# include # include # include # include # include using namespace std; # include "asa032.hpp" //****************************************************************************80 double gamain ( double x, double p, int *ifault ) //****************************************************************************80 // // Purpose: // // GAMAIN computes the incomplete gamma ratio. // // Discussion: // // A series expansion is used if P > X or X <= 1. Otherwise, a // continued fraction approximation is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 June 2014 // // Author: // // Original FORTRAN77 version by G Bhattacharjee. // C++ version by John Burkardt. // // Reference: // // G Bhattacharjee, // Algorithm AS 32: // The Incomplete Gamma Integral, // Applied Statistics, // Volume 19, Number 3, 1970, pages 285-287. // // Parameters: // // Input, double X, P, the parameters of the incomplete // gamma ratio. 0 <= X, and 0 < P. // // Output, int *IFAULT, error flag. // 0, no errors. // 1, P <= 0. // 2, X < 0. // 3, underflow. // 4, error return from the Log Gamma routine. // // Output, double GAMAIN, the value of the incomplete gamma ratio. // { double a; double acu = 1.0E-08; double an; double arg; double b; double dif; double factor; double g; double gin; int i; double oflo = 1.0E+37; double pn[6]; double rn; double term; double uflo = 1.0E-37; double value; *ifault = 0; // // Check the input. // if ( p <= 0.0 ) { *ifault = 1; value = 0.0; return value; } if ( x < 0.0 ) { *ifault = 2; value = 0.0; return value; } if ( x == 0.0 ) { *ifault = 0; value = 0.0; return value; } g = lgamma ( p ); arg = p * log ( x ) - x - g; if ( arg < log ( uflo ) ) { *ifault = 3; value = 0.0; return value; } *ifault = 0; factor = exp ( arg ); // // Calculation by series expansion. // if ( x <= 1.0 || x < p ) { gin = 1.0; term = 1.0; rn = p; for ( ; ; ) { rn = rn + 1.0; term = term * x / rn; gin = gin + term; if ( term <= acu ) { break; } } value = gin * factor / p; return value; } // // Calculation by continued fraction. // a = 1.0 - p; b = a + x + 1.0; term = 0.0; pn[0] = 1.0; pn[1] = x; pn[2] = x + 1.0; pn[3] = x * b; gin = pn[2] / pn[3]; for ( ; ; ) { a = a + 1.0; b = b + 2.0; term = term + 1.0; an = a * term; for ( i = 0; i <= 1; i++ ) { pn[i+4] = b * pn[i+2] - an * pn[i]; } if ( pn[5] != 0.0 ) { rn = pn[4] / pn[5]; dif = fabs ( gin - rn ); // // Absolute error tolerance satisfied? // if ( dif <= acu ) { // // Relative error tolerance satisfied? // if ( dif <= acu * rn ) { value = 1.0 - factor * gin; break; } } gin = rn; } for ( i = 0; i < 4; i++ ) { pn[i] = pn[i+2]; } if ( oflo <= fabs ( pn[4] ) ) { for ( i = 0; i < 4; i++ ) { pn[i] = pn[i] / oflo; } } } return value; } //****************************************************************************80 void gamma_inc_values ( int *n_data, double *a, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // GAMMA_INC_VALUES returns some values of the incomplete Gamma function. // // Discussion: // // The (normalized) incomplete Gamma function P(A,X) is defined as: // // PN(A,X) = 1/Gamma(A) * Integral ( 0 <= T <= X ) T**(A-1) * exp(-T) dT. // // With this definition, for all A and X, // // 0 <= PN(A,X) <= 1 // // and // // PN(A,INFINITY) = 1.0 // // In Mathematica, the function can be evaluated by: // // 1 - GammaRegularized[A,X] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 November 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double *A, the parameter of the function. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 20 double a_vec[N_MAX] = { 0.10E+00, 0.10E+00, 0.10E+00, 0.50E+00, 0.50E+00, 0.50E+00, 0.10E+01, 0.10E+01, 0.10E+01, 0.11E+01, 0.11E+01, 0.11E+01, 0.20E+01, 0.20E+01, 0.20E+01, 0.60E+01, 0.60E+01, 0.11E+02, 0.26E+02, 0.41E+02 }; double fx_vec[N_MAX] = { 0.7382350532339351E+00, 0.9083579897300343E+00, 0.9886559833621947E+00, 0.3014646416966613E+00, 0.7793286380801532E+00, 0.9918490284064973E+00, 0.9516258196404043E-01, 0.6321205588285577E+00, 0.9932620530009145E+00, 0.7205974576054322E-01, 0.5891809618706485E+00, 0.9915368159845525E+00, 0.1018582711118352E-01, 0.4421745996289254E+00, 0.9927049442755639E+00, 0.4202103819530612E-01, 0.9796589705830716E+00, 0.9226039842296429E+00, 0.4470785799755852E+00, 0.7444549220718699E+00 }; double x_vec[N_MAX] = { 0.30E-01, 0.30E+00, 0.15E+01, 0.75E-01, 0.75E+00, 0.35E+01, 0.10E+00, 0.10E+01, 0.50E+01, 0.10E+00, 0.10E+01, 0.50E+01, 0.15E+00, 0.15E+01, 0.70E+01, 0.25E+01, 0.12E+02, 0.16E+02, 0.25E+02, 0.45E+02 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0.0; *x = 0.0; *fx = 0.0; } else { *a = a_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }