# include # include # include # include # include using namespace std; # include "asa066.hpp" //****************************************************************************80 double alnorm ( double x, bool upper ) //****************************************************************************80 // // Purpose: // // ALNORM computes the cumulative density of the standard normal distribution. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 January 2008 // // Author: // // Original FORTRAN77 version by David Hill. // C++ version by John Burkardt. // // Reference: // // David Hill, // Algorithm AS 66: // The Normal Integral, // Applied Statistics, // Volume 22, Number 3, 1973, pages 424-427. // // Parameters: // // Input, double X, is one endpoint of the semi-infinite interval // over which the integration takes place. // // Input, bool UPPER, determines whether the upper or lower // interval is to be integrated: // .TRUE. => integrate from X to + Infinity; // .FALSE. => integrate from - Infinity to X. // // Output, double ALNORM, the integral of the standard normal // distribution over the desired interval. // { double a1 = 5.75885480458; double a2 = 2.62433121679; double a3 = 5.92885724438; double b1 = -29.8213557807; double b2 = 48.6959930692; double c1 = -0.000000038052; double c2 = 0.000398064794; double c3 = -0.151679116635; double c4 = 4.8385912808; double c5 = 0.742380924027; double c6 = 3.99019417011; double con = 1.28; double d1 = 1.00000615302; double d2 = 1.98615381364; double d3 = 5.29330324926; double d4 = -15.1508972451; double d5 = 30.789933034; double ltone = 7.0; double p = 0.398942280444; double q = 0.39990348504; double r = 0.398942280385; bool up; double utzero = 18.66; double value; double y; double z; up = upper; z = x; if ( z < 0.0 ) { up = !up; z = - z; } if ( ltone < z && ( ( !up ) || utzero < z ) ) { if ( up ) { value = 0.0; } else { value = 1.0; } return value; } y = 0.5 * z * z; if ( z <= con ) { value = 0.5 - z * ( p - q * y / ( y + a1 + b1 / ( y + a2 + b2 / ( y + a3 )))); } else { value = r * exp ( - y ) / ( z + c1 + d1 / ( z + c2 + d2 / ( z + c3 + d3 / ( z + c4 + d4 / ( z + c5 + d5 / ( z + c6 )))))); } if ( !up ) { value = 1.0 - value; } return value; } //****************************************************************************80 void normal_01_cdf_values ( int *n_data, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // NORMAL_01_CDF_VALUES returns some values of the Normal 01 CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = NormalDistribution [ 0, 1 ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 17 double fx_vec[N_MAX] = { 0.5000000000000000E+00, 0.5398278372770290E+00, 0.5792597094391030E+00, 0.6179114221889526E+00, 0.6554217416103242E+00, 0.6914624612740131E+00, 0.7257468822499270E+00, 0.7580363477769270E+00, 0.7881446014166033E+00, 0.8159398746532405E+00, 0.8413447460685429E+00, 0.9331927987311419E+00, 0.9772498680518208E+00, 0.9937903346742239E+00, 0.9986501019683699E+00, 0.9997673709209645E+00, 0.9999683287581669E+00 }; double x_vec[N_MAX] = { 0.0000000000000000E+00, 0.1000000000000000E+00, 0.2000000000000000E+00, 0.3000000000000000E+00, 0.4000000000000000E+00, 0.5000000000000000E+00, 0.6000000000000000E+00, 0.7000000000000000E+00, 0.8000000000000000E+00, 0.9000000000000000E+00, 0.1000000000000000E+01, 0.1500000000000000E+01, 0.2000000000000000E+01, 0.2500000000000000E+01, 0.3000000000000000E+01, 0.3500000000000000E+01, 0.4000000000000000E+01 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *x = 0.0; *fx = 0.0; } else { *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void normp ( double z, double *p, double *q, double *pdf ) //****************************************************************************80 // // Purpose: // // NORMP computes the cumulative density of the standard normal distribution. // // Discussion: // // This is algorithm 5666 from Hart, et al. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 January 2008 // // Author: // // Original FORTRAN77 version by Alan Miller. // C++ version by John Burkardt. // // Reference: // // John Hart, Ward Cheney, Charles Lawson, Hans Maehly, // Charles Mesztenyi, John Rice, Henry Thacher, // Christoph Witzgall, // Computer Approximations, // Wiley, 1968, // LC: QA297.C64. // // Parameters: // // Input, double Z, divides the real line into two // semi-infinite intervals, over each of which the standard normal // distribution is to be integrated. // // Output, double *P, *Q, the integrals of the standard normal // distribution over the intervals ( - Infinity, Z] and // [Z, + Infinity ), respectively. // // Output, double *PDF, the value of the standard normal distribution // at Z. // { double cutoff = 7.071; double expntl; double p0 = 220.2068679123761; double p1 = 221.2135961699311; double p2 = 112.0792914978709; double p3 = 33.91286607838300; double p4 = 6.373962203531650; double p5 = 0.7003830644436881; double p6 = 0.03526249659989109; double q0 = 440.4137358247522; double q1 = 793.8265125199484; double q2 = 637.3336333788311; double q3 = 296.5642487796737; double q4 = 86.78073220294608; double q5 = 16.06417757920695; double q6 = 1.755667163182642; double q7 = 0.08838834764831844; double root2pi = 2.506628274631001; double zabs; zabs = fabs ( z ); // // 37 < |Z|. // if ( 37.0 < zabs ) { *pdf = 0.0; *p = 0.0; } // // |Z| <= 37. // else { expntl = exp ( - 0.5 * zabs * zabs ); *pdf = expntl / root2pi; // // |Z| < CUTOFF = 10 / sqrt(2). // if ( zabs < cutoff ) { *p = expntl * (((((( p6 * zabs + p5 ) * zabs + p4 ) * zabs + p3 ) * zabs + p2 ) * zabs + p1 ) * zabs + p0 ) / ((((((( q7 * zabs + q6 ) * zabs + q5 ) * zabs + q4 ) * zabs + q3 ) * zabs + q2 ) * zabs + q1 ) * zabs + q0 ); } // // CUTOFF <= |Z|. // else { *p = *pdf / ( zabs + 1.0 / ( zabs + 2.0 / ( zabs + 3.0 / ( zabs + 4.0 / ( zabs + 0.65 ))))); } } if ( z < 0.0 ) { *q = 1.0 - *p; } else { *q = *p; *p = 1.0 - *q; } return; } //****************************************************************************80 void nprob ( double z, double *p, double *q, double *pdf ) //****************************************************************************80 // // Purpose: // // NPROB computes the cumulative density of the standard normal distribution. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2013 // // Author: // // Original FORTRAN77 version by AG Adams. // C++ version by John Burkardt. // // Reference: // // AG Adams, // Algorithm 39: // Areas Under the Normal Curve, // Computer Journal, // Volume 12, Number 2, May 1969, pages 197-198. // // Parameters: // // Input, double Z, divides the real line into // two semi-infinite intervals, over each of which the standard normal // distribution is to be integrated. // // Output, double *P, *Q, the integrals of the standard normal // distribution over the intervals ( - Infinity, Z] and // [Z, + Infinity ), respectively. // // Output, double *PDF, the value of the standard normal // distribution at Z. // { double a0 = 0.5; double a1 = 0.398942280444; double a2 = 0.399903438504; double a3 = 5.75885480458; double a4 = 29.8213557808; double a5 = 2.62433121679; double a6 = 48.6959930692; double a7 = 5.92885724438; double b0 = 0.398942280385; double b1 = 0.000000038052; double b2 = 1.00000615302; double b3 = 0.000398064794; double b4 = 1.98615381364; double b5 = 0.151679116635; double b6 = 5.29330324926; double b7 = 4.8385912808; double b8 = 15.1508972451; double b9 = 0.742380924027; double b10 = 30.789933034; double b11 = 3.99019417011; double y; double zabs; zabs = fabs ( z ); // // |Z| between 0 and 1.28 // if ( zabs <= 1.28 ) { y = a0 * z * z; *pdf = exp ( - y ) * b0; *q = a0 - zabs * ( a1 - a2 * y / ( y + a3 - a4 / ( y + a5 + a6 / ( y + a7 )))); } // // |Z| between 1.28 and 12.7 // else if ( zabs <= 12.7 ) { y = a0 * z * z; *pdf = exp ( - y ) * b0; *q = *pdf / ( zabs - b1 + b2 / ( zabs + b3 + b4 / ( zabs - b5 + b6 / ( zabs + b7 - b8 / ( zabs + b9 + b10 / ( zabs + b11 )))))); } // // Z far out in tail. // else { *q = 0.0; *pdf = 0.0; } if ( z < 0.0 ) { *p = *q; *q = 1.0 - *p; } else { *p = 1.0 - *q; } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }