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Abstract

Equality of opportunity has emerged as an important ideal of distributive jus-

tice. Empirically, Inequality of Opportunity (IOp) is measured in two steps: first, an

outcome (e.g., income) is predicted given individual circumstances; and second, an

inequality index (e.g., Gini) of the predictions is computed. Machine Learning (ML)

methods are tremendously useful in the first step. However, they can cause sizable bi-

ases in IOp since the bias-variance trade-off allows the bias to creep in the second step.

We propose a simple debiased IOp estimator robust to such ML biases and provide

the first valid inferential theory for IOp. We demonstrate improved performance in

simulations and report the first unbiased measures of income IOp in Europe. Mother’s

education and father’s occupation are the circumstances that explain the most. Plug-in

estimators are very sensitive to the ML algorithm, while debiased IOp estimators are

robust. These results are extended to a general U-statistics setting.
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1 Introduction

The moral standing of inequality has been part of the social debate for centuries. While

unequal returns might foster effort and innovation, an uneven distribution of life outcomes

such as income, wealth, education or health, can disrupt society and lead to unrest and

political polarization. A concept that has gained a broad consensus is the one of Inequality

of Opportunity (IOp). Inequalities which stem from circumstances outside the control of

the individual (henceforth just referred to as circumstances) are generally deemed unfair.

Examples of such circumstances are parental education, biological sex, color of the skin or

social origin. It is precisely the unchosen nature of circumstances that fuels a debate on

gender gaps, racial discrimination or the importance of parental resources for many vital

outcomes. Not only is IOp considered unfair, but it might also hinder economic growth

(e.g. Marrero and Rodŕıguez (2013), Ferreira et al. (2018), Aiyar and Ebeke (2020) or

Carranza (2020)). While inequalities based on different returns to different levels of effort can

spur innovation and growth, inequalities based on circumstances might entail an important

waste of talents and capabilities. If the determinants of success are circumstances, we lose

the contribution of an important share of society. Moreover, perceptions about IOp shape

redistributive preferences and hence the design of social policy (e.g. Alesina and La Ferrara

(2005)).

The well-grounded theoretical framework developed in the seminal contributions by Van

De Gaer (1993), Fleurbaey (1995) and Roemer (1998) has fueled a growing empirical liter-

ature quantifying IOp, see the reviews in Roemer and Trannoy (2016), Ramos and Van de

Gaer (2016) or Ferreira and Peragine (2016). However, the state-of-the-art empirical tools

for IOp are not satisfactory: current methods lead to highly biased estimates and no valid

inferential methods are available. By expanding novel results at the intersection of semipara-

metric econometrics and machine learning literatures we provide the first valid and robust

inferential methods for IOp.

The leading measure of IOp is the Gini coefficient of fitted values or predictions, possibly

obtained from a Machine Learning (ML) first step. This estimator is referred to as the plug-

in estimation in this paper. The main idea is that if one can predict an individual outcome

using circumstances, then there is IOp. By predicting outcomes with circumstances and

then measuring the inequality in the distribution of predictions we can quantify IOp. For

example, suppose that the income of any individual was the same as the income of his/her

parents. Then, we would perfectly predict income given parental income so all income

inequality would be due to circumstances. Of course, perfect prediction will not be possible

in practice, and the prediction step will introduce an additional layer of uncertainty into the

measurement of IOp. The two-step nature of measures of IOp creates important challenges

for the development of inferential methods, as we explain below.
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The recent and increasing use of ML in IOp addresses an important and long-standing

problem in the literature: how to efficiently exploit the information of all observed circum-

stances in the predictions avoiding ad-hoc partitions of circumstances into types. Traditional

estimation methods have made it either prohibitively costly to include all observable circum-

stances (e.g. fully non-parametric methods) or have imposed far too much structure on the

relationship between the outcome and the circumstances (e.g. log-linear low-dimensional

regression). ML techniques, which can handle high dimensional problems, can overcome this

problem by trading-off variance and bias in the predictions. Machine learners such as ran-

dom forests, boosting, lasso or neural networks, among many others, can be used to obtain

high-quality predictions of the outcome. This has motivated the recent use of ML for IOp,

such as Conditional Forest (see Brunori et al. (2021), Brunori et al. (2019a), Brunori and

Neidhöfer (2021), Salas-Rojo and Rodŕıguez (2022) or Carranza (2022)) or Lasso in Hufe

et al. (2022c). The increasing availability of high-quality datasets with a fine degree of in-

formation on circumstances will make the applications of ML methods even more attractive.

The first contribution of this paper is to show that the high-quality predictions of ML lead

to sizable regularization and model selection biases in the measurement of IOp. Intuitively,

machine learners trade off bias and variance; meaning that some bias is allowed if it improves

the prediction. This bias is not a problem for prediction, but it is for inference on IOp if

the bias creeps into the second step. Empirically, the bias is so large that makes standard

inference procedures invalid for commonly observed sample sizes, see Figure 1 in Section 2.2

for illustration.

The second contribution is the proposal of a novel and extremely simple debiased IOp

estimator. To introduce the IOp estimator, let Yi be an outcome of interest (e.g., income,

education or health) and let γ̂(Xi) be the prediction at the vector of circumstances Xi, e.g.

from a Random Forest fit. The new debiased estimator based on a sample {Yi, Xi}ni=1 is∑
i<j sgn(γ̂(Xi)− γ̂(Xj))(Yi − Yj)∑

i<j Yi + Yj
, (1.1)

where
∑

i<j =
∑n−1

i=1

∑n
j=i+1 and sgn(x) is the sign function, which equals 1, 0 and −1, for

a positive, zero and negative number x, respectively. The estimator is extremely simple to

implement.1 It is like the standard Gini coefficient but with the sign of outcome differences

replaced by the fitted values differences.2 By way of comparison, the plug-in IOp estimator is

like (1.1) but with the outcome variables replaced by predictions. The new estimator in (1.1)

leads to valid and robust inference for a great variety of ML first steps. In contrast to the vast

1See Terschuur (2022) (or https://joelters.github.io/home/code/) for an R package which implements the
debiased IOp estimator and the related inferences.

2The standard Gini coefficient is
∑

i<j |Yi−Yj |/
∑

i<j(Yi+Yj) =
∑

i<j sgn(Yi−Yj)(Yi−Yj)/
∑

i<j(Yi+Yj).
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majority of debiased methods using ML, no additional nuisance parameters are necessary to

obtain (1.1). Surprisingly, the estimator coincides with the estimator of the concentration

index of Yi with respect to γ(Xi) yielding two interesting results (see Yitzhaki and Olkin

(1991) for more information on concentration indices and concentration curves): (i) IOp can

be interpreted as a concentration index, (ii) concentration indices of Yi with respect to some

estimated quantities are locally robust in a sense defined in this paper. Independently of

our paper, Heuchenne and Jacquemain (2022) provide a bootstrap-based inference for IOp

in the special case of a single index model with a strictly increasing link function and also

arrive to a concentration index. Our estimator can be seen as a nonparametric version of

their Lorenz regression allowing for ML first steps. For high dimensional settings or ML first

steps, a cross-fitting version of the estimator in (1.1) is proposed below in (2.6).

We obtain these results as an application of our more general theory that covers a large

class of semiparametric U-Statistics, i.e., U-statistics with high dimensional estimated pa-

rameters. Additional example applications include the analysis of variance in high dimen-

sions (Lou et al. (2023)), measures of economic polarization (Duclos et al. (2004)), optimal

risk in the bipartite ranking problem (Clémençon et al. (2008) or Werner (2021)), distance-

based estimators in semiparametric conditional moment restrictions (Domı́nguez and Lobato

(2004)), semiparametric estimators of binary models with endogeneity (Blundell and Pow-

ell (2004)), or quadratic functionals of the marginal distributions of potential outcomes in

treatment effects (Wu et al. (2014) or Mao (2018)), among many others. We give a general

construction of orthogonal quadratic moment functions which can be used to obtain debiased

estimators and valid inferences in all these settings.

Our results on U-statistics generalize the results of the recent and growing debiasing

literature, see, e.g., Chernozhukov et al. (2022). We innovate in constructing quadratic

orthogonal moments for semiparametric U-statistics, rather than orthogonal moments for

GMM. This innovation entails new conceptual and non-trivial methodological problems.

For example, unlike GMM moments, quadratic orthogonal moments are not unique for a

given identifying moment and first step limit, but they all share a unique Hajek projection,

and therefore, a unique first order asymptotics, as we show below. Robins et al. (2017) and

Rajarshi Mukherjee (2017) use U-statistics to characterize higher order influence functions

for second and higher order effects. Our interest in U-statistics comes from the application

to IOp and the simpler first-order effects. Our work is also related to Chiang et al. (2021a)

and Chiang et al. (2021b), who proposed to use orthogonal moments for multiway clustered

sampling and dyadic regressions, respectively. We derive orthogonal moments in this paper.

The orthogonality of the proposed moment functions is such that the estimation of first

steps has no local effect on the parameters of interest, a property also referred to as local

robustness in the literature. Semiparametric U-statistics have been treated in Powell (1987),
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Sherman (1994) and Honoré and Powell (2005) and asymptotic theory has been derived using

uniform versions of the Hoeffding decomposition under Donsker conditions (see e.g. Nolan

and Pollard (1988) or Arcones and Giné (1993)). Unfortunately, Donsker conditions do not

hold or are not known to hold in high dimensional settings. In this paper, we propose the use

of orthogonal moments and cross-fitting to avoid Donsker conditions, as in Chernozhukov

et al. (2018) but for U-statistics. Our asymptotic theory provides an alternative set of mild

conditions to the more traditional methods cited in this paragraph.

The application of our general results to IOp faces some challenges and uncovers some

interesting and surprising findings. First, the standard measure of IOp is not locally robust,

which makes standard inference for Gini coefficients invalid and plug-in measures highly

biased with ML first steps. To obtain these results, we address an additional technical chal-

lenge, which is a lack of differentiability of the identifying moment function for IOp. Second,

from the numerous possible correction terms and orthogonal moments, we identify one that

leads to a simple debiased IOp estimator. Surprisingly, and unlike in most applications of the

existing debiased literature, the simple debiased IOp estimator does not require estimating

additional nuisance parameters, making its practical implementation straightforward.

The performance of our IOp estimator is evaluated through Monte Carlo simulations

using different machine learners for the first step estimation. We employ regularized linear

regression techniques such as Lasso and Ridge and tree-based ensemble methods such as

Random Forests (RF), Conditional Inference Forests (CIF), Extreme Gradient Boosting

(XGB) and Catboosting (CB). Lasso, Ridge and RF are well-known machine learners in

econometrics. CIF were developed as an alternative to RF in Hothorn et al. (2006) and they

are used by the IOp literature, for instance in Brunori and Neidhöfer (2021), Brunori et al.

(2021), Salas-Rojo and Rodŕıguez (2022) or Carranza (2022). Boosting methods, such as

XGB and CB, are popular in machine learning competitions (see Chen and Guestrin (2016)

and Prokhorenkova et al. (2018)). Our simulations confirm the high biases for inference

on IOp from using ML first steps, particularly for the method recommended in the applied

literature (CIF). Our debiased estimator corrects this bias, it is far less sensitive to the ML

first step than the commonly used plug-in method and delivers valid inferences for the full

battery of machine learners considered.

The empirical contribution of this paper is to use the first debiased IOp estimations

of income IOp in 29 European countries using the 2019 cross-sectional European Union

Statistics on Income and Living Conditions (EU-SILC) survey. This survey is one of the main

references for the analysis of the income distribution and poverty in Europe. In the years

2005, 2011 and 2019 it includes a module on intergenerational transmission of disadvantages

with information on circumstances. We restrict our attention to the year 2019 since it is

the most recent one and contains the richest set of circumstances. The 2019 wave has been
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used in Carranza (2022) to measure income IOp in Europe with plug-in Mean Logarithmic

Deviation based measures and in Terschuur (2022). Hufe et al. (2022b) also uses the 2019

wave to asses multidimensional IOp using gender, parental education and parental occupation

as circumstances. Brunori et al. (2019b) and Brunori et al. (2021) use cross-validation for

model selection in the first step and CIF to measure IOp for EU-SILC 2011. Marrero and

Rodŕıguez (2012) use EU-SILC 2005 to estimate IOp in Europe. Our paper is the first one

to estimate IOp in EU-SILC 2019 using a variety of machine learners and debiased Gini IOp

estimators with theoretically valid inference guarantees.

The countries with the highest IOp are Romania and Bulgaria where around 60% of

income inequality can be explained by circumstances, while Denmark is the country with

the lowest IOp. Nordic countries, Germany, the Netherlands and some Eastern countries

have low IOp. Southern countries have high IOp with Greece and Italy having 39% and

Spain having 43% of total inequality explained by circumstances. We find that the plug-

in estimator tends to overestimate IOp in general and particularly so for Denmark. The

difference between our debiased estimates and the biased plug-in estimates of relative IOp

(i.e. fraction of inequality explained by circumstances), can be as large as 25 percentage

points in the case of Denmark. In the rest of the countries the difference is smaller but we

still observe differences of 5-10 percentage points. Hence, plug-in estimators give a biased

view of IOp in Europe.

Our debiased IOp estimates are also much less sensitive to the choice of the machine

learner than commonly used plug-in measures. We estimate relative IOp with six different

machine learners with both the debiased and the plug-in estimator and see that plug-in esti-

mates using different machine learners are much more dispersed than the debiased estimates.

Plug-in estimates for the same country but using different machine learners can be up to 60

percentage points apart. Even differences of 30-40 percentage points are not uncommon. In

contrast, debiased estimates are much more concentrated and do not exhibit such sizeable

variations across machine learners. While hard to compare with previous empirical results

due to the use of plug-in methods and older data, the traditional divide of North and South

into high and low IOp remains in our results.

We also explore which circumstances contribute the most towards explaining inequal-

ity. We find that parental education and occupation are the most important circumstances

explaining unfair inequality in European countries. Our results complement the empirical

findings in Hufe et al. (2022a), who also find these circumstances to be the most important

drivers of the increasing unfair inequality in the US during the period 1980-2014. However,

we are able to observe differences between the impact of maternal and paternal characteris-

tics. While in the case of the mothers it is the education that matters most, in the case of

the fathers the occupation is the most important variable.
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A crucial improvement of our methodology is the ability to perform inference. This allows

to perform statistical tests of IOp between independent populations, across time, or between

different sets of circumstances. The ability to do inference is paramount to evaluate changes

in IOp before and after a policy has been implemented or across time. Hence, we believe the

inferential tools provided here can be of great use for policy design aiming at reducing IOp.

The rest of the paper is organized as follows. Section 2 introduces the IOp setting,

some general concepts and the IOp estimator. Section 3 covers how to construct orthogonal

moment functions generally. Section 4 shows the performance of the debiased IOp estimator

in Monte Carlo simulations. Finally, Section 5 studies IOp in Europe. Mathematical proofs

are reported in an Appendix. The Online Appendix contains complementary results.

2 Methodology

We have independent and identically distributed (i.i.d.) data Wi = (Yi, Xi), for i = 1, ..., n,

distributed with unknown distribution F0, an unknown first step function γ0 and a finite

dimensional parameter of interest θ in some set Θ ⊆ Rk. We can form pairs (Wi,Wj), where

Wj is an independent copy ofWi, with realizations (wi, wj). E[·] is the expectation under F0,

γ(F ) is the plim of a first step estimator γ̂ under F , like in Newey (1994), and γ0 = γ(F0).

2.1 Inequality of Opportunity

The leading measure of IOp is given by the Gini coefficient of fitted values

θ0 =
E[|γ0(Xi)− γ0(Xj)|
E[γ0(Xi) + γ0(Xj)]

.

HereXi is a vector of circumstances individual i did not choose, such as parental wealth/income,

parental education, gender, color of the skin or social origin, but many other variables in-

cluding high dimensional genetic information or even infinite dimensional (i.e. functional)

circumstances, as in Chang et al. (2023), might be available. The function

g(wi, wj, γ, θ) = (γ(xi) + γ(xj))θ − |γ(xi)− γ(xj)|,

is an identifying moment function in the sense that

E[g(Wi,Wj, γ0, θ)] = 0 ⇐⇒ θ = θ0.
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A natural and popular estimator of θ0 is the sample Gini coefficient of fitted values

θ̂P =

∑
i<j |γ̂(Xi)− γ̂(Xj)|∑
i<j (γ̂(Xi) + γ̂(Xj))

,

for a first step γ̂ such as CIF, see Brunori et al. (2021), Brunori et al. (2019a) or Brunori and

Neidhöfer (2021). The plug-in estimator θ̂P solves the sample analog of the quadratic moment

E[g(Wi,Wj, γ0, θ)] = 0. The first question we address is whether the estimation of γ0 impacts

the asymptotic distribution of θ̂P . We will answer this question in the affirmative, with the

consequence that standard inference on the Gini coefficient is invalid, and regularization and

model selection biases will also invalidate inference when high dimensional methods are used.

In this paper we overcome these problems by using orthogonal (i.e. locally robust) quadratic

moments for U-statistics and the corresponding debiased estimators. First, we introduce

some general concepts needed before presenting the results for IOp.

2.2 General case

Consider the general case in which g(wi, wj, γ, θ) is some general vector with k known iden-

tifying moment functions. Without loss of generality, we can assume that g is a symmetric

function in wi and wj.
3 The terminology of quadratic moment comes from the fact that

E[g(Wi,Wj, γ0, θ)] is a quadratic function of the true distribution F0, as

E[g(Wi,Wj, γ0, θ)] =

∫ ∫
g(wi, wj, γ0, θ)F0(dwi)F0(dwj).

This feature is what differentiates our analysis from the standard debiased literature (see,

e.g., Chernozhukov et al. (2022)). Since the computations for the Gini are complicated, we

introduce a simpler running example to illustrate the main concepts and derivations. This

example is of interest in its own.

Example 1 (Variance of fitted values): Consider data Wi = (Yi, Xi), where Yi is a real-

valued outcome and Xi is a vector of covariates. The parameter of interest is the variance

of the (population) fitted values θ0 = Var(γ0(Xi)), which can be written as

θ0 = E
[
(γ0(Xi)− γ0(Xj))

2

2

]
.

This parameter is of interest for the analysis of variance in high dimensional settings and

for IOp. The identifying moment function in this example is g(wi, wj, γ, θ) = (1/2)(γ(xi)−
3Otherwise, replace g(wi, wj , γ0, θ) with its symmetrization g∗(wi, wj , γ0, θ) = (1/2)[g(wi, wj , γ0, θ) +

g(wj , wi, γ0, θ)].
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γ(xj))
2−θ. Solving an empirical analog of E[g(Wi,Wj, γ0, θ)] = 0 we get the plug-in estimator

θ̂P =

(
n

2

)−1∑
i<j

(1/2)(γ̂(Xi)− γ̂(Xj))
2.

This is the sample variance of fitted values. We show that θ̂P is highly biased when machine

learning first steps are used. We develop inference methods for θ0 and related parameters

based on debiased estimators, which improve upon plug-in estimators. As an illustration,

see Figure 1 where we simulate the plug-in and the debiased estimators for the variance of

the fitted values example which we develop below. The Data Generating Process (DGP)

is Yi = β1X1i + β2X2i + β3X3i + εi where the coefficients βk, k = 1, 2, 3 are taken from

a uniform distribution U [0, 2], ε ∼ N (0, 1/10) and Var(Xi) = Σ with components Σij =

1(i = j) + (1/2) × 1(|i − j| = 1). The fitted values are estimated with Random Forests.

The histograms approximate the distributions of the centered estimators and the curves are

normal p.d.f.s with the same variance as the estimators but with no bias (i.e. centered at

zero). Even under this simple DGP and large sample sizes n = 3000 the plug-in estimator

has a large bias compared to the debiased one. ■

Figure 1: Comparison of plug-in and debiased estimator.

More broadly, plug-in estimators are generally biased by model selection and/or regulariza-

tion in the first step for our U-statistic setting. The source of the bias problem is explained

by the first term in the standard expansion of Ung(·, γ̂, θ̂P ) around θ0,

0 = Ung(·, γ̂, θ0) +
∂Ung(·, γ̂, θ̄P )

∂θ′
(θ̂P − θ0),
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where θ̄P is an intermediate point between θ0 and θ̂P , and Unf =
(
n
2

)−1∑
i<j f(Xi, Xj).

The first term Ung(·, γ̂, θ0) can be further written as a standard U-statistic, Ung(·, γ0, θ0),
and a first step estimation effect Ung(·, γ̂, θ0) − Ung(·, γ0, θ0). The estimator θ̂P might in-

herit the regularization and model selection biases from γ̂ through the term Ung(·, γ̂, θ0) −
Ung(·, γ0, θ0). Whether this is the case or not depends on the “derivative” of the mapping

γ → E[g(Wi,Wj, γ, θ)] at γ0 and whether this derivative is zero or not. For GMM moments

this derivative is quantified by the First Step Influence Function (FSIF) introduced in Cher-

nozhukov et al. (2022). However, the FSIF is not useful for providing a convenient quadratic

representation of the impact of the first step, so we need a different representation than the

standard one in Chernozhukov et al. (2022). We provide such quadratic representation in

this paper and use it to construct the simple debiased U-estimator in our IOp application

(cf. 1.1).

2.2.1 The U-FSIF

As a first methodological contribution of this paper, we introduce the concept of U-moment

representation of the FSIF (U-FSIF in short), ϕ, which takes into account the impact that

the first step γ̂ has on the estimation of the parameter of interest θ0. We claim the U-FSIF

explains the observed bias in Figure 1. To quantify such impact, let F be a cumulative

distribution function (cdf) for Wi which is unrestricted except for regularity conditions such

as the existence of γ(F ). For example, for γ(F ) = EF [Y |X] we require EF [|Y |] <∞, where

EF denotes expectation under F. Henceforth, d/dτ denotes the derivative from the right with

respect to τ evaluated at τ = 0 and set Fτ = F0+τ(H−F0) for some alternative distribution

H and τ ∈ [0, 1]. The alternative distribution H is chosen such that γτ = γ(Fτ ) exists for τ

small enough. The U-FSIF ϕ is such that for all θ and all H

∫ ∫
ϕ(wi, wj, γ(Fτ ), α(Fτ ), θ)Fτ (dwi)Fτ (dwj) = 0 for all τ ∈ [0, τ̄), τ̄ > 0, (2.1)

and

d

dτ
E[g(Wi,Wj, γ(Fτ ), θ)] =

∫ ∫
ϕ(wi, wj, γ0, α0, θ)KH (dwi, dwj) , (2.2)

with KH (dwi, dwj) = F0(dwi)H(dwj) + H(dwi)F0(dwj). Here, α0 is the α which satisfies

(2.2). We may assume without loss of generality that ϕ is symmetric in wi, wj.
4 The U-FSIF

ϕ can be viewed as a quadratic representation of the influence function concept of von Mises

(1947), Hampel (1974), Newey (1994) and Ichimura and Newey (2022). It can be found by

4As with g, setting ϕ∗(wi, wj , γ0, α0, θ) = (1/2)[ϕ(wi, wj , γ0, α0, θ) + ϕ(wj , wi, γ0, α0, θ)], we have∫ ∫
ϕ(wi, wj , γ0, α0, θ)KH(dwi, dwj) =

∫ ∫
ϕ∗(wi, wj , γ0, α0, θ)KH(dwi, dwj) and ϕ∗ is symmetric.
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solving the functional equation (2.2) for ϕ and it characterizes the local effect of the first

step γ(F ) on the average moment functional µ(F ) = E[g(Wi,Wj, γ(F ), θ)] as F varies away

from F0 in any direction H. We give below in Section 3.1 new results characterizing ϕ for

first steps satisfying orthogonality conditions.

Example 1 (Variance of fitted values, cont.): By standard arguments

d

dτ
E

[
(γτ (Xi)− γτ (Xj))

2

2
− θ

]
=

d

dτ
E[(γ0(Xi)− γ0(Xj))(γτ (Xi)− γτ (Xj))] (2.3)

Define α0(Xi, Xj) = γ0(Xi)− γ0(Xj), and use orthogonality and the chain rule to obtain

d

dτ
E[α0(Xi, Xj)(Yi−Yj−γτ (Xi)+γτ (Xj))] = −

∫ ∫
α0(xi, xj)(yi−yj−γ0(xi)+γ0(xj))KH(dwi, dwj).

Thus, from the last two equations, we obtain a U-FSIF for this example

ϕ(Wi,Wj, γ0, α0, θ) = α0(Xi, Xj) (Yi − Yj − γ0(Xi) + γ0(Xj)) . (2.4)

The function ϕ satisfies equations (2.1) and (2.2) for the g of this example, and explains the

biased observed in Figure 1. ■

To motivate our definition of the U-FSIF, note that equation (2.1) is a zero mean condition

and it implies by the chain rule

d

dτ
E[ϕ(Wi,Wj, γ(Fτ ), α(Fτ ), θ)] = − d

dτ
EFτ [ϕ(Wi,Wj, γ(F0), α(F0), θ)]

= −
∫ ∫

ϕ(wi, wj, γ0, α0, θ)KH(dwi, dwj), (2.5)

for all θ and H. Equation (2.5) shows that the effect the first steps have on the U-FSIF

“cancels out” with the effect they have on the original identifying moment in (2.2). Equation

(2.5) also explains why KH in the definition of a U-FSIF replaces the function H in the

definition of the FSIF in Chernozhukov et al. (2022). The U-FSIF is not unique, however,

this is not concerning since all U-FSIFs lead to the same first order asymptotics. The

differences between the U-FSIF and the FSIF in Chernozhukov et al. (2022) and the (lack

of) uniqueness of the U-FSIF are further explored in the Online Appendix.

Thus, letting ψ(wi, wj, γ, α, θ) = g(wi, wj, γ, θ) + ϕ(wi, wj, γ, α, θ), we have an identifica-

tion condition (by taking τ = 0 in (2.1))

E[ψ(Wi,Wj, γ0, α0, θ)] = 0 iff θ = θ0,
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and local robustness with respect to first steps (by (2.2) and (2.5))

d

dτ
E[ψ(Wi,Wj, γ(Fτ ), α(Fτ ), θ)] = 0.

This local robustness motivates estimators based on orthogonal moments. The defining prop-

erty of the U-FSIF allows us to write θ as a solution to a locally robust quadratic moment

function. This construction led to the expression of the new IOp estimator, which would not

have been possible from the results in the debiased literature. In the general case, α0 is an

additional parameter on which the adjustment term ψ depends. In our running example and

the leading IOp example this additional parameter is only a function of γ0, which substan-

tially simplifies the construction of orthogonal quadratic moments and debiased estimators.

Example 1 (Variance of fitted values, cont.): An orthogonal quadratic moment in this

example is

ψ(Wi,Wj, γ0, α0, θ) = (1/2)(γ0(Xi)− γ0(Xj))
2 − θ + α0(Xi, Xj) (Yi − Yj − γ0(Xi) + γ0(Xj))

= (γ0(Xi)− γ0(Xj))

(
Yi − Yj −

γ0(Xi)− γ0(Xj)

2

)
− θ,

where recall α0(Xi, Xj) = γ0(Xi)− γ0(Xj). ■

2.2.2 Debiased U-Estimators

For the estimation we have to take into account that estimation of nuisance parameters and

moment conditions with the same observations can induce an “own-observation” bias. Also,

machine learning first steps usually do not satisfy Donsker conditions. We use cross-fitting

to overcome these issues (see Bickel (1982), Schick (1986), Klaassen (1987), Chernozhukov

et al. (2018) and Chernozhukov et al. (2022)), but adapted to the U-statistics setting. First,

we partition the observation indices N = {1, ..., n} into K sets, C = {C1, ..., CK}. Then, C2

is a partition of all pairs of observations. Since we can focus on U-statistics with symmetric

kernels, we use the partition of the set {(i, j) ∈ C2 : i < j} into L = K(K + 1)/2 groups,

I = {I1, ..., IL}. An illustration of this partition is given in the Online Appendix. Given a

partition I, let γ̂l and α̂l be constructed using observations not present in the pairs in Il.

The debiased sample moment is

ψ̂(θ) =

(
n

2

)−1 L∑
l=1

∑
(i,j)∈Il

(
g(Wi,Wj, γ̂l, θ) + ϕ(Wi,Wj, γ̂l, α̂l, θ)

)
,

12



where α̂l is some estimator of α0 which is discussed further in the Online Appendix. We call

an estimator solving ψ̂(θ̂) = 0 for a debiased/orthogonal moment a debiased U-estimator.

We give sufficient conditions in the Appendix so that the asymptotic variance of
√
n(θ̂− θ0)

is V = B−1ΣB′−1, where

B =
∂E[ψ(Wi,Wj, γ0, α0, θ)]

∂θ
, Σ = 4Var

(
E[ψ(Wi,Wj, γ0, α0, θ0)|Wi]

)
.

The above asymptotic variance can be estimated as V̂ = B̂−1Σ̂B̂′−1, where

B̂ =

(
n

2

)−1∑
i<j

∂

∂θ
ψ(Wi,Wj, γ̂, α̂, θ̂),

Σ̂ =
4

n(n− 1)2

n∑
i=1

[∑
j ̸=i

ψ(Wi,Wj, γ̂, α̂, θ̂)

][∑
j ̸=i

ψ(Wi,Wj, γ̂, α̂, θ̂)

]′
.

Note that we do not use cross-fitting to estimate the variance since we only care about its

consistency, which simplifies the implementation and makes available standard U-statistics

formulas for variances valid.

Example 1 (Variance of fitted values, cont.): A debiased U-estimator for this example

is

θ̂ =

(
n

2

)−1 L∑
l=1

∑
(i,j)∈Il

(γ̂l(Xi)− γ̂l(Xj))

(
Yi − Yj −

γ̂l(Xi)− γ̂l(Xj)

2

)
.

This is the debiased U-estimator reported in Figure 1. To compute its standard errors, note

first that B = −1. From the orthogonal moment function,

E[ψ(Wi,Wj, γ0, α0, θ0)|Wi] =
1

2

(
θ0 + (γ0(Xi)− µ)2

)
+ (γ0(Xi)− µ)εi,

where εi = Yi − γ0(Xi) and µ = E[Yi]. The variance term can be computed as

Σ = Var[(γ0(Xi)− µ)2] + 4E[(γ0(Xi)− µ)2ε2i ] + 4E[(γ0(Xi)− µ)3εi].

If γ0(Xi) = E[Yi|Xi] it simplifies to

Σ = Var[(γ0(Xi)− µ)2] + 4E[(γ0(Xi)− µ)2ε2i ].

Note that if γ0 is non-constant, then Σ > 0 and the orthogonal moment function is a non-
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degenerate kernel. The asymptotic variance can be estimated by

V̂ =
4

n(n− 1)2

n∑
i=1

[∑
j ̸=i

(
(γ̂(Xi)− γ̂(Xj))

(
Yi − Yj −

γ̂(Xi)− γ̂(Xj)

2

)
− θ̂

)]2
.

Our theory ensures that the standard errors estimated with V̂ are robust to misspecification.

This holds because the locally robust quadratic moments are computed from the limit γ(F ).

Another popular parameter is the variance explained R2 = θ0/Var[Y ]. The asymptotic the-

ory and debiased estimator for the coefficient of determination in high dimensional settings

follow directly from our results and a standard application of the delta method. These results

are of independent interest. ■

2.3 Debiased IOp estimator

Now we introduce the IOp results. We focus here on the case in which γ̂ is a nonparametric

estimator of the conditional mean, i.e. γ(F ) = EF [Y |X]. A first technical challenge we

face for computing orthogonal moments in this example is the lack of differentiability of the

absolute value. Despite this lack of differentiability, we are able to compute the U-FSIF from

an application of our general results in the next section. Define ∆0 = γ0(Xi)− γ0(Xj).

Assumption 1 (i) ∂γ(Fτ )/∂τ is bounded; either (ii) P[∆0 = 0] = 0 or (iii) xi ̸= xj =⇒
γ0(xi)− γ0(xj) ̸= 0.

Assumption 1(i) is a mild regularity assumption. Assumption 1(ii) is satisfied if γ0(Xi)

is absolutely continuous, for example, if γ0 is strictly monotone on a circumstance which is

absolutely continuous given all the other circumstances. It is also implied by common margin

assumptions in the classification literature which bound the rate at which the probability

mass around zero decreases (e.g. Mammen and Tsybakov (1999) or Tsybakov (2004) among

others). Assumption 1(iii) says that two observations with different circumstances must have

different fitted values. Recall sgn(x) = 1(x > 0)− 1(x < 0).

Proposition 1 Under Assumption 1, the U-FSIF in the Gini of fitted values is given by

ϕ(wi, wj, γ0, θ) = θ(yi + yj − γ0(xi)− γ0(xj))− α0(Xi, Xj)(yi − yj − γ0(xi) + γ0(xj)),

where α0(xi, xj) = sgn(γ0(xi)− γ0(xj)).

Let α̂l(Xi, Xj) = sgn(γ̂l(xi) − γ̂l(xj)). Adding the U-FISF to the identifying moment, sim-
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plifying and solving the debiased orthogonal sample moment we get the debiased estimator

θ̂ =

∑L
l=1

∑
(i,j)∈Il |γ̂l(Xi)− γ̂l(Xj)|+ α̂l(Xi, Xj)(Yi − Yj − γ̂l(Xi) + γ̂(Xj))∑

i<j(Yi + Yj)

=

∑L
l=1

∑
(i,j)∈Il α̂l(Xi, Xj)(Yi − Yj)∑

i<j(Yi + Yj)
. (2.6)

The nonparametric debiased IOp estimator resembles the standard Gini coefficient for in-

come, but rather than weighting by the sign of the differences in income, the debiased IOp

estimator weights by the sign of the difference in fitted values. This means that whenever

two individuals have the same fitted values their difference in incomes cannot be attributed

to inequality of opportunity. To give the expression for the asymptotic variance, define

d(u, t) = E[sgn(u − γ0(Xj))(t − Yj)]. Since the asymptotic variance of a U-statistic with

kernel g(Xi, Xj) is given by 4Var(E[g(Xi, Xj)|Xi]) and

E[ψ(Wi,Wj, γ0, α0, θ)|Wi] = θ(Yi + µ)− E[d(γ0(Xi), Yi)],

we have that the asymptotic variance of the debiased estimator is given by

Σ = 4Var
(
θ0Yi − d(γ0(Xi), Yi)

)
.

If Σ > 0 then the asymptotic variance of θ̂ can be estimated by

V̂ =

1
n(n−1)2

∑n
i=1

(∑
j ̸=i θ̂(Yi + Yj)− α̂l(Xi, Xj)(Yi − Yj)

)2

(
n−1

∑n
i=1 Yi

)2 .

In the next section we provide conditions that guarantee valid asymptotic inference for the

IOp parameter θ0 based on θ̂ and the variance estimate V̂ .

2.4 Asymptotic properties of the debiased IOp

We give low-level conditions for the IOp example based on the general asymptotic properties

given in the Online Appendix. Define the difference of fitted values ∆γ(Xi, Xj) = γ(Xi) −
γ(Xj) and recall ∆0 ≡ ∆γ0(Xi, Xj). To obtain asymptotic normality assume the following

Assumption 2 (i) E[(Yi − γ0(Xi))
2) ≤ C;

(ii)
∫
|γ̂l(x)− γ0(x)|2F0(w) →p 0; (iii)

∫ ∫
|α̂l(xi, xj)− α0(xi, xj)|2F0(dwi)F0(dwj) →p 0;
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(iv)
√
n
∫ ∫

(α̂l(xi, xj)−α0(xi, xj))(γ̂l(xi)−γ0(xi)− γ̂l(xj)+γ0(xj))F0(dwi)F0(dwj) →p 0.

Assumption 2 (i) imposes a mild boundedness condition. Assumptions 2 (ii) and (iii) require

γ̂l and α̂l to be mean square consistent, which are also mild conditions and allow for generic

estimators (for conditions on specific estimators see the next paragraphs). In the next

proposition we give conditions under which (iii) and (iv) hold. Let an = ||γ̂l − γ0||∞ =

supx∈X |γ̂l(x)− γ0(x)|.

Proposition 2 Suppose that any of the following holds

(i) an = op(n
−1/4), the c.d.f. of ∆0 is absolutely continuous and its density is bounded

around zero,

(ii) there exists η > 0 such that P(|∆0| ≤ η | Xi ̸= Xj) = 0 and ||γ̂l − γ0|| = op(n
−1/4).

Then, Assumptions 2 (iii)-(iv) follow.

Condition (i) in Proposition 2 strengthens the convergence of γ̂l to uniform convergence,

requires absolute continuity of the c.d.f. of ∆0 and asks for a bounded density. These are

standard conditions in the nonparametric literature. Condition (ii) weakens the uniform con-

vergence to mean square convergence, at the cost of ruling zero as an element of the support

of ∆0. This assumption is realistic whenever circumstances are discrete and Assumption 1

(iii) holds. For instance if Xi ∈ {0, 1} and γ0(0) ̸= γ0(1), then condition (ii) follows. Condi-

tion (ii) is a plausible assumption for our empirical application where all circumstances are

discrete.

There is a large literature checking L2-convergence rates for different machine learners

under low level sparsity or smoothness conditions on the nuisance parameters. The tradi-

tional non-parametric literature gives rates for kernel regression and sieves/series (e.g. Chen

(2007)). For L1-penalty estimators such as Lasso see, e.g., Belloni and Chernozhukov (2011)

and Belloni and Chernozhukov (2013). Also for low level conditions for shrinkage and kernel

estimators see Appendix B in Sasaki and Ura (2021). Rates for L2-boosting in low dimen-

sions are found in Zhang and Yu (2005), and more recently Kueck et al. (2023) find rates for

L2-boosting with high dimensional data. For results on versions of random forests see Wager

and Walther (2015) and Athey et al. (2019). Finally, for single-layer, sigmoid-based neural

networks see Chen and White (1999) and for a modern setting of deep neural networks with

rectified linear (ReLU) activation function see Farrell et al. (2021). For instance, Theorem

1 in Farrell et al. (2021) shows that for X ∈ [−1, 1]d continuously distributed and bounded

Y and γ0(X), we have that with high probability for a deep ReLU network estimator γ̂ for

large n

||γ̂ − γ||2 ≤ C

(
n− β

β+d log8 n+
log log n

n

)
,
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where β is a smoothness parameter and C is some positive constant. Also, under some

conditions, Kueck et al. (2023) give a L2-rate of s log(d ∨ n) log n/n for L2-boosting, which

almost attains the usual Lasso rate s log(d ∨ n)/n, where d is the dimension of X and s

is a sparsity parameter. For uniform convergence rates, see, e.g., Hansen (2008) for kernel

regression and Lounici (2008) or van der Laan and Bibaut (2017) for Lasso.

Now we move to the conditions for consistent estimation of the variance. Since cross-

fitting is not needed to show the consistency of the variance, we repeat some of the assump-

tions in Assumption 2 for nuisance estimators which use all observations.

Assumption 3 (i) E[(γ̂(Xi)− γ0(Xi))
2] → 0; (ii) E[(α̂(Xi, Xj)− α0(Xi, Xj))

2] → 0.

Proposition 3 Under Assumptions 2 and 3 and θ̂ →p θ0, we have that
√
n(θ̂ − θ0) →d

N (0, V ) where V = Var
(
E[ψ(Wi,Wj, γ0, α0, θ0)|Wi]

)
/(4E[Yi]2) and V̂ →p V .

Consistency of θ̂ follows readily from the mild conditions given in the Online Appendix.

3 General theory for semiparametric U-statistics

This section covers the theory of constructing locally robust estimators for semiparametric

U-statistics and their asymptotic properties in full generality. This section is of interest to

the reader interested in the technical details of the method and the practitioner who wishes

to know how to construct a debiased estimator for a semiparametric U-statistic of his/her

choice. The reader whose main interest is the IOp estimator can safely skip these results.

3.1 The first step and the construction of the U-FSIF

The expression of the U-FSIF ϕ depends on the original identifying moment g and the first

step limit γ(F ). We consider first step functions in a linear set Γ which satisfy a linear

orthogonality condition, as this setting is quite general and fits well the applications we are

interested in. Suppose Wi = (Yi, Xi) ∈ Y × X and let γ(F ) ≡ γF (Xi), γ(F ) ∈ Γ, be such

that

EF [ν(Xi) (Yi − γ(F ))] = 0 for all ν ∈ Γ. (3.1)

This setting covers high dimensional and nonparametric regression, additive regression and

single index models, among others (see Ichimura and Newey (2022)). We assume that Γ ⊆
L2(Xi), where L2(Xi) is the set of squared integrable functions of Xi (similarly, we define

L2(Xi, Xj)). Sometimes we drop the reference to random variables and use simply L2 (the
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meaning will be clear from the context). For simplicity of exposition, we take γ(F ) to be real-

valued, though the extension of our results to multiple first steps follows straightforwardly

from the chain rule.

An example that has been popular in machine learning, but less explored in econometrics,

is kernel machine regression, where the first step solves

γ̂ = arg min
γ∈HK

1

n

n∑
i=1

[Yi − γ(Xi)]
2 + λ ∥γ∥HK

.

Here, Γ = HK is a reproducing kernel Hilbert space with kernel K (see, e.g., Scholkopf and

Smola (2018)), ∥·∥HK
its norm, and λ is a penalization parameter converging to zero with the

sample size. By the Representer Theorem, see Theorem 4.2 in Scholkopf and Smola (2018),

there is a closed form expression for γ̂, and its limit satisfies (3.1) with Γ = HK . Therefore,

kernel machine regression is also included in our setting as a special case.

The starting point of our analysis is the linearization step of the original identifying

moment function g: assume there exists a function δ ∈ L2 and constants c1 and c2 such that

d

dτ
E[g(Wi,Wj, γ(Fτ ), θ)] =

d

dτ
E[δ(Xi, Xj, γ0)(c1γτ (Xi) + c2γτ (Xj))], (3.2)

where γτ (x) = γ(Fτ )(x) denotes the orthogonal projection pertaining to Fτ . For simplicity

of notation, we drop the possible dependence of δ, c1 and c2 on θ and also the possible de-

pendence of c1 and c2 on γ0. Henceforth, we also use the short notation δij(γ) ≡ δ(Xi, Xj, γ).

We illustrate this preliminary linearization step in the variance of fitted values example.

Example 1 (Variance of fitted values, cont.): As we have seen in (2.3), (3.2) holds for

this example with δij(γ0) = γ0(Xi)− γ0(Xj) and (c1, c2) = (1,−1). ■

After the linearization, the second step is a projection step. This step exploits that c1γ0(Xi)+

c2γ0(Xj) can be viewed as a projection of c1Yi + c2Yj onto a closed set S, S ⊆ L2(Xi, Xj),

satisfying some regularity conditions. We assume that S is a closed linear set of functions

of (Xi, Xj) containing Γ + Γ := {ν(Xi) + w(Xj) : v, w ∈ Γ}. We also assume that Γ is a

closed linear set of functions that contains constant functions. Let ΠV (.) be the orthogonal

projection operator onto V , for a closed linear set V . Define α0(Xi, Xj) ≡ ΠS(δ(Xi, Xj, γ0)),

where δ is as in (3.2).

Lemma 1 Suppose (3.1) and (3.2) hold. If α0 is such that α0(·, x) ∈ Γ and α0(x, ·) ∈ Γ for

all x, then (2.2) holds with

ϕ(Wi,Wj, γ0, α0, θ) = α0(Xi, Xj) (c1Yi + c2Yj − c1γ0(Xi)− c2γ0(Xj)) . (3.3)

18



Note that (2.1) is also satisfied.

This lemma gives some flexibility in the choice of S, as long as it satisfies the stated condi-

tions. Thus, we could apply Lemma 1 to different choices of S to obtain different weights

α0(Xi, Xj) ≡ ΠS(δ(Xi, Xj, γ0)) and the corresponding U-FSIFs. However, in applications

where δij(γ0) is linear in γ0(Xi) and γ0(Xj), as in the variance of fitted values example, we

have that α0 = δ(·, γ0), independently on the choice of S ⊇ Γ+ Γ, and hence, in these cases

the expression of α0 is unique.

Example 1 (Variance of fitted values, cont.): Since δij(γ) = γ(Xi)−γ(Xj), γ ∈ Γ, and

S ⊇ Γ + Γ, it follows that α0(Xi, Xj) ≡ ΠS(δ(Xi, Xj, γ0)) = δ(Xi, Xj, γ0), independently of

S, and hence

α0(Xi, Xj) = γ0(Xi)− γ0(Xj).

This is true regardless of the set Γ. Thus, for this example, the U-FSIF from Lemma 1 is

given by

ϕ(Wi,Wj, γ0, α0, θ) = α0(Xi, Xj) (Yi − Yj − γ0(Xi) + γ0(Xj)) . (3.4)

■

More generally, the following result provides two instances where the conditions of Lemma 1

are satisfied for the given Γ and S and the different expressions of α0 provided. To introduce

the result, we define α01(Xi) = ΠΓE[δij(γ0)|Xi] and α02(Xj) = ΠΓE[δij(γ0)|Xj].

Lemma 2 Suppose (3.1) and (3.2) hold. Then:

(i) For Γ = L2(Xi), if S = L2(Xi, Xj), then α0 = δ(·, γ0).

(ii) For any Γ, if S = Γ + Γ, then

α0(Xi, Xj) = α01(Xi) + α02(Xj)− E[δij(γ0)]. (3.5)

We refer henceforth to the situation of Lemma 2(i) as the joint nonparametric case. The Γ

and S in (i) lead to the simple expression for the debiased estimator in our application to IOp

given in (1.1). Lemma 2(ii) is most useful in settings where considering joint nonparametric

estimation is not feasible (e.g. in high dimensional settings), and thus the researcher chooses

as Γ a strict subset of L2(Xi).

We extend the scope of applications of Lemmas 1 and 2 to cases where for some M ≥ 1,

d

dτ
E[g(Wi,Wj, γ(Fτ ), θ)] =

M∑
m=1

d

dτ
E[δm(Xi, Xj, γ0, θ)(c1mγτ (Xi) + c2mγτ (Xj))], (3.6)
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for functions δm ∈ L2 and constants c1m and c2m. Applying Lemma 1 to each of the summands

in (3.6) we obtain the U-FSIF

ϕ(Wi,Wj, γ0, α0, θ) =
M∑

m=1

α0m(Xi, Xj) (c1mYi + c2mYj − c1mγ0(Xi)− c2mγ0(Xj)) , (3.7)

where α0m(Xi, Xj) ≡ ΠS(δm(Xi, Xj, γ0)). In particular, we can exploit the additivity of

expectations in (3.2) and write

d

dτ
E[g(Wi,Wj, γ(Fτ ), θ)] = c1

d

dτ
E[δ(Xi, Xj, γ0)γτ (Xi)] + c2

d

dτ
E[δ(Xi, Xj, γ0)γτ (Xj)]

to obtain the alternative U-FSIF

ϕ(Wi,Wj, γ0, α0, θ) = c1α01(Xi)(Yi − γ0(Xi)) + c2α02(Xj)(Yj − γ0(Xj)), (3.8)

which corresponds to (3.7) with M = 2, c11 = c1, c21 = 0, c12 = 0, c22 = c2, α01(Xi, Xj) ≡
α01(Xi) and α02(Xi, Xj) ≡ α02(Xj).

Example 1 (Variance of fitted values, cont.): Applying the expression in (3.8) to this

example we obtain a U-FSIF given by

ϕ(Wi,Wj, γ0, α0, θ) = α01(Xi) (Yi − γ0(Xi))− α02(Xj) (Yj − γ0(Xj)) , (3.9)

where α01(x) = γ0(x)− E[Yi] and α02(x) = E[Yi]− γ0(x). ■

The representation in (3.8) is also useful for giving conditions under which there is no first

step estimation effect in standard errors, see Remark 1. The definition of the FSIF is given

in Chernozhukov et al. (2022).

Lemma 3 Suppose (3.1) and (3.2) hold. Then, the FSIF is given by 2ϕ1(Wi, γ, α) where

ϕ1(Wi, γ, α) =
1

2
[c1α01(Xi) + c2α02(Xi)]× (Yi − γ0(Xi)) .

Thus, there is no estimation effect from first steps if c1α01(x) + c2α02(x) ≡ 0.

Example 1 (Variance of fitted values, cont.): The corresponding FSIF from Lemma 3

is 2ϕ1 where

ϕ1(Wi, γ, α) =
1

2
[γ0(Xi)− E[Yi]− (E[Yi]− γ0(Xi))]× (Yi − γ0(Xi))

= (γ0(Xi)− E[Yi])(Yi − γ0(Xi)).

20



As discussed in the Online Appendix, an important difference with respect to the debiased

literature is that the adjustment term in our case is not unique. However, any U-FSIF

leads to the same first order asymptotics. In fact, the U-FSIF in (3.9) coincides with the

symmetrized version of the FSIF for this problem, and the difference between (3.9) and the

U-FSIF given earlier in (3.4) is the degenerate kernel

ξ(wi, wj) = (E[Yj]− γ0(xj)) (yi − γ0(xi))− (E[Yi]− γ0(xi)) (yj − γ0(xj)) .

■

We finish this section by showing local robustness with respect to γ and global robustness

with respect to α from the result in Lemma 1. Because α0 = ΠSδ and Γ + Γ ⊆ S, the local

first step effect on the identifying moment from (3.2) equals (by iterated projections) to

d

dτ
E[δ(Xi, Xj, γ0)(c1γτ (Xi) + c2γτ (Xj))] =

d

dτ
E[α0(Xi, Xj)(c1γτ (Xi) + c2γτ (Xj))],

which cancels out with the local effect of γ on the average of ϕ, i.e.

d

dτ
E[α0(Xi, Xj) (c1Yi + c2Yj − c1γτ (Xi)− c2γτ (Xj))] = − d

dτ
E[α0(Xi, Xj)(c1γτ (Xi)+c2γτ (Xj))].

Global robustness about α holds because by orthogonality, for all α ∈ S,

E[α(Xi, Xj) (c1Yi + c2Yj − c1γ0(Xi)− c2γ0(Xj))] = 0.

This global robustness property on α implies that only weak conditions about the convergence

of machine learning estimators for α0 will be required in our asymptotic results.

Example 1 (Variance of fitted values, cont.): Global robustness follows since for α ∈
Γ + Γ and by orthogonality

E[α(Xi, Xj)(Yi − Yj − γ0(Xi) + γ0(Xj))] = 0.

■

For a practitioner with a given semiparametric quadratic moment in mind we ease the process

of finding the U-FSIF by summing up the whole process for the general case and for our

running example in Figures 2 and 3.
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4 Simulations

We evaluate our debiased estimator for the Gini of the fitted values with Monte Carlo

simulations. We consider three independent categorical covariates with eight equally likely

levels, Xk,i ∈ {0, 1, ..., 7} for k = 1, 2, 3. Define dummy variables Dkj,i = 1(Xk,i = j) for

j = 0, 1, ..., 7. We use the following DGP:

ln(Yi) = β0+
3∑

k=1

7∑
j=1

βk,jDkj,i+
∑
k<k′

7∑
r=1

7∑
s=1

δkk′,rsDkr,iDk′s,i+
7∑

r=1

7∑
s=1

7∑
t=1

γrstD1r,iD2s,iD3s,i+εi.

The above constitutes a saturated model with a reference group represented by the constant,

3 × 7 = 21 coefficients of main effects,
(
3
2

)
× 72 = 147 coefficients for pairwise interactions

among the levels and 73 = 343 coefficients for threewise interactions among the levels. Hence,

in total we have 512 parameters which means that estimating this model for low sample sizes

is a high dimensional problem. The noise variable εi is distributed asN (0, σ2). We set β0 = 5

and for the vector β = (β11, ..., β1,7, β2,1, ..., β3,7)
′, we set βm = 0.2(−1)m+1 for m = 1, ..., 21.

For the vector of interaction coefficients ξ = (δ′, γ′)′ we set ξm = (2m2)−1 for m = 1, ..., 490.

In the simulations we set the variance of the unobservable term σ2 to 0.1. This implies a

Signal to Noise ratio of StN = 10.5. For the results for σ ∈ {0.2, 0.3} (and correspondingly

StN ∈ {2.6, 1.2}) see the Online Appendix. To estimate the fitted values we run Lasso and

Ridge regressions of ln(Yi) using 10-fold Cross-Validation for the regularization parameters.

For the IOp we apply the exponential function to the fitted values of the Lasso and Ridge

regressions and then use the plug-in and debiased estimators since we are interested in the

IOp of Yi and not of ln(Yi).
5 For the debiased estimator we partition the observation indices

into 5 sets for cross-fitting, i.e. K = 5. We also estimate the first step with Random Forests

(RF), Conditional Inference Forests (CIF), Extreme Gradient Boosting (XGB) and Catboost

(CB). The results are in Table 1.

The debiased estimators are unstable for n = 100. This is expected since the first steps are

using very few observations due to the cross-fitting procedure. This issue disappears fast as

n increases. In the case of Lasso we see that for sample sizes larger than 100 the bias of the

debiased estimators is considerably smaller in absolute size than the plug-in biases. Also,

the coverage rate of the debiased estimator is much closer to the nominal 95% compared

to the coverage of the plug-in estimator. In the case of Ridge there is not much difference

between the plug-in estimator and the debiased estimator, possibly due to the weak sparsity

of the model, and the coverage of both confidence intervals slowly increases to the correct

5Under a log-normal model ln(Yi) = β′Xi + εi with εi ∼ N (0, σ2), we have that E[Yi|Xi] = eβ
′Xi+σ2/2,

hence the fitted values γ(x) = eβ
′x solve E[ν(Xi)(Yi/e

σ2/2− γ(Xi))] = 0 for all ν(·) ∈ L2. Hence, we can use

the estimator of the joint nonparametric case and the constant eσ
2/2 cancels.
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Gini of the FVs

plug-in Lasso Debiased Lasso plug-in Ridge Debiased Ridge

Bias Coverage Bias Coverage Bias Coverage Bias Coverage
n = 100 -0.002 0.863 -0.026 0.567 -0.086 0.000 -0.022 0.629
n = 500 -0.005 0.746 -0.002 0.909 -0.081 0.000 -0.005 0.798
n = 1000 -0.005 0.710 -0.001 0.950 -0.002 0.877 -0.003 0.879
n = 3000 -0.002 0.752 0.000 0.940 0.000 0.927 -0.001 0.931

plug-in RF Debiased RF plug-in CIF Debiased CIF

Bias Coverage Bias Coverage Bias Coverage Bias Coverage
n = 100 -0.032 0.157 -0.015 0.774 -0.072 0.002 -0.017 0.730
n = 500 -0.022 0.008 -0.002 0.917 -0.034 0.000 -0.003 0.923
n = 1000 -0.022 0.000 -0.001 0.937 -0.027 0.000 -0.002 0.923
n = 3000 -0.023 0.000 -0.001 0.933 -0.023 0.000 -0.001 0.942

plug-in XGBoost Debiased XGBoost plug-in Catboost Debiased Catboost

Bias Coverage Bias Coverage Bias Coverage Bias Coverage
n = 100 0.010 0.851 -0.039 0.310 -0.012 0.619 -0.032 0.429
n = 500 0.006 0.774 -0.005 0.863 0.002 0.815 -0.003 0.907
n = 1000 0.004 0.772 -0.002 0.931 0.002 0.837 -0.001 0.929
n = 3000 0.003 0.702 0.000 0.956 0.001 0.829 0.000 0.956

Table 1: Simulation based on 500 Monte Carlo iterations, true value for the Gini of the FVs is

0.18.

nominal size as the sample size increases.

The performance of RF and CIF is similar. The biases of the debiased estimators are

much lower in absolute value than that of the plug-in estimators. Also, the coverage rates

of the plug-in estimators are far from the nominal values while the coverage of the debiased

estimators are close to the nominal value. Finally, the boosting methods XGB and CB show

little bias for the debiased and plug-in estimators. However, only the debiased estimators

achieve coverage rates close to the nominal values.

Hence, in all cases the debiased estimators achieve little bias and are the only estimators

which allow for correct inference.

5 Inequality of Opportunity in Europe

We measure IOp in 29 European countries using our debiased IOp estimator and the 2019

wave of EUSILC. Our measure of income is equivalized household income and the level of
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observation is the individual.6 We restrict the sample to those aged between 25 and 59 years

old to focus on the working age population.

The circumstances included in the intergenerational module include questions on charac-

teristics of the parents and questions related to the individual’s life/household when he/she

was around 14 years old. We use the following circumstances: sex, country of birth, whether

he/she was living with the mother/father, the number of adults/working adults/kids in the

household, population of the municipality, tenancy of the house, country of birth of the

parents, nationality of the parents, education of the parents, occupational status of the par-

ents, father’s managerial position, father’s occupation, basic school needs (whether he/she

had access to books, materials, etc.), financial situation, food needs (whether he/she could

eat meat/chicken/fish/vegetarian equivalent once a week and holidays outside of home once

a year). Remember that it refers to when the individual was around 14 years old, so, for

instance, financial situation refers to the financial situation of the household where the indi-

vidual resided when he/she was around 14 years old.

All circumstances are discrete and there are many different combinations of the categories.

This makes the problem high dimensional and hard to deal with without machine learning

procedures. In this application we use Lasso, Ridge, RF, CIF, XGB and CB. For Lasso and

Ridge we use dummy encoding and employ a dictionary including up to 8-wise interactions

(1, 658 regressors). A nice feature of the cross-fitting procedure is that one can retrieve a

cross-validated estimate of the Root Mean Square Error (RMSE) in the first stage. We will

show our results for each country only for the machine learner which attains the lowest RMSE

when predicting income in the first stage; we call this machine learner the best performing

machine learner.

For cross-fitting we split {1, ..., n} into C1, ..., CK with K = 5 which leads to L = K(K+

1)/2 blocks I1, ..., IL (see Online Appendix for details). The debiased and plug-in relative

IOp estimates (IOp as a fraction of the Gini of income) based on the best performing machine

learner with 95 % confidence intervals for the debiased estimates can be seen in Figure 4.

We see a lot of heterogeneity in IOp across different European countries. Relative IOp,

i.e. Gini of the fitted values over the Gini of income, takes values from 5% to almost 60%.

As usual, Nordic countries such as Denmark, Finland or Norway are among the countries

with the lowest relative IOp with 5%, 13% and 24% of inequality explained by circumstances

respectively. In Denmark, predicting income from circumstances seems to be a formidable

task, suggesting that income is close to mean independent from the observed circumstances.

From the Nordic countries, the one with the highest relative IOp is Sweden with 31% of

relative IOp. Netherlands and Germany are also in the lower range with relative IOp of 18%

6This variable is the total household disposable income in 2018 (variable HY020) divided by the equiva-
lence scale given in the database (HX240) which is the modified OECD equivalence scale.
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Figure 4: Gini IOp in Europe

and 22% respectively. Eastern countries are more heterogeneous, in the lower range we have

countries such as Czechia or Hungary with relative IOp of 28% and 29% respectively. In the

higher range, we have Romania and Bulgaria with relative IOp being almost 60%. Southern

countries generally have high levels of IOp; Greece, Italy and Spain have 39%, 39% and 44%

of total inequality explained by circumstances.

Comparing our empirical results with other studies we see similar patterns qualitatively.

As in Hufe et al. (2022b), Brunori et al. (2021), Marrero and Rodŕıguez (2012) or Carranza

(2022) we see that Nordic countries and countries such as Germany or the Netherlands have

low IOp, Southern countries have high IOp and there is heterogeneity in Eastern countries.

Hufe et al. (2022b) takes a multidimensional approach and shows that this divide between

north and south is reduced when considering also IOp in education and health.

We report more detailed results in Table 2 where for each country we can see the income

inequality, the plug-in and debiased estimates based on the best performing machine learner,

relative IOp, the best performing machine learner, the cross-validated root mean squared

error of the first step for the best performing machine learner and the sample size.
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The bias of the plug-in estimator varies from country to country. Denmark, Croatia,

Luxembourg, France, Poland, Ireland, Portugal and Romania have plug-in estimates outside

the 95 % confidence interval of the debiased estimates. In Figure 5 we see the difference

between the (relative) debiased and plug-in estimators. For most countries the plug-in

estimator overestimates IOp but this is not always the case. The differences can be quite

stark, in Denmark we have almost 25 percentage point difference. In the rest of the countries

the differences are much smaller but we still observe differences of 5-10 percentage points in

some countries.

Figure 5: Difference between relative debiased IOp and plug-in IOp.

As already pointed out, the debiased estimates are much less sensitive to the choice of the

machine learner. In Figure 6 we report the debiased and plug-in estimates for the 6 different

machine learners. We can see that the debiased estimates are much more concentrated

and near to each other than the plug-in estimates. The plug-in estimates are much more

dispersed and in some cases there are differences of 60 percentage points from one machine

learner to the other. Even differences of 30-40 percentage points between plug-in estimates

using different machine learners are not uncommon. This result alone shows the importance

of using locally robust debiased estimators when estimating IOp.

Finally, we want to have an idea of which circumstances are the most relevant to explain

inequality. To do this, we compute the relative change in IOp when we exclude a given

circumstance. In Table 3 we report the circumstance in each country for which this relative
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Figure 6: Debiased vs plug-in estimates for the 6 different machine learners

change is the greatest. For instance, in Austria the most important circumstance is living

with the father. This means that if we exclude this circumstance, the relative IOp would

decrease 2.6%. We see that the most important circumstance varies from country to country.

However, parental education and occupation stand out as recurrent circumstances which help

explain inequality the most. For instance in countries such as the Netherlands or Germany,

excluding parental occupation leads to a 12-13% decrease in IOp. Meanwhile, excluding

maternal education leads to a 4% decrease of IOp in Czechia or almost a 13% decrease in

IOp in Hungary. This is in line with recent findings in Hufe et al. (2022b) who attribute

the increase in IOp in the US mainly to the increased importance of parental occupation

and education. Here we go a bit deeper, as we are able to separate paternal and maternal

influences and provide uncertainty quantification. We see that while for the mother it is the

education which matters the most to explain inequality, for the father it is the occupation

which matters the most.

It might seem surprising that sex does not appear as an important contributor to ex-

plaining inequality in any country. However, as pointed out in Hufe et al. (2022a), this is

expected since we are looking at equivalised household income. Hence, any intra-household

differences are not accounted for. Any explanatory power sex might have in our analysis

would come only from single-headed households.
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Country Most important circumstance Relative importance CI

Austria Living with the father 0.026 (0.022, 0.03)
Belgium Father’s education 0.038 (0.036, 0.04)
Bulgaria Father’s occupation 0.031 (0.027, 0.035)

Switzerland Financial situation 0.051 (0.049, 0.053)
Cyprus Population 0.017 (0.011, 0.023)
Czechia Mother’s education 0.044 (0.042, 0.046)
Germany Father’s occupation 0.131 (0.127, 0.135)
Denmark Number of adults 0.689 (0.681, 0.697)
Estonia Mother’s education 0.064 (0.06, 0.068)
Greece Country of birth 0.029 (0.027, 0.031)
Spain Father’s occupation 0.046 (0.044, 0.048)
Finland Country of birth 0.057 (0.049, 0.065)
France Father’s occupation 0.089 (0.085, 0.093)
Croatia Mother’s education 0.033 (0.031, 0.035)
Hungary Mother’s education 0.126 (0.124, 0.128)
Ireland Holidays 0.058 (0.054, 0.062)
Italy Father’s occupation 0.022 (0.02, 0.024)

Lithuania Population 0.098 (0.092, 0.104)
Luxembourg Country of birth 0.079 (0.077, 0.081)

Latvia Number of adults 0.026 (0.022, 0.03)
Malta Father’s managerial status 0.075 (0.073, 0.077)

Netherlands Father’s occupation 0.12 (0.116, 0.124)
Norway Father’s managerial status 0.21 (0.202, 0.218)
Poland Father’s occupation 0.038 (0.036, 0.04)
Portugal Father’s occupation 0.052 (0.048, 0.056)
Romania Population 0.037 (0.033, 0.041)
Serbia Holidays 0.072 (0.068, 0.076)
Sweden Financial situation 0.255 (0.249, 0.261)
Slovakia Mother’s education 0.053 (0.051, 0.055)

Table 3: Relative importance of most important circumstance in each country. The relative
importance of a circumstance is computed by estimating the relative effect of dropping that
circumstance.
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6 Appendices

A Proofs of General Results

A.1 Main results

Proof of Lemma 1: Note that

E[δ(Wi,Wj, γ0)(c1γτ (Xi) + c2γτ (Xj))] = E[α0(Wi,Wj, γ0)(c1γτ (Xi) + c2γτ (Xj))],

because

E[(δ(Xi, Xj, γ0)− α0(Xi, Xj))(c1γτ (Xi) + c2γτ (Xj))] = 0,

α0(Xi, Xj) = ΠS(δ(Xi, Xj, γ0)) and c1γτ (Xi)+ c2γτ (Xj) ∈ Γ+Γ ⊆ S. Since α0(·, x) ∈ Γ and

α0(x, ·) ∈ Γ for all x ∈ X ,

EFτ [α0(Xi, Xj)(c1(Yi − γτ (Xi)) + c2(Yj − γτ (Xj)))] = 0.

Thus, by the chain rule and because α0 ∈ S,

d

dτ
E[g(Wi,Wj, γ(Fτ ), θ)] =

d

dτ
E[δ(Xi, Xj, γ0)(c1γτ (Xi) + c2γτ (Xj))]

=
d

dτ
E[α0(Xi, Xj)(c1γτ (Xi) + c2γτ (Xj))]

=
d

dτ
EFτ [α0(Xi, Xj)(c1Yi + c2Yj − c1γ0(Xi)− c2γ0(Xj))]

=

∫ ∫
ϕ(wi, wj, γ0, α0, θ)KH (dwi, dwj)

with ϕ(wi, wj, γ0, α0, θ) = α0(xi, xj)(c1yi+ c2yj − c1γ0(xi)− c2γ0(xj)), which gives the desired

result.

Proof of Lemma 2: The proof of (i) follows from α = δ. For (ii), use the short notation

δij(γ) ≡ δ(Xi, Xj, γ), and note that by iterated expectations and independence, we can write

δij(γ) = E[δij(γ)|Xi] + E[δij(γ)|Xj]− E[δij(γ)] + Uij,

≡ δ̃ij(γ) + Uij,

where E[Uij|Xi] = E[Uij|Xj] = 0. This expansion implies that only δ̃ij matters for the

derivative in (3.2), so δij could be replaced everywhere by δ̃ij. Thus, substituting δij from
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the last display in the expression for α0 we obtain

α0(Xi, Xj) = ΠS(δ(Xi, Xj, γ0))

= ΠSE[δij(γ0)|Xi] + ΠSE[δij(γ0)|Xj]− E[δij(γ)]

= ΠΓE[δij(γ0)|Xi] + ΠΓE[δij(γ0)|Xj]− E[δij(γ)],

where last expression uses that S = Γ + Γ.

Proof of Lemma 3: First of all, note that the U-FSIF in (3.8) is not necessarily symmetric.

However, without loss of generality we can consider the symmetric version

ϕ∗(wi, wj, γ0, α0) =
1

2
(ϕ(wi, wj, γ0, α0) + ϕ(wj, wi, γ0, α0)),

where ϕ is as in (3.8). We can decompose ϕ∗ as

ϕ∗(Wi,Wj, γ, α) = ϕ∗
1(Wi, γ, α) + ϕ∗

1(Wj, γ, α) + ξ∗(Wi,Wj, γ, α),

where ξ∗(wi, wj, γ, α) = ϕ∗(wi, wj, γ, α) − ϕ∗
1(wi, γ, α) − ϕ∗

1(wj, γ, α) is a degenerate kernel.

By integrating with respect to KH it follows that the FSIF is given by 2ϕ∗
1(w, γ0, α0). Noting

that 2ϕ∗
1(w, γ0, α0) = ϕ1(w, γ0, α0) + ϕ2(w, γ0, α0) and that

ϕ1(w, γ0, α0) = c1α01(x)(y − γ0(x)), ϕ2(w, γ0, α0) = c2α02(x)(y − γ0(x)),

we get the desired result.

B Proofs of Inequality of Opportunity

Proof of Proposition 1: We want to compute

∂

∂τ
E(g(Wi,Wj, γ(Fτ ), θ)) =

∂

∂τ
E[θ(γτ (Xi) + γτ (Xj))]−

∂

∂τ
E(|γτ (Xi)− γτ (Xj)|).

The first term is already in the form of (3.2) so we can directly apply Lemma 1 to find

ϕ1(wi, wj, γ0, θ) = θ(yi + yj − γ0(xi)− γ0(xj)).

Define short notation ∆0 ≡ γ0(Xi)−γ0(Xj). First we find the Gateaux derivative of the map

∆ 7→ E(|∆|) at ∆0 for directions v ∈ V = {v : v(xij) = ṽ(xi) − ṽ(xj), ṽ ∈ Γ}. We use that

E(|∆|) = E([1(∆ ≥ 0)− 1(∆ < 0)]∆). Consider a deviation in the direction of the function

v, ∆0 + tv, where, under Assumption 1(i) v is such that ||v||∞ = supxi,xj∈X 2 |v(xi, xj)| ≤ C
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and t > 0, then[
E
(
[1(∆0 ≥ −tv)− 1(∆0 < −tv)][∆0 + tv]

)
− E(|∆0|)

]
/t =[

E
(
[1(∆0 ≥ −tv)− 1(∆0 < −tv)]∆0

)
− E(|∆0|)

]
/t︸ ︷︷ ︸

(1)

+E
(
[1(∆0 ≥ −tv)− 1(∆0 < −tv)]v

)
︸ ︷︷ ︸

(2)

.

Note that ∣∣∣∣(2)− E
(
[1(∆0 > 0)− 1(∆0 < 0)]v]

)∣∣∣∣ ≤ 2CE[1(−tC ≤ ∆0 ≤ tC)],

so (2) → E
(
[1(∆0 > 0)− 1(∆0 < 0)]v]

)
by Assumption 1(ii) as t ↓ 0. Alternatively, under

1(iii)∣∣∣∣(2)− E
(
[1(∆0 > 0)− 1(∆0 < 0)]v]

)∣∣∣∣ ≤ 2CE[1(−tC ≤ ∆0 ≤ tC)1(Xi ̸= Xj)] → 0.

Now we show that (1) → 0 as t ↓ 0. We use that ∆0 = ∆+
0 −∆−

0 , where ∆
+
0 = 1(∆0 ≥ 0)∆0

and ∆−
0 = −1(∆0 < 0)∆0.

|(1)| =
∣∣∣∣[E([1− 2 · 1(∆0 < −tv)]∆+

0 − [−1 + 2 · 1(∆0 < −tv)]∆−
0 )− E(|∆0|)

]
/t

∣∣∣∣
=

∣∣∣∣[−2E[1(∆0 < −tv)∆+
0 ]− 2E[1(∆0 ≥ −tv)∆−

0 ] + E[∆+
0 +∆−

0 − |∆0|]︸ ︷︷ ︸
=0

]
/t

∣∣∣∣
≤ 2

∣∣∣∣[E(1(∆0 < −tv)]1(∆0 ≥ 0)∆0)

]
/t

∣∣∣∣+ 2

∣∣∣∣[E(1(∆0 ≥ −tv)]1(∆0 < 0)∆0)

]
/t

∣∣∣∣ (⋆).

In the first equality we use that ∆0 = ∆+
0 −∆−

0 and that [1(∆0 ≥ −tv) − 1(∆0 < −tv)] =
1− 2 · 1(∆0 < −tv) = −1+2 · 1(∆0 ≥ −tv). In the second equality we note that ∆+

0 +∆−
0 =

[1(∆0 ≥ 0)− 1(∆0 < 0]∆0 = |∆0|. In the inequality we use the triangle inequality.

Now we note that 1(∆0 < −tv) ≤ 1(∆0 ≤ tC) and 1(∆0 ≥ −tv) ≤ 1(∆0 ≥ −tC), then

(⋆) ≤ 2

∣∣∣∣E[1(∆0 ≤ tC)1(∆0 ≥ 0)∆0]/t

∣∣∣∣+ 2

∣∣∣∣E[1(∆0 ≥ −tC)1(∆0 < 0)∆0]/t

∣∣∣∣
= 2

∣∣∣∣E[1(0 ≤ ∆0 ≤ tC)∆0]/t

∣∣∣∣+ 2

∣∣∣∣E[1(−tC ≤ ∆0 < 0)∆0]/t

∣∣∣∣.
Hence, by Assumption 1(ii) or (iii), (⋆) → 0 and the Gateaux derivative in direction v of
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∆ 7→ E(|∆|) is

E
(
[1(∆0 > 0)− 1(∆0 < −0)]v]

)
.

Then,

∂E(|γτ (Xi)− γτ (Xj)|)
∂τ

=
∂

∂τ
E[δ(Xi, Xj, γ0)(γτ (Xi)− γτ (Xj)],

where δ(Xi, Xj, γ) = sgn(γ(Xi)− γ(Xj)). By Lemma 1 the U-FSIF of the second term is

ϕ2(wi, wj, γ0) = α0(xi, xj, γ0)(yi − yj − γ0(xi) + γ0(xj))

where α0(xi, xj, γ) = ΠS(δ(xi, xj, γ)). Thus, the U-FSIF is

ϕ(wi, wj, γ0, α0, θ) = ϕ1(wi, wj, γ0, θ)− ϕ2(wi, wj, γ0, α0).

Proof of Proposition 2: Let β̂ij = ∆̂γ̂l −∆0 and βn = supi,j |βij|. First of all we notice

that

α̂l − α0 = 1(∆̂γ̂l > 0)− 1(∆0 > 0) + 1(∆0 < 0)− 1(∆̂γ̂l < 0)

= 1(∆0 > −β̂ij)− 1(∆0 > 0) + 1(∆0 < 0)− 1(∆0 < −β̂ij)
≤ 1(∆0 > −βn)− 1(∆0 > 0) + 1(∆0 < 0)− 1(∆0 < −βn)
= 1(−βn < ∆0 ≤ 0) + 1(−βn ≤ ∆0 < 0)

≤ 2 · 1(−βn ≤ ∆0 ≤ 0),

where in the second equality we have added and subtracted ∆0 inside the first and last

indicators. Hence, for Assumption 2 (iii) we have that

E(|α̂l − α0|2|N c
l ) ≤ 4E[1(−βn ≤ ∆0 ≤ 0)|N c

l ]

= 4(F∆0(0)− F∆0(−βn)) →p 0,

where convergence follows from continuity of F∆0 (implied by absolute continuity) and the
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fact that an = op(n
−1/4) implies βn = op(n

−1/4). For Assumption 2 (iv) we have that

√
n

∫ ∫
(α̂l(xi, xj)− α0(xi, xj))(γ̂l(xi)− γ0(xi)− γ̂l(xj) + γ0(xj))F0(dwi)F0(dwj)

≤ 2
√
n

∫ ∫
1(−βn ≤ ∆0 ≤ 0)βnF0(dwi)F0(dwj)

= 2
√
n(F∆0(0)− F∆0(−βn))βn

≤ 2C
√
nβ2

n

= 2C
√
nop(n

−1/4)op(n
−1/4)

= op(1),

where the second inequality follows since F∆0 absolutely continuous with bounded density

around zero implies that F∆0 is Lipschitz continuous at zero of some constant C by the mean

value theorem. To use condition (ii) in the Proposition instead of condition (i) first note

that

E(|α̂l − α0|2|N c
l ) = E(|sgn(∆γ̂l)− sgn(∆0)|2|N c

l )

≤ 4P(sgn(∆γ̂l) ̸= sgn(∆0)|N c
l )

≤ 4P(sgn(∆γ̂l) ̸= sgn(∆0)|N c
l , Xi ̸= Xj)

= 4P(∆γ̂l∆0 ≤ 0|N c
l , Xi ̸= Xj).

By assumption P(|∆0| ≤ η) = 0 (conditional on Xi ̸= Xj) and

P(∆γ̂l∆0 ≤ 0|N c
l , Xi ̸= Xj) = P(∆γ̂l∆0 ≤ 0, |∆0| > η|N c

l , Xi ̸= Xj)

+ P(∆γ̂l∆0 ≤ 0, |∆0| ≤ η|N c
l , Xi ̸= Xj)

≤ P(|∆γ̂l −∆0| > η|N c
l , Xi ̸= Xj)

≤ E(|∆γ̂l −∆0|2|N c
l , Xi ̸= Xj)

η2
→p 0.

The first inequality follows since {∆γ̂l∆0 ≤ 0, |∆0| > η} ⊆ {|∆γ̂l − ∆0| > η} and because

the probability in the second line is bounded by P(|∆0| ≤ η) = 0. The second inequality

follows from the conditional Markov inequality and the convergence follows from mean square

consistency of γ̂l. Hence, Assumption 2 (iii) follows. Finally, multiplying by
√
n

√
nE(|α̂l − α0|2|N c

l , Xi ̸= Xj) ≤ 4
√
nP(|∆γ̂l −∆0| > η|N c

l , Xi ̸= Xj)

≤ 4
√
n
E(|∆γ̂l −∆0|2|N c

l , Xi ̸= Xj)

η2
→p 0.
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The convergence in probability follows from ||γ̂l − γ0|| = op(n
−1/4). Hence we have also that

||α̂l − α0|| = op(n
−1/4) and Assumption 2 (iv) follows.

Proof of Proposition 3: We need to show that the general assumptions of the asymptotic

theory in the Online Appendix hold in this example. Assumption 1 (i) follows since using

the Cr inequality multiple times and by the reverse triangle inequality∫ ∫
|g(wi, wj, γ̂l, θ0)− g(wi, wj, γ0, θ0)|2F0(dwi)F0(dwj) ≤ C

∫
|γ̂l(x)− γ0(x)|2F0(dx),

which converges to zero by Assumption 2 (ii). Similarly,∫ ∫
|ϕ(wi, wj, γ̂l, α0, θ0)− ϕ(wi, wj, γ0, α0, θ0)|2F0(dwi)F0(dwj)

=

∫ ∫
|(θ0 − α0(xi, xj))(γ0(xi)− γ̂l(xi) + γ0(xj)− γ̂l(xj))|2F0(dwi)F0(dwj)

≤ C

∫
|γ̂l(x)− γ0(x)|2F0(dw) →p 0,

where we used the Cr inequality and boundedness of θ0 − α0(xi, xj). Hence Assumption 1

(ii) is also satisfied. For Assumption 1 (iii)∫ ∫
|ϕ(wi, wj, γ0, α̂l, θ0)− ϕ(wi, wj, γ0, α0, θ0)|2F0(dwi)F0(dwj)

=

∫ ∫
|(yi − yj − γ0(xi) + γ0(xj))(α0(xi, xj)− α̂l(xi, xj))|2F0(dwi)F0(dwj)

≤ C

∫ ∫
|α0(xi, xj)− α̂l(xi, xj)|2F0(dw) →p 0,

where in the inequality we used Assumption 2 (i) and the convergence to zero follows from

Assumption 2 (iii). To check Assumption 2 (i) note that

√
n

∫ ∫
ξ̂(wi, wj)F0(dwi)F0(dwj)

=
√
n

∫ ∫
(α̂l(xi, xj)− α0(xi, xj))(γ̂l(xi)− γ0(xi)− γ̂l(xj) + γ0(xj))F0(dwi)F0(dwj) →p 0,

where the convergence follows by Assumption 2 (iv). Also,∫ ∫
|ξ̂(wi, wj)|2F0(dwi)F0(dwj)

=

∫ ∫
(α̂l(xi, xj)− α0(xi, xj))

2(γ̂l(xi)− γ0(xi)− γ̂l(xj) + γ0(xj))
2F0(dwi)F0(dwj) →p 0,

where the convergence follows from boundedness of α0 and by Assumption 2 (ii). Assumption
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3 (i) is global robustness and follows from visual inspection. Assumption 3 (ii) follows from

Assumption 2 (ii) and by result 1.8.4 in Yamamuro (1974). To use the last result note that

the second order Gateaux derivative of ψ̄(γ, α0, θ0) with respect to γ for ||γ − γ0|| small

enough is 0 under Assumption 1 (ii) since then the sgn function has zero slope a.s. For the

conditions for the consistency of the variance let En,i = (n− 1)−1
∑

j ̸=i and note that

1

n

n∑
i=1

|ĝ−i − g−i|2 ≤
C

n

n∑
i=1

|En,i[γ̂(Xi) + γ̂(Xj)]|2|θ̂ − θ0|2

+
Cθ0
n

n∑
i=1

|En,i[γ̂(Xi) + γ̂(Xj)− γ0(Xi)− γ0(Xj)]|2

+
C

n

n∑
i=1

|En,i[|γ0(Xi)− γ0(Xj)− γ̂(Xi) + γ̂(Xj)|]|2.

Now let us show that each term vanishes. First we note that (1/n)
∑n

i=1 |En,i[γ̂(Xi) +

γ̂(Xj)]|2 = Op(1), let Cε > 0, then

P
[
1

n

n∑
i=1

1

(n− 1)2

(∑
j ̸=i

γ̂(Xi) + γ̂(Xj)

)2

> Cε

]

≤
E
[

1
(n−1)2

(
(n− 1)γ̂(Xi) +

∑
j ̸=i γ̂(Xj)

)2]
Cε

≤
C

(
1

n−1
E[(γ̂(Xi)− γ0(Xi) + γ0(Xi))

2] + 1
n−1

E
[(∑

j ̸=i γ̂(Xj)

)2]
Cε

≤
C

(
1

n−1
C(E[(γ̂(Xi)− γ0(Xi))

2] + E[γ0(Xi)
2]) + C(E[(γ̂(Xj)− γ0(Xj))

2] + E[γ0(Xj)
2])

)
Cε

→p
CE[γ0(Xj)

2]

Cε

.

The first inequality uses Markov’s inequality, the second one uses Cr inequality, the third one

uses Cr and Cauchy Schwartz inequalities and the convergence follows from L2 convergence

of γ̂. Hence, for all ε > 0 and sufficiently large n we can choose Cε > 0 sufficiently large

so as to make P
[
1
n

∑n
i=1

1
(n−1)2

(∑
j ̸=i γ̂(Xi) + γ̂(Xj)

)2

> Cε

]
< ε. Hence the first term

is Op(1)|θ̂ − θ0|2 →p 0 by consistency of θ̂. Following the same steps we can bound the

probability that the second terms exceed some ε > 0 by E[(γ̂ − γ0)
2] →p 0 so the second
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term vanishes. The exact same arguments cause the third term to vanish too. Now

1

n

n∑
i=1

|ϕ̂−i − ϕ−i|2 ≤
C

n

n∑
i=1

|En,i[Yi + Yj − γ̂(Xi)− γ̂(Xj)]|2|θ̂ − θ0|2

+
Cθ0
n

n∑
i=1

|En,i[γ0(Xi) + γ0(Xj)− γ̂(Xi)− γ̂(Xj)]|2

+
C

n

n∑
i=1

|En,i[(α0(Xi, Xj)− α̂(Xi, Xj))(Yi − Yj − γ̂(Xi) + γ̂(Xj)]|2

− C

n

n∑
i=1

|En,i[α0(Xi, Xj)(Yi − Yj − γ̂(Xi) + γ̂(Xj))]|2.

For the first term note that by the same arguments as before

P
(
C

n

n∑
i=1

|En,i[Yi + Yj − γ̂(Xi)− γ̂(Xj)]|2 > Cε

)

≤
E
[

1
(n−1)2

(∑
j ̸=i Yi + Yj − γ0(Xi)− γ0(Xj) + γ0(Xi)− γ0(Xj)− γ̂(Xi)− γ̂(Xj)

)2]
ε

→p CE[(Yj − γ0(Xj))
2]/Cε.

So the first term is also Op(1)|θ̂ − θ0|2 →p 0. The second term vanishes as we have already

shown. For the third term note that

P
(

C

n(n− 1)2

n∑
i=1

|
∑
j ̸=i

[(α0(Xi, Xj)− α̂(Xi, Xj))(Yi − Yj −∆0 −∆γ̂)]|2 > ε

)

≤
E
[

C
(n−1)2

(∑
j ̸=i(α0(Xi, Xj)− α̂(Xi, Xj))(Yi − Yj −∆0 +∆0 −∆γ̂)

)2]
ε

≤ C

E
[

C
(n−1)2

(∑
j ̸=i(α0(Xi, Xj)− α̂(Xi, Xj))(Yi − Yj −∆0)

)2]
ε

+ C

E
[

C
(n−1)2

(∑
j ̸=i(α0(Xi, Xj)− α̂(Xi, Xj))(∆0 −∆γ̂)

)2]
ε

.

Where we have used Markov’s inequality and Cr inequality. For the first term above use

Cauchy Schwartz, law of iterated expectations on (Xi, Xj) and a.s. finiteness of E[(Yi−Yj −
∆0)

2|Xi, Xj] to show that it converges in probability to zero by L2 convergence of α̂. For the

second term above use the fact that (α0(Xi, Xj)− α̂(Xi, Xj)) is bounded and L2 convergence
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of γ̂. Finally, for the fourth term use Markovs’s inequality as usual, add and subtract ∆0

and use that

E[α0(Xi, Xj)(Yi − Yj −∆0)] = 0,

by global robustness and that α0(Xi, Xj) ≤ 1 and L2 convergence of γ̂ as before. Convergence

of the Jacobian follows trivially since ∂
∂θ
ψ(wi, wj, γ, α, θ) = yi + yj.
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Online Appendix

1 On Uniqueness of the U-FSIF and the FSIF

The U-FSIF is unique up to the addition of functions with mean zero with respect to KH for

any H. This follows since, for any function ξ(wi, wj) such that
∫ ∫

ξ(wi, wj)KH(dwi, dwj) =

0, ∫ ∫
[ϕ(wi, wj, γ, α) + ξ(wi, wj)]KH(dwi, dwj) =

∫ ∫
ϕ(wi, wj, γ, α)KH(dwi, dwj), (1.1)

i.e. if ϕ is a U-FSIF so is ϕ+ ξ. If no restrictions are placed on the alternative distribution

H, such functions ξ(wi, wj) are called degenerate kernels (see, e.g., Lee (2019)).

For any symmetric U-FSIF ϕ, we define ϕ1(Wi, γ, α) =
∫
ϕ(Wi, w, γ, α)F0(dw). Then, we

can decompose any such ϕ(Wi,Wj, γ, α) with mean zero as

ϕ(Wi,Wj, γ, α) = ϕ1(Wi, γ, α) + ϕ1(Wj, γ, α) + ξ(Wi,Wj, γ, α),

where ξ(wi, wj, γ, α) = ϕ(wi, wj, γ, α) − ϕ1(wi, γ, α) − ϕ1(wj, γ, α) is a degenerate kernel.

Hence, ∫ ∫
ϕ(wi, wj, γ, α)KH(dwi, dwj) =

∫
2ϕ1(w, γ, α)H(dw), (1.2)

where the right hand side (RHS) coincides with the characterization of 2ϕ1 as the FSIF

in Chernozhukov et al. (2022). Thus, (1.1) shows that U-FSIFs are unique only up to the

addition of degenerate kernels, while (1.2) shows all U-FSIFs give rise to the same FSIF

(hence same first-order asymptotics).

Example 1 (Variance of fitted values, cont.): ϕ1 is

ϕ1(Wi, γ, α) = [γ0(Xi)− E[Yi]]× (Yi − γ0(Xi)) . (1.3)

and

ξ(wi, wj) = (E[Yj]− γ0(xj)) (yi − γ0(xi))− (E[Yi]− γ0(xi)) (yj − γ0(xj)) , (1.4)

which is a degenerate kernel. ■

An alternative approach based only on linear moments and FSIFs is to let ḡ(wi, γ0, F0, θ) ≡∫
g(wi, wj, γ0, θ)F0(dwj) be the identifying moment function with unknown nuisance param-

eters (γ0, F0). The derivative with respect to the first steps in this case is by the chain
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rule

d

dτ
E[ḡ(Wi, γ(Fτ ), Fτ , θ)] =

d

dτ
E[g(Wi,Wj, γ(Fτ ), θ)] +

d

dτ
E[ḡ(Wi, γ(F0), Fτ , θ)].

The first term of the RHS can be characterized by Equation (2.2) in the main text and

the second term implies additional nuisance parameters. Hence, this alternative approach

does not lead to a simpler methodology or simpler estimators than ours and it relies on our

derivations for its completion. Thus, we recommend following instead our methods based on

U-FSIFs.

The discussion about uniqueness also helps in constructing a U-FSIF from the FSIF:

symmetrizing 2ϕ1, i.e. by computing ϕ∗
1(wi, wj, γ, α) = ϕ1(wi, γ, α) + ϕ1(wj, γ, α). However,

we have found in our leading application below that an alternative construction of U-FSIF

that we provide in the next section leads to simpler estimators such as our debiased IOp

estimator. We give this general construction of U-FSIF for first steps that solve orthogonality

restrictions and illustrate calculations in our running example and other examples below.

Remark 1 (No first step estimation effect): A condition for the first step not having an

effect on the first order asymptotics for the parameter of interest is ϕ1(·, γ0, α0) ≡ 0, i.e. that

the U-FSIF is degenerate. We have shown that this condition does not hold in a number of

applications, thereby invalidating inferences that do not account for first steps in standard

errors. ■

Example 1 (Variance of fitted values, cont.): ϕ1 = 0 only when γ0 is constant. Thus,

only when γ0(·) is a constant there is no estimation effect from the first steps. When the

fitted value is not constant, e.g. under IOp, there is an estimation effect from the first step,

inference not accounting for the first step is invalid and valid inference on the variance of

fitted values can be based on orthogonal quadratic moments proposed here. ■

2 Asymptotic theory

The aim of using a debiased moment function and cross-fitting is to be able to perform valid

inference. First, we will show the key result that

√
n

(
n

2

)−1 L∑
l=1

∑
(i,j)∈Il

ψ(Wi,Wj, γ̂l, α̂l, θ0) =
√
n

(
n

2

)−1∑
i<j

ψ(Wi,Wj, γ0, α0, θ0)+op(1). (2.1)

This and other asymptotic results of this section are shown for generic first steps, not nec-

essarily first steps satisfying orthogonality restrictions (e.g. machine learning estimates of
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a density). The estimators α̂l for α0(Xi, Xj) ≡ ΠS(δ(Xi, Xj, γ0)) depend on the choice of

S and the expression for δ(Xi, Xj, γ0). In all our examples δ is known up to the first step

γ0, so in the joint nonparametric case α0 = δ(·, γ0) is also known up to γ0 and we can set

α̂l = δ(·, γ̂l). For other cases we can obtain α̂l from Lemmas 1 and 2 in the main text by any

machine learner method that estimates the projection of δ(·, γ̂l) onto S or Γ (such as Lasso,

neural nets, sieves, etc.). For example, using Lemma 2 (ii) in the main text and letting

nl =
∑

j:(i,j)/∈Il 1, we can first compute

α̃1l(Xi) =
1

nl

∑
j ̸=i

δij(γ̂l) and α̃2l(Xj) =
1

nl

∑
i ̸=j

δij(γ̂l),

and then we can estimate α0r(x), r = 1, 2, by the orthogonal projection of α̃rl(Xi) onto Γ

with any machine learning estimator and with observations not in Il. Let now |·| and ∥·∥
be the Euclidean and L2 norms, respectively. The terms →p and →d denote convergence in

probability and distribution, respectively.

Assumption 4 E[|ψ(Wi,Wj, γ0, α0, θ0)|2] <∞ and

(i)
∫ ∫

|g(wi, wj, γ̂l, θ0)− g(wi, wj, γ0, θ0)|2F0(dwi)F0(dwj) →p 0;

(ii)
∫ ∫

|ϕ(wi, wj, γ̂l, α0, θ0)− ϕ(wi, wj, γ0, α0, θ0)|2F0(dwi)F0(dwj) →p 0;

(iii)
∫ ∫

|ϕ(wi, wj, γ0, α̂l, θ0)− ϕ(wi, wj, γ0, α0, θ0)|2F0(dwi)F0(dwj) →p 0.

These are mild mean-square consistency conditions for γ̂l and α̂l separately. A lineariza-

tion argument like Equation (3.2) in the main text often implies that the left hand side of

Assumption 4(i)-(ii) are bounded above by a constant times ∥γ̂l − γ0∥2 , so L2 consistency

suffices. Assumption 4(iii) typically follows from L2 consistency of α̂l, as for ϕ in Equation

(3.3) in the main text. Define also the following interaction term

ξ̂l(wi, wj) = ϕ(wi, wj, γ̂l, α̂l, θ0)−ϕ(wi, wj, γ0, α̂l, θ0)−ϕ(wi, wj, γ̂l, α0, θ0)+ϕ(wi, wj, γ0, α0, θ0).

Assumption 5 For each l = 1, ..., L, either i)

√
n

∫ ∫
ξ̂l(wi, wj)F0(dwi)F0(dwj) →p 0,

∫ ∫
|ξ̂l(wi, wj)|2F0(dwi)F0(dwj) →p 0,

or ii)
√
n
(
n
2

)−1∑
(i,j)∈Il |ξ̂l(Wi,Wj)| →p 0, or (iii)

√
n
(
n
2

)−1∑
(i,j)∈Il ξ̂l(Wi,Wj) →p 0.

These are rate conditions on the remainder term ξ̂l(wi, wj). For ϕ in Equation (3.4) in the

main text, the interaction term has the form

ξ̂l(wi, wj) = (α̂l(xi, xj)− α0(xi, xj)) (c1γ̂l(Xi) + c2γ̂(Xj)− c1γ0(Xi)− c2γ0(Xj)) .
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Therefore, Assumption 5 follows for first steps satisfying orthogonality restrictions if
√
n||α̂l−

α0||||γ̂l−γ0|| = op(1). This is a product rate condition which allows for nuisance estimators to

converge at slower rates as long as the product converges at
√
n-rate. Define now ψ̄(γ, α, θ) ≡

E[ψ(Wi,Wj, γ, α, θ)]. Henceforth, C is a generic positive constant that may change from to

expression to expression.

Assumption 6 For each l = 1, ..., L and θ, i)
∫ ∫

ϕ(wi, wj, γ0, α̂l, θ)F0(dwi)F0(dwj) = 0

with probability approaching one; and either ii) ||γ̂l − γ0|| = op(n
−1/4) and |ψ̄(γ, α0, θ0)| ≤

C||γ − γ0||2 for all γ with ||γ − γ0|| small enough; or iii)
√
nψ̄(γ̂l, α0, θ0) →p 0.

Assumption 6 (i) incorporates the global robustness property of α and is in most cases easy

to check by inspection of ϕ. For example, it holds for ϕ in Equation (3.4) in the main

text. Assumption 6 (ii) and (iii) are small bias conditions. For a parameter of the form

θ0 = E[δ(Xi, Xj, γ0)(c1γ0(Xi) + c2γ0(Xj))], Assumption 6 (ii) and (iii) hold if ||γ̂l − γ0|| =
op(n

−1/4) and ||δ(·, γ)− δ(·, γ0)|| ≤ C||γ − γ0||.

Lemma 4 If Assumptions 4-6 are satisfied then equation (2.1) holds.

Lemma 4 is a key asymptotic result which implies asymptotic normality for the debiased

estimator by standard U-statistics arguments when the identifying moment condition is non-

degenerate.

For valid inference we also need convergence of the asymptotic variance estimators. To

simplify the computation we implemented the variance estimator without cross-fitting, so

standard U-statistics formulas are valid. Consistency of the variance follows under standard

L2 consistency of first steps. Define ĝij = g(Wi,Wj, γ̂, α̂, θ̂) and gij = g(Wi,Wj, γ0, α0, θ0).

Then define the following leave-one out average ĝ−i = (n − 1)−1
∑

j ̸=i ĝij and g−i = (n −
1)−1

∑
j ̸=i gij, let ϕ̂−i and ϕ−i be defined in the same way.

Lemma 5 If E[|ψ(Wi,Wj, γ0, α0, θ0)|2] <∞, n−1
∑n

i=1 |ĝ−i−g−i|2 →p 0 and n−1
∑n

i=1 |ϕ̂−i−
ϕ−i|2 →p 0, then Σ̂ →p Σ.

We also need convergence of the Jacobian of the moment condition B̂ →p B. Define ψ̃ij =

ψ(Wi,Wj, γ̂, α̂, θ0).

Assumption 7 B exists and there is a neighborhood N of θ0 such that i)||γ̂ − γ0|| →p 0;

ii) for all ||γ − γ0|| and ||α − α0|| small enough ψ(Wi,Wj, γ, α, θ) is differentiable in θ

on N with probability approaching one and there is C > 0 and d(Wi,Wj, γ, α) such that

E[d(Wi,Wj, γ, α)] ≤ C and such that for θ ∈ N and ||γ − γ0|| and ||α− α0|| small enough∣∣∣∣∂ψ(Wi,Wj, γ, α, θ)

∂θ
− ∂ψ(Wi,Wj, γ, α, θ0)

∂θ

∣∣∣∣ ≤ d(Wi,Wj, γ, α)|θ − θ0|1/C
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iii) For each k, E[|∂ψ̃ij/∂θk − ∂ψij/∂θk|] →p 0.

Lemma 6 If Assumption 7 is satisfied and if θ̄ →p θ0 then ∂ψ̂(θ̄)/∂θ →p B.

Now we are ready to give the main asymptotic result

Theorem 1 If Assumptions 4-7 and conditions in Lemma 5 are satisfied, θ̂ →p θ0 and

V = B−1ΣB′−1 is nonsingular, then

√
n(θ̂ − θ0) →d N (0, V ).

Also, V̂ →p V .

Theorem 1 requires consistency of θ̂. In Appendix 2.2 we give conditions similar to the ones

in this section under which θ̂ is consistent.

Example 1 (Variance of fitted values, cont.): Assume for simplicity that Yi and the

fitted values γ̂l(Xi) are bounded with probability one. Then, Assumptions 4-6 are easily

verified and hold under the condition ||γ̂l−γ0|| = op(n
−1/4). Furthermore, Assumption 7 also

holds (trivially, as ∂ψ/∂θ ≡ 1). ■

Remark 2 (On degeneracy of orthogonal moments). When the orthogonal (sample)

moment is a degenerate U-statistic, Σ = 0 and hence V = 0. Therefore, our asymptotic

distribution theory is useful only for non-degenerate orthogonal moments. We focus on this

case because it is the most common one in applications, as for example in IOp. The analysis

of the degenerate case is beyond the scope of this paper. ■

2.1 Asymptotic theory proofs

Proof of Lemma 4: Define

R̂1,ij,l = g(Wi,Wj, γ̂l, θ0)− g(Wi,Wj, γ0, θ0), R̂2,ij,l = ϕ(Wi,Wj, γ̂l, α0, θ0)− ϕ(Wi,Wj, γ0, α0, θ0),

R̂3,ij,l = ϕ(Wi,Wj, γ0, α̂l, θ0)− ϕ(Wi,Wj, γ0, α0, θ0), (i, j) ∈ Il.

Then

g(Wi,Wj, γ̂l, θ0)+ϕ(Wi,Wj, γ̂l, α̂l, θ0)−ψ(Wi,Wj, γ0, α0, θ0) = R̂1,ij,l+R̂2,ij,l+R̂3,ij,l+ξ̂l(Wi,Wj).

(2.2)
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Let N c
l be the observations not in Il and note that γ̂l and α̂l depend only on N c

l . Hence,

E[R̂1,ij,l|N c
l ] =

∫ ∫
g(wi, wj, γ̂l, θ0)F0(dwi)F0(dwj), (2.3)

E[R̂2,ij,l|N c
l ] =

∫ ∫
ϕ(wi, wj, γ̂l, α0, θ0)F0(dwi)F0(dwj), (2.4)

E[R̂3,ij,l|N c
l ] =

∫ ∫
ϕ(wi, wj, γ0, α̂l, θ0)F0(dwi)F0(dwj) = 0, (2.5)

where the two first equalities follow since E[g(Wi,Wj, γ0, θ0)] = 0 and E[ϕ(Wi,Wj, γ0, α0, θ0)] =

0 and in the third equality we use Assumption 6(i). Since pairs in Il are dependent only

when one or two of the members of the pair coincide (also we omit the fact that we are

dealing with vectors since the convergence of the vector is the convergence of its elements)

E
[(√

n

(
n

2

)−1 ∑
(i,j)∈Il

(R̂1,ij,l − E(R̂1,ij,l|N c
l )

)2∣∣∣∣N c
l

]
=

n

(
n

2

)−2[
κ2,lVar(R̂1,ij,l|N c

l ) + κ1,lCov(R̂1,ij,l, R̂1,ik,l|Icl )
]
,

where κr,l is the number of ways of choosing a pair of pairs in Il that have r = 1, 2, elements

in common. These depend on the way you partition the data but generally n
(
n
2

)−2
κ2,l → 0 as

n → ∞ and n
(
n
2

)−2
κ1,l ≤ 4. For instance, with our partition (see Supplementary Material),

κ1,l =
(|Ck|

2

)
2(|Ck| − 2) and κ2,l =

(|Ck|
2

)
for the elements of the partition {Ck × Ck : i < j}

for k = 1, ..., K. For the elements of the partition {Ck × Cm : m > k} we have κ1,l =

|Ck||Cm|(|Ck| + |Cm|) and κ2,l = |Ck||Cm|. Since |Ck| ≤ n for k = 1, ..., K, it follows that

n
(
n
2

)−2
κ2,l → 0 as n→ ∞ and n

(
n
2

)−2
κ1,l ≤ 4. Hence

n

(
n

2

)−2[
κ2,lVar(R̂1,ij,l|N c

l ) + κ1,lCov(R̂1,ij,l, R̂1,ik,l|Icl )
]

≤ 4Cov(R̂1,ij,l, R̂1,ik,l|N c
l ) + oP (1)

≤ 4

√
Var(R̂1,ij,l|N c

l )Var(R̂1,ik,l|N c
l ) + oP (1)

≤ 4
√
E(R̂2

1,ij,l|N c
l )E(R̂2

1,ik,l|N c
l ) + oP (1) →p 0,

where the convergence in probability follows from Assumption 4(i). The same can be shown

for R̂2,ij,l with Assumption 4(ii) and for R̂3,ij,l with Assumption 4(iii). By Assumption 6(i)
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and the conditional Markov inequality

√
n

(
n

2

)−1 ∑
(i,j)∈Il

(R̂1,ij,l + R̂2,ij,l + R̂3,ij,l − E[R̂1,ij,l + R̂2,ij,l|N c
l ]) →p 0.

By equations (2.3) and (2.4), E[R̂1,ij,l + R̂2,ij,l|N c
l ] = E[ψ(Wi,Wj, γ̂l, α0, θ0)] (with γ̂l fixed

due to the conditioning on N c
l ). Therefore, by Assumption 6∣∣∣∣√n(n2

)−1 ∑
(i,j)∈Il

E(R̂1,ij,l + R̂2,ij,l|N c
l )

∣∣∣∣ ≤ 2
√
n|ψ̄(γ̂l, α0, θ0)| →p 0.

By the triangle inequality

√
n

(
n

2

)−1 ∑
(i,j)∈Il

(R̂1,ij,l + R̂2,ij,l + R̂3,ij,l) →p 0.

Also, by Assumption 5
√
n

(
n

2

)−1 ∑
(i,j)∈Il

ξ̂l(Wi,Wj) →p 0.

Hence, by the triangle inequality and equation (2.2)

√
n

(
n

2

)−1 ∑
(i,j)∈Il

ψ(Wi,Wj, γ̂l, α̂l, θ0)− ψ(Wi,Wj, γ0, α0, θ0)

=
L∑
l=1

√
n(R̂1,ij,l + R̂2,ij,l + R̂3,ij,l + ξ̂l(Wi,Wj)) →p 0.

Proof of Lemma 5: Let ψ̂ij = ψ(Wi,Wj, γ̂, α̂, θ̂), ψij = ψ(Wi,Wj, γ0, α0, θ0) and define

χ̂i = (n − 1)−1
∑

j ̸=i ψ̂ij, χ̃i = (n − 1)−1
∑

j ̸=i ψij and χi = E[ψij|Wi]. Without loss of

generality we focus on the scalar case. Note that Σ̂ = 4n−1
∑n

i=1 χ̂
2
i and we want to show

that Σ̂ →p 4E[χ2
i ] = Σ. To do this note that

1

n

n∑
i=1

(χ̂i − χ̃i + χ̃i)
2 =

1

n

n∑
i=1

χ̃2
i +

1

n

n∑
i=1

(χ̂i − χ̃i)
2 +

2

n

n∑
i=1

(χ̂i − χ̃i)χ̃i.

The first term in the RHS goes in probability to E[χ2
i ] by standard U-statistic theory. By
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Cauchy-Schwartz the third term can be bounded as

2

n

n∑
i=1

(χ̂i − χ̃i)χ̃i ≤ 2

(
1

n

n∑
i=1

(χ̂i − χ̃i)
2

) 1
2
(
1

n

n∑
i=1

χ̃2
i

) 1
2

.

Hence, if we show that n−1
∑n

i=1 |χ̂i − χ̃i|2 →p 0 we have that n−1
∑n

i=1 χ̂
2
i = E[χ2

i ] + op(1).

It follows by the Cr inequality and the assumptions in the lemma that

1

n

n∑
i=1

|χ̂i − χ̃i|2 =
1

n

n∑
i=1

∣∣∣∣ 1

n− 1

∑
j ̸=i

[ĝij − gij + ϕ̂ij − ϕij]

∣∣∣∣2
≤ 2

n

n∑
i=1

|ĝ−i − g−i|2 +
2

n

n∑
i=1

|ϕ̂−i − ϕ−i|2 →p 0.

Proof of Lemma 6: Define

B̂ =

(
n

2

)−1∑
i<j

∂ψ(Wi,Wj, γ̂, α̂, θ̄)/∂θ, B̃ =

(
n

2

)−1∑
i<j

∂ψ(Wi,Wj, γ̂, α̂, θ0)/∂θ.

By ii), with probability approaching 1

E
[(
n

2

)−1∑
i<j

d(Wi,Wj, γ̂, α̂)

]
= E[d(Wi,Wj, γ̂, α̂)] ≤ C,

By Markov inequality ,
(
n
2

)−1∑
i<j d(Wi,Wj, γ̂, α̂) = Op(1). So by ii) and θ̄ →p θ0∣∣∣∣B̂ − B̃

∣∣∣∣ ≤ (
n

2

)−1∑
i<j

∣∣∣∣∂ψ(Wi,Wj, γ̂, α̂, θ̄)

∂θ
− ∂ψ(Wi,Wj, γ̂, α̂, θ0)

∂θ

∣∣∣∣
≤

(
n

2

)−1∑
i<j

d(Wi,Wj, γ̂, α̂)|θ̄ − θ0|1/C

= Op(1)op(1) →p 0.

It follows from Assumption 7 (iii) and Markov Inequality that∣∣∣∣B̃ −
(
n

2

)−1∑
i<j

∂ψ(Wi,Wj, γ0, α0, θ0)/∂θ

∣∣∣∣ →p 0

and
(
n
2

)−1∑
i<j ∂ψ(Wi,Wj, γ0, α0, θ0)/∂θ →p B by usual U-statistics theory. Hence, the

result follows from the triangle inequality.
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Proof of Theorem 1: Let θ̂(γ0, α0) be the solution to the cross-fitted orthogonal sample

moment if (γ0, α0) are known. It follows from Lemma 4 that θ̂ and θ̂(γ0, α0) are asymptoti-

cally equivalent. By the mean value theorem

0 =
√
n

(
n

2

)−1 L∑
l=1

∑
(i,j)∈Il

ψ(Wi,Wj, γ0, α0, θ̂(γ0, α0))

=
√
n

(
n

2

)−1 L∑
l=1

∑
(i,j)∈Il

ψ(Wi,Wj, γ0, α0, θ0)

+

(
n

2

)−1 L∑
l=1

∑
(i,j)∈Il

ψθ(Wi,Wj, γ0, α0, θ̄)
√
n(θ̂(γ0, α0)− θ0),

where ψθ is the derivative with respect to θ and θ̄ is some intermediate value. Let Qn(θ) ≡(
n
2

)−1∑L
l=1

∑
(i,j)∈Il ψ(Wi,Wj, γ0, α0, θ) and let

(
n
2

)−1∑L
l=1

∑
(i,j)∈Il ψθ(Wi,Wj, γ0, α0, θ̄) =Mn.

Then,

√
n(θ̂(γ0, α0)− θ0) =M−1

n

√
nQn(θ0) = −

(
M−1

n −B−1 +B−1

)√
nQn(θ0)

= −B−1
√
nQn(θ0)−

(
M−1

n −B−1

)√
nQn(θ0)

= −B−1
√
nQn(θ0) + op(1)Op(1) →d N (0, V ),

where

V = B−1Var
(
E[ψ(Wi,Wj, γ0, α0, θ0)|Wi]

)
B′−1.

The normality result follows from standard U-statistic theory (see Theorem 12.3 in Van der

Vaart (2000)) and Slutsky’s lemma. Hence
√
n(θ̂ − θ0) →d N (0, V ). Consistency of the

variance estimator follows from Lemmas 5 and 6 and standard arguments.

2.2 Consistency

Re-define the interaction term in Section 2 as

ξ̂l(wi, wj, θ) = ϕ(wi, wj, γ̂l, α̂l, θ)−ϕ(wi, wj, γ0, α̂l, θ)−ϕ(wi, wj, γ̂l, α0, θ0)+ϕ(wi, wj, γ0, α0, θ0).

Theorem 2 If (i) E[g(Wi,Wj, γ0, θ)] = 0 iff θ = θ0, (ii) Θ is compact, (iii)
∫ ∫

|g(wi, wj, γ̂l, θ)−
g(wi, wj, γ0, θ)|F0(dwi)F0(dwj) →p 0 and E[|g(Wi,Wj, γ0, θ)] <∞ for all θ ∈ Θ, (iv) there is
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C > 0 and d(Wi,Wj, γ) such that for ||γ − γ0|| small enough and all θ̃, θ ∈ Θ

|g(Wi,Wj, γ, θ̃)− g(Wi,Wj, γ, θ)| ≤ d(Wi,Wj, γ)|θ̃ − θ|1/C ,

and E[d(Wi,Wj, γ)] < C and (v) Assumption 4 (ii), (iii),
∫ ∫

|ξ̂l(wi, wj, θ)|F0(dwi)F0(dwj) →p

0 and E[|ϕ(Wi,Wj, γ0, α0, θ0|] <∞. Then θ̂ →p θ0.

Proof: Define ĝ(θ) ≡
(
n
2

)−1∑L
l=1

∑
(i,j)∈Il g(Wi,Wj, γ̂l, θ) and ḡ(θ) ≡ E[g(Wi,Wj, γ0, θ)]. It

follows from the conditional Markov inequality and (iii) that ĝ(θ) →p ḡ(θ) for all θ ∈ Θ. Let

ϕ̃ij ≡
(
n
2

)−1∑
i<j ϕ(Wi,Wj, γ0, α0, θ0) and ϕ̂ij(θ) ≡

(
n
2

)−1∑L
l=1

∑
(i,j)∈Il ϕ(Wi,Wj, γ̂l, α̂l, θ).

In the notation of Lemma 4, ϕ̂ij(θ)− ϕ̃ij =
(
n
2

)−1∑L
l=1

∑
(i,j)∈Il R̂2,ij,l + R̂3,ij,l + ξ̂l(Wi,Wj, θ),

so ϕ̂ij(θ)− ϕ̃ij →p 0 for all θ ∈ Θ by Assumption (v) and the conditional Markov inequality.

By consistency of U-statistics we have that ϕ̃ij →p E[ϕ(Wi,Wj, γ0, α0, θ0)] = 0 so by the

triangle inequality we have that ϕ̂ij(θ) →p 0 for all θ ∈ Θ. Therefore, defining ψ̂ij(θ) ≡(
n
2

)−1∑L
l=1

∑
(i,j)∈Il ψ(Wi,Wj, γ̂l, α̂l, θ), we have that ψ̂ij,l(θ) = ĝ(θ) + op(1). By triangle

inequality and (iv) we know that with probability approaching one

|ĝ(θ̂)−ĝ(θ)| ≤
(
n

2

)−1∑
i<j

|g(Wi,Wj, γ̂l, θ̂)−g(Wi,Wj, γ̂l, θ)| ≤
(
n

2

)−1∑
i<j

d(Wi,Wj, γ̂l)︸ ︷︷ ︸
≡M̂l

|θ̂−θ|1/C ,

and by (iv) and the conditional Markov inequality M̂l = Op(1). By Corollary 2.2 in Newey

(1991) we have that supθ∈Θ |ψ̂(θ) − ḡ(θ)| = op(1). We also know that ḡ(θ) is continuous

by (iv). So the conclusion follows from the proof of Theorem 2.6 in Newey and McFadden

(1994) applied to the Háyek projection of ĝ(θ̂).

3 Further Applications

3.1 Bipartite ranking problem

Consider data Wi = (Yi, Xi) ∈ {−1,+1} × Rk. We want a rule r(Xi, Xj) ∈ {−1,+1} which

equals 1 if Yi = 1 with larger probability than Yj = 1, and equals −1 otherwise. The

probability of committing a mistake (Ranking Risk) is

L(r) = P [r(Xi, Xj)(Yi − Yj) < 0].

It can be shown that the optimal rule r∗, i.e. L(r∗) ≤ L(r) for any r, is

r∗ = 2I(γ0(Xi) > γ0(Xj))− 1,
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where γ0(x) = P (Yi = 1|Xi = x). Our parameter of interest is the Optimal Risk L(r∗) which

can be shown to be (see Clémençon and Robbiano (2011))

θ0 = L(r∗) =
1

2
E
[
(Yi − Yj)

2 − |γ0(Xi)− γ0(Xj)|
]
.

Minimization of the Ranking Risk can be shown to be equivalent to maximization of the

AUC (Area under the Receiver Operating Characteristic Curve ROC) which is ubiquitous

in classification and biomedical problems. The identifying moment function is

g(wi, wj, γ, θ) =
1

2

[
(yi − yj)

2 − |γ(xi)− γ(xj)|
]
− θ.

From Lemma 1, a U-FSIF for this identifying quadratic moment function is

ϕ(wi, wj, γ0) = −1

2
α0(xi, xj)(yi − yj − γ0(xi) + γ0(xj)),

where α0(xi, xj) is the same as for IOp. Adding the U-FSIF to the original identifying

moment gives the debiased estimator

θ̂ =
1

n(n− 1)

L∑
l=1

∑
(i,j)∈Il

(Yi − Yj)
2 − |γ̂l(Xi)− γ̂l(Xj)|+ α̂l(Xi, Xj)(Yi − Yj − γ̂l(Xi) + γ̂l(Xj)).

If Γ = L2 and S = L2, the estimator simplifies to

θ̂ =
1

n(n− 1)

L∑
l=1

∑
(i,j)∈Il

(Yi − Yj)(Yi − Yj − δ(Xi, Xj, γ̂l)),

and the asymptotic variance can be estimated as

V̂ =
2

n(n− 1)2

n∑
i=1

[∑
j ̸=i

(
(Yi − Yj)(Yi − Yj − δ(Xi, Xj, γ̂kk′))− θ̂

)2]
.

The asymptotic theory for this example follows from the example of Inequality of Opportu-

nity.
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3.2 Treatment Effects

LetWi = (Yi, Di, Xi) and Zi = (Yi(1), Yi(0)) where Yi = DiYi(1)+(1−Di)Yi(0). Mao (2018)

defines the following contrast parameter

θh0 =

∫ ∫
h(yi, yj)F(1)(dyi)F(0)(dyj).

If h(yi, yj) = yi − yj this coincides with the usual average treatment effect E[Yi(1)− Yi(0)].

However, for nonlinear h it is not true in general that θh0 = E[h(Yi(1), Yi(0))]. Also, by

picking a nonlinear contrast function h we can estimate different (counterfactual) treatment

effects. Let γ0(Xi) be the population fitted values of Di given Xi, i.e the propensity score.

Throughout, we assume unconfoundedness and non-overlapping

(Yi(1), Yi(0)) ⊥ Di|Xi and ϵ ≤ γ0(Xi) ≤ 1− ϵ a.s., ϵ > 0. (3.1)

Letting

g(wi, wj, γ, θ) =
1

2

[
di(1− dj)h(yi, yj)

γ(xi)(1− γ(xj))
+
dj(1− di)h(yj, yi)

γ(xj)(1− γ(xi))

]
− θ,

one can show that under (3.1)

E[g(Wi,Wj, γ0, θ)] = 0 iff θ = θh0 .

Define now

δ(wi, wj, γ) =
1

2

[
dj(1− di)h(yj, yi)

γ(xj)(1− γ(xi))2
− di(1− dj)h(yi, yj)

γ(xi)2(1− γ(xj))

]
.

Then, it can be shown that

d

dτ
E[g(Wi,Wj, γ(Fτ ), θ)] =

d

dτ
E[δ(Wi,Wj, γ0)γτ (Xi)] +

d

dτ
E[δ(Wj,Wi, γ0)γτ (Xj)]

=
d

dτ
E[α0(Xi)γτ (Xi)] +

d

dτ
E[α0(Xj)γτ (Xj)],

where α0(Xi) = ΠΓE[δij(γ0)|Xi]. Then by the same arguments as in the previous examples

ϕ(wi, wj, γ, α) = α(xi)(di − γ(xi)) + α(xj)(dj − γ(xj)).

The debiased estimator is

θ̂h =

(
n

2

)−1 L∑
l=1

∑
(i,j)∈Il

1

2

[
Di(1−Dj)h(Yi, Yj)

γ̂l(Xi)(1− γ̂l(Xj))
+
Dj(1−Di)h(Yj, Yi)

γ̂l(Xj)(1− γ̂l(Xi))
+ 2ϕ(Wi,Wj, γ̂l, α̂l)

]
,
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where α̂l is an estimator for α0. In the joint nonparametric case, we can set α0 = δ(·, γ0)
and α̂l(·) = δ(·, γ̂l), which leads to simpler implementations (as there is no need to estimate

the conditional distribution of h(Yi, Yj) given Xi). The variance is estimated as usual

V̂ =
2

n(n− 1)2

n∑
i=1

[∑
j ̸=i

(
g(Wi,Wj, γ̂) + ϕ(Wi,Wj, γ̂, α̂)

)2]
.
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4 Simulations

In the tables below we see the results of the simulations for σ ∈ {0.2, 0.3} for such lower StN

ratios noisier estimates such as Ridge start malfunctioning and well-performing estimators

such as lasso or CIF need more observations before getting good results.

σ = 0.2 Gini of the FVs

Plug in Lasso Debiased Lasso Plug in Ridge Debiased Ridge

Bias Coverage Bias Coverage Bias Coverage Bias Coverage
n = 100 -0.012 0.611 -0.050 0.409 -0.080 0.000 -0.031 0.605
n = 500 -0.016 0.292 -0.009 0.730 -0.074 0.000 -0.010 0.687
n = 1000 -0.016 0.083 -0.003 0.909 -0.020 0.042 -0.009 0.611
n = 3000 -0.009 0.060 -0.001 0.935 -0.005 0.427 -0.005 0.554

Plug in RF Debiased RF Plug in CIF Debiased CIF

Bias Coverage Bias Coverage Bias Coverage Bias Coverage
n = 100 -0.026 0.280 -0.023 0.730 -0.070 0.000 -0.023 0.692
n = 500 -0.020 0.060 -0.005 0.865 -0.033 0.000 -0.004 0.901
n = 1000 -0.020 0.002 -0.003 0.897 -0.026 0.000 -0.002 0.925
n = 3000 -0.022 0.000 -0.001 0.913 -0.022 0.000 -0.001 0.923

Plug in XGBoost Debiased XGBoost Plug in Catboost Debiased Catboost

Bias Coverage Bias Coverage Bias Coverage Bias Coverage
n = 100 0.030 0.427 -0.060 0.252 -0.014 0.520 -0.048 0.337
n = 500 0.015 0.292 -0.019 0.335 0.002 0.685 -0.007 0.794
n = 1000 0.009 0.361 -0.009 0.593 0.002 0.700 -0.003 0.897
n = 3000 0.005 0.367 -0.002 0.907 0.002 0.687 -0.001 0.946

Table 4: Simulation based on 500 Monte Carlo iterations, true value for the Gini of the fitted
values is 0.18.
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σ = 0.3 Gini of the FVs

Plug in Lasso Debiased Lasso Plug in Ridge Debiased Ridge

Bias Coverage Bias Coverage Bias Coverage Bias Coverage
n = 100 -0.041 0.395 -0.085 0.264 -0.073 0.000 -0.044 0.621
n = 500 -0.028 0.115 -0.019 0.508 -0.066 0.000 -0.017 0.563
n = 1000 -0.027 0.022 -0.009 0.722 -0.035 0.002 -0.015 0.427
n = 3000 -0.017 0.006 -0.002 0.913 -0.025 0.000 -0.009 0.355

Plug in RF Debiased RF Plug in CIF Debiased CIF

Bias Coverage Bias Coverage Bias Coverage Bias Coverage
n = 100 -0.017 0.552 -0.035 0.716 -0.067 0.002 -0.034 0.659
n = 500 -0.016 0.212 -0.011 0.788 -0.032 0.004 -0.008 0.839
n = 1000 -0.017 0.034 -0.007 0.806 -0.024 0.000 -0.004 0.879
n = 3000 -0.020 0.000 -0.002 0.889 -0.021 0.000 -0.002 0.917

Plug in XGBoost Debiased XGBoost Plug in Catboost Debiased Catboost

Bias Coverage Bias Coverage Bias Coverage Bias Coverage
n = 100 0.059 0.042 -0.082 0.298 -0.015 0.466 -0.068 0.317
n = 500 0.028 0.022 -0.036 0.095 0.002 0.563 -0.015 0.657
n = 1000 0.017 0.067 -0.020 0.206 0.002 0.560 -0.007 0.794
n = 3000 0.008 0.127 -0.006 0.673 0.002 0.565 -0.001 0.946

Table 5: Simulation based on 500 Monte Carlo iterations, true value for the Gini of the fitted
values is 0.18.
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5 Cross-Fitting

We create a partition C = {C1, ..., CK} of the set N = {1, ..., n}. Then we create partition

I = {I1, ..., IL} of the set {(i, j) ∈ N 2 : i < j} as depicted in Figure 7 for n = 21 and K = 3.

This partition results in L = K(K + 1)/2 blocks. For example, in Figure 7 when pairs in I1

are used to compute the sample orthogonal moment, the nuisance parameters are estimated

with observations in (C2, C3).

Figure 7: n = 21, L = 3

This is nothing else than a partition of C2 in squares intersected with the set {i < j :

i, j ∈ N}.
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