# include # include # include # include # include using namespace std; # include "asa005.hpp" //****************************************************************************80 double alnorm ( double x, bool upper ) //****************************************************************************80 // // Purpose: // // ALNORM computes the cumulative density of the standard normal distribution. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 January 2008 // // Author: // // Original FORTRAN77 version by David Hill. // C++ version by John Burkardt. // // Reference: // // David Hill, // Algorithm AS 66: // The Normal Integral, // Applied Statistics, // Volume 22, Number 3, 1973, pages 424-427. // // Parameters: // // Input, double X, is one endpoint of the semi-infinite interval // over which the integration takes place. // // Input, bool UPPER, determines whether the upper or lower // interval is to be integrated: // .TRUE. => integrate from X to + Infinity; // .FALSE. => integrate from - Infinity to X. // // Output, double ALNORM, the integral of the standard normal // distribution over the desired interval. // { double a1 = 5.75885480458; double a2 = 2.62433121679; double a3 = 5.92885724438; double b1 = -29.8213557807; double b2 = 48.6959930692; double c1 = -0.000000038052; double c2 = 0.000398064794; double c3 = -0.151679116635; double c4 = 4.8385912808; double c5 = 0.742380924027; double c6 = 3.99019417011; double con = 1.28; double d1 = 1.00000615302; double d2 = 1.98615381364; double d3 = 5.29330324926; double d4 = -15.1508972451; double d5 = 30.789933034; double ltone = 7.0; double p = 0.398942280444; double q = 0.39990348504; double r = 0.398942280385; bool up; double utzero = 18.66; double value; double y; double z; up = upper; z = x; if ( z < 0.0 ) { up = !up; z = - z; } if ( ltone < z && ( ( !up ) || utzero < z ) ) { if ( up ) { value = 0.0; } else { value = 1.0; } return value; } y = 0.5 * z * z; if ( z <= con ) { value = 0.5 - z * ( p - q * y / ( y + a1 + b1 / ( y + a2 + b2 / ( y + a3 )))); } else { value = r * exp ( - y ) / ( z + c1 + d1 / ( z + c2 + d2 / ( z + c3 + d3 / ( z + c4 + d4 / ( z + c5 + d5 / ( z + c6 )))))); } if ( !up ) { value = 1.0 - value; } return value; } //****************************************************************************80 double prncst ( double st, int idf, double d, int *ifault ) //****************************************************************************80 // // Purpose: // // PRNCST computes the lower tail of noncentral T distribution. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 January 2008 // // Author: // // Original FORTRAN77 version by BE Cooper. // C++ version by John Burkardt. // // Reference: // // BE Cooper, // Algorithm AS 5: // The Integral of the Non-Central T-Distribution, // Applied Statistics, // Volume 17, Number 2, 1968, page 193. // // Parameters: // // Input, double ST, the argument. // // Input, int IDF, the number of degrees of freedom. // // Input, double D, the noncentrality parameter. // // Output, int *IFAULT, error flag. // 0, no error occurred. // nonzero, an error occurred. // // Output, double PRNCST, the value of the lower tail of // the noncentral T distribution. // // Local Parameters: // // Local, double G1, 1.0 / sqrt(2.0 * pi) // // Local, double G2, 1.0 / (2.0 * pi) // // Local, double G3, sqrt(2.0 * pi) // { double a; double ak; double b; double da; double drb; double emin = 12.5; double f; double fk; double fkm1; double fmkm1; double fmkm2; double g1 = 0.3989422804; double g2 = 0.1591549431; double g3 = 2.5066282746; int ioe; int k; double rb; double sum; double value; f = ( double ) ( idf ); // // For very large IDF, use the normal approximation. // if ( 100 < idf ) { *ifault = 1; a = sqrt ( 0.5 * f ) * exp ( lgamma ( 0.5 * ( f - 1.0 ) ) - lgamma ( 0.5 * f ) ) * d; value = alnorm ( ( st - a ) / sqrt ( f * ( 1.0 + d * d ) / ( f - 2.0 ) - a * a ), false ); return value; } *ifault = 0; ioe = ( idf % 2 ); a = st / sqrt ( f ); b = f / ( f + st * st ); rb = sqrt ( b ); da = d * a; drb = d * rb; if ( idf == 1 ) { value = alnorm ( drb, true ) + 2.0 * tfn ( drb, a ); return value; } sum = 0.0; if ( fabs ( drb ) < emin ) { fmkm2 = a * rb * exp ( - 0.5 * drb * drb ) * alnorm ( a * drb, false ) * g1; } else { fmkm2 = 0.0; } fmkm1 = b * da * fmkm2; if ( fabs ( d ) < emin ) { fmkm1 = fmkm1 + b * a * g2 * exp ( - 0.5 * d * d ); } if ( ioe == 0 ) { sum = fmkm2; } else { sum = fmkm1; } ak = 1.0; fk = 2.0; for ( k = 2; k <= idf - 2; k = k + 2 ) { fkm1 = fk - 1.0; fmkm2 = b * ( da * ak * fmkm1 + fmkm2 ) * fkm1 / fk; ak = 1.0 / ( ak * fkm1 ); fmkm1 = b * ( da * ak * fmkm2 + fmkm1 ) * fk / ( fk + 1.0 ); if ( ioe == 0 ) { sum = sum + fmkm2; } else { sum = sum + fmkm1; } ak = 1.0 / ( ak * fk ); fk = fk + 2.0; } if ( ioe == 0 ) { value = alnorm ( d, true ) + sum * g3; } else { value = alnorm ( drb, true ) + 2.0 * ( sum + tfn ( drb, a ) ); } return value; } //****************************************************************************80 void student_noncentral_cdf_values ( int *n_data, int *df, double *lambda, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // STUDENT_NONCENTRAL_CDF_VALUES returns values of the noncentral Student CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = NoncentralStudentTDistribution [ df, lambda ] // CDF [ dist, x ] // // Mathematica seems to have some difficulty computing this function // to the desired number of digits. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int *DF, double *LAMBDA, the parameters of the // function. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 30 int df_vec[N_MAX] = { 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 15, 20, 25, 1, 2, 3, 10, 10, 10, 10, 10, 10, 10, 10, 10 }; double fx_vec[N_MAX] = { 0.8975836176504333E+00, 0.9522670169E+00, 0.9711655571887813E+00, 0.8231218864E+00, 0.9049021510E+00, 0.9363471834E+00, 0.7301025986E+00, 0.8335594263E+00, 0.8774010255E+00, 0.5248571617E+00, 0.6293856597E+00, 0.6800271741E+00, 0.20590131975E+00, 0.2112148916E+00, 0.2074730718E+00, 0.9981130072E+00, 0.9994873850E+00, 0.9998391562E+00, 0.168610566972E+00, 0.16967950985E+00, 0.1701041003E+00, 0.9247683363E+00, 0.7483139269E+00, 0.4659802096E+00, 0.9761872541E+00, 0.8979689357E+00, 0.7181904627E+00, 0.9923658945E+00, 0.9610341649E+00, 0.8688007350E+00 }; double lambda_vec[N_MAX] = { 0.0E+00, 0.0E+00, 0.0E+00, 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 1.0E+00, 1.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 4.0E+00, 4.0E+00, 4.0E+00, 7.0E+00, 7.0E+00, 7.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 2.0E+00, 3.0E+00, 4.0E+00 }; double x_vec[N_MAX] = { 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 3.00E+00, 15.00E+00, 15.00E+00, 15.00E+00, 0.05E+00, 0.05E+00, 0.05E+00, 4.00E+00, 4.00E+00, 4.00E+00, 5.00E+00, 5.00E+00, 5.00E+00, 6.00E+00, 6.00E+00, 6.00E+00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *df = 0; *lambda = 0.0; *x = 0.0; *fx = 0.0; } else { *df = df_vec[*n_data-1]; *lambda = lambda_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double tfn ( double x, double fx ) //****************************************************************************80 // // Purpose: // // TFN calculates the T-function of Owen. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 January 2008 // // Author: // // Original FORTRAN77 version by JC Young, Christoph Minder. // C++ version by John Burkardt. // // Reference: // // MA Porter, DJ Winstanley, // Remark AS R30: // A Remark on Algorithm AS76: // An Integral Useful in Calculating Noncentral T and Bivariate // Normal Probabilities, // Applied Statistics, // Volume 28, Number 1, 1979, page 113. // // JC Young, Christoph Minder, // Algorithm AS 76: // An Algorithm Useful in Calculating Non-Central T and // Bivariate Normal Distributions, // Applied Statistics, // Volume 23, Number 3, 1974, pages 455-457. // // Parameters: // // Input, double X, FX, the parameters of the function. // // Output, double TFN, the value of the T-function. // { # define NG 5 double fxs; int i; double r[NG] = { 0.1477621, 0.1346334, 0.1095432, 0.0747257, 0.0333357 }; double r1; double r2; double rt; double tp = 0.159155; double tv1 = 1.0E-35; double tv2 = 15.0; double tv3 = 15.0; double tv4 = 1.0E-05; double u[NG] = { 0.0744372, 0.2166977, 0.3397048, 0.4325317, 0.4869533 }; double value; double x1; double x2; double xs; // // Test for X near zero. // if ( fabs ( x ) < tv1 ) { value = tp * atan ( fx ); return value; } // // Test for large values of abs(X). // if ( tv2 < fabs ( x ) ) { value = 0.0; return value; } // // Test for FX near zero. // if ( fabs ( fx ) < tv1 ) { value = 0.0; return value; } // // Test whether abs ( FX ) is so large that it must be truncated. // xs = - 0.5 * x * x; x2 = fx; fxs = fx * fx; // // Computation of truncation point by Newton iteration. // if ( tv3 <= log ( 1.0 + fxs ) - xs * fxs ) { x1 = 0.5 * fx; fxs = 0.25 * fxs; for ( ; ; ) { rt = fxs + 1.0; x2 = x1 + ( xs * fxs + tv3 - log ( rt ) ) / ( 2.0 * x1 * ( 1.0 / rt - xs ) ); fxs = x2 * x2; if ( fabs ( x2 - x1 ) < tv4 ) { break; } x1 = x2; } } // // Gaussian quadrature. // rt = 0.0; for ( i = 0; i < NG; i++ ) { r1 = 1.0 + fxs * pow ( 0.5 + u[i], 2 ); r2 = 1.0 + fxs * pow ( 0.5 - u[i], 2 ); rt = rt + r[i] * ( exp ( xs * r1 ) / r1 + exp ( xs * r2 ) / r2 ); } value = rt * x2 * tp; return value; # undef NG } //****************************************************************************80 void timestamp ( void ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }