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Abstract

Policy makers need to decide whether to treat or not to treat heterogeneous individuals.

The optimal treatment choice depends on the welfare function that the policy maker has in

mind and it is referred to as the policy learning problem. I study a general setting for pol-

icy learning with semiparametric Social Welfare Functions (SWFs) that can be estimated

by locally robust/orthogonal moments based on U-statistics. This rich class of SWFs sub-

stantially expands the setting in Athey and Wager (2021) and accommodates a wider range

of distributional preferences. Three main applications of the general theory motivate the

paper: (i) Inequality aware SWFs, (ii) Inequality of Opportunity aware SWFs and (iii)

Intergenerational Mobility SWFs. I use the Panel Study of Income Dynamics (PSID) to

assess the effect of attending preschool on adult earnings and estimate optimal policy rules

based on parental years of education and parental income.
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1 Introduction

Whenever a policy or treatment has heterogeneous effects it is important to decide carefully

who should be treated. In the simplest case in which we care only about the average outcome,

there are no budgetary limits and the treatment effect is positive for everyone, it follows that

the best policy is to treat everyone. However, in most cases, we do not have such a luxury.

We might have a limited budget, distributional concerns or negative treatment effects for some

individuals. In these cases, it is important to decide whether to treat or not to treat different

individuals. This is the problem of policy learning.

Such a problem is omnipresent not only in economics but in business, law, education,

medicine and many other fields of inquiry. While in economics we might want to know whether

to provide training or not to the unemployed, decide different rules to assign conditional cash

transfers or even whether a transfer should be given unconditionally, in business we might want

to know whether to provide a discount to a customer or not, or whether we should send price

recommendations to some stores and not to others. Judges might have to decide whether to

release someone on parole or not based on the recidivism probability of the individual. In edu-

cation, we might want to know whether to provide a scholarship to a student or not or whether

we should provide additional extra-curricular lessons. Certain medicines might be beneficial

for some but detrimental for others or there might not be enough vaccines to cover the whole

population as seen in the COVID-19 pandemic.

The inherent ethical and distributional considerations in all these examples are quite dif-

ferent. Hence, it is important to have a general framework that can accommodate different

welfare functions. While the framework has to be as general as possible, it also needs to allow

for the estimation of optimal policy rules with certain statistical guarantees. In this paper, I

provide a framework to compute such optimal rules for a rich class of semiparametric welfare

functions, estimable by U-statistics. This includes, among many others, the average outcome,

called additive welfare throughout this text, but also: (i) Inequality aware SWFs, (ii) Inequal-

ity of Opportunity (IOp) aware SWFs and (iii) Intergenerational Mobility SWFs. These three

SWFs are of great interest to policy makers and motivate this paper.

To my knowledge, there is no prior work on IOp and Intergenerational mobility aware social

welfare functions in the policy learning literature. IOp is the part of inequality that is explained

by circumstances X outside the control of the individual, e.g. sex, race, parental education or

parental income. Hence, IOp SWFs are useful whenever we do not want to penalize all inequality

but just unfair inequality (i.e. inequality explained by circumstances). Based on the seminal

contributions in Van De Gaer (1993), Fleurbaey (1995) and Roemer (1998) the IOp literature

has grown and focused on how to measure IOp. A popular measure of IOp is the Gini of the

best predictions (in mean squared error sense) of the outcome Y given the circumstances X,

i.e. G(γ(X)) where γ(X) = E[Y |X] and where henceforth G(Z) denotes the Gini inequality
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index of the generic random variable Z. To accommodate a possibly high-dimensional set of

circumstances, IOp literature has started using machine learners to estimate the predictions

(e.g Brunori et al. (2019a), Brunori et al. (2019b), Brunori et al. (2021), Brunori and Neidhöfer

(2021), Rodŕıguez et al. (2021), Carranza (2022) or Hufe et al. (2022) among others). As usual

in such two-step procedures, the bias-variance trade-off in the prediction might allow for some

bias which can creep into the second stage. Escanciano and Terschuur (2023) provide locally

robust IOp estimators that are robust to such biases. I use these results to construct IOp aware

SWFs.

Inequality aware SWFs have been studied before in Kasy (2016), Kitagawa and Tetenov

(2021) or Kock et al. (2023). A popular welfare function for a random outcome Y is W =

E[Y ](1−G(Y )). This welfare function values the average outcome but penalizes high inequality

(the Gini is between 0 and 1, where 0 is complete equality and 1 complete inequality). I show

this is a particular example of my general setting using the fact that the Gini coefficient can be

written as a U-statistic.

Leqi and Kennedy (2021) study optimal treatment regimes to maximize average conditional

quantiles. Cui and Han (2024) propose to focus on a conditional quantile of the treatment

effect. For point identification, they need knowledge about the joint distribution of potential

outcomes. Instead, they assume a range of assumptions to get informative identified sets. Wang

et al. (2018) study quantile-optimal treatment regimes and adapt their theory to study the

minimization of Gini’s mean difference. They also employ the second-order U-statistics nature

of the Gini mean difference and obtain asymptotic theory for a particular class of policy rules

by using empirical U-process methods. I avoid the use of U-processes by using an alternative

representation of U-statistics as sums-of-i.i.d. blocks, as explained in Clémençon et al. (2008).

While inequality aware SWFs look at the distribution of Y , IOp aware SWFs focus on

the distribution of the predictions γ(X) = E[Y |X]. A natural IOp aware SWF would be

W = E[γ(X)](1−G(γ(X))) = E[Y ](1−G(γ(X))), which only penalizes inequalities explained

by circumstances. This example adds an extra unknown nuisance parameter, γ(X), on top of

the conditional expectations/propensity scores needed to identify treatment effects. There is no

previous work on policy learning with general semiparametric welfare functions which depend on

additional unknown functions aside from those needed to identify treatment effects. There is an

example of a specific welfare function that depends on conditional quantiles (average conditional

median) in Leqi and Kennedy (2021).

Intergenerational mobility is the study of the relationship between the outcomes of parents

and the outcomes of their children. The Kendall-τ is a popular measure of intergenerational

mobility in the literature (see Chetty et al. (2014) or Kitagawa et al. (2018)). It looks at

whether it is the case that if the parents of individual i are richer than those of j, i is also

richer than j. A natural intergenerational mobility aware SWF would be W = −|τ − t| for some

3



target Kendall-τ t ∈ [−1, 1]. This example is of interest in, for instance, deciding the allocation

of higher education scholarships to students based on individual characteristics whenever the

treatment effect of education on long-term income can be identified and there is a policy interest

in reducing the association between parental income and child’s income.

The technical goal in the policy learning literature, sometimes called empirical welfare max-

imization or offline policy learning in the computer science literature, is to find an optimal

allocation rule π which maps individual characteristics to a binary decision {0, 1} of treatment

or no treatment. This optimal rule is searched within a class Π of plausible treatment rules

to maximize some welfare function. Following the seminal work in Manski (2004), I search for

an optimal policy in the plausible class so as to minimize regret, i.e. the expected difference

between the best possible welfare and the welfare evaluated at the estimated policy. Other rele-

vant work on treatment rules in econometrics includes Dehejia (2005), Hirano and Porter (2009),

Stoye (2009, 2012), Chamberlain (2011), Bhattacharya and Dupas (2012), Tetenov (2012), Kasy

(2016), Kitagawa and Tetenov (2018, 2021), Athey and Wager (2021), or Zhou et al. (2023).

Non-parametric estimation of unknown functions in semiparametric welfare functions poses

a challenge to the statistical guarantees of estimated policy rules. This is due to the slow conver-

gence rate of non-parametric estimators such as kernels or machine learners. The semiparametric

literature has developed methods to overcome this problem by using locally robust/orthogonal

scores. These are alternative moment conditions that identify the quantity of interest and allow

for its estimation at a parametric (
√
n, where n is the sample size) rate. I expand previous work

by considering any semiparametric welfare function, possibly defined as a U-statistic, which can

be estimated by locally robust/orthogonal scores. The main theoretical result is to provide an

asymptotic upper bound to the regret of the estimated policy rule.

This paper is close to Kitagawa and Tetenov (2021) in taking into account other distribu-

tional aspects aside from the mean and it is also closely related to Athey and Wager (2021), Leqi

and Kennedy (2021) and Zhou et al. (2023) in making use of the latest semiparametric litera-

ture on locally robust/orthogonal scores (e.g. Chernozhukov et al. (2022)) to obtain parametric

rates of convergence even with slow nonparametric first steps. I also build upon Escanciano and

Terschuur (2023) to expand policy learning results to welfare functions defined by U-statistics.

The key result in Athey and Wager (2021) is to find rates of the regret that optimally depend

on the complexity of the policy class, Π, and the sample size in observational settings where the

propensity score is unknown. They do so for average-treatment-like welfare functions. I sub-

stantially generalize this setting by allowing arbitrary semiparametric welfare functions, possibly

defined as U-statistics, as long as they can be identified with locally robust/orthogonal scores.

Empirically, treatment allocation with inequality, IOp and IGM welfare functions poses many

challenges. First, we need rich information on circumstances and parental income which are

absent in many modern datasets. Second, we need a credible identification strategy to identify
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treatment effects. In this paper, I tackle these challenges by looking at the effect of attending

preschool on adult earnings using the Panel Study of Income Dynamics (PSID) dataset. This

application has many advantages. First, any variable that induces preschool attendance can be

considered a circumstance under the (very reasonable) assumption that we cannot hold the kid

responsible for these variables. Second, PSID has been following families for nearly 50 years

meaning we have rich information on family background. Third, PSID allows us to look at

long-term outcomes such as adult earnings.

The empirical application is not free of problems. The treatment is not randomly assigned.

Hence, the identification of treatment effects relies on the assumption of selection on observable

circumstances. Also, attending preschool is not a binary treatment since some preschools might

be better than others. Furthermore, I have no information on the cost of treatment. Finally,

allocating children to preschool based on their circumstances might not be enforceable or ethical.

In fact, I show that the preschool choices observed in the sample differ greatly from the estimated

optimal rules even when we maximize the average outcome. This points out that parents have

different considerations when sending their kids to preschool aside from future earnings. Hence,

I interpret the empirical exercise as a thought experiment to illustrate the main contributions

of the paper.

The effect of preschool on short/medium/long-term outcomes has been extensively studied

and there is a public interest in expanding public preschool programs in the US. The share of

4-year-olds in public preschool has grown from 14% in 2002 to 34% in 2019 and many states

and large cities in the US now operate large-scale public preschool programs (Gray-Lobe et al.

(2023)). The first popular small-scale randomized preschool experiments in the US were the

High/Scope Perry Preschool project and Carolina Abecedarian project whose participants have

been followed for decades leading to many studies showing positive effects (Campbell and Ramey

(1994), Campbell et al. (2012), Heckman et al. (2013), Garćıa et al. (2020)). Gray-Lobe et al.

(2023) use admission lotteries to study the impact of the large-scale public preschool in Boston

on a range of outcomes. They find positive effects and varying treatment effects based on gender.

Heckman and Raut (2016) study the impact of preschool using a structural model and find that

a tax-financed public preschool program targeted at children with poor socioeconomic status

increases average earnings and increases intergenerational mobility.

In this paper, I find that the effect of preschool attendance is heterogeneous. While on

average preschool has a positive effect on adult earnings, children with highly educated mothers

and high parental income are negatively affected by preschool. This is in line with results in both

the psychology and economics literature which document that in early educational institutions,

there is less interaction with adults and hence there can be a negative effect of attending such

institutions if the interactions with adults in the household are of ”higher-quality” (see Fort

et al. (2020)).
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These heterogeneous effects have different implications when estimating optimal treatment

rules for different welfare functions. I compute optimal treatment rules based on parental income

and mother’s education in a class of decision trees of depth two. Estimated optimal rules that

maximize the average try to treat anyone who has a positive treatment effect. Inequality aware

SWFs include individuals to treatment who have a negative treatment effect since the decrease

in average earnings is compensated by a decrease in inequality. This possibility could be ruled

out by restricting ourselves to trees that do not treat groups with negative estimated treatment

effects. The same happens with the IGM welfare which has no average motive at all and only

cares about decreasing the association between parental income and child’s income to zero. I find

that the additive and IOp estimated optimal policy rules coincide while the inequality and IGM

estimated rules treat individuals who do not benefit from treatment or do not treat individuals

who do benefit from treatment. The coincidence of the additive and IOp rules is specific to

the structure of the heterogeneous treatment effects in the data and is not a general result. In

this empirical application, we can see that this happens mostly because maximizing the average

already decreases IOp drastically.

I start by introducing the main welfare objects which are going to serve as guiding examples

of the general theory in Section 2. Section 3 elaborates on the general theory for welfare functions

identified by locally robust/orthogonal scores which are linear on the distribution of the data

(i.e. not defined as U-statistics) and Section 4 expands the results to general welfare functions,

possibly defined as U-statistics. Section 5 provides upper bounds on the regret of estimated

policies and Section 6 deals with the empirical application. All proofs are in the Appendix.

2 Welfare economics for inequality, IOp and rank corre-

lations

The policy learning literature is at the intersection of welfare economics and econometrics.

Before we delve into the econometric problem of estimating optimal rules and evaluating their

statistical performance, I present in this section the main welfare objects we are going to be

interested in. Suppose we have some continuous random outcome Yi ∈ R+. The most basic

welfare function is the additive welfare based on the average outcome

W = E[Yi].

The above welfare does not care about other distributional aspects apart from the average

outcome. A first approach to include distributional concerns in our analysis is to follow Dalton

(1920) and Atkinson et al. (1970) and consider increasing and concave transformations u(·) of
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the outcome1

W = E[u(Yi)].

This welfare function will already rank two outcome distributions in the same way for all in-

creasing and concave u(·) if the Lorenz curve of one of the distributions is everywhere above

the Lorenz curve of the other distribution and has equal or higher mean; equivalently if one

distribution second-order stochastically dominates the other. However, if we want to obtain a

complete ordering we need to specify u(·) further. One popular choice is

u(y) =

y1−θ

1−θ
if θ ∈ (0, 1)

log(y) if θ = 1,

where θ captures the concavity of u(·) and can therefore be interpreted as an inequality aversion

parameter. This paper also focuses on welfare which is aware of Inequality of Opportunity

(IOp). IOp is the part of total inequality which can be explained by circumstances, i.e. by

variables that are outside the control of the individual such as parental education or parental

income. Let Xi ∈ Rk be such a random vector of circumstances. Let also γ(Xi) = E[Yi|Xi],

i.e. the best predictor (in mean squared error sense) of the outcome Yi given the circumstances

Xi. By looking at the distribution of γ(Xi) instead of that of the outcome Yi we get IOp averse

welfare functions. For instance,

W = E[u(γ(Xi))].

If there is no IOp, circumstances are unable to predict the outcome and we have that the best

predictor is the unconditional mean: γ(Xi) = E[Yi]. In this case, we have that W = u(E[Yi]) so
we only care about the average income (with a different scale due to u(·)). If we have maximum

IOp, the outcome is a deterministic function of the circumstances and γ(Xi) = Yi. Then,

W = E[u(Yi)]. Since all inequality is IOp, we are back to the inequality averse welfare function.

Another option to take into account distributional concerns is to weigh differently different

parts of the distribution. Let FY be the distribution of the outcome and F−1
Y be the quantile

function. Then, for some weights w(·) a planner might have the following welfare in mind

W =

∫ 1

0

F−1
Y (τ)w(τ)dτ.

This welfare has been used in Mehran (1976), Donaldson and Weymark (1980), Weymark (1981),

Donaldson and Weymark (1983) or Aaberge et al. (2021). If we let wk(τ) = (k − 1)(1 − τ)k−2

we get what is known as the extended Gini family of social welfare functions. In this paper, I

focus on k = 3 which is known as the standard Gini social welfare function and can be shown

1With abuse of notation I call W to all welfare functions as they appear.
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to be

W = E[Yi](1−G(Yi))

= (1/2)E[Yi + Yj − |Yi − Yj|],

where the second equality follows from the fact that we can write the Gini of Yi as G(Yi) =

E[|Yi − Yj|]/E[Yi + Yj] where Yj is an independent copy of Yi (i.e. the Gini can be interpreted

as a normalized expected absolute distance between the outcomes of two individuals taken at

random). The welfare above is additive as long as there is no inequality (G(Yi) = 0) and

penalizes positive values of the Gini coefficient. Again, if we do not care about inequality but

only about IOp we can look at the distribution of γ(Xi) instead of the distribution of Yi. In

that case, we have

W = E[γ(Xi)](1−G(γ(Xi)))

= (1/2)E[γ(Xi) + γ(Xj)− |γ(Xi)− γ(Xj)|].

If there is no IOp, then G(γ(Xi)) = 0 and we are back in the additive case. If there is full

IOp, then G(γ(Xi)) = G(Yi) and we are back to the standard Gini social welfare function of

outcome Yi. Finally, I also consider the problem of intergenerational mobility. Let X1i ∈ R be

the parental outcome. A non-linear measure of association between Yi and X1i is the Kendall-τ

τ = E[sgn(Yi − Yj)sgn(X1i −X1j)],

where sgn(a) = 1(a > 0) − 1(a < 0). This parameter is popular in the intergenerational

mobility literature (see Chetty et al. (2014) or Kitagawa et al. (2018)) where X1i is parental

income and Yi is the child’s income. It takes values between 1 and −1. τ = 1 means that

whenever an individual has a higher income than another, she also has a higher parental income

and vice versa. τ = −1 is the opposite, whenever someone has a higher income, she has a lower

parental income. For some target Kendall-τ t ∈ [−1, 1] an intergenerational mobility aware

welfare function is

W = −
∣∣∣∣E[sgn(Yi − Yj)sgn(X1i −X1j)

]
− t

∣∣∣∣.
To my knowledge, this welfare function has not been used before in the literature. Note that

it allows us to treat problems much more general than intergenerational mobility. Setting

t = 0, maximizing this welfare function corresponds to allocating a treatment to minimize the

dependence between two variables Yi and X1i. For instance, we could study how to allocate

scholarships to make academic attainment less dependent on parental income.
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3 Policy learning with general orthogonal scores

Consider random variables (Yi(1), Yi(0), Di, Xi) ∼ F0 where (Yi(1), Yi(0)) ∈ Y × Y are real-

valued potential outcomes, i.e. Yi(1) is the outcome of individual i under treatment and Yi(0) is

the outcome of individual i in the absence of treatment. Di is a binary treatment and Xi ∈ X
is now a vector of pre-treatment covariates. Let γ(j)(Xi) = E[Yi(j)|Xi] ∈ Γ for j = 0, 1 be

potential predictions, i.e. the predictions of the potential outcomes given Xi. We observe an

i.i.d. sample (Z1, ..., Zn) with Zi = (Yi, Di, Xi) ∈ Z and Yi = Yi(1)Di + Yi(0)(1−Di) ∈ Y . Let

π : X 7→ {0, 1} be a treatment rule which indicates who receives treatment and Π be a collection

of such treatment rules. We are interested in choosing a policy π ∈ Π so as to maximize the

following welfare function

W (π) = E[g(Yi(1), Xi, γ
(1))π(Xi) + g(Yi(0), Xi, γ

(0))(1− π(Xi))]. (3.1)

In the simplest example of additive welfare, g(Yi(j), Xi, γ
(j)) = Yi(j) for j = 0, 1. Importantly,

in (3.1), g can depend on possibly infinite-dimensional unknown nuisance parameters γ. While

throughout the paper I consider γ to be a conditional expectation of the outcome given X, this

framework can be extended to allow for much more general first steps such as high-dimensional

quantile regressions (see Ichimura and Newey (2022)).

Example 1 (IOp Atkinson) If we are interested in an inequality averse SWF we can use

Atkinson SWF, W (π) = E[u(Yi(1))π(Xi) + u(Yi(0))(1 − π(Xi))] with u(·) a concave function

and Xi a vector of circumstances. In this case, the optimal policy can be estimated using the

methods in Kitagawa and Tetenov (2018) and Athey and Wager (2021). If we want an IOp

averse SWF we can look at the distribution of γ(Xi) instead of at the distribution of Yi:

W (π) = E[u(γ(1)(Xi))π(Xi) + u(γ(0)(Xi))(1− π(Xi))].

This welfare has not been covered in the policy learning literature before. ■

(3.1) is not observable since for a given individual we do not observe both potential outcomes. To

identify (3.1) we first need our sample to come from an experimental or observational experiment

where the policy has already been implemented. Let e(Xi) = P(Di = 1|Xi) be the propensity

score. I assume that the following holds.

Assumption 1 i) (Yi(1), Yi(0)) ⊥ Di|Xi,

ii) There exists κ ∈ (0, 1/2] such that e(x) ∈ [κ, 1− κ].

The next proposition states the first identification result. There are two ways of identifying

welfare, either using what is usually called the direct method (DM) based on conditional ex-

pectations or using Inverse Propensity Score Weighting (IPW). I focus on the DM approach
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since it leads to simpler expressions. I derive all the results in the paper for the IPW ap-

proach in Appendix A. Let γ(Di, Xi) = E[Yi|Di, Xi], γj(Xi) = γ(j,Xi) for j = 0, 1 and

φ(Di, Xi, γ) = E[g(Yi, Xi, γ)|Di, Xi].

Proposition 3.1 Under Assumption 1, W (π) is identified as

W (π) = E[φ(1, Xi, γ1)π(Xi) + φ(0, Xi, γ0)(1− π(Xi))].

Note that if g only depends on potential nuisance parameters but not on actual potential out-

comes directly, i.e. g(u,Xi, γ
(j)) = g(t,Xi, γ

(j)) ≡ g(Xi, γ
(j)) for all u, t ∈ Y then φ is known

since φ(Di, Xi, γ) = g(Xi, γ). This is the case in all IOp examples such as Example 1 and

Example 3 below. This is not the case in the rest of the examples. Hence, depending on which

case we are we will have either γ or (γ, φ) as nuisance parameters. To enjoy local robustness

to high dimensional and ML first steps, I provide orthogonal scores in the next result. First, I

need the following assumption to take care of the nuisance parameter γ.

Assumption 2 There exist (α1, α0) such that for any γ̃ with E[γ̃(Xi)
2] <∞ and j = 0, 1

d

dτ
E[φ(j,Xi, γ̄τ )]

∣∣∣∣
τ=0

=
d

dτ
E[αj(Di, Xi)γ̄τ (Di, Xi)]

∣∣∣∣
τ=0

,

where γ̄τ = γ + τ γ̃ and E[αj(Di, Xi)
2] <∞.

This is a common assumption in the semiparametric and orthogonal moments literature (e.g.

(4.1) in Newey (1994)) and allows for φ to depend non-linearly on γ, generalizing Assumption 1

in Athey and Wager (2021). Since γ enters φ only through g, a sufficient condition is to assume

a similar result for the function g instead of φ. Orthogonal scores usually take the form of the

original identifying score plus mean zero correction terms based on residuals which make the

score locally robust to first steps.

Proposition 3.2 The orthogonal score is given by

Γi(π) = Γ1iπ(Xi) + Γ0i(1− π(Xi)),

where

Γ1i = φ(1, Xi, γ) +
Di

e(Xi)
(g(Yi, Xi, γ1)− φ(1, Xi, γ)) + α1(Di, Xi)(Yi − γ(Di, Xi)),

Γ0i = φ(0, Xi, γ) +
1−Di

1− e(Xi)
(g(Yi, Xi, γ0)− φ(0, Xi, γ)) + α0(Di, Xi)(Yi − γ(Di, Xi)).

As expected, orthogonal scores are formed by identifying scores (φ already identifies the welfare)

and correction terms for nuisance parameters φ and γ. Note that whenever g does not depend on
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the potential outcomes directly (e.g. Examples 1 and 3) we have that g(Yi, Xi, γj)−φ(j,Xi, γ) =

0 for j = 0, 1 so we have Γ1i = φ(1, Xi, γ)+α1(Di, Xi, g)(Yi−γ(Di, Xi)) and Γ0i = φ(0, Xi, γ)+

α0(Di, Xi, g)(Yi − γ(Di, Xi)). To estimate the welfare for a given π ∈ Π we employ cross-fitting

as in Chernozhukov et al. (2022). Let the data be split in L groups I1, ..., Il, then

Ŵn(π) =
1

n

L∑
l=1

∑
i∈Il

Γ̂1i,lπ(Xi) + Γ̂0i,l(1− π(Xi)),

where

Γ̂1i,l = φ̂l(1, Xi, γ̂l) +
Di

êl(Xi)
(Yi − φ̂l(1, Xi, γ̂l)) + α̂1,l(Di, Xi, ν)(Yi − γ̂l(Di, Xi)),

Γ̂0i,l = φ̂l(0, Xi, γ̂l) +
1−Di

1− êl(Xi)
(Yi − φ̂l(0, Xi, γ̂l)) + α̂0,l(Di, Xi, ν)(Yi − γ̂l(Di, Xi)),

and (φ̂l, êl, γ̂l, α̂j,l), j = 0, 1, are estimators of the nuisance functions which do not use observa-

tions in Il. Again, whenever g does not depend on the potential outcomes, the middle term in

both expressions is zero. This is the case in the example of Atkinson welfare IOp.

Example 1 (IOp Atkinson (cont.)) For θ ∈ (0, 1], let

U(γ(x)) =


γ(x)1−θ

1−θ
if θ ∈ (0, 1)

log(γ(x)) if θ = 1.

In this case, g = U which only depends on the nuisance parameters. The orthogonal score for

θ ∈ (0, 1] is

Γi(π) = U(γ(1, Xi)) +
γ(Di, Xi)

−θDi

e(Xi)
(Yi − γ(Di, Xi))π(Xi)

+ U(γ(0, Xi)) +
γ(Di, Xi)

−θ(1−Di)

1− e(Xi)
(Yi − γ(Di, Xi))(1− π(Xi)),

i.e. α1(Di, Xi, g) = e(Xi)
−1γ(Di, Xi)

−θDi and α0(Di, Xi, g) = (1−e(Xi))
−1γ(Di, Xi)

−θ(1−Di).

■

The estimator of the optimal treatment rule among a class of rules Π is

π̂ = argmax
π∈Π

Ŵn(π).

Before analyzing the statistical performance of such a rule let us first extend the results in this

section to welfare functions estimable by U-statistics. This will allow us to consider inequality,

IOp and intergenerational mobility aware SWFs based on the Gini coefficient and the Kendall-τ .
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4 Policy learning with U-statistics

Let now πab(Xi, Xj) = 1(π(Xi) = a) × 1(π(Xj) = b) with a, b ∈ {0, 1}. Now we consider the

following SWFs

W (π) = E
[ ∑
(a,b)∈{0,1}2

g(Yi(a), Xi, Yj(b), Xj, γ
(a), γ(b))πab(Xi, Xj)

]
. (4.1)

There are several differences compared to the previous setting. First, W (π) now depends on

expected pairwise comparisons. For instance, in the Gini, we look at the expected absolute

distance between two individuals taken at random. Second, we are summing across {0, 1}2. This
is because we have to take into account when both members of the pair are under treatment, or

just one of them or none of them. Finally, we have πab(Xi, Xj) instead of π(Xi) since we need

to account for when both members of the pair are allocated to treatment, just one of them or

none of them.

Example 2 (Inequality) We can accommodate the standard Gini welfare function with

g(Yi(a), Yj(b)) = (1/2)(Yi(a) + Yj(b)− |Yi(a)− Yj(b)|).

■

Example 3 (Inequality of Opportunity IOp) We can apply the standard Gini welfare func-

tion to the distribution of the predictions to get E[γ(Xi)](1−G(γ(Xi))). This fits our setting by

letting

g(Xi, Xj, γ
(a), γ(b)) = (1/2)(γ(a)(Xi) + γ(b)(Xj)− |γ(a)(Xi)− γ(b)(Xj)|).

■

Example 4 (Kendal-τ) If we want to allocate a treatment targeting a specific Kendall-τ , say

t ∈ R, we have to extend our setting to transformations of the right-hand side of 4.1. We can

define

g(Yi(a), X1i, Yj(b), X1j) = sgn(Yi(a)− Yj(b))sgn(X1i −X1j),

and let

W (π) = −
∣∣∣∣E[ ∑

(a,b)∈{0,1}2
g(Yi(a), X1i, Yj(b), X1j)πab(Xi, Xj)

]
− t

∣∣∣∣.
■

For a, b ∈ {0, 1} let now φ(a,Xi, b,Xj, γa, γb) = E[g(Yi, Xi, Yj, Xj, γa, γb)|Di = a,Xi, Dj = b,Xj]

and eab(Xi, Xj) = ea(Xi)eb(Xj) where for c ∈ {0, 1}, ec(Xi) = P(Di = c|Xi).
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Proposition 4.1 Under Assumption 1, W (π) in (4.1) is identified in the following way

W (π) = E
[ ∑
(a,b)∈{0,1}2

φ(a,Xi, b,Xj, γa, γb)πab(Xi, Xj).

]
,

For an IPW version of this result see Appendix A. Again, note that whenever g does not de-

pend directly on the potential outcomes we have that φ(a,Xi, b,Xj, γa, γb) = g(Xi, Xj, γa, γb)

as we can see in Example 3 below. Whenever g does depend on the potential outcomes,

φ(a,Xi, b,Xj, γa, γb) must be estimated using dyadic regressions. Now we apply Proposition

4.1 to identify the welfare in each of our three main examples.

Example 2 (Inequality (cont.)) In this example, welfare is identified by

W (π) = E
[
1

2

∑
(a,b)∈{0,1}2

E(Yi + Yj − |Yi − Yj| | Di = a,Xi, Dj = b,Xj)πab(Xi, Xj)

]
.

■

Example 3 (IOp (cont.)) In this example, welfare is identified by

W (π) =
1

2
E
[ ∑
(a,b)∈{0,1}2

(
γa(Xi) + γb(Xj)− |γa(Xi)− γb(Xj)|

)
πab(Xi, Xj)

]
.

■

Example 4 (Intergenerational mobility (cont.)) In this example, welfare is identified by

W (π) = −
∣∣∣∣E[12 ∑

(a,b)∈{0,1}2
E(sgn(X1i−X1j)sgn(Yi−Yj) | Di = a,Xi, Dj = b,Xj)πab(Xi, Xj)

]
−t

∣∣∣∣.
■

Example 3 does not depend on the potential outcomes which makes the expression simpler. To

compute the orthogonal scores we need to assume a similar linearization property as the one in

Assumption 2 and to the linearization assumed in Escanciano and Terschuur (2023).

Assumption 3 There exist αab,p, P < ∞, and (c1p, c2p) for p = 1, ..., P , such that for all

(a, b) ∈ {0, 1}2 the following linearization holds

d

dτ
E[φ(a,Xi, b,Xj, γ̄τ )] =

d

dτ
E
[ P∑
p=1

αγ
ab,p(Di, Xi, Dj, Xj)(c1pγ̄τ (Di, Xi) + c2pγ̄τ (Dj, Xj))

]
,

where γ̄τ is defined as in Assumption 2 and E[αj(Di, Xi)
2] <∞.
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Again, γ enters φ only through g so a sufficient condition that would allow to compute αab is to

assume a linearization like the above for g instead of for φ. P is usually not greater than two.

Now we are ready to present the result of the orthogonal scores for welfare functions estimable

by U-statistics.

Proposition 4.2 The orthogonal scores are given by

Γij(π) =
∑

(a,b)∈{0,1}2
Γab
ij πab(Xi, Xj),

where

Γab
ij = φ(a,Xi, b,Xj, γa, γb) + ϕφ

ab(Di, Xi, Dj, Xj, φ, α
e) + ϕγ

ab(Di, Xi, Dj, Xj, γ, α
γ),

where

ϕγ
ab(Di, Xi, Dj, Xj, e, α

γ) =
P∑

p=1

αγ
ab,p(Di, Xi, Dj, Xj, e)(c1pYi + c2pYj − c1pγ(Di, Xi)− c2pγ(Dj, Xj)),

ϕφ
ab(Di, Xi, Dj, Xj, φ, α

m) = αφ
ab(Di, Xi, Dj, Xj)(g(Yi, Xi, Yj, Xj, γa, γb)− φ(Di, Xi, Dj, Xj, γa, γb)),

and

αφ
ab(Di, Xi, Dj, Xj) =

Dab
ij

eab(Xi, Xj)
, Dab

ij = 1(Di = a)1(Dj = b).

Once again, note that whenever g does not directly depend on the potential outcomes then

g = φ and we have that ϕφ
ab = 0. For a version of this result using IPW see Appendix A. Now

we can see how Proposition 4.2 applies to our examples.

Example 2 (Inequality (cont.)) In this example, we have that

Γab
ij =

1

2
E(Yi + Yj − |Yi − Yj| | Di = a,Xi, Dj = b,Xj)

+
Dab

ij

2eab(Xi, Xj)
(Yi + Yj − |Yi − Yj| − E(Yi + Yj − |Yi − Yj| | Di = a,Xi, Dj = b,Xj)).

■

Example 3 (IOp (cont.)) I introduce the orthogonal score of the IOp example as a Proposi-

tion with its proof in the Appendix.

Proposition 4.3 Assume for all (a, b) ∈ {0, 1}2 that either (i) P(γa(Xi)− γb(Xj) = 0) = 0 or

that (ii) xi ̸= xj =⇒ γa(Xi)− γb(Xj) ̸= 0 and let δabij = sgn(γa(Xi)− γb(Xj)), then

Γab
ij =

1

2

(
γa(Xi) + γb(Xj)− |γa(Xi)− γb(Xj)|

+
1(Di = a)

ea(Xi)
(1− δabij )(Yi − γ(Di, Xi)) +

1(Dj = b)

eb(Xj)
(1 + δabij )(Yj − γ(Dj, Xj))

)
.
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These assumptions deal with the point of non-differentiability of the absolute value. They hold if

γc(Xi) for c ∈ {a, b} are continuous random variables (e.g. γc is strictly monotonic on a contin-

uous random variable). When all circumstances are discrete (ii) can be a credible assumption.

For a thorough discussion see Escanciano and Terschuur (2023). ■

To estimate the welfare in these examples for a given π ∈ Π, I use an adaptation to U-

statistics of the cross-fitting used before (see Escanciano and Terschuur (2023)). I split the pairs

{(i, j) ∈ {1, ..., n}2 : i < j} in L groups I1, ..., Il, then

Ŵn(π) =

(
n

2

)−1 L∑
l=1

∑
(i,j)∈Il

Γ̂ij,l(π), (4.2)

where Γ̂ij,l is the same as Γij but with all nuisance parameters replaced by estimators which do

not use observations in the pairs in Il. As before, the estimator of the optimal treatment rule

among a class of rules Π is

π̂ = argmax
π∈Π

Ŵn(π).

For the Intergenerational mobility example, the estimation is slightly different.

Example 4 (Intergenerational mobility (cont.)) The orthogonal score is given by

Γab
ij = E(sgn(X1i −X1j)sgn(Yi − Yj) | Di = a,Xi, Dj = b,Xj)

+
Dab

ij

eab(Xi, Xj)
(sgn(X1i −X1j)sgn(Yi − Yj)− E(sgn(X1i −X1j)sgn(Yi − Yj) | Di = a,Xi, Dj = b,Xj)).

The estimator of the welfare for a given π ∈ Π and target t is

Ŵn(π) = −
∣∣∣∣(n2

)−1 L∑
l=1

∑
(i,j)∈Il

∑
(a,b)∈{0,1}2

Γ̂ab
ij,lπab(Xi, Xj)− t

∣∣∣∣. (4.3)

■

5 Asymptotic statistical guarantees

Now it is useful to make clear the dependence of the scores Γab
ij on the data and the nuisance

parameters. Hence, I let now Γab
ij = ψab(Zi, Zj, γ, φ, α), where

ψab(Zi, Zj, γ, φ, α) = φ(a,Xi, b,Xj, γa, γb) + ϕγ
ab(Zi, Zj, γ, α

γ) + ϕφ
ab(Zi, Zj, φ, α

ν).

ψab is the sum of an identifying function (mab) plus other functions ((ϕ
γ
ab, ϕ

ν
ab) which are correc-

tion terms needed to achieve orthogonality to the nuisance parameters γ and φ. In general, we

have that for a given treatment rule π, orthogonal scores are given by

Γij(π) =
∑

(a,b)∈{0,1}2
ψab(Zi, Zj, γ, φ, α)πab(Xi, Xj).
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This framework accommodates also the welfare functions which are not defined as U-statistics

if ψab(Zi, Zj, γ, φ, α) does not depend on Zj and only depends on a so that we could rewrite

it as ψa(Zi, γ, φ, α) for a ∈ {0, 1}. For this reason, I stick to this notation and do not state

all conditions and results for welfare functions that are not U-statistics and those that are.

The intergenerational mobility example does not fit in this general setting, however, the results

extend easily to this example by Corollary 1 at the end of this section. In the next subsections

I give conditions on the convergence of the nuisance parameters and on the complexity of the

policy class Π which will allow me to prove asymptotical statistical guarantees for the estimated

treatment rules.

5.1 Conditions on the nuisance parameter estimators

I give high-level conditions for the estimators of all nuisance parameters that have to be used to

estimate the welfare. These conditions have been shown to hold for a variety of non-parametric

estimators such as kernels or sieve estimators. The assumptions below are analogous to those

in Escanciano and Terschuur (2023).

Assumption 4 E[|ψ(Zi, Zj, γ, φ, α)|2] <∞, ω ∈ {γ, φ} and for (a, b) ∈ {0, 1}2

(i) nλγ
√

E(|φ(a,Xi, b,Xj, γ̂l)− φ(a,Xi, b,Xj, γ)|2) = o(1) ;

(ii) nλφ
√
E(|φ̂l(a,Xi, b,Xj, γ)− φ(a,Xi, b,Xj, γ)|2) = o(1) ;

(iii) nλγ
√

E(|ϕγ
ab(Zi, Zj, γ̂l, αγ)− ϕγ

ab(Zi, Zj, γ, αγ)|2) = o(1);

(iv) nλφ
√
E(|ϕφ

ab(Zi, Zj, φ̂l, αφ)− ϕφ
ab(Zi, Zj, φ, αφ)|2) = o(1);

(v) nλα
√

E(|ϕω
ab(Zi, Zj, ω, α̂ω

l )− ϕω
ab(Zi, Zj, ω, αω)|2) = o(1),

where 1/4 < λγ, λφ, λα.

These are mild mean-square consistency conditions for γ̂l, φ̂l and α̂l separately. Assumption

4 often follows from the L2 convergence rates of the nuisance estimators. For instance, often,

if λγ = 1/4, (i) follows if γ̂l is o(1/4)-consistent in terms of the L2 rate. There is a large

literature checking L2-convergence rates for different machine learners under low-level sparsity

or smoothness conditions on the nuisance parameters. The traditional non-parametric literature

gives rates for kernel regression and sieves/series (e.g. Chen (2007)). For L1-penalty estimators

such as Lasso see, e.g., Belloni and Chernozhukov (2011) and Belloni and Chernozhukov (2013).

Also for low-level conditions for shrinkage and kernel estimators see Appendix B in Sasaki and

Ura (2021). Rates for L2-boosting in low dimensions are found in Zhang and Yu (2005), and more

recently Kueck et al. (2023) find rates for L2-boosting with high dimensional data. For results
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on versions of random forests see Wager and Walther (2015) and Athey et al. (2019). Finally,

for single-layer, sigmoid-based neural networks see Chen and White (1999) and for a modern

setting of deep neural networks with rectified linear (ReLU) activation function see Farrell et al.

(2021). Note that φ̂l estimates conditional expectations where both the dependent variables and

the conditioning ones are indexed by both i and j. Stute (1991) calls such objects conditional U-

statistics and studies the asymptotic properties of Nadaraya-Watson nonparametric estimators

of these quantities. Graham et al. (2021) study the nonparametric estimation of such nuisance

parameters when the dependent variable is dyadic. They provide asymptotic and supremum

norm rate results and also propose to use a Nadaraya-Watson estimator. In this paper, I run

the machine learning algorithms on the stacked pairs. Unfortunately, not much is known about

rates for such machine learning regressions which are also very computationally demanding.

Another option that avoids these regressions is to use the IPW approach in Appendix A. Define

now the following interaction terms for ω ∈ {γ, φ} and let || · || denote the L2 norm.

ξ̂ij,ab,l = φ̂l(a,Xi, b,Xj, γ̂l)− φ(a,Xi, b,Xj, γ̂l)− φ̂l(a,Xi, b,Xj, γ) + φ(a,Xi, b,Xj, γ),

ξ̂ωij,ab,l = ϕab(zi, zj, ω̂l, α̂
ω
l )− ϕab(zi, zj, ω, α̂

ω
l )− ϕab(zi, zj, ω̂l, α

ω) + ϕab(zi, zj, ω, α
ω).

Assumption 5 For each l = 1, ..., L

(i)
∫ ∫

ϕγ
ab(zi, zj, γ, α̂

γ
l )F (dzi)F (dzj) = 0 and

∫ ∫
ϕφ
ab(Zi, Zj, φ, α̂

φ
l )F (dzi)F (dzj) = 0.

(ii) E(||γ̂l − γ||2) = o(n−2λγ ), E(||φ̂l − φ||2) = o(n−2λφ) and

|E[(φ(a,Xi, b,Xj, γ̃) + ϕγ
ab(Zi, Zj, γ̃, α

γ))πab(Xi, Xj)]| ≤ C||γ̃ − γ||2

|E[(φ̃(a,Xi, b,Xj, γ) + ϕφ
ab(Zi, Zj, φ̃, α

φ))πab(Xi, Xj)]| ≤ C||φ̃− φ||2.

Assumption 5 (i) is usually easy to verify from visual inspection and (ii) requires L2 convergence

rates and some smoothness. Note that C is a constant so the right-hand-sides above do not

depend on π ∈ Π.

Assumption 6 For each l = 1, ..., L

√
nE(ξ̂ωij,ab,lπab(Xi, Xj)) = o(1).

These are rate conditions on the remainder terms ξ̂ωl (wi, wj). Often, Assumption 6 follows if
√
n||α̂ω

l − α||||ω̂l − ω|| = o(1). For example, this happens in Athey and Wager (2021).2 This

is the precise assumption that allows to achieve parametric rates even with slow nonparametric

estimators. In essence, it is enough for the product of the nonparametric estimators to go to

zero at a parametric rate.

2In the proof of Lemma 4, invoking Cauchy-Schwarz inequality they get a bound on their interaction term

that only depends on the product of L2 norms
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5.2 Conditions on the complexity of the policy class

The complexity of the policy class must also be restricted. If all sorts of subsets of X are allowed

to decide who should be treated then we get overfitted policy rules. As in Athey and Wager

(2021) I measure the policy class complexity with its VC dimension (see for instance Wainwright

(2019)) which is allowed to grow with the sample size. Hence, from now on, I subscript the policy

class by n, Πn.

Assumption 7 There are constants 0 < β < 1/2 and n∗ ≥ 1 such that for all n ≥ n∗,

V C(Πn) < nβ.

Examples of finite VC-dimension classes are linear eligibility scores or generalized eligibility

scores (see Kitagawa and Tetenov (2018)). Policy classes whose VC-dimension can increase

with the sample size are for example decision trees which get deeper with sample size (see Athey

and Wager (2021)).

5.3 Upper bounds

Let now

W (π) = E
[ ∑
(a,b)∈{0,1}2

ψab(Zi, Zj, γ, φ, α)πab(Xi, Xj)

]
,

W̃n(π) =

(
n

2

)−1∑
i<j

[ ∑
(a,b)∈{0,1}2

ψab(Zi, Zj, γ, φ, α)πab(Xi, Xj)

]
,

Ŵn(π) =

(
n

2

)−1 L∑
l=1

∑
(i,j)∈Il

[ ∑
(a,b)∈π

ψab(Zi, Zj, γ̂l, φ̂l, α̂l)πab(Xi, Xj).

]
,

W (π) and W̃n(π) are the welfare and the infeasible estimator of the welfare at policy rule π when

all nuisance parameters are known. Ŵn(π) is the feasible estimator which we already introduced

in (4.2). Let W ∗
Πn

= supπ∈Πn
W (π) be the best possible welfare. I want to give upper bounds to

the regret: E[W ∗
Πn

−W (π̂)], i.e. the expected difference between the best possible welfare and

the welfare evaluated at the estimated policy. As usual, I start bounding the regret as follows

E[W ∗
Πn

−W (π̂)] ≤ 2E
[
sup
π∈Πn

|Ŵn(π)−W (π)|
]

≤ 2E
[
sup
π∈Πn

|Ŵn(π)− W̃n(π)|
]
+ 2E

[
sup
π∈Πn

|W̃n(π)−W (π)|
]
, (5.1)

where in the second inequality I have added and subtracted W̃n(π) and used the triangle in-

equality. The second term above is just a standard centered U-process indexed by π ∈ Πn. I
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start as in Athey and Wager (2021) by showing the rate of convergence of this second term. I

work for some fixed (a, b) ∈ {0, 1}2 and define the following set

Πab,n = {πab : π ∈ Πn}.

The first step is to bound it by the Rademacher complexity which I define as

Rn(Πab,n) = Eε

(
sup
π∈Πn

∣∣∣∣⌊n/2⌋−1

⌊n/2⌋∑
i=1

εiΓ
ab
i,⌊n/2⌋+iπab(Xi, X⌊n/2⌋+i)

∣∣∣∣),
where Fε is the distribution of Rademacher random variables taking value 1 and −1 with equal

probability. (ε1, ..., ε⌊n/2⌋) are independent draws from Fε. The next result gives a bound for

the Rademacher complexity.

Lemma 1

E
[
sup
π∈Πn

|W̃n(π)−W (π)|
]
≤ E[2Rn(Πab,n)].

Now we want an asymptotic upper bound for E[Rn(Πab)]. Importantly, we want the bound to

depend on the following variance

Sab = E[Γ2 ab
i,j ].

While Kitagawa and Tetenov (2018) and others provide bounds in terms of the maximum of

the (bounded) scores, Athey and Wager (2021) provide bounds based on the variance and the

efficient variance. The next result provides a bound on the Rademacher complexity based on

Sab.

Lemma 2 Assume that Γab
ij has bounded support for (a, b) ∈ {0, 1}2. Then, under Assumptions

4 and 6

E[Rn(Πab,n)] = O
(√

Sab · V C(Πab,n)

⌊n/2⌋

)
.

The boundedness assumption can be generalized to sub-Gaussianity. However, this general-

ization comes at the cost of making the (already involved) proofs substantially less tractable.

Now we want to provide asymptotic upper bounds for the first term in (5.1). Escanciano and

Terschuur (2023) show that for given π ∈ Πn

√
n(Ŵn(π)− W̃n(π)) →p 0.

The next result makes the above uniform in π ∈ Πn.

Lemma 3 (Uniform coupling) Under Assumptions 4 and 6

√
nE[ sup

π∈Πn

|Ŵn(π)− W̃n(π)|] = O
(
1 +

V C(Πab,n)

⌊n/2⌋min(λγ ,λν ,λα)

)
.
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Finally, using Lemmas 2 and 3 the following holds.

Theorem 1 Suppose Assumptions 4 and 6 hold, that Assumption 7 holds with β < min(λγ, λν , λα).

Then

E[W ∗
Πn

−W (π̂)] = O
(√

Sab · (2V C(Πn)− 1)

⌊n/2⌋

)
.

Corollary 1 The bound in Theorem 1 applies to the Intergenerational mobility example.

6 Empirical application

In the empirical application, I study the optimal allocation of children to preschool. I make

use of the Panel Study of Income Dynamics (PSID) database which has been following families

for nearly 50 years. The nature of this survey allows us to observe a rich set of circumstances

and long-term outcomes. In 1995, PSID asked adults between 18-30 years old about their

participation in preschool. Hence, we can track the long-term outcomes of these individuals.

I take as an outcome the average earnings from 25 to 35 years old. I assume selection on

observables holds. In particular, I condition on sex, birthyear, average parental income in the 5

years before birth, mother’s education, father’s education, father’s occupation and whether the

individual is black. In Table 1 we see the results of estimating the Average Treatment Effect

(ATE), Gini, IOp and Intergenerational mobility as captured by the rank correlation of parents

and child income.

Outcome ATE se p-value Gini IOp IGM n

Earnings 25-35 4622.063 1083.865 0 0.392 0.172 0.168 2971

Table 1: ATE, Gini, IOp and Kendal-τ

To estimate the ATE, I use the doubly robust Augmented Inverse Propensity weighted scores

from Robins et al. (1994) using Conditional Inference Forests (CIF) to estimate the regression

functions and propensity scores. I chose CIF by cross-validation among a pool of different

machine learners. Under the assumption of no selection on observables, we observe a sizeable

and significant positive effect of attending preschool of 4,622$ of added annual earnings. Dollars

have been adjusted by the CPI to 2010 dollars. We see that the Gini coefficient is 0.39 and that

IOp is 0.17, meaning that almost 44% of total inequality can be explained by the circumstances

we observe. The Kendall-τ is around 0.17 which indicates a positive association between parental

and child incomes.

I compute optimal treatment rules based on parental income and the mother’s years of edu-

cation. I set the target in the Kendall-τ welfare to zero, meaning that the aim is to completely
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erase intergenerational persistence. As the policy class, I use 2-depth decision trees. Unfortu-

nately, the U-statistic nature of the welfare function prevents me from using the computational

shortcuts in Athey and Wager (2021) since the sub-trees are not independent optimization prob-

lems. To ease the computational problem I use the deciles of parental income as cutting points

instead of all the observed values of parental income. I do an exhaustive search meaning that I

consider all possible 2-depth decision trees.

The first result is that the optimal treatment allocation is the same for the additive and

the IOp welfare. Although this might seem surprising, it is perfectly possible if decreasing

inequality of opportunity is not compensated by increases in the average. In fact, as reported in

Table 2, the estimated rule maximizing the average already drastically decreases IOp. I show the

optimal rule under these two welfares in Figure 1. At the terminal nodes, I report the number of

observations, the conditional average treatment effect (CATE) in the node and the proportion of

observations in the terminal node that are treated in the data (p̂). For additive/IOp welfare, we

see that the first cutting point is whether parental income is below or above the 40th percentile

(51,515$). If an observation is below this cut-off the tree splits according to the education of

the mother. If parental income is below the 40th percentile and the mother’s education is less

than college (below 13 years) the tree allocates the observation to treatment. We see that the

CATE in this node is positive so, as we would expect, an additive policy maker treats these

observations. If parental income is below the 40th percentile but the mother is highly educated

we see that the CATE is actually negative and hence the additive policy maker does not allocate

the individual to treatment. For high parental income, we also split on the mother’s education

but at a higher level of education. If your parental income is higher than the 40th percentile

and your mother attended college or less (16 years of education or less) you are allocated to

treatment and in this node, we have very large positive effects. However, we do not allocate

kids with high parental income and high maternal education to preschool since the CATE in

this group is negative.

We can conjecture that there is a substitution effect between the quality of the preschool in-

stitution and mother’s education. If we take parental income to be a proxy for the quality of

preschool, we see that it is enough for the mother to have more than 13 years of education for

the child to be better off without preschool. However, for children who attend better preschools

(have higher parental income), the mother has to have more than 16 years of education for the

child to be better off without preschool. This is in line with results in the psychology and eco-

nomics literature which document that in early educational institutions, there is less interaction

with adults and hence there can be a negative effect of attending such institutions if the interac-

tions with adults in the household are of ”high-quality” (see Fort et al. (2020)). To decrease IOp

further, we would need to treat advantaged kids who do not benefit from preschool. The fact

that the optimal policy rule is the same for the additive and the IOp welfare indicates that the
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Parental income:

≤ 40th percentile

Mother education:

Less than college

Treat

n = 932

CATE = 5097

p̂ = 0.28

Do not treat

n = 257

CATE = −5127

p̂ = 0.54

Yes

Mother education:

College or less

Treat

n = 1550

CATE = 6552

p̂ = 0.53

Do not treat

n = 232

CATE = −5955

p̂ = 0.76

No

Figure 1: Estimated optimal policy rule under additive and IOp welfare.

penalization of inequality of opportunity is not severe enough to treat advantaged kids who do

not benefit from preschool or to not treat kids who do not benefit from preschool. Interestingly,

the treatment allocation observed in the data is quite far from the optimal rule. This suggests

that future earnings are not the only consideration when parents decide whether to send their

kids to preschool.

In figure 2, we see the optimal policy rule for the inequality welfare function, i.e. now we

penalize all inequalities and not just the ones explained by circumstances. We see that the tree

is the same except for the first cutting point on parental income. Now we first divide individuals

into those with parental income lower and higher than the 20th percentile (37,699$). Then, the
division based on the mother’s education is the same. Hence, compared to the previous tree,

we shift 20% of the population to the right side subtree. For instance, a kid who has a parental

income of 40,000$ and whose mother has 16 years of education would not be treated under the

additive/IOp welfare but is treated under the inequality based optimal rule. Although masked

by other observations in the node, this 20% of the population who is switched to treatment

has an estimated negative CATE. When we penalize all sorts of inequalities, it starts becoming

optimal to decrease the average outcome to decrease inequality.

In Figure 3 we see the results for an intergenerational mobility aware welfare function. Notice

that in the intergenerational mobility welfare there is no efficiency motive and we target a zero

Kendall-τ . Hence, the optimal policy is even more controversial since individuals with positive

treatment effects are not treated and individuals with negative treatment effects are treated. In

this case, if the mother has more than 13 years of education but less than 16 years of education

(college education), the optimal policy does not treat even though there are positive treatment

effects. Even more extreme, if the mother is very highly educated, the optimal policy treats even

though there are negative treatment effects. For kids with maternal education below college,
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Parental income:

≤ 20th percentile

Mother education:

Less than college

Treat

n = 488

CATE = 7195

p̂ = 0.25

Do not treat

n = 107

CATE = −484

p̂ = 0.48

Yes

Mother education:

College or less

Treat

n = 2085

CATE = 5777

p̂ = 0.48

Do not treat

n = 291

CATE = −6092

p̂ = 0.73

No

Figure 2: Estimated optimal policy rule under inequality welfare.

the optimal policy treats only if you are in the lowest 50% of the distribution of parental income

(below 58,270$). If your mother has less than college but your parents are in the richest half of

the income distribution you are not treated even though there are positive treatment effects.

Mother education:

Less than college

Parental income:

≤ 50th percentile

Treat

n = 1149

CATE = 6052

p̂ = 0.29

Do not treat

n = 913

CATE = 5771

p̂ = 0.49

Yes

Mother education:

College or less

Do not treat

n = 580

CATE = 2891

p̂ = 0.64

Treat

n = 329

CATE = −5145

p̂ = 0.71

No

Figure 3: Estimated optimal policy rule under intergenerational mobility welfare.

Finally, in Table 2 we see a summary of the results and compare the estimated optimal treatments

with situations in which no one or everyone is treated. If we focus first on the welfare column,

we see that for additive, IOp and inequality welfares, treating no one gives the worst welfare. In

the IGM case, we see that treating no one and treating everyone give basically the same welfare

(note that maximal welfare in the IGM case is 0). Since the optimal policy rule is the same

for the additive and the IOp welfare, I leave blank the cells for the mean, Gini, IOp, IGM and

share treated for IOp since the values are the same as for the additive welfare. As expected, the
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additive and IOp welfares have an estimated optimal policy rule that attains the highest average

outcome and the lowest IOp. The decrease in IOp under this rule is quite drastic. While in the

sample we can explain 44% of total inequality with circumstances (IOp/Gini), at the optimal

additive/IOp rule we explain 35%. In part, this explains why both rules coincide. In other

settings, maximizing the average might go against IOp which does not happen here.

The estimated optimal treatment rule for IGM gives basically the same IOp as the the

estimated optimal policy rule based on the IOp welfare, but it does so at a much larger cost

in terms of the average outcome. Again, as expected, the estimated optimal policy rule under

the inequality welfare gives the lowest Gini compared to the additive and IOp welfares. It is

interesting to note that it gives the highest IOp across all welfares. The IGM welfare estimated

rule gives virtually the same Gini as the inequality welfare but again, at a much higher cost in

terms of the average outcome. As expected, the IGM rule gives the lowest Kendall-τ .

Welfare Mean Gini IOp IGM Share treated

Additive Optimal rule 39727 39727 0.392 0.138 0.15 0.84

Treat no one 34169 34169 0.4 0.162 0.148 0

Treat everyone 38778 38778 0.383 0.142 0.15 1

IOp Optimal rule 34231 · · · · ·
Treat no one 28640 · · · · ·
Treat everyone 33282 · · · · ·

Inequality Optimal rule 24165 39383 0.386 0.141 0.153 0.87

Treat no one 20518 34169 0.4 0.162 0.148 0

Treat everyone 23942 38778 0.383 0.142 0.15 1

IGM Optimal rule -0.086 35951 0.383 0.139 0.086 0.5

Treat no one -0.148 34169 0.4 0.162 0.148 0

Treat everyone -0.15 38778 0.383 0.142 0.15 1

Sample · · 36197 0.392 0.172 0.168 0.47

Table 2: Welfare, mean, Gini, IOp, IGM and share treated for different optimal policy rules compared

with policies which treat no one and everyone. I also show the actual values observed in the sample.

The dots in the IOp rows indicate that the optimal policy rule is the same as in the additive case.

Finally, comparing the results with what we observe with the treatment allocation in the sample,

we see that we achieve a higher mean with all other welfares except with the IGM welfare. The

Gini in the sample is the same as the one under the estimated optimal additive and IOp rule.

The observed IOp in the sample is higher than the one achieved under the estimated rules of all

other welfares. IGM observed in the sample is the lowest (highest Kendall-τ) compared to all
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welfares. Finally, the share of treated in the sample is also lower than the one achieved under

the estimated optimal rule of all other welfares.

7 Conclusion

This paper extends previous work on policy learning to accommodate general semiparametric

welfare functions estimable by U-statistics. This opens the analysis to highly policy-relevant

welfare functions such as inequality, inequality of opportunity and intergenerational mobility

aware SWFs. The inequality of opportunity SWF is especially useful when we do not want to

penalize all sorts of inequality but just unfair sources of inequality. In the empirical application,

inequality and IGM aware SWFs assign groups with negative treatment effects to treatment.

However, the additive and IOp rules coincide. Further work is needed, particularly to ease

the computational burden of the method. The application of convex surrogates in Kitagawa

et al. (2021) is a promising avenue to achieve this. Another interesting extension is to allow

for multiple treatments as in Zhou et al. (2023) in a U-statistics setting. In our application,

this could be useful to study the optimal allocation of children to different types of preschools.

Finally, it would be interesting to extend the results to the case of continuous treatments as in

Athey and Wager (2021).

25



8 Appendix

A Inverse Propensity Weighting (IPW) results

In this section, I show the identification and local robustness results in general for both (DM)

and (IPW). The next proposition states the first identification result.

Proposition 8.1 Under Assumption 1, W (π) is identified as

W (π) = E[m1(Zi, γ, ν)π(Xi) +m0(Zi, γ, ν)(1− π(Xi))],

with ν ∈ {φ, e} and where m1 and m0 can be any of the following

(DM) m1(Zi, γ, φ) = φ(1, Xi, γ1), m0(Zi, γ, φ) = φ(0, Xi, γ0)

(IPW) m1(Zi, γ, e) =
g(Yi, Xi, γ1)Di

e(Xi)
, m0(Zi, γ, e) =

g(Yi, Xi, γ0)(1−Di)

1− e(Xi)
,

Now I show the identification result for U-statistics estimable quantities.

Proposition 8.2 Under Assumption 1, W (π) in (4.1) is identified in the following ways

W (π) = E
[ ∑
(a,b)∈{0,1}2

mab(Zi, Zj, γ, ν)πab(Xi, Xj)

]
,

where ν ∈ {φ, e} and mab can be any of the following

(DM) mab(Zi, Zj, γ, φ) = φ(a,Xi, b,Xj, γa, γb)

(IPW) mab(Zi, Zj, γ, e) = g(Yi, Xi, Yj, Xj, γa, γb)D
ab
ij /eab(Xi, Xj).

Next, I introduce the Assumption necessary for computing locally robust scores and the

results of local robustness with U-statistics estimable quantities.

Assumption 8 There exist αγ
ab,p, P < ∞, and (c1p, c2p) for p = 1, ..., P , such that for all

(a, b) ∈ {0, 1}2 the following linearization holds

d

dτ
E[mab(Zi, Zj, γ̄τ , ν)] = E

[ P∑
p=1

αγ
ab,p(Di, Xi, Dj, Xj)(c1pγ̄τ (Di, Xi) + c2pγ̄τ (Dj, Xj))

]
,

where γ̄τ is defined as in Assumption 2 and E[αγ
ab,p(Di, Xi, Dj, Xj)

2] <∞.

Proposition 8.3 The orthogonal scores are given by

Γij(π) =
∑

(a,b)∈{0,1}2
Γab
ij πab(Xi, Xj),
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where depending on whether we identify with DM or IPW we have

(DM) Γab
ij = φ(a,Xi, b,Xj, γa, γb) + ϕφ

ab(Di, Xi, Dj, Xj, φ, α
e) + ϕγ

ab(Di, Xi, Dj, Xj, γ, α
γ)

(IPW ) Γab
ij =

g(Yi, Xi, Yj, Xj, γa, γb)D
ab
ij

eab(Xi, Xj)
+ ϕe

ab(Di, Xi, Dj, Xj, e, α
e) + ϕγ

ab(Di, Xi, Dj, Xj, γ, α
γ),

where

ϕγ
ab(Di, Xi, Dj, Xj, e, α

γ) =
P∑

p=1

αγ
ab,p(Di, Xi, Dj, Xj, e)(c1pYi + c2pYj − c1pγ(Di, Xi)− c2pγ(Dj, Xj)),

ϕφ
ab(Di, Xi, Dj, Xj, φ, α

m) = αφ
ab(Di, Xi, Dj, Xj)(g(Yi, Xi, Yj, Xj, γa, γb)− φ(Di, Xi, Dj, Xj, γa, γb)),

ϕe
ab(Di, Xi, Dj, Xj, e, α

e) = αe
ab,1(Xi)(1(Di = a)− ea(Xi)) + αe

ab,2(Xj)(1(Dj = b)− eb(Xj)),

and

αφ
ab(Di, Xi, Dj, Xj) =

Dab
ij

eab(Xi, Xj)
,

αe
ab,1(Xi) = −E

[
g(Yi, Xi, Yj, Xj, γa, γb)D

ab
ij

ea(Xi)2eb(Xj)

∣∣∣∣Xi

]
,

αe
ab,2(Xj) = −E

[
g(Yi, Xi, Yj, Xj, γa, γb)D

ab
ij

ea(Xi)eb(Xj)2

∣∣∣∣Xj

]
.

B Auxiliary lemmas

In this section, we prove some lemmas which will be needed to prove the main results. Let us

first define some important objects. For a fixed sample {Xi,Γi,⌊n/2⌋+i}⌊n/2⌋i=1 we have

Π̃ab = {πab(X1, X⌊n/2⌋+1), ..., πab(X⌊n/2⌋, Xn) : π ∈ Π}.

For π, π′ ∈ Π̃ab define the following distances

D2
n(π, π

′) =

∑⌊n/2⌋
i=1 Γ2 ab

i,⌊n/2⌋+i(πab(Xi, X⌊n/2⌋+i)− π′
ab(Xi, X⌊n/2⌋+i))

2∑⌊n/2⌋
i=1 Γ2 ab

i,⌊n/2⌋+i

,

H(π, π′) =
1

n

n∑
i=1

1(πab(Xi, X⌊n/2⌋+i) ̸= π′
ab(Xi, X⌊n/2⌋+i)).

Let NDn(ε, Π̃ab, {Xi,Γi,⌊n/2⌋+i}⌊n/2⌋i=1 ) be the number of balls of radius ε needed to cover Π̃ab under

distance Dn. Define the same object for the Hamming distance H and let

NH(ε, Π̃ab) = sup{NH(ε, Π̃ab, {Xi}mi=1) : X1, ..., Xm ∈ X ,m ≥ 1}.

Note NH(ε, Π̃ab) does not depend on m. It will be useful to bound NDn with NH which is what

we do in the next lemma.
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Lemma 4 For fixed {Xi,Γi,⌊n/2⌋+i}⌊n/2⌋i=1 we have that

NDn(ε, Π̃ab, {Xi,Γi,⌊n/2⌋+i}⌊n/2⌋i=1 ) ≤ NH(ε
2, Π̃ab).

Proof: Take an auxiliary sample {X ′
j}mj=1 contained in {Xi}ni=1 such that∣∣∣∣|Bi| −

mΓ2 ab
i,⌊n/2⌋+i∑⌊n⌋/2

i=1 Γ2 ab
i,⌊n/2⌋+i

∣∣∣∣ ≤ 1,

where Bi = {j ∈ {1, ...,m} : X ′
j = Xi}. Then, for π, π′ ∈ Π̃ab

D2
n(π, π

′) =
1

m

⌊n/2⌋∑
i=1

mΓ2 ab
i,⌊n/2⌋+i∑⌊n/2⌋

k=1 Γ2 ab
k,⌊n/2⌋+k︸ ︷︷ ︸

≥|Bi|−1

1(πab(Xi, X⌊n/2⌋+i) ̸= π′
ab(Xi, X⌊n/2⌋+i)).

So

D2
n(π, π

′) ≥
⌊n/2⌋∑
i=1

|Bi|
m

1(πab(Xi, X⌊n/2⌋+i) ̸= π′
ab(Xi, X⌊n/2⌋+i))−O(1/m)

=

⌊n/2⌋∑
i=1

|Bi|
m

1

|Bi|
∑
j∈Bi

1(πab(X
′
j, X

′
⌊n/2⌋+j) ̸= π′

ab(X
′
j, X

′
⌊n/2⌋+j))−O(1/m)

=
1

m

⌊n/2⌋∑
i=1

∑
j∈Bi

1(πab(X
′
j, X

′
⌊n/2⌋+j) ̸= π′

ab(X
′
j, X

′
⌊n/2⌋+j))−O(1/m).

In the first equality above we have used the fact that all summands in the inner sum are the

same since for all j ∈ Bi we know that (Xi, X⌊n/2⌋+i) = (X ′
j, X

′
⌊n/2⌋+j). Now we notice that the

sum
∑⌊n/2⌋

i=1

∑
j∈Bi

might sum some pairs more than once (e.g. if (X1, X⌊n/2⌋+1) = (X2, X⌊n/2⌋+2)

then B1 = B2). Using this fact and that {X ′
j}mj=1 is contained in {X ′

i}mi=1 we have that

D2
n(π, π

′) ≥ 1

m

m∑
j=1

1(πab(X
′
j, X

′
⌊n/2⌋+j) ̸= π′

ab(X
′
j, X

′
⌊n/2⌋+j))−O(1/m)

= H(π, π′)−O(1/m).

Hence, H(π, π′) ≤ D2
n(π, π

′) + O(1/m). Since NH does not depend on m, we can make m

arbitrarily large and conclude that

NDn(ε, Π̃ab, {Xi,Γi,⌊n/2⌋+i}⌊n/2⌋i=1 ) ≤ NH(ε
2, Π̃ab).

Now we prove that the sequence of covers we use in the proof of Lemma 2 exists.
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Lemma 5 There exists a sequence of covers {Bk}Kk=0 with K < ∞ of Π̃ab with Bk ⊂ Π̃ab such

that for k = 0, ..., K

• For all π ∈ Π̃ab, there exists b ∈ Bk such that Dn(π, b) ≤ 2−k,

• |Bk| = NDn(2
−k, Π̃ab, {Xi,Γi,⌊n/2⌋+i}⌊n/2⌋i=1 ) ≤ |Π̃ab|.

Proof: First note that |Π̃ab| < 2⌊n/2⌋ <∞ since Xi’s are fixed. Since π̃ab is finite and Bk ⊂ Π̃ab

for all k, there exists finite K such that we can set BK = Π̃ab. This is because for any Bk which

is a strict subset of Π̃ab there exist π ∈ Π̃ab such that for all b ∈ Bk, Dn(b, π) > a > 0 and there

exists K > 0 such that 2−K < a. K is finite since there are only finitely many subsets of Π̃ab.

For BK−1 we can look through all possible strict subsets for one which satisfies our conditions,

if we do not find any we know that BK−1 = Π̃ab does satisfy them. In this way, we can go

backwards and build the sequence of covers.

The next Lemma relates the VC dimension of Π̃ab to that of Π.

Lemma 6 V C(Π̃ab) ≤ 2V C(Π)− 1.

Proof: Let πt(Xi) = 1(π(Xi) = t) for t ∈ {0, 1}. Define Πt = {1(π(Xi) = t) : π ∈ Π}. Note

that Π1 = Π and that V C(Π0) = V C(Π1) by Lemma 9.7 in Kosorok (2008). Now note that for

any (a, b) ∈ {0, 1}2

Π̃ab = {πa · πb : (πa, πb) ∈ Πa × Πb},

so Lemma 9.9 (ii) in Kosorok (2008) yields the desired result.

C Proofs of main results

Proof of Proposition 3.1: See Proof of Proposition 8.1.

Proof of Proposition 4.1: See Proof of Proposition 8.2.

Proof of Proposition 4.2: See Proof of Proposition 8.3.

Proof of Proposition 8.1: I proof only the identification of the first term of the welfare since

the second one follows in the same manner.

E[g(Yi(1), Xi, γ
(1))π(Xi)] = E[E(g(Yi(1), Xi, γ1)|Xi)π(Xi)]

= E[E(g(Yi(1), Xi, γ1)|Di = 1, Xi)π(Xi)]

= E[E(g(Yi, Xi, γ1)|Di = 1, Xi)π(Xi)]

= E
[
E
(
g(Yi, Xi, γ1)Di

e(Xi)
|Xi

)
π(Xi)

]
= E

[
g(Yi, Xi, γ1)Di

e(Xi)
π(Xi)

]
,
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the first equality follows by LIE and the fact that by selection on observables and definition

of Yi, we have that E[Yi(1)|Xi] = E[Yi(1)|Di = 1, Xi] = E[Yi|Di = 1, Xi]. The second equality

follows from selection on observables, and the third equality from the definition of Yi and already

establishes the identification by the direct method.

Proof of Proposition 3.2: Let d/dτ be the derivative with respect to τ evaluated at τ = 0,

let φτ = φ + τφ̃ for some φ̃ in the space where φ lives and Eτ be the expectation with respect

to F + τ(H − F ) for some alternative distribution H. Then

d

dτ
E[φτ (1, Xi, γ̄τ (1, Xi))π(Xi)] =

d

dτ
E[φτ (1, Xi, γ(1, Xi))π(Xi)] +

d

dτ
E[φ(1, Xi, γ̄τ (1, Xi))π(Xi)].

For the first term note that

d

dτ
E[φτ (1, Xi, γ(1, Xi))π(Xi)] =

d

dτ
E
[
Di

e(Xi)
φτ (1, Xi, γ(1, Xi))π(Xi)

]
=

d

dτ
Eτ

[
Di

e(Xi)
φτ (1, Xi, γ(1, Xi))π(Xi)

]
− d

dτ
Eτ

[
Di

e(Xi)
φ(1, Xi, γ(1, Xi))π(Xi)

]
=

d

dτ
Eτ

[
Di

e(Xi)
(g(Yi, Xi, γ(1, Xi))− φ(1, Xi, γ(1, Xi)))π(Xi)

]
,

where we use LIE in the first equality, then we use the chain rule and finally that φτ (1, Xi, γ(1, Xi))

is a projection of g(Yi, Xi, γ(1, Xi)). For the second term, we have

d

dτ
E[φ(1, Xi, γ̄τ (1, Xi))π(Xi)] =

d

dτ
E[α1(Di, Xi)γ̄τ (1, Xi)π(Xi)]

=
d

dτ
Eτ [α1(Di, Xi)γ̄τ (1, Xi)π(Xi)]

− d

dτ
Eτ [α1(Di, Xi)γτ (1, Xi)π(Xi)]

=
d

dτ
Eτ [α1(Di, Xi)(Yi − γ(1, Xi))π(Xi)],

where we use Assumption 2 in the first equality, then the chain rule and then the fact that γ is

a projection. Then, following Chernozhukov et al. (2022) we have that

Γ1i = φ(1, Xi, γ) +
Di

e(Xi)
(g(Yi, Xi, γ1)− φ(1, Xi, γ)) + α1(Di, Xi)(Yi − γ(Di, Xi)).

The arguments for Γ0i are the analogous.

30



Proof of Proposition 8.2:

W (π) = E
[ ∑
(a,b)∈{0,1}2

g(Yi(a), Xi, Yj(b), Xj, γ
(a), γ(b))πab(Xi, Xj)

]

= E
[
E
( ∑

(a,b)∈{0,1}2
g(Yi(a), Xi, Yj(b), Xj, γ

(a), γ(b))

∣∣∣∣Xi, Xj

)
πab(Xi, Xj)

]

= E
[
E
( ∑

(a,b)∈{0,1}2
g(Yi(a), Xi, Yj(b), Xj, γ

(a), γ(b))

∣∣∣∣Xi, Di = a,Xj, Dj = b

)
πab(Xi, Xj)

]

= E
[
E
( ∑

(a,b)∈{0,1}2
g(Yi, Xi, Yj, Xj, γ

(a), γ(b))

∣∣∣∣Xi, Di = a,Xj, Dj = b

)
πab(Xi, Xj)

]

= E
[
E
( ∑

(a,b)∈{0,1}2

g(Yi, Xi, Yj, Xj, γ
(a), γ(b))Dab

ij

eab(Xi, Xj)

∣∣∣∣Xi, Xj

)
πab(Xi, Xj)

]

= E
[ ∑
(a,b)∈{0,1}2

g(Yi, Xi, Yj, Xj, γ
(a), γ(b))Dab

ij

eab(Xi, Xj)
πab(Xi, Xj)

]
,

where in the second equality I use LIE, in the third I use selection on observables, in the fourth

I use the definition of Yi. The identification by the direct method is in the fourth equality while

the IPW is the last equality.

Proof of Proposition 8.3: Let us start with the DM identification. As usual, let d/dτ be

the derivative at τ = 0. Let me also make the dependence on φ explicit: mab(Zi, Zj, γ, φ) =

φ(a,Xi, b,Xj, γa, γb), let also φτ = φ+ τφ̃ for some φ̃ ∈ L2. By the chain rule

d

dτ
E[mab(Zi, Zj, γ̄τ , φτ )] =

d

dτ
E[mab(Zi, Zj, γ̄τ , φ)] +

d

dτ
E[mab(Zi, Zj, γ, φτ )].

By Assumption 8 we have that the first term is

d

dτ
E[mab(Zi, Zj, γ̄τ , φ)] = E

[ P∑
p=1

αγ
ab,p(Di, Xi, Dj, Xj)(c1pγ̄τ (Di, Xi) + c2pγ̄τ (Dj, Xj))

]
,

so by Lemma 1 and equation (2.16) in Escanciano and Terschuur (2023) we have that

ϕγ
ab(Di, Xi, Dj, Xj, e, α

γ) =
P∑

p=1

αγ
ab,p(Di, Xi, Dj, Xj, e)(c1pYi+c2pYj−c1pγ(Di, Xi)−c2pγ(Dj, Xj)).

For the second term notice that

E[φ(a,Xi, b,Xj, γa, γb)] = E
[
φ(a,Xi, b,Xj, γa, γb)

Dab
ij

eab(Xi, Xj)

]
= E

[
φ(a,Xi, b,Xj, γa, γb)

1

eab(Xi, Xj)

∣∣∣∣Dab
ij = 1

]
P(Di = a,Dj = b)

= E
[
φ(Di, Xi, Dj, Xj, γa, γb)

Dab
ij

eab(Xi, Xj)

]
.
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So by the same arguments

ϕφ
ab(Di, Xi, Dj, Xj, φ, α

m) = αφ
ab(Di, Xi, Dj, Xj)(g(Yi, Xi, Yj, Xj, γa, γb)−φ(Di, Xi, Dj, Xj, γa, γb)),

with αφ
ab(Di, Xi, Dj, Xj) = Dab

ij /eab(Xi, Xj). For the IPW identification let me make the depen-

dence on the propensity score explicit: mab(Zi, Zj, γ, φ, e) = g(Yi, Xi, Yj, Xj, γa, γb)D
ab
ij /eab(Xi, Xj).

For c ∈ {0, 1} let ec,τ = ec + τ ẽc for some ẽc ∈ L2 and eτ = (ea,τ , eb,τ ). Then

d

dτ
E[mab(Zi, Zj, γ̄τ , eτ )] =

d

dτ
E[mab(Zi, Zj, γ̄τ , e)] +

d

dτ
E[mab(Zi, Zj, γ, eτ )].

For the first term, we have the same result as above by using Assumption 8. For the second

term note

d

dτ
E
[
g(Yi, Xi, Yj, Xj, γa, γb)D

ab
ij

ea,τ (Xi)eb,τ (Xj)

]
=

d

dτ
E
[−g(Yi, Xi, Yj, Xj, γa, γb)D

ab
ij

ea(Xi)2eb(Xj)
ea,τ (Xi)

]
+

d

dτ
E
[−g(Yi, Xi, Yj, Xj, γa, γb)D

ab
ij

ea(Xi)eb(Xj)2
eb,τ (Xj)

]
=

d

dτ
E
[
E
(−g(Yi, Xi, Yj, Xj, γa, γb)D

ab
ij

ea(Xi)2eb(Xj)

∣∣∣∣Xi

)
ea,τ (Xi)

]
+

d

dτ
E
[
E
(−g(Yi, Xi, Yj, Xj, γa, γb)D

ab
ij

ea(Xi)eb(Xj)2

∣∣∣∣Xj

)
eb,τ (Xj)

]
.

So by the same arguments as before

ϕe
ab(Di, Xi, Dj, Xj, e, α

e) = αe
ab,1(Xi)(1(Di = a)− ea(Xi)) + αe

ab,2(Xj)(1(Dj = b)− eb(Xj)),

where

αe
ab,1(Xi) = −E

[
g(Yi, Xi, Yj, Xj, γa, γb)D

ab
ij

ea(Xi)2eb(Xj)

∣∣∣∣Xi

]
,

αe
ab,2(Xj) = −E

[
g(Yi, Xi, Yj, Xj, γa, γb)D

ab
ij

ea(Xi)eb(Xj)2

∣∣∣∣Xj

]
.

Proof of Proposition 3: Let γc,τ = γc+τ γ̃c for some γ̃c ∈ L2. We have that for (a, b) ∈ {0, 1}2

d

dτ
E[γa,τ (Xi) + γb,τ (Xj)] =

d

dτ
E
[
γa,τ (Xi)

1(Di = a)

ea(Xi)
+ γb,τ (Xj)

1(Dj = b)

eb(Xj)

]
=

d

dτ
E
[
γ̄τ (Di, Xi)

1(Di = a)

ea(Xi)
+ γ̄τ (Dj, Xj)

1(Dj = b)

eb(Xj)

]
=

d

dτ
Eτ

[
γ̄τ (Di, Xi)

1(Di = a)

ea(Xi)
+ γ̄τ (Dj, Xj)

1(Dj = b)

eb(Xj)

]
− d

dτ
Eτ

[
γ(Di, Xi)

1(Di = a)

ea(Xi)
+ γ(Dj, Xj)

1(Dj = b)

eb(Xj)

]
=

d

dτ
Eτ

[
1(Di = a)

ea(Xi)
(Yi − γ(Di, Xi)) +

1(Dj = b)

eb(Xj)
(Yj − γ(Dj, Xj))

]
.
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Also, let ∆a,b = γa(Xi)− γb(Xj), then

d

dτ
E[|γa,τ (Xi)− γb,τ (Xj)|] =

d

dτ
E[|∆ab + τ(γ̃a(Xi)− γ̃b(Xj))|].

As shown in Escanciano and Terschuur (2023), the Gateaux derivative of the mapping ∆ 7→
E(|∆|) is some direction ν (assuming no point mass at zero, which follows from the assumptions

in the Proposition) is E[sgn(∆)ν]. Hence, by the chain rule

d

dτ
E[γa,τ (Xi) + γb,τ (Xj)] =

d

dτ
E[sgn(γa(Xi)− γb(Xj))(γa,τ (Xi)− γb,τ (Xj))]

=
d

dτ
E
[
sgn(γa(Xi)− γb(Xj))

(
γa,τ (Xi)

1(Di = a)

ea(Xi)
− γb,τ (Xj)

1(Dj = b)

eb(Xj)

)]
=

d

dτ
E
[
sgn(γa(Xi)− γb(Xj))

(
γτ (Di, Xi)

1(Di = a)

ea(Xi)
− γτ (Dj, Xj)

1(Dj = b)

eb(Xj)

)]
=

d

dτ
Eτ

[
sgn(γa(Xi)− γb(Xj))

(
γτ (Di, Xi)

1(Di = a)

ea(Xi)
− γτ (Dj, Xj)

1(Dj = b)

eb(Xj)

)]
− d

dτ
Eτ

[
sgn(γa(Xi)− γb(Xj))

(
γ(Di, Xi)

1(Di = a)

ea(Xi)
− γ(Dj, Xj)

1(Dj = b)

eb(Xj)

)]
=

d

dτ
Eτ

[
sgn(γa(Xi)− γb(Xj))

(
1(Di = a)

ea(Xi)
(Yi − γ(Di, Xi))−

1(Dj = b)

eb(Xj)
(Yj − γ(Dj, Xj))

)]
.

So by the results in Escanciano and Terschuur (2023), the locally robust score is given by

2Γab
ij = γa(Xi) + γb(Xj)− |γa(Xi)− γb(Xj)|

+
1(Di = a)

ea(Xi)
(Yi − γ(Di, Xi)) +

1(Dj = b)

eb(Xj)
(Yj − γ(Dj, Xj))

− sgn(γa(Xi)− γb(Xj))

(
1(Di = a)

ea(Xi)
(Yi − γ(Di, Xi))−

1(Dj = b)

eb(Xj)
(Yj − γ(Dj, Xj))

)
= γa(Xi) + γb(Xj)− |γa(Xi)− γb(Xj)|

+ (1− sgn(γa(Xi)− γb(Xj)))
1(Di = a)

ea(Xi)
(Yi − γ(Di, Xi))

+ (1 + sgn(γa(Xi)− γb(Xj)))
1(Dj = b)

eb(Xj)
(Yj − γ(Dj, Xj)).

Before proving the rest of the main results I introduce a representation of U-statistics which

will be very useful for the coming proofs. For any function f : Z2 → R let Unf(Xi, Xj) =(
n
2

)−1∑
i<j f(Xi, Xj). Let κ be the permutations of {1, ..., n}, then, as in Clémençon et al.

(2008), we can rewrite

Unf(Zi, Zj) =
1

n!

∑
κ

⌊n/2⌋−1

⌊n/2⌋∑
i=1

f(Zκ(i), Zκ(⌊n/2⌋+i)). (8.1)
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This expresses Unf(Zi, Zj) as a (dependent) sum of averages of i.i.d. random variables (i.e.

f(Zκ(i), Zκ(⌊n/2⌋+i)) are i.i.d. for i = 1, ..., ⌊n/2⌋).
Proof of Lemma 1: Using the definition of W (π) and W̃n(π) and the triangle inequality we

know that

E
[
sup
π∈Π

|W̃n(π)−W (π)|
]
= E

[
sup
π∈Π

∣∣∣∣Un

∑
(a,b)∈{0,1}2

(
Γab
ij πab(Xi, Xj)− E[Γab

ij πab(Xi, Xj)]

)∣∣∣∣]

≤
∑

(a,b)∈{0,1}2
E
[
sup
π∈Π

∣∣∣∣Un

(
Γab
ij πab(Xi, Xj)− E[Γab

ij πab(Xi, Xj)]

)∣∣∣∣].
By the representation used in (8.1) we can rewrite the above as

∑
(a,b)∈{0,1}2

E
[
sup
π∈Π

∣∣∣∣ 1n! ∑
κ

⌊n/2⌋−1

⌊n/2⌋∑
i=1

(
Γab
κ(i)κ(⌊n/2⌋+i)πab(Xκ(i), Xκ(⌊n/2⌋+i))

− E[Γab
κ(i)κ(⌊n/2⌋+i)πab(Xκ(i), Xκ(⌊n/2⌋+i))]

)∣∣∣∣]. (8.2)

Introduce an independent ghost sample (Z ′
1, ..., Z

′
n) which is distributed as (Z1, ..., Zn), Rademacher

random variables εi, i = 1, ..., n, such that P(εi = 1) = P(εi = −1) = 1/2 and construct ghost

scores Γ
′ab
ij using the ghost sample. Let EZ be the expectation with respect to the distribution

of the sample (Z1, ..., Zn) and define EZ′ and Eε similarly. Define the Rademacher complexity

as

Rn(Π) = Eε

(
sup
π∈Π

∣∣∣∣⌊n/2⌋−1

⌊n/2⌋∑
i=1

εiΓ
ab
i,⌊n/2⌋+iπab(Xi, X⌊n/2⌋+i)

∣∣∣∣).
Again the key here is that the summands of the sum inside the expectation in Rn(Π) are

independent. We are now ready to use a classical symmetrization argument, since Z ′
i has the
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same distribution as Zi we have that (8.2) is equal to

∑
(a,b)∈{0,1}2

EZ

[
sup
π∈Π

∣∣∣∣ 1n! ∑
κ

⌊n/2⌋−1

⌊n/2⌋∑
i=1

(
Γab
κ(i)κ(⌊n/2⌋+i)πab(Xκ(i), Xκ(⌊n/2⌋+i))

− EZ′ [Γ
′ab
κ(i)κ(⌊n/2⌋+i)πab(X

′
κ(i), X

′
κ(⌊n/2⌋+i))]

)∣∣∣∣]
≤ 1

n!

∑
κ

∑
(a,b)∈{0,1}2

EZ,Z′

[
sup
π∈Π

∣∣∣∣⌊n/2⌋−1

⌊n/2⌋∑
i=1

(
Γab
κ(i)κ(⌊n/2⌋+i)πab(Xκ(i), Xκ(⌊n/2⌋+i))

− Γ
′ab
κ(i)κ(⌊n/2⌋+i)πab(X

′
κ(i), X

′
κ(⌊n/2⌋+i))

)∣∣∣∣]
=

∑
(a,b)∈{0,1}2

EZ,Z′,ε

[
sup
π∈Π

∣∣∣∣⌊n/2⌋−1

⌊n/2⌋∑
i=1

εi

(
Γab
i,⌊n/2⌋+iπab(Xi, X⌊n/2⌋+i)

− Γ
′ab
i,⌊n/2⌋+iπab(X

′
i, X

′
⌊n/2⌋+i)

)∣∣∣∣]
≤

∑
(a,b)∈{0,1}2

EZ,Z′,ε

[
sup
π∈Π

∣∣∣∣⌊n/2⌋−1

⌊n/2⌋∑
i=1

εiΓ
ab
i,⌊n/2⌋+iπab(Xi, X⌊n/2⌋+i)

∣∣∣∣
+

∣∣∣∣⌊n/2⌋−1

⌊n/2⌋∑
i=1

εiΓ
′ab
i,⌊n/2⌋+iπab(X

′
i, X

′
⌊n/2⌋+i)

∣∣∣∣]
=

∑
(a,b)∈{0,1}2

E[2Rn(Π)].

The first inequality follows from Jensen’s and triangle inequalities, the second equality uses

the fact that the vector (Zπ(i), Zπ(⌊n/2⌋+i), Z
′
π(i), Z

′
π(⌊n/2⌋+i)) is identically distributed across i =

1, ..., ⌊n/2⌋ for all permutations in κ (so we can just take the permutation κ(i) = i) and the fact

that εi(Γ
ab
i,⌊n/2⌋+iπab(Xi, X⌊n/2⌋+i) − Γ

′ab
i,⌊n/2⌋+iπab(X

′
i, X

′
⌊n/2⌋+i)) and Γab

i,⌊n/2⌋+iπab(Xi, X⌊n/2⌋+i) −
Γ

′ab
i,⌊n/2⌋+iπab(X

′
i, X

′
⌊n/2⌋+i) have the same distribution, the third inequality uses the triangle in-

equality and the last equality uses that Zi ∼ Z ′
i and the definition of the Rademacher complexity.

Proof of Lemma 2: Note that Lemma 5 gives us a sequence of covers Bk for k = 0, ..., K

of Π̃ab of radius less than 2−k for some K. For any j = 1, ..., J with J = ⌈log2(⌊n/2⌋)(1 − β)⌉
and π ∈ Π̃ab let bj : Π̃ab 7→ Π̃ab be an operator such that bj(π) is an approximating policy from

the cover Bj such that Dn(π, bj(π)) ≤ 2−j, such an approximation exists by Lemma 5. By the

same Lemma we also know that |{bj(π) : π ∈ Π̃ab}| ≤ NDn(2
−j, Π̃ab, {Xi,Γi,⌊n/2⌋+i}⌊n/2⌋i=1 ). Let

J = ⌈1/2 log2(⌊n/2⌋)(1 − β)⌉. By using a telescope sum and the approximations b0, ..., bJ we
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can decompose the Rademacher complexity as

Rn(Π) = Eε

{
sup
π∈Π

∣∣∣∣⌊n/2⌋−1

⌊n/2⌋∑
i=1

εiΓ
ab
i,⌊n/2⌋+i

[
b0(πab(Xi, X⌊n/2⌋+i))

+

J∑
j=1

(
bj(πab(Xi, X⌊n/2⌋+i))− bj−1(πab(Xi, X⌊n/2⌋+i))

)
+ (bJ(πab(Xi, X⌊n/2⌋+i))− bJ(πab(Xi, X⌊n/2⌋+i)))

+ (πab(Xi, X⌊n/2⌋+i)− bJ(πab(Xi, X⌊n/2⌋+i)))

]∣∣∣∣}.
Note that since the distanceDn is bounded by 1, by the second property in Lemma 5 we have that

b0 can be any policy in Π̃ab. Hence, we can set b0(πab(Xi, X⌊n/2⌋+i)) = 0 for all i = 1, ..., ⌊n/2⌋.
We approach each of the terms above in turn. Note that b0, ..., bJ is a sequence of increasingly

accurate approximations. The first step is to notice that the last term above is negligible, i.e.

the term involving the closest approximation vanishes at a
√
n rate. By using Cauchy-Schwarz

and multiplying and dividing we get

√
⌊n/2⌋ sup

π∈Π

∣∣∣∣⌊n/2⌋−1

⌊n/2⌋∑
i=1

εiΓ
ab
i,⌊n/2⌋+i(πab(Xi, X⌊n/2⌋+i)− bJ(πab(Xi, X⌊n/2⌋+i)))

∣∣∣∣

≤
√

⌊n/2⌋ sup
π∈Π

√
⌊n/2⌋−1

∑⌊n/2⌋
i=1

∣∣∣∣Γab
i,⌊n/2⌋+i(πab(Xi, X⌊n/2⌋+i)− bJ(πab(Xi, X⌊n/2⌋+i)))

∣∣∣∣2√
⌊n/2⌋−1

∑⌊n/2⌋
i=1 Γ2 ab

i,⌊n/2⌋+i

×

√√√√⌊n/2⌋−1

⌊n/2⌋∑
i=1

Γ2 ab
i,⌊n/2⌋+i

=
√

⌊n/2⌋ sup
π∈Π

Dn(πab, bJ(πab))

√√√√⌊n/2⌋−1

⌊n/2⌋∑
i=1

Γ2 ab
i,⌊n/2⌋+i

≤
√
⌊n/2⌋2−J

√√√√⌊n/2⌋−1

⌊n/2⌋∑
i=1

Γ2 ab
i,⌊n/2⌋+i

=
M

⌊n/2⌋1/2−β
→ 0,

where in the last inequality we use Lemma 5 and in the last inequality we use the fact that J =

⌈log2(⌊n/2⌋)(1−β)⌉ and the boundedness assumption. Now we show that the second to last term

of the Rademacher decomposition is also negligible. Notice that {εiΓab
i,⌊n/2⌋+i(bJ(πab(Xi, X⌊n/2⌋+i))−

bJ(πab(Xi, X⌊n/2⌋+i)))}⌊n/2⌋i=1 are zero mean (conditional on {Xi,Γi,⌊n/2⌋+i}⌊n/2⌋i=1 ) i.i.d. random vari-

ables. They are also bounded below by ai = −|Γab
i,⌊n/2⌋+i(bJ(πab(Xi, X⌊n/2⌋+i))−bJ(πab(Xi, X⌊n/2⌋+i)))|
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and above by bi = −ai. Hence, by Hoeffding’s inequality

Pε

(∣∣∣∣⌊n/2⌋∑
i=1

εiΓ
ab
i,⌊n/2⌋+i(bJ(πab(Xi, X⌊n/2⌋+i))− bJ(πab(Xi, X⌊n/2⌋+i)))

∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2∑⌊n/2⌋

i=1 (bi − ai)2

)
= 2 exp

(
− t2

D2
n(bJ(πab), bJ(πab))

∑⌊n/2⌋
i=1 Γ2 ab

i,⌊n/2⌋+i

)
.

Hence, for any a > 0 we have that

Pε

(∣∣∣∣√⌊n/2⌋⌊n/2⌋−1

⌊n/2⌋∑
i=1

εiΓ
ab
i,⌊n/2⌋+i(bJ(πab(Xi, X⌊n/2⌋+i))− bJ(πab(Xi, X⌊n/2⌋+i)))

∣∣∣∣
≥ a22−J

√∑⌊n/2⌋
i=1 Γ2 ab

i,⌊n/2⌋+i

⌊n/2⌋

)
≤ 2 exp

(
− a242−J

D2
n(bJ(πab), bJ(πab))

)
≤ 2 exp

(
− a242−J∑J−1

j=J D
2
n(bj(πab), bj+1(πab))

)
≤ 2 exp

(
− a242−J(∑J−1

j=J 2
−(j−1)

)2

)

≤ 2 exp(−a2),

where we have used triangle inequality in the second inequality and the fact that
∑J−1

j=J 2
−(j−1) =

22−J − 22−J ≤ 22−J in the last inequality. This holds for any policy, hence

Pε

(
sup
π∈Π

∣∣∣∣⌊n/2⌋−1/2

⌊n/2⌋∑
i=1

εiΓ
ab
i,⌊n/2⌋+i(bJ(πab(Xi, X⌊n/2⌋+i))− bJ(πab(Xi, X⌊n/2⌋+i)))

∣∣∣∣
≥ a22−J

√∑⌊n/2⌋
i=1 Γ2 ab

i,⌊n/2⌋+i

⌊n/2⌋

)
≤ 2|{bJ(πab), bJ(πab)}| exp(−a2)
≤ 2NDn(2

−J , Π̃ab, {Xi,Γi,⌊n/2⌋+i}⌊n/2⌋i=1 ) exp(−a2)
≤ 2NH(2

−2J , Π̃ab) exp(−a2)
= 2 exp(log(NH(2

−2J , Π̃ab))) exp(−a2)
≤ 2 exp(5V C(Π̃ab) log(2

2J)− a2)

≤ 2 exp(5V C(Π̃ab) log(2
−2(1−β) log2(⌊n/2⌋))− a2),
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where in the first inequality I use the union bound, in the second inequality I use properties

of the approximations (see Zhou et al. (2023)), in the third I use Lemma 4 and in the fourth

inequality I bound the log of the Hamming covering number by the VC dimension using a result

in Haussler (1995). Let now

a =
2J√

log(⌊n/2⌋)⌊n/2⌋−1
∑⌊n/2⌋

i=1 Γ2 ab
i,⌊n/2⌋+i

,

so that

a22−J

√∑⌊n/2⌋
i=1 Γ2 ab

i,⌊n/2⌋+i

⌊n/2⌋
=

4√
log(⌊n/2⌋)

.

Finally,

Pε

(
sup
π∈Π

∣∣∣∣⌊n/2⌋−1/2

⌊n/2⌋∑
i=1

εiΓ
ab
i,⌊n/2⌋+i(bJ(πab(Xi, X⌊n/2⌋+i))− bJ(πab(Xi, X⌊n/2⌋+i)))

∣∣∣∣
≥ 4√

log(⌊n/2⌋)

)
≤2 exp

(
5V C(Π̃ab) log(⌊n/2⌋−2(1−β))− ⌊n/2⌋−β

log(⌊n/2⌋)
∑⌊n/2⌋

i=1 Γ2 ab
i,⌊n/2⌋+i

)
≤ 2 exp

{
−5⌊n/2⌋β log

(
⌊n/2⌋2(1−β)

)
− 1

⌊n/2⌋β log(⌊n/2⌋)M2

}
→ 0,

where I have used Assumption 7 and the boundedness assumption.

E
(
sup
π∈Π

∣∣∣∣⌊n/2⌋−1/2

⌊n/2⌋∑
i=1

εiΓ
ab
i,⌊n/2⌋+i(bJ(πab(Xi, X⌊n/2⌋+i))− bJ(πab(Xi, X⌊n/2⌋+i)))

∣∣∣∣) → 0,

since for any sequence of random variablesXn and sequence of real numbers an if limn→∞ P(Xn ≤
an) = 1 and limn→∞ an = 0, then limn→∞ E(Xn) = 0 (proof of this fact uses E(Xn) =

∫∞
0

P(Xn >

u) du). Hence, we have proven that

E[Rn(Π)] = E
{
sup
π∈Π

∣∣∣∣⌊n/2⌋−1

⌊n/2⌋∑
i=1

εiΓ
ab
i,⌊n/2⌋+i

[ J∑
j=1

(
bj(πab(Xi, X⌊n/2⌋+i))− bj−1(πab(Xi, X⌊n/2⌋+i))

)]∣∣∣∣}
+ o

(
1√
n

)
.

Hence I have left what Zhou et al. (2023) call the effective regime. Let j ∈ {1, ..., J} and aj

be some constant depending on j. As before, conditional on {Xi,Γi,⌊n/2⌋+i}⌊n/2⌋i=1 we can apply
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Hoeffding inequality and then use the definition of Dn to get

Pε

(∣∣∣∣⌊n/2⌋−1/2

⌊n/2⌋∑
i=1

εiΓ
ab
i,⌊n/2⌋+i(bj(πab(Xi, X⌊n/2⌋+i))− bj−1(πab(Xi, X⌊n/2⌋+i)))

∣∣∣∣
≥ aj2

2−j

√∑⌊n/2⌋
i=1 Γ2 ab

i,⌊n/2⌋+i

⌊n/2⌋

)
≤ 2 exp

(
−

a2j4
2−j

D2
n(bj(πab), bj−1(πab))

)
≤ 2 exp

(−a2j42−j

4−(j−1)

)
= 2 exp

(
−4a2j

)
,

where in the last inequality we have used the fact thatDn(bj(πab), bj−1(πab)) ≤ 2−(j−1) by Lemma

5. Now we let

a2j(k) = 2 log

(
2j2

δk
NH(4

−j, Π̃ab)

)
,

where δk is some sequence of real numbers indexed by k ∈ N. For notational convenience define

Rj = sup
π∈Π

∣∣∣∣⌊n/2⌋−1/2

⌊n/2⌋∑
i=1

εiΓ
ab
i,⌊n/2⌋+i(bj(πab(Xi, X⌊n/2⌋+i))− bj−1(πab(Xi, X⌊n/2⌋+i)))

∣∣∣∣.
Then we have that

P
(
Rj ≥ aj(k)2

−j

√√√√⌊n/2⌋−1

⌊n/2⌋∑
i=1

Γ2 ab
i,⌊n/2⌋+i

)
≤ 2|{bj(πab), bj−1(πab)}| exp(−a2j(k)/2)

≤ 2NDn(2
−j, Π̃ab, {Xi,Γi,⌊n/2⌋+i}⌊n/2⌋i=1 ) exp(−a2j(k)/2)

≤ 2NH(2
−2j, Π̃ab) exp(−a2j(k)/2)

= 2NH(4
−j, Π̃ab) exp(− log(NH(4

−j, Π̃ab)2j
2/δk))

=
δk
j2
.

Sum across j and apply this bound with δk = 1/2k to note that

J∑
j=1

P
(
Rj ≥ aj(k)2

−j

√√√√⌊n/2⌋−1

⌊n/2⌋∑
i=1

Γ2 ab
i,⌊n/2⌋+i

)
≤

J∑
j=1

δk
j2

≤
∞∑
j=1

δk
j2

≤ 1.7

2k
.
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Let FRj
be the cumulative distribution function of Rj (conditional on {Xi,Γi,⌊n/2⌋+i}⌊n/2⌋i=1 ). We

can bound the following object of interest in the following way

Eε

[
sup
π∈Π

∣∣∣∣⌊n/2⌋−1/2

⌊n/2⌋∑
i=1

εiΓ
ab
i,⌊n/2⌋+i

J∑
j=1

(bj(πab(Xi, X⌊n/2⌋+i))− bj−1(πab(Xi, X⌊n/2⌋+i)))

∣∣∣∣]

≤
J∑

j=1

Eε[Rj]

=

∫ ∞

0

J∑
j=1

(1− FRj
(r)) dr

≤
∫ ∞

0

J∑
j=1

P(Rj ≥ r) dr

≤
∞∑
k=0

J∑
j=1

1.7

2k
aj(k)2

−j

√√√√⌊n/2⌋−1

⌊n/2⌋∑
i=1

Γ2 ab
i,⌊n/2⌋+i

≤
∞∑
k=0

J∑
j=1

1.7

2k

√
2

√
log(2k+1j2NH(4−j, Π̃ab))2

−j

√√√√⌊n/2⌋−1

⌊n/2⌋∑
i=1

Γ2 ab
i,⌊n/2⌋+i

≤ 1.7
√
2

√√√√⌊n/2⌋−1

⌊n/2⌋∑
i=1

Γ2 ab
i,⌊n/2⌋+i

∞∑
k=0

2−k

J∑
j=1

2−j

√
(k + 1) log 2 + 2 log j + logNH(4−j, Π̃ab)

≤ 1.7
√
2

√√√√⌊n/2⌋−1

⌊n/2⌋∑
i=1

Γ2 ab
i,⌊n/2⌋+i

∞∑
k=0

2−k

J∑
j=1

2−j

(√
k + 1 +

√
2 log j +

√
5V C(Π̃ab) log(4j)

)

≤ 1.7
√
2

√√√√⌊n/2⌋−1

⌊n/2⌋∑
i=1

Γ2 ab
i,⌊n/2⌋+i

∞∑
k=0

2−k

(√
k + 1

∞∑
j=1

2−j +
√
2

∞∑
j=1

2−j
√

log j

+

√
5V C(Π̃ab)

∞∑
j=1

2−j
√
log 4j

)

≤ 1.7
√
2

√√√√⌊n/2⌋−1

⌊n/2⌋∑
i=1

Γ2 ab
i,⌊n/2⌋+i

( ∞∑
k=0

2−k
√
k + 1 +

√
2

2

∞∑
k=0

2−k +

√
5V C(Π̃ab)1.6

∞∑
k=0

2−k

)

≤ 1.7
√
2

√√√√⌊n/2⌋−1

⌊n/2⌋∑
i=1

Γ2 ab
i,⌊n/2⌋+i

(
5 + 3.2

√
5V C(Π̃ab)

)
.

So taking expectations over {Xi,Γi,⌊n/2⌋+i}⌊n/2⌋i=1 , using this bound and the Jensen’s inequality
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we get

E
[
sup
π∈Π

∣∣∣∣⌊n/2⌋−1/2

⌊n/2⌋∑
i=1

εiΓ
ab
i,⌊n/2⌋+i

J∑
j=1

(bj(πab(Xi, X⌊n/2⌋+i))− bj−1(πab(Xi, X⌊n/2⌋+i)))

∣∣∣∣]

≤ 1.7
√
2

(
5 + 8

√
5V C(Π̃ab)

)
E
[√√√√⌊n/2⌋−1

⌊n/2⌋∑
i=1

Γ2 ab
i,⌊n/2⌋+i

]

≤ 1.7
√
2

(
5 + 8

√
5V C(Π̃ab)

)√
E
[
Γ2 ab
i,⌊n/2⌋+i

]
= 1.7

√
2

(
5 + 8

√
5V C(Π̃ab)

)√
Sab

≤ C

√
V C(Π̃ab)Sab,

for some constant C > 0. Dividing both sides by
√

⌊n/2⌋ we get

E
[
sup
π∈Π

∣∣∣∣⌊n/2⌋−1

⌊n/2⌋∑
i=1

εiΓ
ab
i,⌊n/2⌋+i

J∑
j=1

(bj(πab(Xi, X⌊n/2⌋+i))− bj−1(πab(Xi, X⌊n/2⌋+i)))

∣∣∣∣]

≤ C

√
V C(Π̃ab)Sab

⌊n/2⌋
,

and hence

E[Rn(Π)] ≤ C

√
V C(Π̃ab)Sab

⌊n/2⌋
+ o

(
1√
n

)

= O
(√

V C(Π̃ab)Sab

⌊n/2⌋

)
.

Proof of Lemma 3: Define the following random variables

R̂
(1)
ij,ab,l = mab(Zi, Zj, γ̂l, ν)−mab(Zi, Zj, γ, ν)

R̂
(2)
ij,ab,l = mab(Zi, Zj, γ, ν̂l)−mab(Zi, Zj, γ, ν)

R̂
(3)
ij,ab,l = ϕγ

ab(Zi, Zj, γ̂l, α
γ)− ϕγ

ab(Zi, Zj, γ, α
γ)

R̂
(4)
ij,ab,l = ϕγ

ab(Zi, Zj, γ, α̂
γ
l )− ϕγ

ab(Zi, Zj, γ, α
γ)

R̂
(5)
ij,ab,l = ϕν

ab(Zi, Zj, ν̂l, α
ν)− ϕν

ab(Zi, Zj, ν, α
ν)

R̂
(6)
ij,ab,l = ϕν

ab(Zi, Zj, ν, α̂
ν
l )− ϕν

ab(Zi, Zj, ν, α
ν).

Then,

E
[
sup
π∈Πn

|Ŵn(π)− W̃n(π)|
]
= E

(
sup
π∈Πn

∣∣∣∣(n2
)−1 L∑

l=1

∑
(i,j)∈Il

∑
(a,b)∈π

6∑
k=1

(R̂
(k)
ij,ab,l + ξ̂ij,ab,l + ξ̂γij,ab,l + ξ̂νij,ab,l)πab(Xi, Xj)

∣∣∣∣).
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By repeated use of the triangle inequality

(†) E
[
sup
π∈Πn

|Ŵn(π)− W̃n(π)|
]
≤

L∑
l=1

∑
(a,b)∈π

E
(
sup
π∈Πn

∣∣∣∣(n2
)−1 ∑

(i,j)∈Il

(R̂
(1)
ij,l + R̂

(3)
ij,l)πab(Xi, Xj)

∣∣∣∣)

+
L∑
l=1

∑
(a,b)∈π

E
(
sup
π∈Πn

∣∣∣∣(n2
)−1 ∑

(i,j)∈Il

(R̂
(2)
ij,l + R̂

(5)
ij,l)πab(Xi, Xj)

∣∣∣∣)

+
L∑
l=1

∑
(a,b)∈π

E
(
sup
π∈Πn

∣∣∣∣(n2
)−1 ∑

(i,j)∈Il

(R̂
(4)
ij,l + R̂

(6)
ij,l)πab(Xi, Xj)

∣∣∣∣)

+
L∑
l=1

∑
(a,b)∈π

E
(
sup
π∈Πn

∣∣∣∣(n2
)−1 ∑

(i,j)∈Il

(ξ̂ij,l + ξ̂γij,l + ξ̂νij,l)πab(Xi, Xj)

∣∣∣∣).
I will bound each of the terms separately. The same arguments apply for all l = 1, ..., L and

(a, b) ∈ π, hence we focus on some fixed (a, b) and l. Let N c
l be the observations not in Il. By

adding and subtracting E[(R̂(1)
ij,ab,l + R̂

(3)
ij,ab,l)πab(Xi, Xj)|N c

l ] and applying the triangle inequality

we get that the summands of the first term are bounded by

E
(

sup
π∈Πn

∣∣∣∣(n2
)−1 ∑

(i,j)∈Il

(R̂
(1)
ij,l + R̂

(3)
ij,l)πab(Xi, Xj)− E[(R̂(1)

ij,ab,l + R̂
(3)
ij,ab,l)πab(Xi, Xj)|N c

l ])

∣∣∣∣) (⋆)

+ E
(
sup
π∈Πn

(
n

2

)−1 ∑
(i,j)∈Il

|E[(R̂(1)
ij,ab,l + R̂

(3)
ij,ab,l)πab(Xi, Xj)|γ̂l]|

)
. (⋆⋆)

By Assumption 5 we know that

|E[R̂(1)
ij,ab,l + R̂

(3)
ij,ab,l|N

c
l ]| = |E[mab(Zi, Zj, γ̂l, ν) + ϕγ

ab(Zi, Zj, γ̂l, α
γ)|γ̂l]|

≤ C||γ̂l − γ||2.

Applying the conditional Jensen’s inequality (on the absolute value) in (⋆⋆) and noting that the

resulting expression is maximized by treating everybody we get that

(⋆⋆) ≤ CE[||γ̂l − γ||2]
(
n

2

)−1

|Il|︸ ︷︷ ︸
≤1

= o(n−2λγ ) = o(1/
√
n),
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where the last equality follows since 2λγ ≥ 1/2. For (⋆), note that

(⋆) ≤
(
n

2

)−1

|Il|E
(
sup
π∈Πn

∣∣∣∣|Il|−1
∑

(i,j)∈Il

R̂
(1)
ij,lπab(Xi, Xj)− E[R̂(1)

ij,ab,lπab(Xi, Xj)|N c
l ]

∣∣∣∣)

+

(
n

2

)−1

|Il|E
(
sup
π∈Πn

∣∣∣∣|Il|−1
∑

(i,j)∈Il

R̂
(3)
ij,lπab(Xi, Xj)− E[R̂(3)

ij,ab,lπab(Xi, Xj)|N c
l ])

∣∣∣∣)

=

(
n

2

)−1

|Il|E
[
E
(
sup
π∈Πn

∣∣∣∣|Il|−1
∑

(i,j)∈Il

R̂
(1)
ij,lπab(Xi, Xj)− E[R̂(1)

ij,ab,lπab(Xi, Xj)|N c
l ]

∣∣∣∣ ∣∣∣∣N c
l

)]

+

(
n

2

)−1

|Il|E
[
E
(
sup
π∈Πn

∣∣∣∣|Il|−1
∑

(i,j)∈Il

R̂
(3)
ij,lπab(Xi, Xj)− E[R̂(3)

ij,ab,lπab(Xi, Xj)|N c
l ]

∣∣∣∣ ∣∣∣∣N c
l

)]
.

The inner expectations are the expected supremum of centered U-processes. Using Lemma 1 We

can bound these inner expectations with Rademacher complexities. However, in the same way

we used the construction in Equation (8.1) in Lemma 1 to be able to bound the U-process with

a Rademacher complexity which involves a sum of independent terms, we need to use such a

construction for each fold Il. Take the cross-fitting technique in Escanciano and Terschuur (2023)

where we split {1, ..., n} into sets C = {C1, ..., CK} and take the intersection between C2 and the

set {(i, j) ∈ {1, ..., n}2 : i < j}. Il can be either a triangle (Il ∈ T , where T = {Il : i ∈ Cf , j ∈
Cg, f < g, (i, j) ∈ Il}) or a square (Il ∈ S, where S = {Il : i ∈ Cf , j ∈ Cg, f = g, (i, j) ∈ Il})
and that in each case we can bound the U-process with the following Rademacher complexities

Rn,l(Πab) =


Eε

(
supπ∈Π

∣∣∣∣|Ck|−1
∑|Ck|

i=1 εiR̂
(q)
ρ(i,k),|Ck|+iπab(Xρ(i,k), X|Ck|+i)

∣∣∣∣) if Il ∈ S

Eε

(
supπ∈Π

∣∣∣∣⌊|Ck|/2⌋−1
∑⌊|Ck|/2⌋

i=1 εiR̂
(q)
i,⌊|Ck|/2⌋+i,lπab(Xi, X⌊|Ck|/2⌋+i)

∣∣∣∣) if Il ∈ T,

for q = 1, 3. Hence, by Lemmas 1 and 2 we have that(
n

2

)−1

|Il|E
(
sup
π∈Πn

∣∣∣∣|Il|−1
∑

(i,j)∈Il

R̂
(1)
ij,lπab(Xi, Xj)−E[R̂(1)

ij,ab,lπab(Xi, Xj)|N c
l ]

∣∣∣∣ ∣∣∣∣N c
l

)
= O

(√
S
(1)
ab,lV C(Πab,n)

⌊Ck/2⌋

)
,

where S
(1)
ab,l = E[R̂(1)2

ij,l |N c
l ]. Noting that E[S(1)

ab,l] = E[(mab(Zi, Zj, γ̂l, ν) −mab(Zi, Zj, γ, ν))
2] and

using Assumption 4, Jensen’s inequality, the fact that |Il| = |Ck| × |Cm| if Il = I(Ck, Cm) and

|Il| = |Ck| × |Ck − 1|/2 if Il = I(Ck, Ck) and that for evenly sized folds |Ck|/(n− 1) ≤ 1 for all

k = 1, ..., K we have that

E
(

sup
π∈Πn

∣∣∣∣(n2
)−1 ∑

(i,j)∈Il

R̂
(1)
ij,lπab(Xi, Xj)− E[R̂(1)

ij,ab,lπab(Xi, Xj)|N c
l ])

∣∣∣∣)

= O
(√

V C(Πab,n)
a((1−K−1)n)2

n1+2λγ

)
.
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The same bound applies by using the same arguments when we replace R̂
(1)
ij,l by R̂

(3)
ij,l. Also,

this bound applies to all folds Il, hence, summing across all folds gives us the same asymptotic

bound. As a result, we have bounded the first term on the right-hand side in (†). For the second
term, we can follow exactly the same steps as with the first term to get the same bounds with

λγ replaced by λν . For the third term in (†) note that by Assumption 5 (i) (global robustness of

α), we have that E[R̂(4)
ij,ab,l|N c

l ] = E[R̂(6)
ij,ab,l|N c

l ] = 0. Hence, we do not need to add and subtract

anything and we can apply Lemmas 1 and 2 directly to get that for q = 4, 6

E
(
sup
π∈Πn

∣∣∣∣(n2
)−1 ∑

(i,j)∈Il

R̂
(q)
ij,lπab(Xi, Xj)

∣∣∣∣) = O
(√

V C(Πab,n)
a((1−K−1)n)2

n1+2λα

)
.

Finally, the bound for the last term in (†) follows directly from Assumption 6

E
(
sup
π∈Πn

∣∣∣∣(n2
)−1 ∑

(i,j)∈Il

(ξ̂ij,l + ξ̂γij,l + ξ̂νij,l)πab(Xi, Xj)

∣∣∣∣) = O
(
a(1−K−1)√

n

)
.

Putting everything together we know that

√
nE

[
sup
π∈Πn

|Ŵn(π)− W̃n(π)|
]
= O

(√
V C(Πab,n)

a((1−K−1)n)2

n2λγ

)
+O

(√
V C(Πab,n)

a((1−K−1)n)2

n2λν

)
+O

(√
V C(Πab,n)

a((1−K−1)n)2

n2λα

)
+O

(
a(1−K−1)

)
+ o(1)

= O
(
a((1−K−1)n)

(
1 +

√
V C(Πab,n)

n2min(λγ ,λν ,λα)

))
.

Proof of Theorem 1: Follows from Lemmas 2, 3 and 6.

Proof of Corollary 1: Let Γab
ij and Γ̂ab

ij,l be defined as in the Intergenerational mobility

example and let

K(π) = E
[ ∑
(a,b)∈{0,1}2

Γab
ij πab(Xi, Xj)

]
,

K̃n(π) =

(
n

2

)−1∑
i<j

[ ∑
(a,b)∈{0,1}2

Γab
ij πab(Xi, Xj)

]
,

K̂n(π) =

(
n

2

)−1 L∑
l=1

∑
(i,j)∈Il

[ ∑
(a,b)∈π

Γ̂ab
ij,l(Zi, Zj, γ̂l, ν̂l, α̂l)πab(Xi, Xj).

]
.
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Note also that W (π) = −|K(π)− t|. Hence, we can write the regret as

E
[
supπ∈Πn − |K(π)− t|+ |K(π̂)− t|

]
≤ E

[
sup
π∈Πn

|K(π)−K(π̂)|
]
.

The result follows from applying Theorem 1 with W replaced by K.
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Multidimensional Comparison,” in CESifo Forum, München: ifo Institut-Leibniz-Institut für

Wirtschaftsforschung an der . . . , vol. 23, 45–51.

Ichimura, H. and W. K. Newey (2022): “The influence function of semiparametric estima-

tors,” Quantitative Economics, 13, 29–61.

Kasy, M. (2016): “Partial identification, distributional preferences, and the welfare ranking of

policies,” Review of Economics and Statistics, 98, 111–131.

Kitagawa, T., M. Nybom, and J. Stuhler (2018): “Measurement error and rank correla-

tions,” Tech. rep., cemmap working paper.

Kitagawa, T., S. Sakaguchi, and A. Tetenov (2021): “Constrained classification and

policy learning,” arXiv preprint arXiv:2106.12886.

48



Kitagawa, T. and A. Tetenov (2018): “Who should be treated? empirical welfare maxi-

mization methods for treatment choice,” Econometrica, 86, 591–616.

——— (2021): “Equality-minded treatment choice,” Journal of Business & Economic Statistics,

39, 561–574.

Kock, A. B., D. Preinerstorfer, and B. Veliyev (2023): “Treatment recommendation

with distributional targets,” Journal of Econometrics, 234, 624–646.

Kosorok, M. R. (2008): Introduction to empirical processes and semiparametric inference.,

Springer.

Kueck, J., Y. Luo, M. Spindler, and Z. Wang (2023): “Estimation and inference of

treatment effects with L2-boosting in high-dimensional settings,” Journal of Econometrics,

234, 714–731.

Leqi, L. and E. H. Kennedy (2021): “Median optimal treatment regimes,” arXiv preprint

arXiv:2103.01802.

Manski, C. F. (2004): “Statistical treatment rules for heterogeneous populations,” Economet-

rica, 72, 1221–1246.

Mehran, F. (1976): “Linear measures of income inequality,” Econometrica: Journal of the

Econometric Society, 805–809.

Newey, W. K. (1994): “The asymptotic variance of semiparametric estimators,” Economet-

rica: Journal of the Econometric Society, 1349–1382.

Robins, J. M., A. Rotnitzky, and L. P. Zhao (1994): “Estimation of regression coef-

ficients when some regressors are not always observed,” Journal of the American statistical

Association, 89, 846–866.
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