjEJZTDGkq2FPN7LO7w4AUGyRTNCdc8skLUskEjf4HUvYUSOaXx1NN406r5GrvXKSDhY/GBQdfUkbOdzoi/O09UKhLAcAEBSRTNCBvChAvXkUp7Nnymvk6vmfVvsUDQohLmUxWaEfCYVs6tUZVQ8HMztJ0i8lnSjJSZrvnJvrb1QA0DkSdEiKT41oVnKsN2eUC3ETl7KYrNCPhFZkR9V3rpMWXNq67dSpUiJy64R8Ken/cc793sx6SFptZr92zjX4HRgQFhmvrYK8IkGHpPjUiGbd0eQwDZVRLsRRHKayZ7WwpEQ/ElKZjqpvKW1Uz4NjJBW+TCpnXjeGdq5r/jNiCbpz7gNJHyS/32Nmf5TUXxIJOpChjNdWQV6RoCMlDhfWxe5oGOXq3F45tjxCqGS9sGSGGC0PPq8bI/tsm1TiQzBdkZjePhFvO5oeQWZWKWm0pDc9npslaZYkDRw4sLiBASFQrHWacBgJOmKnXUezaoG07l/a31PPsE403fZGcVn8LRe9VCKvReIiMY004uJeFuN5weLVl2RRb85oefB5jaqPXfANn6JBJszsWElPS7rNOdfY9nnn3HxJ8yUpkUi4IocHAO2QoMdQ3C+s28lxy6N02xtxYd25PipRH5W0Gx1kz/Tgi0tZTFZyrDeXmHUTVvtsGzOBAsjMjlRzcv7vzrn/8DseAMgECXoMxeXCOqt68wxrRJmCChwWh7KYQqxbwaybaOl5cIznFHdmAvnLzEzSw5L+6Jz7X37HAwCZIkGPqThcWBei3pwpqIijOM+68epHbum5XJP++jtpwdGtD85wOjuzbqLl+IPn6fiD52nB+NYlD8wE8t3Zkq6RtM7M1ibbfuica393DAAChAQdkZZRvXmWexIzWo64icusm3Ta9SML/kXa+bbUo/OyGGbdxBv7qPvHObdckvkdBwBkiwQ94uI88uUpixrRji6sUXhc2GbGzIZIukNST+dc5sXOWYrDrJusZFgWw6yb+IrsPuoAgIIiQY+4uI98eeLCOvDicmFrZo9IqpH0oXPulBbt4yXNVXNl60POubvTvYZzbrOkmWb2VKHjjbqs680zxGh5PKXbRx0AgI6QoMdAHEa+uLCOlhhd2C6U9HNJqX+gZlYiaZ6kr0naLqnezJaqOVn/cZufn+Gc+zCfAcV51k3G9eZpymKYdYNMMDsIANAREnREQi4X1qyoDL845141s8o2zWMkvZMcGZeZ1Uqa5Jz7sZpH27vEzGZJmiVJAwcOTHtc3GfdZFRvnqYshlk36ExcZgcBALqOBD0ivEa9pPiMfEldv7BmRWUETH9J21o83i5pbLqDzayXpNmSRpvZD5KJfDvOufmS5ktSIpFwHQUQh1k3WWlTFpO6qffcq60OY/E3dCZGs4MAAF1Egh4RXqNeUrxGvjxlWG/ORTXCyjn3Z0k3Zvtzcb+p51UWU/XBf2hq6RvSgp6HGz1m3XBTDwAAFAoJeoQw6tU5akQRAjskndTi8YBkW17F/aaeV1nM1NI3NKxpi6TTDh+YZjo7N/WQT23r0q/8ZKN6HdNLg3yMCQDgDxJ0hIrXqJeU28gXo14ImHpJw8xssJoT8yslXZ2PFzaziZImDh06VBI39dqXxfSUdFqn09m5qYd88vr/Z++XX0hf/NmHaAAAfiNBDyFWWW6/OjsjX/EQtdWPzexxSedL6m1m2yX9yDn3sJl9V9Lzal65/RHn3IZ8vJ9zbpmkZYlE4oZ8vF4ccFMPheZVl/78fWN8igYA4DcS9BBileU2o16S58gXoiWKqx87565K014nqf3WAnmy/913tc+6xeKmXjpf3Vuns794qdNZNxI39eCPvV9+4bmAXEFuSu5cJy24tHXbqVOlBAvYAUCxhSZBN7Mhku6Q1NM5135YNGbiPjU1E9SbRwurH+dXXG7qpSuL+Yfdv1GlbZU0OtW2qN9g1R3bJLX4e0WfAT/0OqaX5xT3gtyU9Jhppp3rmv8kQQeAoitKgm5mj6h5/94PnXOntGgfL2mumqdxPuScuzvdayT3BJ5pZk8VOl4EQ8arLEvUmwNZKB08ODY3+NKVxXQvLdFnx45UWYtZN3XPTW/uM9Qv1UafAT/0OaaP+hzTp93MjYLclExMb5+Itx1NBwAUTbFG0BdK+rmk1BWhmZVImifpa2re57fezJaqOVlvu4/vDOfch8UJNVioN89glWWJenMgA20XiYuL9GUx7dFnAAAAPxUlQXfOvWpmlW2ax0h6JzkyLjOrlTTJOfdjNY+2d4mZzZI0S5IGDhzY1ZcJDOrNO19lWWKlZSATcVwkzrPWXEpbbw4AAOAnP2vQ+0va1uLxdklj0x1sZr0kzZY02sx+kEzk23HOzZc0X5ISiYTLX7j+od68c0xnB+Dl7C9eUuWBzWpZay5Rb47witpuFgCA1kKzSJxz7s+SbvQ7DhRPNqssS0xNBeLOa92Kf9h/UFtKh6i6zawb6s0RRlHczQKA/9ItqOq1hgsKz88EfYekk1o8HpBsi60415t7XlhnuMqyxMgXAO91K7qXlqj3sUd5Hs9NPYQNu1kAKIR0C6pWVZRr0qj+PkUVX34m6PWShpnZYDUn5ldKujofLxzWhZDiXG+e7sI6k1WWJUa+4ozpnpkLa9+YDe91KwAAQEc8F1SFL4q1zdrjks6X1NvMtkv6kXPuYTP7rqTn1bxy+yPOuQ35eL8wL4QU53rzTC+sGfXCIUz3zE6Y+8ZMeJXFLGrcqLqexzPrBpHGjUoAiI5ireJ+VZr2Okl1xYgBwZZtvTkgMd0TrXktCFfX83htKpHapuLMukFUcKMSAKIlNIvERYlXrblEvXkm9eaMegGQslgQ7rnpGi4x6waRxY1KAIiWbn4HUAhmNtHM5u/evdvvUDwdqjVvK2715i11Ly3RZ8ePbN7fPPlVVzFEmw60/gwZ9QIgpe9H0i0IBwAAEAaRHEEPQ51lnGvNJerNAeSubT+yaEGJ6mw3s24AAEBoRTJBR7BlupATF9ZAfkVpFXevfqTuwIfaVHpkq3pzZt0grrwWjpNYPA4Ago4EvcDivLd5Opku5MSFNZBfYZhdlCmvfkSlZRpe1odZN4i9dP93sngcAAQfCXqBxXlvc69FnCQWcgKQnWwWhAPgvXCcxOJxABAGkUzQgzaNM6715ocWcaqqKG/VzkJOALLh1Zf87riDWtnjryqlLAYAAERIJBP0KE3jDLOv7q3TnaUvqbq09QJwi8o+UF059eYAMuPVl0y3PXq3hHpzAAAQLZFM0P1CvXlrnjWiot4cQHaoNwcAAHFBgp5H1JtnUCMqUW+OgmP14nDKdt0KANnz6h/pG4H48Pq/1qskFf4hQc8z6s0P/+Om1hx+YPXi8Eq3bgX15kB+ePWP9I1AvHj9X1tVUa5Jo/r7GBVaimSCHrRF4uKiqqJcT3z7rNTjRQtKVGe72410cWGNQmL14vTC0De27UckafrCJr2rLymLAXLk1T/SNwLx4/V/LYIjkgl6oReJ86o1l+Jdb/7VvXU6+4uXpAWHF3GqO/ChNpW2XsRJ4sIa8EvQF9D06kckSQc+1/DSMspiAAAIiTP+8LJO3fSmti5vP3W+vKZGx3/zCh+iCodIJuiF5lVrLsW83nz3b1RpW8UiTgC6Kt3Ckiotk8r6+BITAADomNfg5cT6+uZvKs5s1b63vl576+vbHU/SfhgJehfFtdZcSr8n8b09+qm0om+qbdMnf9HwHv38CBFAwHnd6EsctU/1vfuqrEU/ItGXAIXWbuE426UJrkxUpQNoyysZ35tMxrufeTgZ3zJguNYNH6vvzftBRj9P0n4YCTq6pG3tCjWiALLhdaOvvseXeq+0SSPbHEtfAhSO58Jx2i+ZSNCBmMs0Ge9+5pntkunvPfiG52se/80r2iXd6baqPnR83JCgd4K9zdvzrBOlRhRAFr66t053lr6k6tLD/cj0A3/VSNGPAMXkuXDcwoRP0QAIEq+yXq9kPFdeSfvWa67N2+uHTSQT9HyuVBznvc3T8awTpUYUQBboR4CA2/+5tODS1m2nTpUSrPoORE1nC2DHtazXL5FM0PO9UnFc/2J61YhK3nWi1IgCyNaWI4eoevp/Hm5guycgGA7dKHMt2naua/6TBB2InKAugL1v40bPkfSo16ZHMkFHfnjViEredaLUiALB59c+6GkXhOvxpcpaJOWbPtmk4Se03ZgRQNH16Nf81bLcpO1oOoDA8/r/1+vaXgregGS6GwNxqE0nQW+BevPWvGpEJepEgbDyax/0TBeE40YfAAD54/X/7zUf/V7nr12rrcsfSLUFMd/xqkuX4lGbToLeAvXmrbEnMYB8YEE4IHyisPWamT0iqUbSh865U/yOB/BD252Xtl7zgPbteFci3wksEvQ2gja9o1jYkxhAobAgHBAuEdp6baGkn0uK34UdIOmMP7ysUze9qa3LD4+gs/Bb8JGgQxJ7EgMonN9036/Xu7OwJBAWUdl6zTn3qplV+h0H4JdTN72pfh+9J1UcnkDCaHnwxTZBp968NaagIg7aTdlU80hR2wtRdE26nR8OHv1XbTuySVUt2rjRByAIzGyWpFmSNHDgQJ+jAbom3TZp/T56Tzv7DNRoRstDJZIJeiYrFVNv3hpTUBF1nlM2P9kkSSToefLZ7/63/mH3b9S9tKRV+5xef9XQpu7c7AMQOM65+ZLmS1IikXCdHA4EUrpt0nb2Gah1w8fqEp/iQtdEMkHPdKXiuNZfZFpvzhRURInnlE323c6rs794SZW2VWUVrReWLLF9KuFmHwAABeOV13zvwTd8iga5iGSCjo6x5RGAQvCqNZe42QdExSbt97yxSakQUDxe09kbNzRo+wkD2iXk6fY8R7BFPkFPV5NBvTn15gC6zmsmjletucTNPiAKJrgyydq3B7lUyMwel3S+pN5mtl3Sj5xzD/sbFZAbr+ns208YoOf7ndbu2KqKck0a1b+Y4SEPIp+gp6vJoN6cenMAXec1E6dbN9PQpiO50QdE0OU6Vpe7Y6U2/76DXCrknLvK7xiAXHS0qHXL6eyHRs5b7neO8Ip8gi7Ft9Zcot4cQGGkm4mjkjIfowIAIDpY1DqeYpGgxxn15gAOyWSHi0x9Yc9rTq9Gldi+VNum0iM1nJk4AABkLdPRckRfpBP0/e++q33WLba15hL15gAOy3SHi0y83n2/th55pKr6nZpqGy7v7ewAAEDHGC3HIZFO0CX+YjPKBSBXXqUyTc5p0IESbvQBAJAnmYyWe/2fzGrt0RLpBL108ODYTwlhlAtArj773f/WP+z+jbqXlqTa5vT6qw6WdPcxKgBBsemTTe0Wi2PrNcBbrjtMeZWvslp7tEQyQc9nnWVYeN1NkxjlApC7s794SZW2VWUVh3d+KLF9KmEmDhB7Xjf8g7z1GuC3fOwwVVVRzortERbJBD2fdZZh4TXCJTHKBSB3v+m+X693Z+cHAO1dfvLl7RLxIG+9BhQTC7+hKyKZoMfRF/a87qtoVMlRx7Zqf0elGl52ok9RAYiC5lKZg6pq0cbODwAAdIyF39AVJOgR4VVrLlFvDiA7LAgHAED2CjFazoJw8USCHkJcQAMoFBaEAwAge4UYLWdBuHgiQQ8hLqABFIpXuQylMgAAHFbM2nIWhIsfEvQQ4gIaQKGwNSOAfPDaeg2ICmrLUUgk6CHEBTSQP3Hdv5etGQEUCtcjiIrO9izP52g59eY4hAQ94Kg3Bwonzvv3sjUjgEJpu/XaQi30LxggB/nYszxT1JvjEBL0gKPeHCicOO/fe/YXL6nStqqsYnSr9hLbp5KyPj5FBQCAP4KwZzn15pBI0AOPenMAhfCb7vv1eve+Kqvo26p90yd/0fAe/XyKCgAAfxSrrjxdiRnT2XEICXrAUW8OoBCa+5aDqmrTPvyE4fQvAIBI83O03Gsqu8R0dhxGgh4g1JsDKCQzmyhpYo+/GarKpu70LQCASEu3yNve+npJUvczz0y1FXMVdqayoyMk6AFCvTmAQnLOLZO0rLr/sTd0twH0LQCASEu3yFv3M89UeU2Njv/mFQV9f1ZmR1eQoAcI9eYAimFXqdM7R9G3AACiIwiLvLXFyuzoikgm6IemcQ4dOtTvULJCvTmAojjyGA3vdwZ9CwAglLyScb+nrafDdHZkK5IJ+qFpnIlE4ga/Y/GSbvVG6s0BFENleSX9DAAgtLymrhdr2no6TGdHvkQyQQ86r1pziXpzAAAAoKUgTl33wnR25AsJug+8as0l6s0BAAAQT0Fdcd1LR6PlTGdHrkjQfeBVay5Rbw4AAIB48nvF9WwwWo5CIkEvMPY2BwAAAA4Ly7T1dOtGhWa0fNUCad1Tvrz1nX/e3fzNgp7tnzx1qpSYXtyAQoQEvcDY2xwAAABxFaYV19vyGimXfB4tzybp3rq8+c9B5xQunmxtXd78lck5xDSRJ0EvMPY2BwAAQBxkmowHcdp6IOvKvZLxbJLuQef4luT+04NvSJKemN7md5fpDYZ0ifzO96WyPnmKMphI0AuMvc0BAAAQJdks6BaWZPzNdz+RJI0dfEKqrSAj5bmOgPuYdOdFYnpmsaf7Pe3/PP8xBQwJehFQbw4AAIAwynRU/NDjoCXjXrymro8dfIImjeqvq8cOzN8bhXgE3HfpEvnHRjcn6Qsubd0eod8TCXoevbnopzr27WdatR19wj7t63a0TxEBAAAAmQnzFHUvBVvkLZtp2lK0RsD95jW9Pd10+JD+nknQ82jFjie0+oTGVgn51iOP1IAjevsYFQAAAHBY2Keoe8l02rqUxdT1dIl4pqPgJOP516Nf89f0Fqv9e31OO9c1/xnC3z0Jeh6l6s0rRqfaqkS9OQAAAPwRxSnqmSbjWU1bz2Y6Ool3sHhNh19waXOSHsKp8CToeUa9OQAAAPwQtSnqUo7J+KoF0rp/kRoyeCOmo0fLqVPbt4VkVJ0EvQu8as0l6s0BAACQX+mmo3sJczKerl48p2ScBdniK5tRdSlQnz0Jehd41ZpL1JsDAACg67KZju4lzMl4unrxH564QpNKfqcTS9sMgjWo82Q8i6R70Z8WqW5znfTcq5meRqRMGDJBl598ud9hFJbXqLoUuJF1EvQu8Ko1l6g3B6Ji0yebNP259p10LP7zAgDkXaaj4GEeAU/HKxkf8t4i3V7yO/U4ukUqUi71Pvao9on4B8nEu0fHo+CLBo1S3bHdpR59Wz/x8asZJd2rdq2SJCVOTHR6bNSs2rVKq3atar5B0UWhuEZKt3VbwOrVSdC7iFpzIJrS3WTb9MkmSQr+fz4AgKLIdeq5l7Ak4+mmo391b53O/uKlVm1D9n2p26VWyXj1kckRy4rDSfcifaY62y1pd+sXrRzWvLVW28S7jVW73pP2fqJEj35ZncshiRMT4UgyCyA1e6CLvBL8LaWNkqTpz5W3Oz5wv+eA1auToHeCvc2BeLn85Ms9/9PwGlEHAERLIZLuQ8eENfHONOmWpIajNuueE8r0ebeyVu1HlnRTacmXLVraJ92rdr0nqesj2HFOsHOV7tonU9kk+LmO1l/5yUb1OqaXBnXpp9NIV6/uExL0TrC3OQAAQPTtf/dd7fzRjyTFM+mWpO1HfqEve3ypkm6WanvjmM/1xjHKIOmWVlkvSVLixNZloJkgwQ4vrwT/mw++IUlaMP6sVu25jtbvObBHew7s0bwMBk5y/vvk07R3EvROsLc5AABAPAQx6c5mOvlvuu/X6933t2o72OQkKaOk+49HHZQkJdxRLVp7SmV9VJbB1PGEAjh9GYGS62j9qocu0Z+/+HPnx+VaV39skyb0G6xWkRZp2ntoEnQzmyzpUknlkh52zr1QrPem3hxAUPnZNwJAkJnZeElzJZVIesg5d3dHx5cOHqxBv/plTu+Zbiter8Q5U14JtuSdZB9KsEf+tSTVVtLNkqPd3Vr8tHfSTYKNoOtzTB/1OaZPp7lZznX1e7drVTep7sQhhxutr7R/s7SwTRlGWR/J4wZWV/8tFSVBN7NHJNVI+tA5d0qL9ow7TufcYkmLzex4SfdIyvtFKPXmAIopLH0jAISNmZVImifpa5K2S6o3s6XOuYZ0P7P5owZdMX9UTu9b1vS5dEL6kemWiXOmvBNsySvJJsEGmhWkrr6sT/sD93/e/GebBD2XEfxijaAvlPRzSanbkuk6TjVfkP64zc/PcM59mPz+fyR/Lu+oNwdQZAsVgr4RAEJojKR3nHObJcnMaiVNUuuds/Pu825lOnhMb5X3OalVO4kz4qjhg8ZULXq+XPdBo/p99J4aLpqc19dt61hJ7QtdjpI0oFXLoAP/raPdbu2zVa3a/9LNaXdJk6Q3077HwjTt5pzLKtiuMrNKSc8eGiUys7Mk3eWcuzj5+AeS5JxrewF66OdN0t2Sfu2c+00H7zNL0qzkw1Mkrc/XOQRAb0kf+x1EnnFO4RC1cyrE+QxyznncWu0YfWNeRO3vp8Q5hUXUzqlQ59Ol/jEXZjZV0njn3PXJx9dIGuuc+26b46LcN0r8HQ0Dzikcinbt6GcNen9J21o83i5pbAfH3yLpIkk9zWyoc+4XXgc55+ZLmi9JZrbKOde1vRoCKGrnI3FOYRG1cwr4+dA3Zilq5yNxTmERtXOK2vlkIsp9oxS9c4ra+UicU1gU85xCs0icc+5nkn7mdxwAECT0jQDgaYeklvPMByTbACDQ2q42UUx0nADQHn0jAOSuXtIwMxtsZqWSrpS01OeYAKBTfiboxeg45+f59fwWtfOROKewiNo5Bfl86BuzF7XzkTinsIjaOUXmfJxzX0r6rqTnJf1R0pPOuQ2d/Fhkzr+FqJ1T1M5H4pzComjnVJRF4szscUnnq7m4fpekHznnHjazCZLuVfPqxI8452YXPBgACAj6RgAAALRUtFXcAQAAAABAen5OcQcAAAAAAEmRStDN7HIz22BmTWaWdhl8M9tiZuvMbK1Zm13lAySL8xlvZpvM7B0z+34xY8yWmZ1gZr82s7eTfx6f5rjAf0ad/d6t2c+Sz//BzE73I85MZXA+55vZ7uRnstbM7vQjzkyZ2SNm9qGZee5pG7bPJxf0jfSNxUTfGOy+UaJ/PIS+kb6xmOgb6Rsz5pyLzJekkZKGS3pZUqKD47ZI6u13vPk4HzXXqP63pCGSSiW9JanK79g7OKefSPp+8vvvS5oTxs8ok9+7pAmS/kuSSRon6U2/487xfM6X9KzfsWZxTudJOl3S+jTPh+bzycPvgr6RvrFY50HfGIIv+sfUedI30jcW6zzoG0PwFZS+MVIj6M65PzrnNvkdR75keD5jJL3jnNvsnNsvqVbSpMJH12WTJD2a/P5RSZP9CyUnmfzeJ0n6pWu2QtJxZlZR7EAzFLa/R51yzr0q6ZMODgnT55MT+sZQ/J2mbwymsP09ygj9YzP6xlD8naZvDKaw/T3KSFD6xkgl6Flwkl4ws9VmNsvvYHLUX9K2Fo+3J9uC6kTn3AfJ73dKOjHNcUH/jDL5vYfps8k01rPM7C0z+y8zqy5OaAUTps+nWIL+7y4bYft86RuDKY59oxSuz6gYgv7vLhth+2zpG4OJvrFZQT6jI/L9goVmZr+R1M/jqTucc0syfJlznHM7zKyvpF+b2cbkHZOiy9P5BEpH59TygXPOmVm6bQQC8xkh5feSBjnnPrPmbcAWSxrmb0g4hL4x+OgbI4u+McDoG4OPvjGy6Bu7KHQJunPuojy8xo7knx+a2TNqnqbhyz/iPJzPDkkntXg8INnmm47Oycx2mVmFc+6D5JSQD9O8RmA+ozQy+b0H7rPpQKexOucaW3xfZ2b3m1lv59zHRYox38L0+XSKvrGdwH2+9I1ZHRMUcewbpXB9Rh2ib2wncJ8tfWNWxwQFfWOzgnxGsZvibmZlZtbj0PeSvi7Jc6W+kKiXNMzMBptZqaQrJS31OaaOLJU0Lfn9NEnt7vaG5DPK5Pe+VNK1yRUfx0na3WKaVtB0ej5m1s/MLPn9GDX3H38ueqT5E6bPp+BC8u8uG/SN/qBvDH/fKIXrMyqokPy7ywZ9oz/oG+kbM+cCsGJevr4kTVFzLcBfJe2S9Hyy/W8k1SW/H6LmlQbfkrRBzVOCfI+9q+fjDq8o+Cc1r6YY2PNJxtpL0m8lvS3pN5JOCOtn5PV7l3SjpBuT35ukecnn16mDFWKD8JXB+Xw3+Xm8JWmFpP/T75g7OZ/HJX0g6UDy39HMMH8+Of4u6BsDfD7JWOkbA/oVtb4xGTP9o6NvpG8s+rnQNwYg7k7OKRB9oyXfDAAAAAAA+Ch2U9wBAAAAAAgiEnQAAAAAAAKABB0AAAAAgAAgQQcAAAAAIABI0AEAAAAACAASdAAAAAAAAoAEHQAAAACAACBBR6SZWaWZfWFma5OPB5jZEjN728z+28zmmllpm5/5hZmdnfz+szbPXWdmPzezY8xsrZntN7PeRTshAMiBR594MNmXHfqqzOA16CMBRAp9I4KEBB1x8N/OuVFmZpL+Q9Ji59wwSSdLOlbS7DbHj5O0oqMXdM594ZwbJen9AsQLAIX038n+S5K+cM6NavG1JYOfp48EEEX0jQgEEnTEyYWS9jnnFkiSc+6gpNslzTCz7pJkZiMl/Sn5HADEkpn9nZmtTI70PGhmJcl2+kgAsUXfiGI4wu8AgCKqlrS6ZYNzrtHM3pM0VNIfJF0i6bkWhxxzaLpT0gmSlhY4TgAolpZ93LvOuSnJC81vSjrbOXfAzO6X9C1JvxR9JIB4oG+Eb0jQgdYuljS9xeMvWkx3kpldJylR5JgAoFBa9XFJX5V0hqT65sogHSPpw+Rz9JEA4oC+Eb4hQUecNEia2rLBzMolDZT0TnKa+3HOOeqCAMSZSXrUOfeDVo30kQDijb4RRUENOuLkt5K6m9m1kpSsG/qppIXOub2SLpD0ko/xAUAQ/FbSVDPrK0lmdoKZDRJ9JIB4o29EUZCgIzacc07SFEmXm9nbkv4kaZ+kHyYPaVs/BACx45xrkPQ/JL1gZn+Q9GtJFaKPBBBj9I0oFmvOWYBoSu5b+axz7pQMjv29pLHOuQNZvP4WSQnn3MddDhIAiiSbPtHjZ+kjAUQSfSOChBF0RN1BST3brKTpyTl3eqadq5kdWp3zSElNOUUIAMWTcZ/YFn0kgAijb0RgMIIOAAAAAEAAMIIOAAAAAEAAkKADAAAAABAAJOgAAAAAAAQACToAAAAAAAFAgg4AAAAAQACQoAMAAAAAEAAk6AAAAAAABMD/D8JmtkxY8+yrAAAAAElFTkSuQmCC", "text/plain": [ "<Figure size 1008x360 with 3 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "figsize(14,5)\n", "FeHs= numpy.linspace(-1.525,1.225,56)\n", "OHs= numpy.linspace(-1.525,1.225,56)\n", "oz.default()\n", "oz.eta= 0.\n", "oz.r= 0.\n", "oz.tau_SFH= 6.*u.Gyr\n", "oz.sfh= 'exp'\n", "y= [oz.O_H_DF(f)/4. for f in OHs]\n", "subplot(1,3,1)\n", "step(OHs,y)\n", "y= [oz.Fe_H_DF(f)/4. for f in FeHs]\n", "subplot(1,3,2)\n", "step(FeHs,y)\n", "subplot(1,3,3)\n", "step(FeHs,y,\n", " label=r'$\\tau_{\\mathrm{SFH}} = 6\\,\\mathrm{Gyr}$')\n", "oz.tau_SFH= 2*u.Gyr\n", "y= [oz.O_H_DF(f)/4. for f in OHs]\n", "subplot(1,3,1)\n", "step(OHs,y)\n", "y= [oz.Fe_H_DF(f)/4. for f in FeHs]\n", "subplot(1,3,2)\n", "step(FeHs,y)\n", "subplot(1,3,3)\n", "step(FeHs,y,\n", " label=r'$\\tau_{\\mathrm{SFH}} = 2\\,\\mathrm{Gyr}$')\n", "oz.tau_SFH= 1.1*u.Gyr\n", "y= [oz.O_H_DF(f)/4. for f in OHs]\n", "subplot(1,3,1)\n", "step(OHs,y)\n", "y= [oz.Fe_H_DF(f)/4. for f in FeHs]\n", "subplot(1,3,2)\n", "step(FeHs,y)\n", "subplot(1,3,3)\n", "step(FeHs,y,\n", " label=r'$\\tau_{\\mathrm{SFH}} = 1.1\\,\\mathrm{Gyr}$')\n", "oz.tau_SFH= 6.*u.Gyr\n", "oz.tau_SFE= 4.5*u.Gyr\n", "y= [oz.O_H_DF(f)/4. for f in OHs]\n", "subplot(1,3,1)\n", "step(OHs,y)\n", "y= [oz.Fe_H_DF(f)/4. for f in FeHs]\n", "subplot(1,3,2)\n", "step(FeHs,y)\n", "subplot(1,3,3)\n", "step(FeHs,y,\n", " label=r'$\\tau_{*} = 4.5\\,\\mathrm{Gyr}$')\n", "subplot(1,3,1)\n", "xlabel(r'$[\\mathrm{O/H}]$')\n", "ylabel(r'$\\mathrm{fraction}$')\n", "xlim(-1.5,1.2)\n", "ylim(0.01,50.)\n", "yscale('log')\n", "subplot(1,3,2)\n", "xlabel(r'$[\\mathrm{Fe/H}]$')\n", "xlim(-1.5,1.2)\n", "ylim(0.01,20.)\n", "yscale('log')\n", "subplot(1,3,3)\n", "xlabel(r'$[\\mathrm{Fe/H}]$')\n", "xlim(-1.5,1.2)\n", "ylim(0.0,6.)\n", "legend(frameon=False)\n", "tight_layout();" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" } }, "nbformat": 4, "nbformat_minor": 2 }