# include # include # include # include # include using namespace std; # include "asa063.hpp" //****************************************************************************80 void beta_inc_values ( int &n_data, double &a, double &b, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // BETA_INC_VALUES returns some values of the incomplete Beta function. // // Discussion: // // The incomplete Beta function may be written // // BETA_INC(A,B,X) = Integral (0 <= t <= X) T^(A-1) * (1-T)^(B-1) dT // / Integral (0 <= t <= 1) T^(A-1) * (1-T)^(B-1) dT // // Thus, // // BETA_INC(A,B,0.0) = 0.0; // BETA_INC(A,B,1.0) = 1.0 // // The incomplete Beta function is also sometimes called the // "modified" Beta function, or the "normalized" Beta function // or the Beta CDF (cumulative density function. // // In Mathematica, the function can be evaluated by: // // BETA[X,A,B] / BETA[A,B] // // The function can also be evaluated by using the Statistics package: // // Needs["Statistics`ContinuousDistributions`"] // dist = BetaDistribution [ a, b ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 April 2013 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Karl Pearson, // Tables of the Incomplete Beta Function, // Cambridge University Press, 1968. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &A, &B, the parameters of the function. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 45 static double a_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 5.5E+00, 10.0E+00, 10.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 30.0E+00, 30.0E+00, 40.0E+00, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.1E+01, 0.2E+01, 0.3E+01, 0.4E+01, 0.5E+01, 1.30625, 1.30625, 1.30625 }; static double b_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 5.0E+00, 0.5E+00, 5.0E+00, 5.0E+00, 10.0E+00, 5.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 20.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.2E+01, 0.3E+01, 0.4E+01, 0.5E+01, 0.2E+01, 0.2E+01, 0.2E+01, 0.2E+01, 11.7562, 11.7562, 11.7562 }; static double fx_vec[N_MAX] = { 0.6376856085851985E-01, 0.2048327646991335E+00, 0.1000000000000000E+01, 0.0000000000000000E+00, 0.5012562893380045E-02, 0.5131670194948620E-01, 0.2928932188134525E+00, 0.5000000000000000E+00, 0.2800000000000000E-01, 0.1040000000000000E+00, 0.2160000000000000E+00, 0.3520000000000000E+00, 0.5000000000000000E+00, 0.6480000000000000E+00, 0.7840000000000000E+00, 0.8960000000000000E+00, 0.9720000000000000E+00, 0.4361908850559777E+00, 0.1516409096347099E+00, 0.8978271484375000E-01, 0.1000000000000000E+01, 0.5000000000000000E+00, 0.4598773297575791E+00, 0.2146816102371739E+00, 0.9507364826957875E+00, 0.5000000000000000E+00, 0.8979413687105918E+00, 0.2241297491808366E+00, 0.7586405487192086E+00, 0.7001783247477069E+00, 0.5131670194948620E-01, 0.1055728090000841E+00, 0.1633399734659245E+00, 0.2254033307585166E+00, 0.3600000000000000E+00, 0.4880000000000000E+00, 0.5904000000000000E+00, 0.6723200000000000E+00, 0.2160000000000000E+00, 0.8370000000000000E-01, 0.3078000000000000E-01, 0.1093500000000000E-01, 0.918884684620518, 0.21052977489419, 0.1824130512500673 }; static double x_vec[N_MAX] = { 0.01E+00, 0.10E+00, 1.00E+00, 0.00E+00, 0.01E+00, 0.10E+00, 0.50E+00, 0.50E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.90E+00, 0.50E+00, 0.90E+00, 0.50E+00, 1.00E+00, 0.50E+00, 0.80E+00, 0.60E+00, 0.80E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.70E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.20E+00, 0.30E+00, 0.30E+00, 0.30E+00, 0.30E+00, 0.225609, 0.0335568, 0.0295222 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; a = 0.0; b = 0.0; x = 0.0; fx = 0.0; } else { a = a_vec[n_data-1]; b = b_vec[n_data-1]; x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double betain ( double x, double p, double q, double beta, int &ifault ) //****************************************************************************80 // // Purpose: // // BETAIN computes the incomplete Beta function ratio. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2008 // // Author: // // Original FORTRAN77 version by KL Majumder, GP Bhattacharjee. // C++ version by John Burkardt. // // Reference: // // KL Majumder, GP Bhattacharjee, // Algorithm AS 63: // The incomplete Beta Integral, // Applied Statistics, // Volume 22, Number 3, 1973, pages 409-411. // // Parameters: // // Input, double X, the argument, between 0 and 1. // // Input, double P, Q, the parameters, which // must be positive. // // Input, double BETA, the logarithm of the complete // beta function. // // Output, int &IFAULT, error flag. // 0, no error. // nonzero, an error occurred. // // Output, double BETAIN, the value of the incomplete // Beta function ratio. // { double acu = 0.1E-14; double ai; double betain; double cx; bool indx; int ns; double pp; double psq; double qq; double rx; double temp; double term; double value; double xx; value = x; ifault = 0; // // Check the input arguments. // if ( p <= 0.0 || q <= 0.0 ) { ifault = 1; return value; } if ( x < 0.0 || 1.0 < x ) { ifault = 2; return value; } // // Special cases. // if ( x == 0.0 || x == 1.0 ) { return value; } // // Change tail if necessary and determine S. // psq = p + q; cx = 1.0 - x; if ( p < psq * x ) { xx = cx; cx = x; pp = q; qq = p; indx = true; } else { xx = x; pp = p; qq = q; indx = false; } term = 1.0; ai = 1.0; value = 1.0; ns = ( int ) ( qq + cx * psq ); // // Use the Soper reduction formula. // rx = xx / cx; temp = qq - ai; if ( ns == 0 ) { rx = xx; } for ( ; ; ) { term = term * temp * rx / ( pp + ai ); value = value + term;; temp = fabs ( term ); if ( temp <= acu && temp <= acu * value ) { value = value * exp ( pp * log ( xx ) + ( qq - 1.0 ) * log ( cx ) - beta ) / pp; if ( indx ) { value = 1.0 - value; } break; } ai = ai + 1.0; ns = ns - 1; if ( 0 <= ns ) { temp = qq - ai; if ( ns == 0 ) { rx = xx; } } else { temp = psq; psq = psq + 1.0; } } return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }