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1 Introduction

In real life we encounter many events which we cannot predict perfectly or for which we have
imperfect knowledge. Examples range from tossing of a coin, to the state of the weather in
the next three days or the extent to which GDP will decrease after a pandemic. However,
while it might seem we are clueless about many of these events, there are patterns we can
study. We know that if we toss a coin a thousand times, we should be very close to half heads
and half tails. We are able to forecast weather and GDP growth to some extent. In essence,
probability theory is a science of randomness which allows us to make some reasonable
predictions. It provides a foundation to the patterns we observe with more regularity in real
life.

We have been playing games of chance and computing probabilities for centuries. In the
17th century a gambler called Chevallier de Mere asked Laplace and Fermat for help. He
was playing two betting games he considered equivalent but was consistently losing with
one of them and not with the other. Pascal and Fermat showed why these two games were
not the same and by doing this paved the way for computation of probabilities. However,
modern probability theory is roughly 100 years old. The main founder of the axiomatic
approach to probability which we encounter today is the Russian mathematician Andréi
Kolmogórov (1903-1987). He noticed that probability theory is just a special case of measure
theory which was developed by French mathematicians Émile Borel (1871-1956) and Henri
Léon Lebesgue (1875-1941). While people already knew how to compute many probabilities
before Kolmogórov, it was usual to run into puzzling results and paradoxes. With a strong
axiomatic foundation, the answer to these apparent puzzles and paradoxes was resolved by
unifying all that was known into one single logical framework.

We will first do a short review of set theory and cardinality of sets and then we will start
diving into probability theory.

2 Mathematical Review

This section follows closely Kolmogorov and Fomin (1975) and De la Fuente (2000). A set
is a collection of objects we call elements. For instance the set of all integers or the set of
all even numbers. It started to be developed at the end of the 19th century with the paper
Cantor (1874). It is a subject within mathematics in its own right and is crucial in many
fields in modern mathematics. Specifically, a basic knowledge of set theory is essential to
understand probability theory.

We will denote sets with capital letters like A,B, ... and their elements with lower case
letters such as a, b, .... A set with elements a, b, c, ... is often denoted by {a, b, c, ...}. For
instance, the set of all positive integers is {1,2,3,...}. The singleton set containing only one
element, for instance the number one, is {1}. If a is an element of a set A, ”a belongs in A”,
we write a ∈ A. If a does not belong to a set A we write a /∈ A. For instance, 2 ∈ {1, 2, 3}
but 4 /∈ {1, 2, 3}. If every element of a set A belongs to a set B, we say that A is a subset of
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B, denoted A ⊆ B or B ⊇ A, the latter meaning ”B contains A”. Formally,

A ⊆ B ⇐⇒ (x ∈ A =⇒ x ∈ B)

So from now on, if we want to show that a set A is a subset of a set B we show that all
elements belonging to A also belong to B. For instance {1, 2} ⊆ {1, 2, 3}. We say that two
sets A and B are equal, A = B, if all elements belonging in A also belong in B and vice
versa. That is, every time we want to show two sets are equal we need to show that A ⊆ B
and B ⊆ A. Also, if A ⊆ B and A 6= B, then A is a proper subset of B, A ⊂ B. Sometimes
we might not know whether a set contains any elements at all. For instance, the set of roots
of a given equation. A set containing no elements is called the empty set and is denoted by
∅.

A collection or family or class of sets is a set whose elements are sets themselves. For
instance if we have sets A, B, and C. A collection of sets containing these is D = {A,B,C}.
Collections of sets are usually denoted by calligraphic capital letters. It is important to see
that now the elements of D are sets, that is, we write A ∈ D. Hence, we do not say A is a
subset of D, it is an element belonging to it in the same way that an element a belongs in
A, a ∈ A. Hence it is important to always have in mind what is the typical element of a set.
Given a set A, an important collection of subsets is the collection of all subsets of A. This
is called the power set of A, denoted by 2A. For instance, if A = {1, 2, 3} we have that

2A =
{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}

Again note that 2A is a set of sets1. From now own suppose there is some universal set X
and that there is nothing outside of it. We will work only with subsets of X.There are two
operations on sets which will be used often. The union and the intersection. If we have two
sets A and B, A,B ⊆ X, we define their union, A ∪B, as the set

A ∪B = {x ∈ X : x ∈ A or x ∈ B}

The right hand side (RHS) above reads as: ”all x belonging in X such that x belongs in A

or x belongs in B”. It means all those x which belong at least in either A or B. Hence if x
belongs to A, to B, or to both, x belongs to the set A∪B. The intersection A∩B, is the set

A ∩B = {x ∈ X : x ∈ A and x ∈ B}

That is, x belongs to the set A ∩ B if it belongs to both A and B. This operations can be
extended to more than two sets. Suppose we have a collection of sets {Ai, i ∈ I} where I is

1∅ is a subset of all sets. This is because ∅ ⊆ A means that x ∈ ∅ =⇒ x ∈ A. However, there is nothing
in ∅, so the antecedent in the previous implication (x ∈ ∅) is false. Then, the consequence (x ∈ A) is true.
If antecedent is false any consequence is true. See https://math.stackexchange.com/questions/439987/
assumed-true-until-proven-false-the-curious-case-of-the-vacuous-truthifinterested.

4

https://math.stackexchange.com/questions/439987/assumed-true-until-proven-false-the-curious-case-of-the-vacuous-truth if interested.
https://math.stackexchange.com/questions/439987/assumed-true-until-proven-false-the-curious-case-of-the-vacuous-truth if interested.


some index set, for example the natural numbers. Then

⋃
i∈I

Ai = {x ∈ X : ∃i ∈ I such that x ∈ Ai}⋂
i∈I

Ai = {x ∈ X : x ∈ Ai ∀i ∈ I}

Hence, the union above consists in the set of all x ∈ X which belong to at least one of the
Ai’s while the intersection consists in the set of all x ∈ X which belong to all Ai’s.

Let us examine some properties of unions and intersections

Proposition 2.1. Let A, B and C be subsets of X. Then the following hold

(i) Commutative law: A ∪B = B ∪A and A ∩B = B ∩A.

(ii) Associative law: (A∪B)∪C = A∪(B∪C) = A∪B∪C and (A∩B)∩C = A∩(B∩C) =
A ∩B ∩ C.

(iii) Distributive law: (A∪B)∩C = (A∩C)∪ (B∩C) and (A∩B)∪C = (A∪C)∩ (B∪C).

The proof of Proposition 2.1 follows form the definitions of union and intersection. I
encourage you to do them.

Two sets A and B are disjoint if they have no elements in common, that is, if A∩B = ∅.
Generally, given a family of sets A = {Ai, i ∈ I}, we say that the elements of A are pairwise
disjoint if

Ai ∩Aj = ∅ ∀ i 6= j

A partition of X is a class of pairwise disjoint sets in X such that their union is X. Formally,
A = {Ai, i ∈ I} is a partition of X if for all i 6= j

Ai ∩Aj = ∅ and
⋃
i∈I

Ai = X

Given two sets A and B, both subsets of X, A \B denotes the set of elements belonging to
A and not to B

A \B = {x ∈ X : x ∈ A and x /∈ B}

The complement of a set A ⊂ X, denoted by Ac is the set containing all elements in X which
are not in A

Ac = {x ∈ X : x /∈ A}

Note that A \B = A ∩Bc. Another important property is the following

Proposition 2.2 (De Morgan’s Laws). Let A = {Ai, i ∈ I}, then

(i)
(⋃

i∈I Ai

)c
=
⋂
i∈I A

c
i , and

(ii)
(⋂

i∈I Ai

)c
=
⋃
i∈I A

c
i .
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Proof. Note that if we want to prove that two sets are equal we need to show that they are
subsets of each other. For i) suppose that x ∈ (∪i∈IAi)c, then x /∈ ∪i∈IAi, then there exists
no i ∈ I such that x ∈ Ai, this implies that x ∈ Aci for all i ∈ I, hence x ∈ ∩i∈IAci . We
conclude that (∪i∈IAi)c ⊆ ∩i∈IAci . For the other direction suppose that x ∈ ∩i∈IAci , then
x ∈ Aci for all i ∈ I, then x /∈ ∪i∈IAi and x ∈ (∪i∈IAi)c. Hence, ∩i∈IAci ⊆ (∪i∈IAi)c. We
conclude that ∩i∈IAci = (∪i∈IAi)c. ii) is left as an exercise.

Exercise 2.1. Let A1, A2, ... be subsets of X. Define B1 = A1, B2 = A2 \ A1,..., Bk =
Ak \ ∪k−1

i=1Ai,... Show that {Bi}∞i=1 are disjoint and that

∞⋃
i=1

Ai =
∞⋃
i=1

Bi and
m⋃
i=1

Ai =
m⋃
i=1

Bi

Mappings between sets can be particularly useful. Because of this we introduce the
following concepts

Definition 2.1 (Function). A function f : A→ B is a rule which associates every element
in A with a unique element in B.

Note that a function needs to map every element in A, that is, we cannot leave out any
element in A. However we do not need to map to all elements of B. B is called the co-domain
and the set of elements of B to which the function maps to is called the range, denoted R,
formally

R = {y ∈ B : ∃x ∈ A such that f(x) = y}

Definition 2.2 (Injective function). Every element in R has a unique pre-image in A.

This means that there are not two distinct elements in the domain which map to the
same element in B.

Definition 2.3 (Surjective function). R = B.

Definition 2.4 (Bijective function). A function is called bijective if it is both injective and
surjective.

Definition 2.5. (i) Sets A and B are said to be equicardinal if there exists a bijection
f : A→ B, |A| = |B|,

(ii) B has cardinality greater than or equal to A if there exists an injective function f :
A→ B, |B| ≥ |A|,

(iii) |B| > |A|, if there exists an injective function f : A → B, but A and B are not
equicardinal.

Definition 2.6. (i) A set A is said to be countably infinite if it is equicardinal with N.

(ii) A set A is countable if it is either finite or countably infinite.
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Example 2.1. Q∩ [0, 1] (Rationals in [0, 1]) is a countable set. This means you can form a
bijection with N, that is, a list enumerating all elements

{0, 1, 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 3/5, 4/5, ...}

One can also show that a countable union of sets is countable. Hence,

Q =
⋃
i∈Z

Q ∩ [i, i+ 1]

is countable.

Definition 2.7. A set A is uncountable if it has cardinality strictly larger than that of N.

Examples of uncountable sets are R,R \ Q, 2N, [0, 1] or {0, 1}∞ which is the set of all
infinite binary strings. Showing that the latter is uncountable is the first step to show the
rest are uncountable. The proof is Cantor’s diagonal argument which you can find in many
textbooks or just in the Wikipedia. The key from this discussion for us is to have a clear
notion of countable (finite and infinite) and uncountable sets.

3 Probability spaces

We start from two undefined entities. A Random Experiment and an Outcome. These are to
be understood intuitively from their semantic meaning. However, we will give some examples
to clarify these notions. Starting from these two entities we will define all the rest.

Definition 3.1 (Sample space). the sample space Ω is the set of all possible outcomes of a
random experiment.

For example, suppose that your random experiment is to toss a coin once. What is the
sample space? It depends on what is of interest to you. You determine what the sample
space is. If you are interested in which face shows up, then the set of possible outcomes is
Ω = {H,T}, where H = Heads and T = Tails. However, you might not be interested in
which face shows up but in the number of times the coin flips in the air. In this case, the
set of all possible outcomes which are of interest to you is Ω = N. Another possibility is
that what is of interest to you is the velocity at which the coin hits the ground. In this case,
the sample sample space is R+. Note that we have given an example of a finite, countably
infinite and uncountable sample space.

An (elementary) outcome is denoted by ω ∈ Ω. This is the source of randomness. You
have no control over what ω realizes. You can think about it as ω ∈ Ω being chosen by some
Goddess of Chance. Another way of imagining it is as ω ∈ Ω being one of many alternate
realities2. Suppose that whenever you throw a dice, six alternative realities are created
and you do not get to choose in which one you end up. Every time you run the random
experiment, an outcome ω ∈ Ω realizes. Another example of a random experiment is to toss

2If you like the show Rick and Morty you can think that parallel universe C-137 is the ω which was chosen
for the main characters in the show.
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a coin n times. If you are interested in the number of faces that show we have Ω = {H,T}n

(finite sample space). Note that we are thinking of this as one random experiment and not
as n random experiments. We could also think about a random experiment which consists in
tossing a coin infinitely many times. Then, Ω = {H,T}∞ (uncountable sample space). An
example of an elementary outcome in this setting is ω = {H,H, T,H, T, T, T, ...}. Another
random experiment is to throw a dart to the [0, 1] line. Then, Ω = [0, 1] (uncountable sample
space) and an elementary outcome could be ω = 0.333.

Often we are not interested in whether a particular elementary outcome has occurred.
We might be interested in whether a subset of the sample space has occurred or not. For
instance, if your random experiment is tossing a coin once and your sample space is the
number of flips in the air (Ω = N), you might not be interested in the exact number of flips
but on whether it flipped more than five times ({6, 7, 8, ...} ⊆ N). Or think about the Spanish
economy during the last quarter of 2020 as your random experiment and GDP growth as
your sample space (Ω = R). You might not be interested in the exact growth rate but just in
whether GDP growth is positive or negative (R+ ⊆ R or R− ⊆ R). These kind of subsets of
Ω which are of interest to us will be called events (we will give more rigorous definitions in a
bit). An event A ⊆ Ω is said to occur if ω ∈ A, that is, if the Goddess of Chance has picked
an ω ∈ Ω which belongs to A. Importantly, all events are subsets of Ω but not all subsets of
Ω are events. For instance, we might not care about GDP growth being a rational number
despite the fact that Q ⊆ R. Ultimately we will want to assign probabilities to events. But
first we need to put everything we just said in a more rigorous mathematical scheme. Our
goal now is to build a structure of the subsets of Ω to determine what is of interest and what
is not of interest, i.e. what is an event and what is not an event. To do this we are going to
impose some rules. Intuitively, since Ω always occurs, we should be interested in Ω. Also,
if there is some subset A which interests us, we should be also interested in Ac, i.e. in A

not occurring. Also, if there are two events A and B which are of interest, we should be
interested in at least one of them taking place or in both of them occurring, i.e. A ∪B and
A ∩ B should be of interest. These rules motivate some mathematical structures of subsets
of Ω and some quantities assigned to these subsets with which we will work with. From now
on concepts followed by a *-sign are not essential in a first reading and can be postponed to
a second reading if needed (and desired)

Definition 3.2 (Algebra*). Let Ω be the sample space and F0 be a collection of subsets of
Ω. F0 is called an algebra if

(i) ∅ ∈ F0,

(ii) if A ∈ F0, then Ac ∈ F0,

(iii) if A ∈ F0 and B ∈ F0, then A ∪B ∈ F0.

Definition 3.3 (Pre-measure*). Suppose F0 is an algebra of Ω. A pre-measure µ0 on F0 is
a set function µ0 : F0 → [0,∞] such that

(i) µ0(∅) = 0,
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(ii) if A1, A2, ... is a countable collection of disjoint sets in F0 such that

∞⋃
i=1

Ai ∈ F0,

then
µ0

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ0(Ai).

One limiting aspect of the algebra is that it is only closed under3 finite unions (show that
it is closed under finite unions). This limitation and others carries through to pre-measures.
This is a problem since we might be interested in a countably infinite union of events. This
motivates the definition of a broader structure which will be one of our main tools.

Definition 3.4 (σ-algebra). A collection F of subsets of Ω is called a σ-algebra if

(i) ∅ ∈ F ,

(ii) if A ∈ F0, then Ac ∈ F0,

(iii) if Ai ∈ F , i = 1, 2, ..., then ∪Ai ∈ F .

σ-algebras are closed4 under complementation and under countable unions. You will
encounter different countable union notations, ∪Ai,∪∞i=1,∪i∈N all are defined as in the math-
ematical review, that is as the set of elements which belong to at least one of the A1, A2, ....

Exercise 3.1. Show that a σ − algebra is also closed under countable intersections. Hint:
you need (ii) and a property in the mathematical review.

Now, before we informally called events as those subsets of Ω which are of interest.
Formally, an event is an element of the σ-algebra. We will also call the events as F-measurable
sets. Note, that F is a collection of sets, hence, its elements are sets. A trivial σ-algebra
would be F = {∅,Ω}. Another trivial σ-algebra is F = 2Ω, that is, all subsets of Ω. If we
use the power set as a σ-algebra, we do not lose any information, however, as we will see
this will not always be possible5. Another example of a σ-algebra is the smallest σ-algebra
containing A ⊆ Ω, denoted by σ(A), σ(A) = {Ω, ∅, A,Ac}.

Exercise 3.2. Show that all these examples of σ-algebras are indeed σ-algebras.

So now we already have some more structure. Specifically, we have a sample space Ω
and a σ-algebra defined on it. This tuple (Ω,F) we call a measurable space. It is a space to
which a measure can be assigned, if not it would not be measurable, hence the logical step
now is to define what a measure is.

Definition 3.5 (Measure). A measure is a function µ : F → [0,∞) such that
3We say that some set is closed under some operation, if you apply this operation to different elements of

the set and you get an element of the set. For instance, (ii) can be read as the algebra being closed under
complementation.

4see the footnote above ↑
5If Ω is uncountable it will not be feasible to take F = 2Ω.
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(i) µ(∅) = 0,

(ii) if A1, A2, ... is a countable collection of F-measurable disjoint sets, then

µ

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai).

Unsurprisingly, (Ω,F , µ) is called a measure space. If µ(Ω) < ∞, µ is called a finite
measure. If there exists a sequence A1, A2, ... of subsets of Ω such that ∪Ai = Ω and
µ(Ai) <∞ for all i, then µ is said to be a σ-finite measure.

Example 3.1 (Counting measure). Suppose Ω = {a1, ..., an} and that F is some σ-algebra
defined on Ω. Let the counting measure be defined as

ν(A) =
n∑
i=1

δai(A) A ∈ F ,

where δai(A) is a set function6 which is equal to one if ai ∈ A and zero otherwise. Hence
it counts how many elementary outcomes are in the F-measurable set A. (Ω,F , ν) is an
example of a measure space.

Example 3.2 (Lebesgue measure). Suppose Ω = R and that we have some σ-algebra F
defined on it which contains closed intervals (i.e. [a, b] ⊆ R)7. Define the Lebesgue measure
as

λ([a, b]) = b− a.

(Ω,F , λ) is another example of a measure space.

If µ(Ω) = 1, µ is called a probability measure. Since this is really important let us state
a proper definition even though it is almost the same as the definition of a measure.

Definition 3.6 (Probability measure). A probability measure P on (Ω,F) is a function
P : F → [0, 1] such that

(i) P(∅) = 0.

(ii) (Countable additivity) If A1, A2, ... is a countable collection of F-measurable disjoint
sets, then

P
( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai).

(Ω,F ,P) is called a probability space. In summary, we have introduced the concept of a
random experiment, we have defined all its possible outcomes as the sample space Ω, we have
defined a collection of subsets of Ω, F , which contains the sets which are of interest, these
sets are what we have called events or F-measurable sets, then we have defined (Ω,F) to be a
measure space. Finally, we have assigned a probability measure P on the measure space which
gives the probability of all F-measurable sets and we called (Ω,F ,P) a probability space.

6Takes a set as an input and gives a number as an output.
7We will talk in detail about how such a σ-algebra can be created, for now take it as given.
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Now we introduce some useful properties of probability measures. Note these properties are
properties of measures in general for the special case that we deal with a probability measure.

Proposition 3.1 (Properties of Probability Measures).

(i) (Finite additivity) If A1, ..., An ∈ F are disjoint then

P(∪ni=1Ai) =
n∑
i=1

P(Ai)

Proof. Follows from countable additivity, take a countable sequence of sets B1, B2, ...

such that Bi = Ai if i ≤ 0 and Bi = ∅ if i > 0. Then ∪∞i=1Bi = ∪ni=1Ai. Hence

P(∪ni=1Ai) = P(∪∞i=1Bi) =
∞∑
i=1

P(Bi) =
n∑
i=1

P(Ai) +
∞∑
i+1

P(Bi) =
n∑
i=1

P(Ai).

(ii) P(Ac) = 1− P(A).

(iii) (Monotonicity) If A ⊆ B, A,B ∈ F , then

P(A) ≤ P(B).

Proof. Note that B = A ∪B \A. A and B \A are disjoint, so

P(B) = P(A) + P(B \A)︸ ︷︷ ︸
≥0

=⇒ P(B) ≥ P(A).

(iv) If A1, ..., An ∈ F , then

P(∪ni=1Ai) =
n∑
i=1

P(Ai)−
∑
i<j

P(Ai∩Aj)+
∑
i<j<k

P(Ai∩Aj∩Ak)− ...+(−1)n−1 P(∩ni=1Ai).

Proof. I do it for two sets A and B, the general proof uses induction. We can divide
A ∪B into the union of three disjoint sets

A ∪B = (A ∩Bc) ∪ (B ∩Ac) ∪ (A ∩B).

We can write

A = (A ∩Bc) ∪ (A ∩B) =⇒ P(A) = P(A ∩Bc) + P(A ∩B)

B = (B ∩Ac) ∪ (A ∩B) =⇒ P(B) = P(B ∩Ac) + P(A ∩B).

Hence,

P(A∪B) = P(A)−P(A∩B) +P(B)−P(A∩B) +P(A∩B) = P(A) +P(B)−P(A∩B).
11



(v) (Continuity) If A1, A2, ... ∈ F , then

P(∪∞i=1Ai) = lim
m→∞

P(∪mi=1Ai)

Proof. What this property means is far from obvious. To remember it you can think
of it as ”taking the limit inside” as you would do with a continuous function. However,
that is not really what is going on. It is a really useful property for proofs. Here I give
a sketch of the proof. We define B1 = A1, B2 = A2 \ A1,..., Bn = An \ ∪n−1

i=1 Ai,... By
Exercise 2.1 we know that the Bi’s are disjoint and that ∪∞i=1Ai = ∪∞i=1Bi. Hence

P(∪∞i=1Ai) = P(∪∞i=1Bi) =
∞∑
i=1

P(Bi) = lim
m→∞

m∑
i=1

P(Bi) = lim
m→∞

P(∪mi=1Bi) = P(∪mi=1Ai).

We have used Exercise 2.1, countable additivity and Exercise 2.1, definition of infinite
sum, finite additivity, Exercise 2.1 respectively in each equality above.

(vi) (Corollaries of continuity, some textbooks define this as continuity) If A1 ⊂ A2 ⊂ A3...

(nested increasing) (or A1 ⊃ A2 ⊃ A3... (nested decreasing, like Russian dolls)) and
A1, A2, ... ∈ F , then

P(∪∞i=1Ai) = lim
m→∞

P(Am)
(

or P(∩∞i=1Ai) = lim
m→∞

P(Am)
)
,

which can also be written as P(limm→∞Am) = limm→∞ P(Am).

(vii) (Subadditivity) If A1, A2, ... ∈ F , then

P(∪∞i=1Ai) ≤
∞∑
i=1

P(Ai).

Proof. Again define Bi = Ai \ ∪i−1
j=1Aj . We know that ∪∞i=1Ai = ∪∞i=1Bi and that the

Bi’s are disjoint by Exercise 2.1. Then

P(∪∞i=1Ai) = P(∪∞i=1Bi) =
∞∑
i=1

P(Bi),

since Bi ⊆ Ai, P(Bi) ≤ P(Ai) for all i, so

n∑
i=1

P(Bi) ≤
n∑
i=1

P(Ai) for all n ≥ 1 =⇒
∞∑
i=1

P(Bi) ≤
∞∑
i=1

P(Ai)

=⇒ P(∪∞i=1Ai) ≤
∞∑
i=1

P(Ai)

12



4 Discrete Probability Spaces

If Ω is countable (finite or countably infinite) we can always take the σ-algebra to be F = 2Ω,
the collection of all subsets of Ω. Now, we have a definition of a probability measure and
we have a σ-algebra, our task is to assign probabilities. This means that we have to come
up with a probability measure which satisfies the definition and assigns probabilities to all
events (F-measurable sets) contained in 2Ω.

The probability of each A ∈ F is going to be defined in terms of the probabilities of the
singleton subsets8, P({ω}). For any A ∈ F we are gonna assign a probability measure such
that

P(A) =
∑
ω∈A

P({ω}) and
∑
ω∈Ω

P({ω}) = 1.

Example 4.1.

(i) Ω = {H,T} and F = 2Ω. We need to assign a probability to each singleton. We can let
P({H}) = p and P({T}) = 1− p for 0 ≤ p ≤ 1.

(ii) Ω = N and F = 2N. We need to assign P({k}) for each k = 1, 2, ... such that∑∞
k=1 P({k}) = 1. There are many ways of doing this. One way would be

P({k}) = 1
2k for k ∈ N,

another way
P({k}) = (1− p)k−1p for k ∈ N and 0 ≤ p ≤ 1.

(iii) Ω = {0} ∪ N and F = 2Ω, one valid probability assignment would be

P({k}) = e−λλk

k! for k = 0, 1, 2, ... and λ > 0.

These are examples of different ways of assigning probabilities in discrete probability
spaces. Intuitively, you can think about this procedure as having sum mass which adds up
to one which you have to distribute among a countable number of points.

5 Uncountable Ω

Here we are going to follow a specific motivating example. Suppose that your random
experiment consists in throwing a dart to the (0, 1] line. Then your sample space is Ω = (0, 1].
Suppose you want to assign probabilities in such a way that makes it equally likely for you
to hit any part of the line.

Now, assigning probabilities to singletons is not going to work. If you assign a probability
to some {ω} it cannot be strictly positive. This is because we want to distribute probability
uniformly, implying that we would want all singletons to have the same probability. But

8A singleton subset is {ω}, which is different from an elementary outcome ω. One is a set (even if it
contains only one element) and the other is an element.
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then if we assign a strictly positive probability everything blows up. This implies that we
can only put zero probability to all singletons.

One of the defining properties of a probability measure is that it is countably additive.
If we have assigned P({ω}) = 0 for all ω ∈ Ω and we want to measure an interval, for
instance [1/2, 1], we cannot. [1/2, 1] is an uncountable union of singletons. The solution to
this problem is to forget about singletons altogether and focus on subsets of Ω = (0, 1] which
are of interest. Remember this is a specific motivating example in which we are trying to
assign a uniform probability measure to (0, 1], that is, a probability measure which tells us
that the dart is equally likely to land anywhere. If we want this probability measure to be
uniform, there are two conditions it must satisfy (asides from the definition of a probability
measure)

(i) (We do not care about singletons condition) For a, b ∈ (0, 1], a ≤ b

P((a, b)) = P((a, b]) = P([a, b)) = P([a, b]).

(ii) (Translation invariance): we want intervals of the same length to have the same prob-
ability (i.e. probability does not change if you move the set around).

Now we state a general (for any measure not only probability measures) impossibility theorem
which we will not prove

Theorem 5.1 (Impossibility Theorem). There exists no measure µ(A) defined on 2Ω (i.e.
all subsets of [0, 1]), satisfying (i) and (ii).

The takeaway is that when Ω is uncountable we cannot pick F = 2Ω. We cannot keep
all subsets, we need to pick less subsets which means we need to specify a smaller σ-algebra.
Hence, we cannot dismiss the question of what is interesting to us just by picking all subsets
as we do with discrete probability spaces. What subsets should we pick? Borel and Lebesgue
when faced with this problem while developing measure theory found that focusing on in-
tervals is a good solution. Of course the collection of all intervals is not a σ-algebra since
the complement of an interval is not necessarily an interval. Hence, we have to somehow
generate a σ-algebra which contains all intervals. In the following suppose that our collection
of subsets of interest is C (e.g. collection of intervals). We are going to see how to generate
a σ-algebra from C.

5.1 Generated σ-algebras

Let C be an arbitrary collection of subsets of Ω.

Theorem 5.2. There exists a unique σ-algebra, say σ(C), which is the smallest σ-algebra
containing C. That is, if H is any σ-algebra that contains C, then σ(C) ⊆ H. σ(C) is called
the σ-algebra generated by C.

Proof. Let {Fi, i ∈ I} be the collection of all σ-algebras which contain C (a collection of
collections of sets!). Note that this collection will not be empty since 2Ω will always be there.
We can prove that

σ(C) = ∩i∈IFi.
14



To prove it we need to show three things

(i) σ(C) is a σ-algebra (Exercise)

(ii) C ⊆ σ(C). This is true since all σ-algebras in the intersection contain C.

(iii) It is the smallest σ-algebra. To see this, let H a σ-algebra such that C ⊆ H, then
H ∈ {Fi, i ∈ I} since {Fi, i ∈ I} is the collection of all σ-algebras which contain C.
Hence, there exists an i ∈ I such that H = Fi which implies that σ(C) ⊆ H.

Exercise 5.1. Show that the intersection of σ-algebras are σ-algebras (note this is not true
for unions).

5.2 Borel σ-algebra

Let Ω = (0, 1] and C0 be the collection of all open intervals of Ω.

Definition 5.1. σ(C0) is called the Borel σ-algebra on (0, 1], denoted by B((0, 1]).

Definition 5.2. Elements of B((0, 1]) are called Borel-measurable sets, or simply Borel sets.

Note that B((0, 1]) is well-defined by Theorem 5.2. However, nothing we have done tells
us that it is not 2Ω. However, it turns out (it can be shown) that it is much smaller than
2Ω. It actually has the same cardinality as R. Also, it is quite hard to find sets in 2Ω which
are not in B((0, 1]). In sum, the Borel σ-algebra buys us a lot with very little sacrifice. Now
we show some useful propositions.

Proposition 5.1. Let b ∈ (0, 1]. Then the singleton {b} is a Borel set.

Proof. It is true because it can be written as a countable intersection of Borel sets

{b} =
∞⋂
n=1

[(
b− 1

n
, b+ 1

n

)
∩ Ω

]
.

Since all sets in the intersection contain b, {b} is a subset of the intersection. Now, to show
that the intersection is a subset of {b}, take any c ∈ (0, 1] which is different than b. I can
find an n0 such that for all n ≥ n0,

c /∈
(
b− 1

n
, b+ 1

n

)
.

Proposition 5.2. (a, b], [a, b], [a, b) are Borel sets.

Proof. (a, b] = (a, b)∪ {b} which is a countable union of Borel sets. [a, b] = {a} ∪ (a, b)∪ {b}
which is also a countable union of Borel sets. [a, b) = {a} ∪ (a, b) which is also a countable
union of Borel sets.
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Curiosities: there are really weird sets which are Borel sets. For instance, Cantor
sets, which have an interesting fractal like behaviour, are Borel sets. An example of a non
Borel-measurable set is the Vitali set. These two sets have extensive Wikipedia articles you
can check if interested. An interesting paradox which comes out when dealing with non-
measurable sets is the Banach-Tarski paradox9 which states that you can decompose a ball
into a finite number of disjoint subsets and then put these subsets back together in a way in
which you get two balls identical to the original one. As you might suspect, these disjoint
subsets are not Borel sets.

So remember our motivating example was to put a uniform measure on (0, 1]. Now we
are going to work with the measurable space ((0, 1],B((0, 1])). You can consider the next
part to be optional (if you are studying this for the first part in an Econometrics course for
instance). What we are going to do is the same as we did with discrete probability spaces.
Which is to assign a measure to all sets belonging to the σ-algebra. In our case we are
gonna assign a measure to all Borel sets. However, to do this with Borel sets we need a more
advanced mathematical machinery. If you skip the next section, all you need to know is that
we are going to assign a measure to half-closed intervals (a, b] proportional to their length
(i.e. µ((a, b]) = b − a. Then there will be a theorem (which we will not prove) which says
that this measure we have put on half-closed intervals extends uniquely to all Borel sets.

5.3 Caratheodory’s Extension*

Define F0 as the collection of subsets of Ω which are finite unions of disjoint intervals of the
form (a, b] plus the empty set. A typical element of F0 is (a1, b1] ∪ (a2, b2] ∪ ... ∪ (an, bn],
where a1 < b1 ≤ a2 < b2... ≤ an < bn. We want a measure of each of these intervals which is
proportional to their length (i.e. b1 − a1). We want to extend this measure to all (including
really weird sets) Borel sets. For this we will use Caratheodory’s10 Extension theorem. But
first we need a lemma about the collection F0.

Lemma 5.1.

(i) F0 is an algebra.

Proof. Ω ∈ F0 clearly and finite unions are also elements of F0, hence it is an algebra.

(ii) F0 is not a σ-algebra.

Proof. Consider

An =
(

0, n

n+ 1

]
n = 1, 2, ...

Note that An ∈ F0 for all n. However,

∪∞n=1An = ∪∞n=1

(
0, n

n+ 1

]
= (0, 1) /∈ F0

9A really cool video with amazing visualizations of the paradox: https://www.youtube.com/watch?v=s86-
Z-CbaHA.

10Greek mathematician who lived from 1873 to 1950
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(iii) σ(F0) = B((0, 1]).

Proof. To show that σ(F0) ⊆ B((0, 1]), it is enough to show that F0 ⊆ B((0, 1]), since
this implies that σ(F0) is a sub-σ-algebra of B((0, 1]) because it is the smallest σ-
algebra containing F0. We have shown that (a, b] ∈ B((0, 1]) (in Proposition 5.2), so
F0 ⊆ B((0, 1]) which implies that σ(F0) ⊆ B((0, 1]) = σ(C).

To show that B((0, 1]) ⊆ σ(F0), we proceed as follows

(a, b) = ∪∞n=1

(
a, b− 1

n

]
=⇒ C ⊆ σ(F0) =⇒ σ(C) ⊆ σ(F0).

So we want to define a measure. We will call it P since it will be a probability measure
given that we are working with the zero-one interval. This measure has to be proportional to
length of the intervals. Hence, one property that we desire is that for F = (a1, b1]∪ (a2, b2]∪
... ∪ (an, bn] ∈ F0 we have that

P(F ) =
n∑
i=1

(bi − ai).

However, measures are defined on σ-algebras not just algebras. So we cannot define a measure
P on F0 and call it a measure. The step from algebra to σ-algebra is given by Caratheodory’s
Extension theorem which we state but do not prove.

Theorem 5.3 (Caratheodory’s Extension Theorem). Let F0 be an algebra on Ω and let
F = σ(F0). Suppose P0 : F0 → [0, 1] such that P0(Ω) = 1 and P0 is countably additive in
F0. Then P0 can be uniquely extended to a probability measure P on (Ω,F). That is, there
exists a unique probability measure P on (Ω,F) such that

P(A) = P0(A) for all A ∈ F0.

Note that P0 is not a probability measure. Also, we have stated the theorem for the
special case of probability theory, note that the general theorem holds for general measures.
In fact, P0 is a pre-measure with P0(Ω) = 1, the general theorem shows that a pre-measure
on an algebra can be extended to a measure and uniquely so if the pre-measure is σ-finite.
When we say that P0 is countably additive in F0, we mean that it is countably additive for
those countable union in F0 (since F0 is an algebra and not a σ-algebra, a countable unions
of elements in F0 need not belong in F0).

So, back to our motivating example. We have that F0 defined as collection of finite unions
of half-closed intervals plus the empty set is an algebra. We showed that σ(F0) = B((0, 1]).
Let us define P0 : F0 → [0, 1] such that P0(∅) = 0 and P0(F ) =

∑n
i=1(bi− ai). Next, we need

to verify countable additivity of P0 in F0.

Exercise 5.2. For any F1, F2, ... ∈ F0 such that ∪∞i=1Fi ∈ F0 we have that P0(∪∞i=1) =∑∞
i=1 P(Fi).
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Now, all conditions of Caratheodory’s Theorem hold. Then, by the theorem we have that
there exists a unique probability measure P on (Ω,B((0, 1])) which agrees with P0 on F0.
Which this basically means is that for all Borel sets in (0, 1] I can define a unique probability
measure which corresponds to the notion of length. This unique measure corresponds to
the notion of length because P0 is length and P is the unique measure defined on all Borel
sets which agrees with P0. Again, since it is a measure, it is defined for all Borel sets. So
even if you give it a weird Borel set (such as a Cantor) it will assign to it a measure which
corresponds with length. Basically, if you recall the impossibility theorem, P is a measure
defined on B((0, 1]) (not on 2Ω) which satisfies the two conditions we desired11. This measure
P is called the Lebesgue measure on (0, 1].

So we know this Lebesgue measure P exists and that it is unique, however we only know
its explicit form for elements of F0, not for all Borel sets. Now we are going to see how to
construct the Lebesgue measure for some commonly encountered Borel sets which are not in
F0.

5.4 Lebesgue measure on (0, 1]*

Example 5.1. Singleton {b}:

P({b}) = P
( ∞⋂
n=1

(
b− 1

n
, b+ 1

n

]
∩ Ω︸ ︷︷ ︸

≡Bn

)

Note that B1, B2, ... are nested decreasing sets! Hence, we can use continuity of the probability
measure

P({b}) = lim
n→∞

P(Bn) ≤ lim
n→∞

(
b+ 1

n
− b+ 1

n

)
= lim

n→∞
2
n

= 0.

The ≤ follows from the fact that Bn is intersected with Ω. One can show that P((a, b)) =
P([a, b)) = P((a, b]) = P([a, b]) = b− a.

Example 5.2. P(all rational numbers) = P(Q ∩ Ω) = 0. Note that rationals are Borel sets
since Q is countable and singletons are Borel sets with Lebesgue measure zero. In fact, any
countable subset of (0, 1] will have zero probability.

Typical confusion: the probability of an event being zero does not mean it cannot
occur. It is an elementary outcome in your sample space so it can occur. Since the sample
space is the set of all possible outcomes. As long as the event is not empty it can occur.

Example 5.3. P(irrationals) = 1−P(Q∩Ω) = 1. However this does not mean that irrationals
happen for sure! It is not the case that the set of possible outcomes is equal to the set of all
irrationals, Ω 6= {irrationals}. What we say is that an irrational happens almost surely (a.s)
or with probability one.

11The impossibility theorem stated that there existed not measure in 2Ω which satisfied those two properties.
We have basically settled down for a much smaller σ-algebra, the Borel σ-algebra and found a unique measure
on this σ-algebra which does satisfy those two conditions.
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6 Lebesgue measure on R*

The Lebesgue measure can be defined also for R and not only for (0, 1]. However note that
the Lebesgue measure in R is not a probability measure anymore.

Definition 6.1. Let C0 be the collection of all open intervals in R, then B(R) ≡ σ(C0).

Definition 6.2. Let D be the collection of semi-infinite intervals

D = {(−∞, x] : x ∈ R}

Then, B(R) ≡ σ(D).

We have defined the Borel σ-algebra in R in two different ways. We should prove that
both definitions are equivalent, i.e. σ(C0) = σ(D). The first definition is the one that
is usually given. The second one is a more operational definition. But they are indeed
equivalent. To construct the Lebesgue measure on R we have to repeat the exact same story
as we did for (0, 1]. Define an algebra F0, take a pseudo-measure λ0 which can be interpreted
as length. Check that Caratheodory’s theorem holds. Then by the theorem there exists a
unique measure λ on (R,B(R)) which is the Lebesgue measure on R.

7 Conditional Probability

Let us work now with a probability space (Ω,F ,P). Let B be an event such that P(B) > 0.

Definition 7.1. The conditional probability of A ∈ F given B is defined as

P(A | B) = P(A ∩B)
P(B) .

We cannot condition of zero probability events. For instance, if we throw a dart to the
[0, 1] line, the question of what is the probability of hitting within the interval [0, 1/2] given
that the dart has landed on a rational number is not well-defined.

Theorem 7.1. Let B ∈ F with P(B) > 0. Then P(. | B) : F → [0, 1] is a probability
measure on (Ω,F).

Proof. We need to show that P(. | B) ∈ [0, 1] and that P(∪i=1∞Ai) =
∑∞
i=1 P(Ai) for disjoint

A1, A2, .... Note the following

P(Ω | B) = P(Ω ∩B)
P(B) = P(B)

P(B) = 1,

P(∅ | B) = P(∅ ∩B)
P(B) = P(∅)

P(B) = 0,

0 ≤P(A | B) = P(A ∩B)
P(B) ≤ P(Ω ∩B)

P(B) = 1 for all A ∈ F .

So P(. | B) ∈ [0, 1]. Now take A1, A2, ... disjoint, then

P(∪∞i=1Ai | B) = P((∪∞i=1Ai) ∩B
P(B) = P((∪∞i=1(Ai ∩B)))

P(B) =
∑∞
i=1 P(Ai ∩B)

P(B) =
∞∑
i=1

P(Ai | B).
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Where we have used the definition of conditional probability, then the distributive law for
unions and intersections of sets, the fact that Ai∩B are disjoint sets and countable additivity,
and lastly the definition of conditional probability again.

Note that we are working with the same probability space (Ω,F ,P) all the time. The
random experiment does not change. For instance if the random experiment is to throw a
dice, the conditioning event could be B = even number and A = getting a two. Everything is
done on the basis of the same random experiment. Conditional probabilities are probabilities
so they satisfy the properties of probability measures. Now we define further properties which
are specific to conditional probabilities.

Proposition 7.1 (Properties of Conditional Probabilities). (i) (Law of Total Probability)
Let Bi ∈ F , i = 1, 2, ... be a partition of Ω (i.e. ∪∞i=1Bi = Ω and Bi∩Bj = ∅ for i 6= j).
Then

P(A) =
∞∑
i=1

P(A | Bi)P(Bi).

Proof.

∞∑
i=1

P(A | Bi)P(Bi) =
∞∑
i=1

P(A∪Bi) = P(∪∞i=1(A∩Bi)) = P(A∩(∪∞i=1Bi)) = P(A∩Ω) = P(A).

Where we used the definition of conditional probabilities, the fact that A∩B1, A∩B2,...
are disjoint, countable additivity and the distributive law. One useful example of this
property is: P(A) = P(A | B)P(B) + P(A | Bc)P(Bc). One common example is the
following. Suppose you have 1,2,... urns with red and blue balls. The probability
of picking a red ball is the sum of the probabilities of picking a red ball in urn 1,
times probability of urn 1, plus the probability of picking a red ball in urn 2 times the
probability of urn 2 and so on.

(ii) (Bayes Rule) Let A ∈ F with P(A) > 0 and Bi, i = 1, 2, ... as in (i). Then

P(Bi | A) = P(A | Bi)P(Bi)∑∞
j=1 P(A | Bj)P(Bj)

.

Proof.
P(Bi | A) = P(A | Bi)P(Bi)∑∞

j=1 P(A | Bj)P(Bj)
= P(A ∩Bi)

P(A) = P(Bi | A),

where we used property (i). Example: given that you took a red ball what is the
probability it came from urn i (posterior).

(iii) Let Ai ∈ F , i = 1, 2, ... Then

P(∩∞i=1Ai) = P(Ai)
∞∏
i=2

P(Ai | ∩i−1
j=1Aj),

with P(∩i−1
j=1Aj) > 0 for all i.
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Proof.

P(∩∞i=1Ai) = lim
n→∞

P(∩ni=1Ai) = lim
n→∞

P(A1)
n∏
i=2

P(Ai | ∩i−1
j=1Aj)

= P(A1)
∞∏
i=2

P(Ai | ∩i−1
j=1Aj).

8 Independence

8.1 Independence of events

So we are working with a probability space (Ω,F ,P), we now give a definition of independence
of events (F-measurable sets).

Definition 8.1. Events A and B are said to be independent under P (or simply independent
when measure P is unambiguous) if P(A ∩B) = P(A)P(B).

We say independent under P, since events might be independent under some probability
measure but dependent under another probability measure. This is the definition. It is
advisable to forget or not pay much attention to previous intuitions you might have. Things
like ”they are independent if they have nothing to do with each other” can be misleading.
Independence of events is what is stated in the definition, not more, not less. You might have
encountered another definition, mainly that A and B are independent if P(A | B) = P(A).
This is a consequence of the definition not a definition itself. It adds the requirement that
P(B) > 0, which is not required for independence.

Example 8.1. Statement ”A and B are independent if knowing B tells me nothing about
A” can be misleading:

Take ([0, 1],B([0, 1]),P). Then, P(rational∩irrational) = P(∅) = 0. And also, P(rational) =
0 and P(irrational) = 0. Hence P(rational ∩ irrational) = P(rational)P(irrational). So the
event that the elementary outcome is a rational number and the event that it is an irrational
number are independent. However, if I know the elementary outcome is an irrational num-
ber, I know for sure it is not a rational number. The occurrence of one event rules out the
other one, still, they are independent. This happens because they have zero probability, if
both events had strictly positive probability the intuition would be fine.

Example 8.2. Can an event be independent from itself? Yes!

P(A ∩A) = P(A)P(A) ⇐⇒ P(A) = P(A)2 ⇐⇒ P(A) = 0 or P(A) = 1.

Definition 8.2. A1, A2, ..., An ∈ F are independent if for all non-empty I0 ⊆ {1, 2, ..., n},
we have

P(∩i∈I0Ai) =
∏
i∈I0

P(Ai)

21



The definition above basically tells you that for any finite collection of events, to say they
are independent you need to check all combinations. The following extends this to arbitrary
collections of events.

Definition 8.3. Let {Ai, i ∈ I} be an arbitrary collection of events (index does not need to
be countable). These events are said to be independent if for all non-empty and finite I0 ⊆ I,
we have

P(∩i∈I0Ai) =
∏
i∈I0

P(Ai)

Note that in the definition above there might be infinite non-empty finite subsets of I.

Example 8.3. Suppose we toss a coin infinite times. Then Ω = {0, 1}∞. Let Fk be the
collection of subsets of Ω whose occurrence can be decided by looking at the first k tosses.
For instance, the event that there are at least three heads in the first 15 tosses belongs to F15.
You can show Fn ⊆ Fm for all n ≤ m and that Fk is a σ-algebra (left as an exercise). Then
we can show that Ai and Aj, i 6= j are independent events. Without loss of generality suppose
that j > i, then Ai, Aj ∈ Fj. Define the following probability measure on Fj, P(A) = |A|/2j

(check it is a probability measure). Then

P(Ai ∩Aj) = 2j−2

2j = 1
4 , P(Ai) = 2i−1

2i

FINISH

Exercise 8.1. Consider a sequence of events A1, A2, .... Show that if Ai’s are independent,
then Aci ’s are independent as well.

8.2 Independence of σ-algebras

Remember we are working with a probability space (Ω,F ,P). since P is defined on F , we
are going to look at independence between sub-σ-algebras of F . This is because we need P
to be defined to have a notion of independence. So, for instance, if F = {∅, A,Ac,Ω} and
F1 = {∅,Ω}, then F1 ⊆ F . Or if Ω = [0, 1], F = 2Ω and F1 = B([0, 1]), then F1 ⊆ F .

Definition 8.4. Two sub-σ-algebras, F1 and F2 of F , are said to be independent if for any
A1 ∈ F1 and A2 ∈ F2, A1 and A2 are independent.

Definition 8.5. Let {Fi, i ∈ I} be an arbitrary collection of sub-σ-algebras of F (I might
be uncountable). These Fi’s are said to be independent if for any choice of Ai ∈ Fi, i ∈ I,
we have that {Ai, i ∈ I} are independent events12.

Comparing all possible events can be extremely difficult. Hence, later we will see that
there exists a simpler way of checking independence of sub-σ-algebras. Namely, that if you
prove independence in collections of events which are closed under finite intersections (these
collections are called π-systems) you are actually done.

12As a curiosity: this definition depends on the axiom of choice, which states that for an indexed collection
of non-empty sets you can always pick one element of each member of the collection. Even if the index
is uncountable. Although this axiom was controversial in its origin, now it is commonly used by most
mathematicians and is included in the standard form of axiomatic set theory. Check the wikipedia for more.
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9 Borel-Cantelli Lemmas

Now we introduce two important results which will be useful later on.

Lemma 9.1 (First Borel-Cantelli Lemma). If A1, A2, ... is a sequence of events such that∑∞
n=1 P(An) <∞, then a.s only finitely many An’s will occur.

Lemma 9.2 (Second Borel-Cantelli Lemma). If A1, A2, ... are independent events such that∑∞
n=1 P(An) =∞, then a.s infinitely many An’s will occur.

Before we prove these Borel-Cantelli (BC) lemmas let us make some comments. First let
us formally consider the event that infinitely many An’s occur. This is

{An i.o} ≡ ∩∞n=1 ∪∞i=n Ai

To understand this object, let Bn = ∪∞i=nAi, then {An i.o} = ∩∞n=1Bn. Bn is the event that
at least one of An, An+1, ... occurs, we can call it the n-th tail event. Then, {An i.o} is the
intersection of these n-th tail events. The event that all Bn’s occur, that is, for all n, Bn
occurs. Insisting, this means that for every n, at least one of the An’s occurs. No matter
how big your n is, no matter how far you go, you will have at least one of the An’s after
that n occurring. The first BC lemma says that P({An i.o}) = 0 if

∑∞
n=1 P(An) < ∞. The

second BC lemma syas that P({An i.o}) = 1 if
∑∞
n=1 P(An) =∞ and An’s are independent.

Let us do the proofs now.

Proof of first BC lemma. So we need to show that
∑∞
n=1 P(An) <∞ =⇒ P({An i.o}) = 0.

We can show that P({An i.o}c) = 1

{An i.o}c =
(
∩∞n=1 ∪∞i=n Ai

)c
= ∪∞n=1 ∩∞i=n Aci ,

this event is the event that there exists n0 such that for all n ≥ n0, each of the An failed to
occur. Note that Bn are nested decreasing (B1 ⊇ B2 ⊇ ...), hence

P(∩n=1Bn) = lim
n→∞

P(Bn) = lim
n→∞

P(∪∞i=nAi) ≤ lim
n→∞

∞∑
i=n

P(Ai) = 0,

where we have used continuity of probability measures, subadditivity of probability measures
and the fact that if

∑
k=1 bk <∞, then the sequence of tail sums

∑∞
n=k bn converges to zero.

It is in this last step where we used that
∑∞
n=1 P(An) <∞.

Proof of second BC lemma. First we prove another lemma which we will need
Lemma. Suppose 0 ≤ pi ≤ 1 is such that

∑∞
i=1 pi =∞. Then

∏∞
i=1(1− pi) = 0.

Proof. We know that ln(1− x) ≤ −x for all x ∈ [0, 1), then

ln
∞∏
i=1

(1− pi) = ln
(

lim
n→∞

n∏
i=1

(1− pi)
)

=
(

lim
n→∞

ln
n∏
i=1

(1− pi)
)
≤ ln

k∏
i=1

(1− pi).

The second equality follows since ln is a continuous function so it can be interchanged with
the limit, and the inequality follows since 0 ≤ pi ≤ 1, so if we stop at some k < ∞, we will
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get a larger number. Now

ln
k∏
i=1

(1− pi) =
k∑
i=1

ln(1− pi) ≤
k∑
i=1

(−pi) for all k ≥ 1.

Hence, taking k → ∞, ln
∏∞
i=1(1− pi) → −∞ which implies that

∏∞
i=1(1− pi) → 0. So the

lemma is proved.
Now, to show that P({Ai i.o}) = 1, note that

1− P({Ai i.o}) = P(∪∞n=1B
c
n) ≤

∞∑
n=1

P(Bc
n).

We need to show that the above is zero. This amounts to showing that P(Bc
n) = 0 for all

n ≥ 1. Fix n, and m ≥ n. Then (if Ai’s are independent, Aci ’s are independent too, see
exercise 8.1)

P(∩mi=nAci ) =
m∏
i=n

(1− P(Ai)),

where we have used independence of events. Hence,

P(Bc
n) = lim

m→∞
P(∩i=nmAci ) =

∞∏
i=n

(1− P(Ai)) = 0 for all n ≥ 1,

where we use continuity of probabilities and the lemma we just proved. Therefore, P({Ai i.o}) =
1.

Example 9.1. Consider Ω = {0, 1}∞, for instance the random experiment of tossing a coin
infinite times. Suppose we have on it a σ-algebra which (among others) contains events of
the form Ai, denoting the event that the i-th toss is heads. Let P be a probability measure
on (Ω,F) such that P(An) = 1/n2 for all n ≥ 1 (there might be many probability measures
satisfying this). Since

∑∞
n=1 P(An) < ∞, the first BC lemma implies that a.s. only finitely

many heads will occur. The idea is that if heads are becoming more and more unlikely fast,
there exists n0 after which you do not get anymore heads with probability 1.

Now suppose P(An) = 1/n for all n ≥ 1 and that the An’s are independent. Heads are
also becoming more and more unlikely but slower. Since now

∑∞
n=1 P(An) = ∞, the second

BC lemma implies that a.s. infinitely many heads will occur. That is, there exists no n0 such
that after it you do not get heads anymore with probability one. No matter how big n is, with
probability 1 there will be a head in the following tosses. Even though the probability of the
head is decreasing at rate n−1! Even if n is one billion, you know that a head will still occur
for sure.

Independence in the second BC lemma is sufficient but not necessary. For this reason,
there are many more BC lemma’s which relax independence in different ways. An example in
which there is not ”enough independence” for the second BC lemma to hold is the following.

Example 9.2. Suppose An = E for all n ≥ 1 and that P(E) ∈ (0, 1). Then
∑∞
n=1 P(An) =∞

however, it will not be the case that An will occur infinitely often with probability one since
P({An i.o.}) = P(E). This happens because of the strong dependence of the An’s.
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10 Measurable functions and Integration

In this section we will talk about functions between measure spaces and their integration.
For now we are going to forget about probabilities and keep a more general measure theoretic
approach. However, I will hint at what is coming, which is to define random variables and
their expectations. This will just be a special case of what we cover here. Suppose you have
two measurable spaces (Ω,F) and (Λ,G). We are going to work with functions f : Ω → Λ.
One key aspect we require from these functions is that they are measurable.

Definition 10.1 (Measurable function). A function f : Ω → Λ is said to be F-measurable
if for every G ∈ G, the pre-image is F-measurable, f−1(G) ∈ F , where f−1(G) = {ω ∈ Ω :
f(ω) ∈ G}.

So take any G-measurable set, G ∈ G. The set of all ω ∈ Ω which map to this set G under
the function f(.), is the pre-image of G under f , f−1(G). This subset of Ω need not be an
element of F . If it is, and this happens for all possible G ∈ G, then f(.) is a measurable
function. Note that if Ω is countable and we take F = 2Ω, then all functions defined on Ω
are measurable since you cannot have pre-images which are not in the power set.

Example 10.1 (Dirichlet function). Consider the following function

fD(x) =

1 if x ∈ Q

0 if x ∈ Qc
,

where Q are the rational numbers. The above function is B measurable since

f−1
D (A) =


Q if A = {1}

Qc if A = {0}

∅ if A = {0, 1}.

Rational numbers are countable and hence a collection of countable singletons and therefore
a Borel set. The complement of a Borel set is a Borel set and the empty set is a Borel set.
Hence, the Dirichlet function is measurable.

The concept of measurable functions allows us to define another useful concept about
measures

Definition 10.2 (Induced Measure). Let (Ω,F , µ) be a measure space and (Λ,G) be a mea-
surable space. Let f be a measurable function from Ω to Λ. The measure induced by f is a
measure on G defined as

µ ◦ f−1(B) = µ(f−1(B)), B ∈ G.

The induced measure measures the pre-images of measurable functions. Sometimes it is
easier to work with induced measures as we will see when we introduce random variables.
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10.1 Quick primer: Riemann Integral

Let f : R → R and suppose we are interested in the area between f(x) and the x-axis for
x ∈ [a, b] ⊂ R. We could approximate this area by rectangles. There are two ways, to
approximate the area from above:
INSERT FIGURE
or approximate it from below:
INSERT FIGURE
Partition the real line into n intervals with cut-offs (x1, ..., xn) and let ∆xi ≡ xi − xi−1.
Define the upper Riemann sum to be:

Un(f) ≡
n∑
i=1

{
sup

(xi−1,xi)
f(x)

}
∆xi,

and the lower Riemann sum to be:

Ln(f) ≡
n∑
i=1

{
inf

(xi−1,xi)
f(x)

}
∆xi.

Un(f) and Ln(f) are the approximations by rectangles from above and below respectively.
The larger n is, the more accurate these approximations are. It can be shown that Un(f) is
a monotonically decreasing sequence and that Ln(f) is a monotonically increasing sequence
and both sequences are bounded. Hence, limn→∞ Un(f) and limn→∞ Ln(f) exist. Also,
Un(f) ≥ Ln(f) for all n. f is said to be Riemann integrable over (a, b) if limn→∞ Un(f) =
limn→∞ Ln(f). This common values is denoted by

ˆ b

a
f(s) ds.

Lebesgue proved a theorem characterising Riemann integrable functions

Theorem 10.1 (Lebesgue’s criterion). Let f : [a, b] → R, then f is Riemann integrable if
and only if f is bounded and the set of discontinuities has Lebesgue measure 0.

The theorem requires boundedness and that f does not have ”too many discontinuities”.

Example 10.2 (Dirichlet function is not Riemann integrable). Consider the Dirichlet func-
tion on [0, 1] (call it fD) taking value one if x ∈ [0, 1] is a rational number and zero oth-
erwise. Since the rational numbers are dense in the real numbers, supx∈[a,b] fD(x) = 1 and
infx∈[a,b] fD(x) = 0 for any interval [a, b] in [0, 1]. Hence, the lower and upper Riemann sums
will never be equal and hence the Dirichlet function is not Riemann integrable.

To see the example in the light of theorem note that the Dirichlet function on [0, 1] is
everywhere discontinuous. To see this note that the rationals are dense in the reals which
means that for any x ∈ R \ Q you can construct a sequence xn such that xn ∈ Q for all
n and limn→∞ = x. Now, f(xn) = 1 for all n so limn→∞ f(xn) = 1 but f(x) = 0 for all
x ∈ R \ Q. Since you can also approximate any real number with a sequence of irrational
numbers hence a similar argument applies at rational numbers. Hence, the set of points at
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which the Dirichlet function on [0, 1] is discontinuous is [0, 1] and the Lebesgue measure of
this set is λ([0, 1]) = 1 6= 0 and hence the Dirichlet function is not Riemann integrable.

10.2 Abstract (or Lebesgue) integration

Let (Ω,F , µ) be a measure space and f : Ω→ [0,∞] be a measurable function. We want to
define the following object ˆ

A
f dµ, A ∈ F .

From now on we are going to stop thinking about ”integral of a function with respect to a
variable over an interval” and start thinking about ”integral of a measurable function with
respect to a measure over an F-measurable set”. This will naturally generalize the concept
of the Riemann integral to include more general measures. This will become clearer as we
move along. For example if we let (Ω,F , µ) = (R,B, λ) be the measure space, where B and
λ are the Borel σ-algebra and the Lebesgue measure respectively

ˆ
A
f dλ, A ∈ B,

will be read as the integral of f with respect to the Lebesgue measure over a Borel set A.
Before we go into the definition of this object let us talk about some naming issues and

the need for abstract integration even though we have Riemann integration. Unfortunately,
Lebesgue integration is used for both abstract integration with respect to any general mea-
sure and to integration with respect to the Lebesgue measure. The key difference in the
construction of the abstract integral as opposed to the Riemann integral is that while the
latter partitions the domain into intervals, abstract integration partitions the range, i.e. the
values of the function itself. This will in turn allow for a much more flexible partition of
the domain. An important problem mathematicians found with the Riemann integral is that
many functions are not Riemann integrable, for example the Dirichlet function. The problem
being that Riemann integration does not allow for ”too many” discontinuities. Abstract in-
tegration works on a much broader set of functions. Also, abstract integration is defined for
general measure spaces while the Riemann integral is specifically defined for functions defined
on the real line and can be extended (with modifications) to higher-dimensional Euclidean
spaces. However, it makes no sense on general measure spaces. Finally, key properties which
can be shown for abstract integration do not generally hold for Riemann integration.

We will illustrate all these issues in the next pages. Specifically we will continue with
the Dirichlet example to show that it is Lebesgue integrable and we will show that a key
property of abstract integration, monotone convergence, fails for Riemann integration. Now
it is time to define the abstract integral, we will follow several steps:

1. Define
´
f dµ for simple functions (defined in the next section),

2. Define
´
f dµ for non-negative f ,

3. Define
´
f dµ for arbitrary f .

4. Define
´
A f dµ for arbitrary f .
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In general these steps will be key whenever we want to compute an abstract integral or
prove some result which involves abstract integrals.

10.2.1 Integrating simple functions

Definition 10.3 (Simple function). A function f : Ω→ R∪ {±∞} is said to be simple if it
can be written as

f(ω) =
n∑
i=1

ai1Ai(ω) for all ω ∈ Ω,

where ai ≥ 0 for i = 1, ..., n and Ai ∈ F .

Example 10.3. (Ω,F) = (R,B), one example of a simple function is f(x) = 1[0,1)(x) +√
21Q(x). Another example is g(x) = 1[0,1](x) + (3/2)1[1,3](x) which looks like

INSERT FIGURE
g can be rewritten in many different ways, for example, g(x) = 1[0,3](x) + (1/2)1[1,3](x) or
g(x) = 1[0,1](x) + (3/2)1[1,2](x) + (3/2)1[2,3](x).

From the example we see that there are many different representations of a simple func-
tion. Now we introduce what it called the canonical representation.

Definition 10.4 (Canonical representation). A canonical representation of a simple function
is one in which ai 6= aj and Ai ∩Aj = ∅ for all i, j = 1, ..., n.

That is in the canonical representation all ai’s are distinct and all Ai’s are disjoint. From
now on we assume that whenever we write a simple function it is already in canonical form.
This is without loss of generality since it can be shown that all simple functions have a
canonical representation. Now we are ready to define the integral of simple functions.

Definition 10.5 (Integral of simple function). Let f be a simple function, then

ˆ
f dµ ≡

n∑
i=1

aiµ(Ai)

Example 10.4. (i) Note that the indicator function 1B for some B ∈ F is a simple function
with n = 1, a1 = 1 and A1 = B, hence

ˆ
1B dµ = µ(B),

that is, the integral of 1A(x) with respect to a measure µ is defined to be µ(A), i.e. the
measure of the set that the function indicates. For example, if µ = λ (the Lebesgue measure)
and B = [1, 3], then

´
1[1,3] dλ = λ([1, 3]) = 2, i.e. the area of the rectangle with base [1, 3]

and height 1. Hence, in this particular case with the Lebesgue measure, the abstract integral
coincides with the Riemann integral.
(ii) Consider f(ω) = 1[0,1](ω) +

√
21Q(ω) and take the Lebesgue measure, then

ˆ
f dλ = λ([0, 1]) +

√
2

=0︷ ︸︸ ︷
λ(Q) = 1.
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(iii) Consider f(ω) = 1[0,1](ω) + (3/2)1[1,3](ω) and take the Lebesgue measure, then
ˆ
f dλ = λ([0, 1]) + (3/2)λ([1, 3]) = 4.

Again, in these examples we get the area below f so it coincides with the Riemann integral,
however if µ 6= λ then we would not get the area and it would not coincide with the Riemann
integral.

Example 10.5 (Dirichlet function). Let us come back to the example of the Dirichlet function
on [0, 1] which we have already shown not to be Riemann integrable. The measure space is
(Ω,F , µ) = ([0, 1],B([0, 1]), λ). The Dirichlet function can be written as a simple function:
f(ω) = 1Q∩[0,1](ω), hence

ˆ
f dλ =

ˆ
1Q∩[0,1] dλ = λ(Q ∩ [0, 1]) = 0.

So we see that in this case the Lebesgue integral exists while the Riemann integral does not.

10.2.2 Integrating non-negative measurable functions

Let g : Ω→ R ∪ {±∞} be a non-negative measurable function and let S(g) be the set of all
simple functions q : Ω→ R ∪ {±∞} such that g(ω) ≥ q(ω) for all ω ∈ Ω.

Definition 10.6 (Integral of non-negative measurable function).
ˆ
g dµ ≡ sup

q∈S(g)

ˆ
q dµ.

This definition is not very useful for practical purposes (i.e. computing integrals) but is
very useful for proving properties about integrals. We will see a more practical definition
which can be used to compute integrals and gives some intuition about the above definition
in a bit.

10.2.3 Integral for arbitrary measurable functions

Let f : Ω→ R ∪ {±∞} be an arbitrary measurable function. Write

f = f+ − f−, where f+(ω) ≡ max{f(ω), 0} and f−(ω) ≡ max{−f(ω), 0}.

This is a decomposition of the function into its positive and negative parts (convince yourself
that the equality holds). Note that f+ and f− are both general non-negative functions which
we know how to integrate.

Definition 10.7 (Integral of arbitrary measurable function).
ˆ
f dµ ≡

ˆ
f+ dµ−

ˆ
f− dµ.

This is well-defined (we say it exists) as long as at least one of the integrals is finite and
undefined (does not exist) otherwise. If both are finite we say f is integrable.
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10.2.4 Integral over a measurable set

Let A ∈ F , and f be an arbitrary measurable function, then
ˆ
A
f dµ ≡

ˆ
f1A dµ.

10.3 Properties

Now we introduce useful properties of abstract integrals.

Proposition 10.1 (Properties of abstract integrals).

(i) If A ∈ F , then
´
1A dµ = µ(A). This property is a corollary of the definition of the

integral of simple functions and we have already shown it as an example.

(ii) If g ≥ 0 and measurable, then
´
g dµ ≥ 0.

Proof. By the definition of the integral of non-negative measurable functions
ˆ
g dµ = sup

q∈S(g)

ˆ
q dµ,

note that the integral of a simple function q =
∑n
i=1 ai1Ai is

∑n
i=1 aiµ(Ai). Since ai ≥ 0

for i = 1, ..., n and measures are positive we know that the integral of simple functions
is always positive. Now the set {

´
q dµ : q ∈ S(g)} is a set of positive numbers and

hence its supremum is positive. Note that there might not be a q in S(g) which attains
the supremum, but still the supremum of a set of positive numbers is positive.

(iii) If g = 0 µ a.e., then
´
g dµ = 0.

Proof. Remember that S(g) is the set of simple functions q such that q ≤ g. Hence,
in this case S(g) is formed by simple functions of the form

∑n
i=1 ai1Ai ≤ g where

µ(Ai) = 0 for all i = 1, ..., n, i.e. by simple functions which are 0 a.e. and less than or
equal to g in sets of measure 0. Hence, for all q ∈ S(g), we have that

´
q dµ = 0 and

hence
´
g dµ = 0.

(iv) Let h ≥ g ≥ 0, then
´
h dµ ≥

´
g dµ.

Proof. Let us prove it first assuming h and g are non-negative. Since S(h) and S(g)
are the sets of simple functions bounding h and g, respectively, from below and h ≥ g,
it follows that S(g) ⊆ S(h). Hence

ˆ
h dµ = sup

q∈S(h)

ˆ
q dµ ≥ sup

q∈S(g)

ˆ
q dµ =

ˆ
g dµ.
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For arbitrary measurable functions notice that h+ ≥ g+ and h− ≤ g−, hence S(g+) ⊆
S(h+) and S(h−) ⊆ S(g−) and therefore

ˆ
h dµ =

ˆ
h+ dµ−

ˆ
h− dµ

= sup
q∈S(h+)

ˆ
q dµ− sup

q∈S(h−)

ˆ
q dµ

≥ sup
q∈S(g+)

ˆ
q dµ− sup

q∈S(g−)

ˆ
q dµ

=
ˆ
g dµ.

(v) If g = h µ a.e., then
´
h dµ =

´
g dµ.

Proof. Exercise

(vi) If g ≥ 0 and
´
g dµ = 0, then g = 0 µ a.e.

Proof. Suppose not and define B ≡ {ω ∈ ω : g(ω) > 0} and assume µ(B) > 0 (if not
the result follows directly). Let Bn ≡ {ω ∈ Ω : g(ω) > 1/n}. It follows that Bn ⊆ Bn+1

and that
⋃∞
i=1Bi = B (try to prove this to refresh how to prove set equalities). By

continuity of measures µ(B) = limn→∞ µ(Bn), this equality states that the limit of a
sequence of measures is µ(B) > 0, hence there exists n0 ∈ N such that for all k ≥ n0

µ(Bk) > 0, take one such k and note that (1/k)1Bk is a simple function which is lower
or equal than g and hence it belongs to S(g). Hence,

ˆ
g dµ = sup

q∈S(g)

ˆ
q dµ ≥

ˆ 1
k
1Bk = 1

k
µ(Bk) > 0,

which contradicts
´
g dµ = 0.

(vii) (Linearity)
´

(g + h) dµ =
´
g dµ+

´
h dµ.

This can be proven by first proving it for simple functions, then for non-negative mea-
surable functions and then for arbitrary measurable functions. However, the way we
have defined the integral for non-negative measurable functions makes this very hard.
We will prove this property later using the result in the next section.

(viii) (Scaling) Let a ≥ 0, then
´
ag dµ = a

´
g dµ.

Proof. Exercise.
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10.4 The Monotone Convergence Theorem

The monotone convergence theorem (MCT) is a cornerstone result of integration and one of
the main reasons to develop abstract integration. In fact, it was with the start of Fourier
series that a result such as the MCT was frequently needed, however finding such a result
for the Riemann integral turned out to be very hard. We will show this result for abstract
integrals and show it does not hold for the Riemann integral. The MCT gives us conditions
under which we can exchange limits and integrals, i.e. conditions under which the limit of the
integral is the same as the integral of the limit. Let us first introduce pointwise convergence
and motivate the need for this result. Let fn : Ω→ R ∪ {±∞} be a sequence of measurable
functions.

Definition 10.8.

(i) We say fn converges to f pointwise if for all ω ∈ Ω,

lim
n→∞

fn(ω) = f(ω),

(ii) we say fn converges to f µ a.e. if fn(ω) → f for all ω ∈ Ω except, perhaps, on a set
of µ measure zero.

Regarding (i) it can be shown that if fn is measurable for all n, then f is measurable.
Note that (ii) is weaker than (i) since it allows fn to not converge to f in measure zero sets.

The question we ask ourselves is whether we can generally interchange limits and inte-
grals. That is, does

´
fn dµ→

´
f dµ, i.e. limn→∞

´
fn dµ =

´
f dµ. The answer is that not

generally as illustrated by the following counterexample.

Example 10.6. Consider (Ω,F , µ) = ([0, 1],B, λ) and let

fn(ω) =

n if 0 < ω ≤ 1
n

0 otherwise.

noticing that fn is a simple function we can see that
ˆ
fn dλ = nλ((0, 1/n]) + 0 = n

1
n

= 1.

however, f(ω) = limn→∞ fn(ω) = 0 for all ω ∈ Ω and hence
´
f dλ = 0.

Try to draw the function in the example for different n to get an idea about why this
function is problematic. The conclusion is that it is not true in general that we can exchange
limits and integrals. Now we introduce the MCT to give conditions under which this is
possible.

Theorem 10.2 (Monotone Convergence Theorem (MCT)). Let gn ≥ 0 be a sequence of
measurable functions such that gn ↗ g µ a.e., i.e. gn(ω) ≤ gn+1(ω) for all n = 1, 2, ... µ a.e.
and limn→∞ gn(ω) = g(ω) µ a.e. Then

lim
n→∞

ˆ
gn dµ =

ˆ
g dµ.
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So we do not only require that gn converges to g but that it converges monotonically.

Proof. The proof is quite long. You can find it step by step in the MCT Wikipedia in the
section Beppo Levi’s Lemma. It can be made shorter by using Fatou’s lemma which we will
introduce shortly.

Exercise 10.1. Copy the proof of the MCT given in Wikipedia (without invoking Fatou’s
lemma) and understand all steps.

Exercise 10.2. Check why the last example does not satisfy the condition of the MCT.

The reason why this result does not hold for the Riemann integral is that the limit of a
sequence of Riemann integrable functions need not be Riemann integrable as the following
example illustrates.

Example 10.7. (Failure of MCT for Riemann integral) Let r0, r1, r2, ... be the enumeration
of all the rationals in [0, 1] (they are countable). Then, consider the following function on
[0, 1]

gn(ω) =

1 if ω ∈ {r0, r1, ..., rn−1}

0 otherwise

Since gn is discontinuous only at finitely many points, the set of discontinuities has Lebesgue
measure zero, so by the Lebesgue criterion, gn is Riemann integrable (gnisalsobounded).
However, the limit g is the Dirichlet function which we have already shown to not be Riemann
integrable.

10.4.1 Proof of linearity property using MCT

Remember that we did not prove the linearity property of Lebesgue integrals, this was
because the proof is made much easier if the MCT is invoked.

Proof. First assume that g and h are simple (canonical) functions, then

g(ω) =
n∑
i=1

ai1Ai(ω), h(ω) =
m∑
i=1

bi1Bi(ω), g(ω) + h(ω) =
n∑
i=1

m∑
j=1

(ai + bj)1Ai∩Bj (ω).

The sum above follows since A1, ..., An and B1, ..., Bn are partitions, hence any ω will lie in
Ai ∩ Bj for some i and j and g(ω) + h(ω) will just be the sum of ai and bj . Since Ai’s and
Bj ’s are disjoint, Ai ∩Bj are disjoint across (i, j). By definition of the Lebesgue integral

ˆ
(g + h) dµ =

n∑
i=1

m∑
j=1

(ai + bj)µ(Ai ∩Bj)

=
n∑
i=1

ai

m∑
j=1

µ(Ai ∩Bj) +
m∑
j=1

bj

n∑
i=1

µ(Ai ∩Bj)

=
n∑
i=1

aiµ(Ai) +
m∑
j=1

bjµ(Bj)

=
ˆ
g dµ+

ˆ
h dµ.
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In the third equality we use finite additivity, i.e.
∑m
j=1 µ(Ai ∩ Bj) = µ(∪mj=1(Ai ∩ Bj)) =

µ(Ai ∩ (∪mj=1Bj)) = µ(Ai).
Now, for non-negative measurable functions define let gn and hn, n ≥ 1, be simple

functions such that gn ↗ g and hn ↗ h µ a.e. (we will show in the next section that we can
always find such simple functions). Then, gn + hn ↗ g + h µ a.e. and

ˆ
(g + h) dµ = lim

n→∞

ˆ
(gn + hn) dµ

= lim
n→∞

ˆ
gn dµ+ lim

n→∞

ˆ
hn dµ

=
ˆ
g dµ+

ˆ
h dµ,

where the first and third equalities follow from the MCT and the second one from the proof
we just did for simple functions. The result for arbitrary measurable functions follows since
we can write them as sums of non-negative measurable functions (some of them scaled by
-1).

10.5 Approximating a non-negative measurable function from below using
simple functions (practical definition)

Let g be a non-negative measurable function. The goal of this section is to show that we can
always find a sequence of simple function such that gn ↗ g µ a.e. We will do this by giving
a specific construction of gn which works for any non-negative function. There are plenty of
ways of constructing these sequences of simple functions but providing one which works in
all cases is enough. This sequence is

gn(ω) =


i

2n if i
2n ≤ g(ω) < i+1

2n , i = 0, 1, ..., n2n − 1,

n if g(ω) ≥ n,

note that is not a two-piece function, but that there are much more pieces and the above is
just a short way to write it. It is a simple function which can be written as

gn(ω) =
n2n−1∑
i=0

i

2n1{ω:i/2n≤g(ω)<(i+1)/2n}(ω) + n1{ω:g(ω)≥n}(ω).

What gn is doing is to partition the vertical axis more and more as n increases. For
instance, if n = 1 we have i = 0, 1/2, 1, so gn(ω) will take value 0 whenever 0 ≤ g(ω) < 1/2,
value 1/2 whenever 1/2 ≤ g(ω) < 1 and value 1 whenever g(ω) > 1. If n = 2 we have that
i = 0, 1/4, 2/4, 3/4, 1, 5/4, ..., 2 (think about which values will gn take).

Exercise 10.3. Draw an arbitrary non-negative function and in the same graph draw gn for
n = 1 and n = 2. Then do the same for a general n.

Exercise 10.4. Show the following

1. For all n, gn is a simple function,
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2. gn(ω) ≤ gn+1(ω) for all n and all ω,

3. limn→∞ gn(ω) = g(ω).

The above exercise implies that we can invoke the MCT, that is,
´
g dµ = limn→∞

´
gn dµ

for any non-negative measurable function g. Since we have the simple functions gn and we
know how to integrate simple functions, we have a very practical way to evaluate Lebesgue
integrals which does not involve searching across all possible simple function and finding the
sup. We can construct the abstract integral of a non-negative measurable function g as

ˆ
g dµ = lim

n→∞

n2n−1∑
i=1

i

2nµ
({

ω : i

2n ≤ g(ω) < i+ 1
2n

})
+ nµ({ω : g(ω) ≥ n}).

Using this approximation via simple functions we can already compute several integrals
as in the following examples.

Example 10.8 (Integral with respect to the Dirac measure). If f is a simple function, by
definition of the Lebesgue integral for simple functions, its integral with respect to the Dirac
measure at some point x (δx) is

ˆ
f dδx =

n∑
i=1

ai

ˆ
1Ai dδx =

n∑
i=1

aiδx(Ai) =
n∑
i=1

ai1Ai(x) = f(x).

Hence, the integral of any simple function with respect to the Dirac measure at a point is the
function itself evaluated at that point. If f is a general non-negative function, we can find a
sequence of simple functions fn which approximates f from below and then

ˆ
f dδx =

ˆ
lim
n→∞

fn dδx = lim
n→∞

ˆ
fn dδx = lim

n→∞
fn(x) = f(x),

where the second equality uses the MCT, the third the fact that the integral of a simple
function with respect to the Dirac measure is the simple function itself and the first and last
equalities use that fn converges to f .

(Excercise) Show that for an arbitrary measurable function f

ˆ
f dδx = f(x).

Hence, in general, the integral of any measurable function f with respect to δx is f(x).

Example 10.9 (Integral with respect to the counting measure). Consider some measurable
function f on Ω = {a1, ..., an} and the counting measure ν(A) =

∑n
i=1 δai, then

ˆ
f dν =

ˆ
fd

n∑
i=1

δai =
n∑
i=1

ˆ
f dδai =

n∑
i=1

f(ai),

the second equality follows because linear combinations of measures are measures (Exercise),
because for any two measures µ1 and µ2, ntf d(µ1 + µ2) =

´
f dµ1 +

´
f dµ2 (Exercise) and

by linearity of integrals. The last equality follows from the previous example.
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10.6 Fatou’s Lemma

Let g and h be measurable functions. Then it holds that
ˆ

min(g, h) dµ ≤ min
(ˆ

g dµ,

ˆ
h dµ

)
,

since min(g(ω), h(ω)) ≤ g(ω) and min(g(ω), h(ω)) ≤ h(ω) and hence by property (iv) of
abstract integrals the result above holds. This extends to n measurable functions. Fatou’s
lemma extends it to a sequence of measurable functions, if you have infinite measurable
functions the minimum might not be attained and hence we speak about the infimum, this
is what Fatou’s lemma does.

Lemma 10.1. (Fatou’s Lemma)

(i) Let gn, n ≥ 1, be a sequence of measurable functions such that gn ≥ h for all n and´
|h| dµ <∞. Then, ˆ

lim inf
n→∞

gn dµ ≤ lim inf
n→∞

ˆ
gn dµ,

(ii) Let gn, n ≥ 1, be a sequence of measurable functions such that gn ≤ h for all n and´
|h| dµ <∞. Then, ˆ

lim sup
n→∞

gn dµ ≥ lim sup
n→∞

ˆ
gn dµ.

Note that (ii) is the same as (i) if you replace gn with −gn and h with −h. Also, lets
recall briefly what lim inf is. For a sequence an we have

lim inf
n→∞

an ≡ lim
n→∞

inf
m≥n

am.

That is, first fix some n, then look at the infimum in the set {an, an+1, ...}, for each n we
have one such infimum. In sum, we have a sequence of infimums (infn≥1 an, infn≥2 an, ...)
of which we are taking the limit. Note that the sequence of infimums is a non-decreasing
sequence of infimums and hence its limit always exists. You can interpret this as the smallest
limit point. Finally, one can show that lim infn→∞ gn, lim supn→∞ gn and limn→∞ gn are
measurable functions. Now we can prove Fatou’s lemma

Proof of Fatou’s lemma. It is enough to show (i). Fix n, then we have that

inf
k≥n

gk − h ≤ gm − h for all m ≥ n,

using property (iv)
ˆ

( inf
k≥n

gk − h) dµ ≤
ˆ

(gm − h) dµ for all m ≥ n,

take the infimum in both sides (nothing happens in LHS)
ˆ

( inf
k≥n

gk − h) dµ ≤ inf
m≥n

ˆ
(gm − h) dµ,
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now take limits in both sides (RHS becomes lim inf by definition)

lim
n→∞

ˆ
( inf
k≥n

gk − h) dµ ≤ lim inf
n→∞

ˆ
(gn − h) dµ.

Now we want to put the limit inside in the LHS. Let zn = infk≥n gk−h. zn is non-decreasing
since we are taking the infimum over smaller and smaller sets. Also, zn ≥ 0 since gn ≥
h. Also, z = limn→∞ zn = lim infn→∞ gn − h by definition of lim inf. So by the MCT
limn→∞

´
zn dµ =

´
z dµ. Hence,

lim
n→∞

ˆ
( inf
k≥n

gk − h) dµ =
ˆ

(lim inf
n→∞

gn − h) dµ

≤ lim inf
n→∞

ˆ
(gn − h) dµ.

By linearity of integrals we have
ˆ

lim inf
n→∞

gn dµ−
ˆ
h dµ ≤ lim inf

n→∞

ˆ
gn dµ−

ˆ
h dµ.

So, ˆ
lim inf
n→∞

gn dµ ≤ lim inf
n→∞

ˆ
gn dµ.

10.7 Dominated Convergence Theorem

The Dominated Convergence Theorem (DCT) provides other conditions under which we can
exchange limit and integral.

Proposition 10.2 (DCT). Consider a sequence of measurable functions gn n ≥ 1, such
that limn→∞ gn(ω) = g(ω) for all ω. Suppose there exists a measurable function h such that
|gn| ≤ h µ a.e. and

´
|h| dµ <∞. Then

lim
n→∞

ˆ
gn dµ =

ˆ
g dµ.

Proof. Since −h ≤ gn ≤ h for all n, we can invoke both sides of Fatou’s lemma. Since also
gn → g, lim infn→∞ gn = lim supn→∞ gn = limn→∞ gn (i.e. limit is one point not a set), we
have that

ˆ
g dµ =

ˆ
lim inf
n→∞

gn dµ

≤ lim inf
n→∞

ˆ
gn dµ

≤ lim sup
n→∞

ˆ
gn dµ

≤
ˆ

lim sup
n→∞

gn dµ

=
ˆ
g dµ.
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It might seem we have proven something trivial, namely that
´
g dµ =

´
g dµ, but what we

have actually proven is that all the weak inequalities above must hold with equality. Hence,

lim inf
n→∞

ˆ
gn dµ = lim sup

n→∞

ˆ
gn dµ =

ˆ
g dµ,

and hence
lim
n→∞

ˆ
gn dµ =

ˆ
g dµ.

Exercise 10.5. Check why example 10.6 does not satisfy the conditions of the DCT.

10.7.1 Exchanging derivative and integral

The DCT gives us conditions under which we can exchange derivatives and integrals as well.
This is because derivatives are limits.

Proposition 10.3. Take (Ω,F , µ) = (R,B, λ). Let f be measurable and suppose d
dxf(x)

exists a.e. and that
∣∣∣∣ ddxf(x)

∣∣∣∣ ≤ g(x) a.e. where g is integrable. Then,

d

dx

ˆ
f(x) dλ =

ˆ
d

dx
f(x) dλ.

Proof. First note that by the definition of a derivative and by linearity of integrals

d

dx

ˆ
f dλ = lim

t→0

´
f(x+ t) dλ−

´
f(x) dλ

t
= lim

t→0

´
[f(x+ t)− f(x)] dλ

t
.

Now define a sequence t(n) such that t(n)→ 0 as n→∞. Define also

fn = f(x+ t(n))− f(x)
t(n) .

Then, we want to show that

lim
n→∞

ˆ
fn dλ =

ˆ
lim
n→∞

fn dλ. (10.1)

To do this we invoke the DCT. We need (i) fn → d
dxf(x) a.e. and that fn is bounded by

some integrable function for all n. (i) follows easily since by the definition of a derivative
limn→∞ fn = d

dxf(x). (ii) follows by the Mean Value Theorem:

fn(x) = f(x+ t(n))− f(x)
x+ t(n)− x = d

dx
f(c) for some c ∈ [x, x+ t(n)],

since
∣∣∣∣ ddx ∣∣∣∣

x=c
f(x)

∣∣∣∣ ≤ g(c) with g integrable we have that fn is bounded by an integrable

function. Hence, the condition of the DCT apply and (10.1) holds, meaning that

d

dx

ˆ
f(x) dλ =

ˆ
d

dx
f(x) dλ.
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10.8 Product measure and Fubini Theorem

Before we introduce Fubini’s theorem we need to remind ourselves what a σ-finite measure
is and introduce and important result. µ (defined on some space (Ω,F) is a σ-finite measure
if there exists a sequence A1, A2, ... of subsets of Ω such that ∪Ai = Ω and µ(Ai) < ∞ for
all i, then µ is said to be a σ-finite measure.

10.8.1 Product measures

In this subsection we motivate the product measure theorem we are going to present in a bit.
For a more formal treatment you can see PUT REFERENCE. Suppose that we have several
measurable spaces (Ωi,Fi, µi), i = 1, ..., k with k some integer. Suppose we have measurable
(with respect their corresponding σ-algebra) sets A1 ∈ F1, A2 ∈ F2, ..., Ak ∈ Fk. The
Cartesian product A1 × ... × Ak is called a measurable rectangle. Our ultimate goal is to
construct a measure on what is called the product σ-algebra.

Definition 10.9 (Product σ-algebra). Suppose that (Ωi,Fi, µi), i = 1, ..., k with k some
integer, are measurable spaces. The product σ-algebra

⊗n
i=1Fi is the σ-algebra generated by

the collection of all measurable rectangles,

n⊗
i=1
Fi = σ({A1 × ...×An : A1 ∈ F1, ..., Ak ∈ Fk}.

The product of (Ω1,F1), (Ω2,F2), ... is the measurable space (Ω1 × ...× Ωk,
⊗n
i=1Fi).

Note that the Cartesian product of σ-algebras is not necessarily a σ-algebra, hence the
need of the product σ-algebra.

Exercise 10.6. *Show that the collection of finite unions of measurable rectangles forms an
algebra (Hint: show that the intersection of measurable rectangles is a measurable rectangle
and that the complement of a measurable rectangle is a finite union of measurable rectangles).

*The exercise above shows that the collection of finite unions of measurable rectangles
forms an algebra which we denote as R0. Now we define a product pre-measure on a given
measurable rectangle and then on R0.

Definition 10.10 (Product pre-measure on measurable rectangles*). If (Ωi,Fi, µi), i =
1, ..., k with k some integer, are measure spaces, then the product pre-measure ν0(A1×...×Ak)
of a measurable rectangle A1 × ...×Ak ∈ F1 × ...×Fk is

ν0(A1 × ...×Ak) = µ1(A1)µ2(A2)...µk(Ak),

where 0 · ∞ = 0.

Exercise 10.7. *Show that the pre-measure µ0 is countably additive in rectangles.

*Note the above concept is defined only on measurable rectangles but not on the algebra
generated my measurable rectangles.

39



Definition 10.11 (Product pre-measure on algebra*). If (Ωi,Fi, µi), i = 1, ..., k with k some
integer, are measure spaces and R0 is the algebra generated by measurable rectangles. Then
the product pre-measure ν0 : R0 → [0,∞] is given by

ν0(R) =
n∑
i=1

µ1(A1,i)µ2(A2,i)...µk(Ak,i), R =
n⋃
i=1

A1,i × ...×Ak,i,

where R = ∪ni=1A1,i × ... × Ak,i is any representation of R ∈ R0 as a disjoint union of
measurable rectangles.

Exercise 10.8. *Is ν0 countably additive on R0?

*So we have a pre-measure on an algebra, this should remind us to the Caratheodory
extension theorem, in fact what the next theorem does is to make use of this theorem to
extend the product pre-measure to a product measure. We will not prove it here.

If you have not followed the concepts indicated with * you can take the next results as
granted.

Theorem 10.3 (Product measure theorem). If (Ωi,Fi, µi), i = 1, ..., k with k some integer,
are measure spaces, then

n⊗
i=1

µi(A1 × ...×Ak) :
n⊗
i=1
Fi → [0,∞],

is a measure on Ω1 × ...× Ωk such that

n⊗
i=1

µi(A1 × ...×Ak) = µ1(A1)µ2(A2)...µk(Ak), for all Aj ∈ Fj j = 1, ..., k.

If µ1, ..., µk are σ-finite measures,
⊗n

i=1 µi is the unique measure on
⊗n

i=1Fi with this prop-
erty.

The Fubini theorem we introduce now tells us when is it possible to solve an integral
with respect to the product measure with iterated integrals, i.e. solving the integrals with
respect to each measure in an iterative manner. We state it for two measure spaces but it
can be naturally extended to more measure spaces. We omit the proof.

Theorem 10.4 (Fubini theorem). Let µi be a σ-finite measure on (Ωi,Fi) for i = 1, 2, and
f be a measurable function on Ω1 ×Ω2 such that either f ≥ 0 or f is integrable with respect
to µ1

⊗
µ2, then

g(ω2) =
ˆ

Ω1

f(ω1, ω2) dµ1,

exists µ2 a.e. and defines a measurable function on Ω2 whose integral w.r.t. µ2 exists, and
ˆ

Ω1×Ω2

f(ω1, ω2) d(µ1 ⊗ µ2) =
ˆ

Ω2

[ˆ
Ω1

f(ω1, ω2) dµ1

]
dµ2.

Example 10.10. Let Ω1 = Ω2 = {0, 1, 2, ...}, µ1 = µ2 = ν where ν(A) =
∑∞
i=1 δai(A)

is the counting measure. Let f be a function on Ω1 × Ω2, i.e. a double sequence f(i, j),
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i, j = 0, 1, 2, .... If f ≥ 0 or
´
|f | d(µ1 ⊗ µ2) <∞, then

ˆ
f d(µ1 ⊗ µ2) =

∞∑
i=0

∞∑
j=0

f(i, j) =
∞∑
j=0

∞∑
i=0

f(i, j),

by Fubini’s theorem and Example 10.9.

11 Differentiation*

This section presents the main results in Chapter 9 of Kolmogorov and Fomin (1975) without
proof. It amounts to a first superficial reading of that chapter, the interested reader can go
deeper by looking in the book. In the previous section we have introduced measurable
function and generalized the concept of integration. As we know from the Fundamental
Theorem of Calculus, there is a connection between derivatives and integrals in the real line
(with the Lebesgue measure). Hence, a question to ask at this point is whether there exists
such a connection on a more general level when we deal with abstract integrals. To do this
our main working object is going to be the set function

ˆ
A
f(x) dµ, (11.1)

based on a measurable function f on some space Ω. This set function exists for any mea-
surable set A and hence defines a set function on a σ-algebra of Ω. Before analyzing the
problem for general measure spaces we are going to spend some time in the special case of
the real line equipped with the Lebesgue measure.

11.1 Real line with the Lebesgue measure

Consider (Ω,F) = (R, λ), where λ is the Lebesgue measure. Letting A = [a, b] be some
closed interval, (11.1) becomes ˆ b

a
f(t) dt.

For our purpose we will want to fix the lower limit and consider the integral above as a
function of an upper limit denoted by x

ˆ x

a
f(t) dt.

Now, the Fundamental Theorem of Calculus (FTC) tells us that if f is continuous, then

d

dx

ˆ x

a
f(t) dt = f(x), (11.2)

i.e.
´ x
a f(t) dt is an antiderivative of f in the sense that when you derivate it you get f (the

derivative of the antiderivative is the function). A corollary of the FTC is that if a function
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F (x) is an antiderivative of f , then
ˆ x

a
f(t) dt = F (x)− F (a).

We can state this equality just in terms of the antiderivative since F ′(x) ≡ d/dxF (x) = f(x),
so that if we have some function F with a continuous derivative it holds that

ˆ x

a
F ′(t) dt = F (x)− F (a). (11.3)

So from the FTC we know that (11.2) holds when f is continuous and that (11.3) holds when
F has a continuous derivative. Our first goal in this section is to show that (11.2) holds for
arbitrary Lebesgue integrable functions. The second goal is to show that (11.3 holds for a
larger class of functions than that of function with continuous derivatives. For the first goal
the following result is key

Theorem 11.1 (Lebesgue). A monotonic13 function f defined on an interval [a, b] has a
finite derivative almost everywhere on [a, b].

The proof of this theorem can be found in Kolmogorov and Fomin (1975) and uses several
lemmas about monotonic functions. This theorem is important to us because, as we have
done in the integration chapter, we can always decompose an integrable function f into its
positive and negative components

f(t) = f+(t)− f−(t),

where f+ and f− are nonnegative functions. Now, for any nonnegative function g,

G(x) =
ˆ x

a
g(t) dt,

is a nondecreasing function (and hence monotonic) since the larger x is, the larger the region
over which we integrate a positive function. Using this observation an invoking Theorem
11.1 the following theorem follows

Theorem 11.2. Let f be an integrable function on [a, b]. Then

d

dx

ˆ x

a
f(t) dt,

exists and is finite.

Hence we only miss to show it is equal to f(x), the proof of this result is more involved but
can be found in Kolmogorov and Fomin (1975), here we state it without proof.

Theorem 11.3. Let f be any integrable function on [a, b]. Then

d

dx

ˆ x

a
f(t) dt = f(x) a.e.

13A function f is nondecreasing if x1 ≤ x2 implies f(x1) ≤ f(x2) and nonincreasing if x1 ≤ x2 implies
f(x1) ≥ f(x2). A function is monotonic if it is either nondecreasing or nonincreasing.
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So we we have attained the first goal of this section (in fact we have pretty much just
presented the result and stated the the proofs behind have a lot to do with the properties of
monotonic functions, again, the proofs are in Kolmogorov and Fomin (1975)).

For our second goal we will need the concept of functions of bounded variation and a
connection with monotonic functions. Let us first define bounded variation

Definition 11.1 (Bounded variation). A function f on an interval [a, b] is said to be of
bounded variation if there is a constant C > 0 such that

n∑
k=1
|f(xk)− f(xk−1)| ≤ C,

for every partition
a = x0 < x1 < ... < xn = b,

of [a, b] by points of subdivision x0, x1, ..., xn.

Note that monotonic functions are functions of bounded variation since the sum in the
definition above will always be equal to |f(b)− f(a)|. Also, linear combinations of functions
of bounded variation are also of bounded variation. The next theorem relates functions of
bounded variation with nondecreasing functions.

Theorem 11.4. If f is of bounded variation on [a, b], then f can be represented as the
difference between two nondecreasing functions on [a, b].

This theorem has two important corollaries, one is that every function of bounded variation
has a finite derivative almost everywhere (by Theorem 11.1) and if f is integrable on [a, b],
then the indefinite integral

φ(x) =
ˆ x

a
f(t) dt,

is a function of bounded variation on [a, b]. This follows since φ can be written as the
difference of two nondecreasing functions and nondecreasing functions on [a, b] are of bounded
variation. So, let us restate our current goal, we want to find for which class of functions the
following equality holds ˆ x

a
F ′(x) = F (x)− F (a).

Of course, we need F to be differentiable a.e. for the above to make sense. We know that
any function of bounded variation satisfies this (first corollary of previous theorem). Also,
we can write equivalently

F (x) = F (a) +
ˆ x

a
F ′(x),

where the RHS is a function of bounded variation by the second corollary of the previous
theorem. Hence, the class of functions for which the equality is true must be a subset of the
class of functions of bounded variation. To characterize this subset we need to introduce the
concept of absolute continuity

Definition 11.2 (Absolute continuity). A function f defined on an interval [a, b] is said to
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be absolutely continuous on [a, b] if, given any ε > 0, there is a δ > 0 such that

n∑
k=1
|f(bk)− f(ak)| < ε

for every finite system of pairwise disjoint subintervals

(ak, bk) ⊂ [a, b] (k = 1, ..., n),

of total length
n∑
k=1

(bk − ak),

less than δ.

In fact we can change ”finite” for ”finite or countable” in the definition. Absolutely
continuous functions are a subset of uniformly continuous functions, hence they are all uni-
formly continuous but there exist uniformly continuous functions which are not absolutely
continuous. Now we introduce some useful theorem about absolutely continuous functions

Theorem 11.5. If f is absolutely continuous in [a, b], then f is of bounded variation on
[a, b]

Theorem 11.6. If f is absolutely continuous in [a, b], then f can be represented as the
difference between two absolutely continuous nondecreasing functions on [a, b].

And now the two key theorems to characterize the class of functions we are after

Theorem 11.7. The indefinite integral

F (x) =
ˆ x

a
f(t) dt.

of an integrable function f is absolutely continuous.

Theorem 11.8 (Lebesgue). If F is absolutely continuous on [a, b], then the derivative F ′ is
integrable on [a, b] and

F (x) = F (a) +
ˆ x

a
F ′(t) dt.

Finally, combining the two last theorems we get that the formula
ˆ x

a
F ′(t) dt = F (x)− F (a),

or equivalently,
F (x) = F (a) +

ˆ x

a
F ′(t),

holds for all x ∈ [a, b] if and only if F is absolutely continuous on [a, b]. This is because by
Theorem 11.8 if F is absolutely continuous the equality holds and because if the equality
holds then F has to be absolutely continuous by Theorem 11.7.
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11.2 Lebesgue decomposition

Let f be a function of bounded variation on [a, b], it can be shown that f can be represented
as

f(x) = ϕ(x) + ψ(x),

where ϕ is a continuous function and ψ is a jump function, i.e. a function with only constant
parts and jumps between these constant parts. Now define

ϕ1(x) =
ˆ x

a
ϕ′(t) dt, ϕ2(x) = ϕ(x)− ϕ1(x).

Since ϕ′ is integrable, ϕ1 is absolutely continuous (and hence continuous) by Theorem 11.7.
Since ϕ is also continuous, ϕ2 is a continuous function of bounded variation. Differentiating
ϕ2 we get

ϕ′2(x) = ϕ′(x)− d

dx

ˆ x

a
ϕ′(t) dt = 0 a.e.

We call a continuous function of bounded variation singular if its derivative is zero a.e. Since
ϕ(x) = ϕ1(x) + ϕ2(x), we have that

f(x) = ϕ1(x) + ϕ2(x) + ψ(x).

That is, we can decompose f into an absolutely continuous function ϕ1, a singular function
ϕ2 and a jump function ψ. This is called the Lebesgue decomposition. Note that

f ′(x) = ϕ′1(x) a.e.

hence, the integration of the derivative only restores the absolutely continuous component
of the function and does not leave a trace of the singular and jump components.

11.3 Abstract differentiation

Now we are ready to deal with general measure spaces (Ω,F , µ). Let f now be a measurable
and integrable function on Ω. We are interested in the set function

φ(A) =
ˆ
A
f dµ, A ∈ F .

φ(A) is countably additive, i.e. if A = ∪∞i=1Ai with A1, A2, ... pairwise disjoint measurable
sets, then

φ(A) =
∞∑
i=1

φ(Ai).

φ has all the defining properties of a measure except that it might be negative. This motivates
the next definition

Definition 11.3 (Signed measure). A countably additive set function φ defined on a σ-
algebra if subsets of a space Ω and in general taking values of both signs is called a signed
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measure or charge14 (on Ω).

Hence, a measure is a non-negative signed measure so what follows applies to measures
too. Let us classify signed measured in different types.

Definition 11.4. Let µ be a measure on a σ-algebra F of subsets of Ω, let φ be a signed
measure defined on F . Then φ is said to be concentrated on a set A ∈ F if φ(E) = 0 for
every measurable set E ⊂ Ac.

Definition 11.5. Let µ, F and φ be defined as in the previous definition. Then φ is said to
be

1. Continuous if φ(E) = 0 for every singleton set E ⊂ X of measure zero,

2. Singular if φ is concentrated on a set of measure zero,

3. Absolutely continuous (with respect to µ) if φ(E) = 0 for every measurable set E such
that µ(E) = 0. This is sometimes denoted as φ << µ.

At this point it is natural to wonder whether there is a relationship between absolute conti-
nuity of a function on the real line and absolute continuity of signed measures (or measures).
As usual, they are related through the particular choice of the Lebesgue measure λ. In fact,
any finite measure µ on Borel sets of the real line is absolutely continuous with respect to
the Lebesgue measure if and only if the function

F (x) = µ((−∞, x]),

is an absolutely continuous real function.
Note that in general, for an integrable function f , the abstract integral

φ(E) =
ˆ
E
f dµ,

is absolutely continuous with respect to the measure µ. The next fundamental result tells
us that any signed measure (or measure) which is absolutely continuous with respect to a
measure µ can be written in the form above.

Theorem 11.9 (Radon-Nikodym). Let µ be a σ-finite measure defined on a σ-algebra F of
subsets of Ω, let φ be a σ-finite signed measure (or measure) defined on F . Suppose φ << µ.
Then, there exists an integrable function ϕ on Ω such that

φ(E) =
ˆ
E
ϕdµ,

for every E ∈ F . The function ϕ is unique up to values on a set of µ-measure zero.

The function ϕ is called the Radon-Nikodym derivative (or just density) of the signed
measure (or measure) φ with respect to µ, it is usually denoted by dφ/dµ.

14This name is analogous to how a surface carrying electrical charge can be divided into a region with
positive charge and one with negative charge.
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Example 11.1. Let (Ω,F) = ([0, 1],B([0, 1])) and µ = 2λ where λ is the Lebesgue measure.
Clearly, µ << λ and

µ(E) = 2λ(E) =
ˆ
E

2 dλ,

so dµ/dλ = 2.

Example 11.2. Let (Ω,F) = ([0, 1],B([0, 1])) and µ = λ + δ0 where λ is the Lebesgue
measure and δ0 is the Dirac measure giving point mass at {0}. Clearly, λ << µ and

λ(E) = λ(E ∩ Ω \ {0}) + δ0(E ∩ Ω \ {0}) =
ˆ
E
1Ω\{0} dµ,

so dλ/dµ = 1Ω\{0}.

Notice that the equality in the Theorem can be written as

φ(E) =
ˆ
E

dφ

dµ
dµ,

pointing out that the Radon-Nikodym derivative is a generalization of Theorem 11.8 which
states that an absolutely continuous function is the integral of its own derivative (up to a
constant). The Radon-Nikodym theorem however does not give you a way of computing the
derivatives, it just gives you existence and a.e. uniqueness of the derivative. Usually, the
Radon-Nikodym derivative is computed by solving the functional equation in the theorem
where ϕ is unknown. Unfortunately there is no cookbook to solve this functional equation
since it varies a lot from case to case. However, the Radon-Nikodym derivative at a point
x0 could be explicitly calculated by solving

lim
ε→0

φ(Aε
µ(Aε)

,

where Aε is a system of measurable subsets converging to {x0}. This construction gives us
the usual interpretation of the derivative being the instantaneous change in the set function
φ from an instantaneous change in the measure µ. The theorem gives us the interpretation
that a set function can be recovered from integrating all its instantaneous changes.

Finally, it can be shown that for any σ-finite signed measure φ and σ-finite measure µ,
φ can be decomposed as

φ = φA + φS + φD,

where φA << µ, φS is singular and φD is a discrete. This decomposition is analogous to the
Lebesgue decomposition for functions and also carries the consequence that by applying the
Radon-Nikodym Theorem to only the absolutely continuous part we retrieve the absolutely
continuous part of the signed measure.

12 Random variables

We are finally ready to go back to probability theory and study what random variables (RVs)
are. As we will see everything boils down to a special case of all the theory we have seen
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about measurable functions, abstract integration and abstract differentiation. Therefore, it
is advised to go back to the general concepts whenever a concept is said to be a particular
case of a more general concept. If you have not read the sections and concepts marked with
* (for example the whole section on differentiation) do not worry. While helpful to get a
deeper understanding of what comes next is not essential in order to follow it.

The motivation behind RVs comes from the fact that you might not be interested in
every possible outcome ω ∈ Ω. For instance, if your random experiment consists on tossing
a coin 10 times, you might not be interested in the exact sequence of heads and tails but
just in how many heads turn up. Note that every outcome ω gives you a specific sequence
of heads and tail and hence, the number of heads will be a function of ω. There are cases
where the random experiment is much more complicated and you want to define RVs to
focus on something simpler. For instance, if your random experiment is the economy in the
years 2021-2022 you might just want to look at inflation and not at every possible outcome
of the economy. If your random experiment is the weather, you might just be interested in
temperature.

As we will see, RVs are functions defined on Ω. Hence, the name ”random variable” is
somewhat unsatisfactory since random variables are a deterministic function of ω and hence
not random and they are functions not variables. The only randomness comes in the choice
of ω, but the functions are deterministic.

12.1 Definition and c.d.f.

Definition 12.1 (Random variable). A random variable on the probability space (Ω,F ,P)
is an F-measurable function X : Ω→ R.

We use capital letters to denote RVs, e.g. X, but we use lower case letters to denote real-
izations, i.e. x = X(ω). So RVs are just a special case of measurable functions, they are
measurable functions defined on a probability space. Ultimately we want to assign probabil-
ities to events A ∈ F , this is why we require RVs to be measurable. This motivation can be
seen in the next definition.

Definition 12.2 (Probability law). The probability law of a RV X, PX : B → [0, 1] is defined
for each Borel set as

PX(B) ≡ P(X−1(B)) = P({ω ∈ Ω : X(ω) ∈ B}).

The probability law of a RV X takes a subset of R (some Borel set) and tells you what is the
probability that the RV X takes a value in B. To do this it exploits that RVs are measurable
so that the pre-image of B (under X) is an event, i.e. a set belonging in the σ-algebra on
which we have a probability measure P defined. The probability law is a particular case of
an induced measure, it can be written as PX = P ◦X−1.

Theorem 12.1. (R,B(R),PX) is a probability space.

Proof. (Exercise, hint: X is a measurable function and P is a measure.)
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Once you have (R,B(R),PX) and if you are interested only on the RV X, then you do not
need the original probability space (Ω,F ,P) anymore since you already have a complete
probabilistic description on R. However, this probabilistic description is still quite involved
since it requires to know PX for all possible Borel sets, for instance it requires to know
PX for weird Borel sets such as the Cantor set. Fortunately, we can simplify further the
probabilistic description. To do this we introduce the concept of a Cumulative Distribution
function (c.d.f.).

Definition 12.3 (C.D.F). Given a RV X, its c.d.f. at x ∈ R is given by

FX(x) = PX((−∞, x]) = P({ω ∈ Ω : X(ω) ≤ x}).

Note that (−∞, x]) is a Borel set for all x ∈ R FX(x) is well-defined. With quite an abuse of
notation, from now on when we write P(X ≤ x) we mean P({ω ∈ Ω : X(ω) ≤ x}) and when
we write P(X ∈ B) we mean P({ω ∈ Ω : X(ω) ∈ B}).

It turns out (quite amazingly) that the c.d.f. of X determines uniquely PX for all Borel
sets. So even though PX seems much more general, we can work with FX and still have
a full probabilistic description. Intuitively this is because the c.d.f. gives the probability
measure of a generating class of B(R), i.e. it can be proven that the σ-algebra generated by
{(−∞, x] : x ∈ R} is the Borel σ-algebra.

*The mathematical result behind this very powerful fact is the π-λ theorem, which if
applied to probability states that if two probability laws agree on a π-system15, then they
agree on the σ-algebra generated by the π-system. It turns out that the set {(−∞, x] : x ∈ R}
is a π-system so that if FX = FY then PX = PY . For those who have read the Caratheodory’s
extension theorem: algebras are π-systems so the π-λ theorem can be used in its proof.

Hence, stating this in a theorem

Theorem 12.2. The c.d.f. FX of a RV X uniquely specifies the probability law PX .

from now on we can just work with the c.d.f.
15A π-system T on a set Ω is a non-empty collection of subset of Ω such that if A ∈ T and B ∈ T , then

A ∩B ∈ T .
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12.2 Discrete Random Variables

12.3 Continuous Random Variables

12.4 σ-algebras generated by random variables

12.5 Several Random variables

12.6 Independent Random variables

13 Transformation of Random Variables

14 Conditional Expectation

15 Moment Generating function and Characteristic function

16 Concentration Inequalities

Concentration inequalities give you probability bounds on r.v.s taking values in some range.
This why they are called concentration inequalities, since it is about probability concentrating
in some range. I follow Wainwright (2019) very closely.

Proposition 16.1 (Markov’s Inequality). If X is a non-negative r.v. with E[X] <∞, then
for any α > 0,

P(X > α) ≤ E[X]
α

.

Proof.

E[X] = E[X1(X ≤ α)]︸ ︷︷ ︸
≥0

+E[X1(X > α)] ≥ E[X1(X > α)] ≥ αE[1(X > α)] = αP(X > α).

Note that this is only useful for α > E[X], otherwise the RHS above is 1. This is a
very loose inequality. It just says that the probability of being above α decays at rate 1/α.
However, this probability often decays much faster. If we add further assumptions we can
get faster rates. For instance, assuming finite variance (or finite second moment) we get the
following

Proposition 16.2 (Chebyshev’s Inequality). If X is a r.v. with mean µ and variance
σ2 <∞, then for any α > 0

P(|X − µ| > α) ≤ σ2

α2

Alternatively, we can write the result as P(|X −µ| > ασ) ≤ 1/α2, which tells us that the
probability that |X − µ| is α times the standard deviation, decays at rate 1/α2. The proof
follows from applying the Markov Inequality to the r.v. |X−µ|2. Still, Chebyshev’s Inequality
is not very sharp. Assuming the existence of the expectation of increasing transformations
of X increases our decay rates.
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Proposition 16.3 (Extended Markov Inequality). If ϕ(·) is a monotone increasing non-
negative function on the positive reals, X is a r.v. with E[ϕ(X)] <∞, then

P(X ≥ a) ≤ E[ϕ(X)]
ϕ(a) .

The proof follows from the fact that P(X ≥ a) = P(ϕ(X) ≥ ϕ(a)) and from applying
Markov’s Inequality to r.v. ϕ(X). This result allows us to find much sharper bounds. For
instance, if X has a m.g.f., meaning that for some b > 0, ϕX(λ) = E[eλX ] exists for λ ≤ |b|,
we can get exponential decays, for instance

P[(X − µ) ≥ t] = P(eλ(X−µ) ≥ eλt) ≤ E[eλ(X−µ)]
eλt

,

and we can choose λ as to make the bound as sharp as possible to get the Chernoff bound.

Proposition 16.4 (Chernoff bound). Let X be a r.v. such that E[eλ(X−µ)] <∞ for λ ≤ |b|,
then

logP[(X − µ) ≥ t] ≤ inf
λ∈[0,b]

(
logE[eλ(X−µ)]− λt

)
. (16.1)

Of course, the λ which gives the sharpest bound depends on b, an example in which the
m.g.f exists for any λ ∈ R is the Gaussian case.

16.1 Sub-Gaussian variables and Hoeffding bounds

Let X ∼ N (µ, σ2), the m.g.f. is

E[eλX ] = eµλ+σ2λ2
2 , for all λ ∈ R.

The Chernoff bound tells us that it is natural to classify random variables according to the
growth rate of their m.g.f. since the tail bounds depend on this growth rate. The simplest
classification is that of sub-Gaussian random variables. For our Gaussian X, taking the
infimum in (16.1) over the set λ ≥ 0, yields

inf
λ≥0

(
logE[eλ(X−µ)]− λt

)
= inf

λ≥0

(
λ2σ2

2 − λt
)

= − t2

2σ2 .

Where we just plugged in the λ which makes the first derivative with respect to λ zero. This
means that if X ∼ N (µ, σ2), then we have the following upper deviation inequality for all
t ≥ 0

P(X ≥ µ+ t) ≤ e−
t2

2σ2 . (16.2)

This motivates the definition of sub-Gaussian random variables

Definition 16.1 (Sub-Gaussian random variables). A random variable X with mean µ =
E[X] is sub-Gaussian if there is a positive number σ such that for all λ ∈ R

E[eλ(X−µ)] ≤ e
σ2λ2

2 .
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Here, σ is called the sub-Gaussian parameter. By the arguments before, it follows that
any sub-Gaussian r.v. X with sub-Gaussian parameter σ (and mean µ) satisfies (16.2), since
for such a r.v. and for all λ ∈ R (repeating the same arguments as before)

P(X − µ ≥ t) = P(eλ(X−µ) ≥ eλt)

≤ E[eλ(X−µ)]
eλt

≤ e
σ2λ2

2

eλt
,

where in the first inequality we use Markov and in the second the fact that X is sub-Gaussian
with sub-Gaussian parameter σ. Then, following the arguments of the Chernoff bound

logP(X ≥ µ+ t) ≤ inf
λ≥0

σ2λ2

2 − λt

= − t2

2σ2 ,

so
P(X ≤ µ+ t) ≤ e

−t2
2σ2 .

It also follows that the r.v. −X is sub-Gaussian if and only if X is sub-Gaussian since,
letting Z = −X for all λ̃ ∈ R

E[eλ(Z−E[Z])] = E[eλ(−X+µ)]

= E[eλ̃(X−µ)]

≤ e
σ2λ̃

2 ,

where in the first equality we let λ̃ = −λ (i.e. the statement holds for all λ ∈ R and hence
for all λ̃ ∈ R. This shows that if X is sub-Gaussian then −X is sub-Gaussian, the converse
follows using the same logic. The fact that −X is also sub-Gaussian with parameter σ allows
us to show a lower deviation inequality for X

P(X ≤ µ− t) = P(−X ≥ −µ+ t)

≤ e
−t2
2σ2 ,

where to get the inequality we again apply sub-Gaussianity together with the Chernoff bound.
This discussion allows us to prove the following concentration inequality

P(|X − µ| ≥ t) ≤ 2e
−t2
2σ2 for all t ∈ R.
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This concentration inequality follows since

P(|X − µ| ≥ t) = P({X − µ ≤ −t} ∪ {X − µ ≥ t})

= P(X − µ ≤ −t) + P(X − µ ≥ t)

≤ 2e
−t2
2σ2 ,

where in the second equality we use that the intersection of the two sets is empty. Now we
are going to cover examples of important random variables (we will see later why they are
important) which are sub-Gaussian but not Gaussian variables themselves.

Example 16.1 (Rademacher r.v.s). A Rademacher r.v. ε is a r.v. taking values 1 and −1
with P(ε = 1) = P(ε = −1) = 1/2. Note that E[ε] = 0, the first thing we do is to compute its
m.g.f. (all equalities are explained below)

E[eλε] = 1
2(eλ + e−λ)

= 1
2

( ∞∑
k=0

λk

k! +
∞∑
k=0

(−λ)k

k!

)

=
∞∑
k=0

λ2k

(2k)!

≤
∞∑
k=0

λ2k

2kk!

= e
λ2
2 .

The first equality follows from the law of total expectation. The second equality follows
form the Taylor series of eλ and e−λ 16. The third equality follows from the fact that when
the exponent is odd the expression is 0, so only even terms survive. The first inequality
follows since (2K)!/K! ≥ 2K for all K ∈ N (you can prove this by induction) so that
[(2K)!/K!]K! = (2K)! ≥ 2KK! and the last equality follows because of the Taylor series17.
Hence, E[eλε] ≤ e

σ2λ2
2 with sub-Gaussian parameter σ = 1.

Example 16.2 (Bounded random variables). Let X be a r.v. with zero mean (otherwise
consider a centered version) which takes values in a bounded interval [a, b]. Also let X ′ be an
independent copy of X (i.e. X and X ′ are two independent r.v.s which are identically dis-
tributed). Let EX and EX′ be the expectation operators with respect to X and X ′ respectively.
Then, since EX′ [X ′] = 0 we have that

EX [eλX ] = EX [eλ(X−EX′ [X′])]

= EX [eEX′ [λ(X−X′)]]

≤ EX,X′ [eλ(X−X′)].

16The Taylor series of eλ at λ = 0 (Maclaurin series) is e0 + eλ|λ=0λ+ eλ/2!|λ=0λ
2 + ... = 1 + λ+ λ2/2! +

λ3/3! + ... =
∑∞

k=0 λ
k/k!.

17Define z = λ2, then do the Taylor series of of ez/2 at z = 0 and you will get
∑

k=0 z
k/(2kk!), replace z

with λ2 and you have it.
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In the second equality we use independence (which implies EX′ [X] = X) and the inequality
follows from Jensen’s inequality (the exponential is a convex function). Now we note that
X −X ′ has the same distribution as ε(X −X ′) (and hence the same expectation) where ε is
an independent Rademacher r.v.18, then

EX,X′ [eλ(X−X′)] = EX,X′ [Eε[eλε(X−X
′)]]

≤ EX,X′ [e
λ2(X−X′)2

2 ],

where the inequality follows from Example 16.1 where what was there λ now is λ(X −X ′).
Now, since X can only take values in [a, b], X −X ′ ≤ b− a and hence

EX,X′ [e
λ2(X−X′)2

2 ] ≤ e
λ2(b−a)2

2 .

Hence we have shown that X is a sub-Gaussian r.v. with sub-Gaussian parameter of at most
σ = b − a. We say at most since in fact we can get a sharper inequality and show that the
m.g.f is also bounded by (b− a)/2 (see Exercise 2.4 in Wainwright (2019)).

The trick of using an independent copy X ′ and an independent Rademacher r.v. ε is a
very useful trick called symmetrization which is used in many contexts. Most times we are
interested in bounding sums of independent variables, to do this a useful result is that sub-
Gaussianity is preserved by linear operations, i.e. ifX1 andX2 are independent sub-Gaussian
r.v.s. with parameters σ1 and σ2, then X1 +X2 is sub-Gaussian with parameter

√
σ2

1 + σ2
2.

This leads to the following important upper deviation inequality called the Hoeffding bound

Proposition 16.5 (Hoeffding bound). Let X1, X2, ..., Xn be independent sub-Gaussian r.v.s
where Xi, i = 1, ..., n, with mean µi and sub-Gaussian parameter σi, then, for all t ≥ 0

P
( n∑
i=1

(Xi − µi) ≥ t
)
≤ exp

(
− t2

2
∑n
i=1 σ

2
i

)
.

By the same arguments as before we can also get the following concentration inequality.
Bounded r.v.s. are a particular case, if Xi ∈ [a, b] for all i = 1, ..., n, then the Hoeffding bound
yield (taking the sub-Gaussian parameter σ = (b − a)/2 from Exercise 2.4 in Wainwright
(2019))

P
( n∑
i=1

(Xi − µi) ≥ t
)
≤ exp

(
− 2t2

n(b− a)2

)
.

In many sources (e.g. Wikipedia) the Hoeffding bound is stated as the one above, i.e. for
bounded r.v.s. However, as we have seen, this bound applies more generally to sub-Gaussian
r.v.s. Finally, by the same arguments as before we can also get the following concentration
inequality

P
(∣∣∣∣ n∑
i=1

(Xi − µi)
∣∣∣∣ ≥ t) ≤ 2exp

(
− t2

2
∑n
i=1 σ

2
i

)
.

18Fε(X−X′)(x) = P(ε(X −X ′) ≤ x) = P((X −X ′) ≤ x | ε = 1)(1/2) + P((X ′ −X) ≤ x | ε = −1)(1/2) =
(1/2)(P((X − X ′) ≤ x) + P((X ′ − X) ≤ x)) = P(X − X ′ ≤ x). Where we use independence of ε and the
symmetry together with identical distribution of X and X ′.
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17 Convergence of Random Variables

Let (Ω,F ,P) be a probability space and X1, X2, ... be a sequence of r.v.s.

Definition 17.1 (Pointwise or sure convergence). The sequence {Xn, n = 1, 2, ...} is said to
converge pointwise or surely to X, Xn →pw X, if

Xn(ω)→ X(ω) for all ω ∈ Ω as n→∞.

Note that for a fixed ω ∈ Ω, {Xn(ω), n = 1, 2, ...} is just a sequence of real numbers.
Remember that that a sequence of real numbers {an, n = 1, 2, ...} is said to converge to a,
written as an → a or limn→∞ an = a, iff for any ε > 0, there exists N ≥ 1 such that for all
n > N , |an − a| < ε. In fact, Xn(ω)→ X(ω) for all ω ∈ Ω is exactly pointwise convergence
of functions19. Most of the times this is a very strong notion of convergence. This is because
it also requires convergence in sets with probability 0. Hence, it is rarely used. Note that a
technicality which we do not show here is that for the definition to make sense one would
have to show that the limit of a sequence of measurable functions is measurable, i.e. if
X1, X2, ... are r.v.s so is X. Now we define a convergence notion which allows convergence
not to happen in probability zero events.

Definition 17.2 (Almost sure or wp1 convergence). Xn converges to X almost surely or
wp1, Xn →a.s. X, if Xn(ω)→ X(ω) on a set of probability 1, that is

P
(
{ω : Xn(ω)→ X(ω)}

)
= 1.

Sometimes this is also called strong convergence. Here there is also a technicality, for the
above to make sense we need {ω : Xn(ω) → X(ω)} to be an event (i.e. to be measurable,
to be an element of F , etc...). To do this one can show that the event is a countable
union/intersection of events, we do not do it here but the reader is encouraged to do it. We
now define a weaker concept of convergence which is widely used.

Definition 17.3 (Convergence in probability). Xn converges in probability to X, Xn →p X,
if for all ε > 0

lim
n→∞

P
(
|Xn −X| > ε

)
= 0.

Note that a.s. convergence and convergence in probability are very different. In a.s.
convergence, the limit is inside the probability while in convergence in probability the limit
is outside of the probability. In fact, it could be said that convergence of Xn in probability
is not the most suitable name for this concept since it is not really Xn that is converging
but a sequences of probabilities. In fact, there might be sets with probability strictly greater
than 0 in which Xn(ω) and X(ω) are not ”close”. What we really have is that the sequence
Pn(ε) → 0 where Pn(ε) ≡ P(|Xn − X| > ε). In contrast, a.s. convergence does refer to
convergence of the sequence X1, X2, .... We will later show that a.s. convergence implies

19A sequence of functions {fn, n = 1, 2, ...} with domain D and codomain C is said to converge pointwise
to some function f : D 7→ C iff limn→∞ fn(x) = f(x) for all x ∈ D.
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convergence in probability but not the other way around, meaning a.s. convergence is a
stronger concept of convergence.

Definition 17.4 (Convergence in r-th mean). Xn converges to X in r-th mean, Xn →r−th

X, if
lim
n→∞

E[|Xn −X|r] = 0.

For r = 2, Xn is said to converge in mean-squared sense.

Definition 17.5 (Convergence in distribution). Xn converges to X in distribution, Xn →d

X or Xn  X, if

lim
n→∞

FXn(x) = FX(x) for all x where FX(x) is continuous.

Convergence in distribution is also called weak convergence since, as we will show it is
the weakest form of convergence. Again, this is really convergence of a sequence of c.d.f.s
not really convergence of a sequence of r.v.s, that is Xn and X might be far but have close
c.d.fs. Now we state the hierarchy between these convergence notions and in the proofs it
will be clear what we mean when we say that for some of them we do not require Xn and X
to be ”close”.

Proposition 17.1 (Hierarchy of Convergence modes). Do GRAPH.

1. Xn →pw X implies Xn →a.s. X,

2. Xn →a.s. X implies Xn →p X,

3. Xn →p X implies Xn →d X

4. Xn →r−th X for r ≥ 1 implies Xn →p X

Any other relationship does not hold.

To prove the above proposition we need to prove three implications asides from sure
convergence implying a.s. convergence which is direct. We also have to provide five coun-
terexamples. So let’s start doing this in turn.

Proof: Xn →r−th X implies Xn →p X for r ≥ 1. We use Markov’s Inequality:

P
(
|Xn −X| > ε

)
= P

(
|Xn −X|r > εr

)
≤ E[|Xn −X|r]

εr
,

so
lim
n→∞

P
(
|Xn −X| > ε

)
≤ lim

n→∞
E[|Xn −X|r]

εr
= 0

Proof: Xn →p X implies Xn →d X. Note that

FXn(x) = P(Xn ≤ x) = P(Xn ≤ x,X ≤ x+ ε) + P(Xn ≤ x,X > x+ ε)

≤ FX(x+ ε) + P(|Xn −X| > ε).
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Where the inequality comes from the fact that {Xn ≤ x} ∩ {X ≤ x + ε} ⊆ {X ≤ x + ε}
and that {Xn ≤ x} ∩ {X > x + ε} ⊆ {|Xn − X| > ε}. Similarly, we can show that
FX(x− ε) ≤ FXn(x) + P(|X −Xn| > ε). Putting the two inequalities together we get

FX(x− ε)− P(|X −Xn| > ε) ≤ FXn(x) ≤ FX(x+ ε) + P(|Xn −X| > ε).

As n→∞ the above becomes

FX(x− ε) ≤ FXn(x) ≤ FX(x+ ε).

So, by sending ε→ 0 we get that FXn(x)→ FX(x) if FX is continuous at x.

18 Law of Large Numbers

19 Central Limit Theorem
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