# include # include # include # include using namespace std; # include "asa058.hpp" //****************************************************************************80 void clustr ( double x[], double d[], double dev[], int b[], double f[], int e[], int i, int j, int n, int nz, int k ) //****************************************************************************80 // // Purpose: // // CLUSTR uses the K-means algorithm to cluster data. // // Discussion: // // Given a matrix of I observations on J variables, the // observations are allocated to N clusters in such a way that the // within-cluster sum of squares is minimised. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 February 2008 // // Author: // // Original FORTRAN77 version by David Sparks. // C++ version by John Burkardt. // // Reference: // // David Sparks, // Algorithm AS 58: // Euclidean Cluster Analysis, // Applied Statistics, // Volume 22, Number 1, 1973, pages 126-130. // // Parameters: // // Input, double X[I*J], the observed data. // // Input/output, double D[K*J], the cluster centers. // On input, the user has chosen these. On output, they have been // updated. // // Output, double DEV[K], the sums of squared deviations // of observations from their cluster centers. // // Output, int B[I], indicates the cluster to which // each observation has been assigned. // // Workspace, double F[I]. // // Output, int E[K], the number of observations assigned // to each cluster. // // Input, int I, the number of observations. // // Input, int J, the number of variables. // // Input, int N, the number of clusters. // // Input, int NZ, the minimum number of observations // which any cluster is allowed to have. // // Input, int K, the maximum number of clusters. // { double big = 1.0E+10; double da; double db; double dc; double de; double fl; double fm; double fq; int ia; int ic; int id; int ie; int ig; int ih; int ii; int ij; int ik; int il; int in; int ip; int ir; int is; int it; int iu; int iw; int ix; int iy; for ( ia = 1; ia <= n; ia++ ) { e[ia-1] = 0; } // // For each observation, calculate the distance from each cluster // center, and assign to the nearest. // for ( ic = 1; ic <= i; ic++ ) { f[ic-1] = 0.0; da = big; for ( id = 1; id <= n; id++ ) { db = 0.0; for ( ie = 1; ie <= j; ie++ ) { dc = x[ic-1+(ie-1)*i] - d[id-1+(ie-1)*k]; db = db + dc * dc; } if ( db < da ) { da = db; b[ic-1] = id; } } ig = b[ic-1]; e[ig-1] = e[ig-1] + 1; } // // Calculate the mean and sum of squares for each cluster. // for ( ix = 1; ix <= n; ix++ ) { dev[ix-1] = 0.0; for ( iy = 1; iy <= j; iy++ ) { d[ix-1+(iy-1)*k] = 0.0; } } for ( ic = 1; ic <= i; ic++ ) { ig = b[ic-1]; for ( ih = 1; ih <= j; ih++ ) { d[ig-1+(ih-1)*k] = d[ig-1+(ih-1)*k] + x[ic-1+(ih-1)*i]; } } for ( ij = 1; ij <= j; ij++ ) { for ( ii = 1; ii <= n; ii++ ) { d[ii-1+(ij-1)*k] = d[ii-1+(ij-1)*k] / ( double ) e[ii-1]; } } for ( ij = 1; ij <= j; ij++ ) { for ( ik = 1; ik <= i; ik++ ) { il = b[ik-1]; da = x[ik-1+(ij-1)*i] - d[il-1+(ij-1)*k]; db = da * da; f[ik-1] = f[ik-1] + db; dev[il-1] = dev[il-1] + db; } } for ( ik = 1; ik <= i; ik++ ) { il = b[ik-1]; fl = e[il-1]; if ( 2.0 <= fl ) { f[ik-1] = f[ik-1] * fl / ( fl - 1.0 ); } } // // Examine each observation in turn to see if it should be // reassigned to a different cluster. // for ( ; ; ) { iw = 0; for ( ik = 1; ik <= i; ik++ ) { il = b[ik-1]; ir = il; // // If the number of cluster points is less than or equal to the // specified minimum, NZ, then bypass this iteration. // if ( nz < e[il-1] ) { fl = e[il-1]; dc = f[ik-1]; for ( in = 1; in <= n; in++ ) { if ( in != il ) { fm = e[in-1]; fm = fm / ( fm + 1.0 ); de = 0.0; for ( ip = 1; ip <= j; ip++ ) { da = x[ik-1+(ip-1)*i] - d[in-1+(ip-1)*k]; de = de + da * da * fm; } if ( de < dc ) { dc = de; ir = in; } } } // // Reassignment is made here if necessary. // if ( ir != il ) { fq = e[ir-1]; dev[il-1] = dev[il-1] - f[ik-1]; dev[ir-1] = dev[ir-1] + dc; e[ir-1] = e[ir-1] + 1; e[il-1] = e[il-1] - 1; for ( is = 1; is <= j; is++ ) { d[il-1+(is-1)*k] = ( d[il-1+(is-1)*k] * fl - x[ik-1+(is-1)*i] ) / ( fl - 1.0 ); d[ir-1+(is-1)*k] = ( d[ir-1+(is-1)*k] * fq + x[ik-1+(is-1)*i] ) / ( fq + 1.0 ); } b[ik-1] = ir; for ( it = 1; it <= i; it++ ) { ij = b[it-1]; if ( ij == il || ij == ir ) { f[it-1] = 0.0; for ( iu = 1; iu <= j; iu++ ) { da = x[it-1+(iu-1)*i] - d[ij-1+(iu-1)*k]; f[it-1] = f[it-1] + da * da; } fl = e[ij-1]; f[it-1] = f[it-1] * fl / ( fl - 1.0 ); } } iw = iw + 1; } } } // // If any reassignments were made on this pass, then do another pass. // if ( iw == 0 ) { break; } } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }