# include # include # include # include # include using namespace std; # include "asa091.hpp" //****************************************************************************80 double alnorm ( double x, bool upper ) //****************************************************************************80 // // Purpose: // // ALNORM computes the cumulative density of the standard normal distribution. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 January 2008 // // Author: // // Original FORTRAN77 version by David Hill. // C++ version by John Burkardt. // // Reference: // // David Hill, // Algorithm AS 66: // The Normal Integral, // Applied Statistics, // Volume 22, Number 3, 1973, pages 424-427. // // Parameters: // // Input, double X, is one endpoint of the semi-infinite interval // over which the integration takes place. // // Input, bool UPPER, determines whether the upper or lower // interval is to be integrated: // .TRUE. => integrate from X to + Infinity; // .FALSE. => integrate from - Infinity to X. // // Output, double ALNORM, the integral of the standard normal // distribution over the desired interval. // { double a1 = 5.75885480458; double a2 = 2.62433121679; double a3 = 5.92885724438; double b1 = -29.8213557807; double b2 = 48.6959930692; double c1 = -0.000000038052; double c2 = 0.000398064794; double c3 = -0.151679116635; double c4 = 4.8385912808; double c5 = 0.742380924027; double c6 = 3.99019417011; double con = 1.28; double d1 = 1.00000615302; double d2 = 1.98615381364; double d3 = 5.29330324926; double d4 = -15.1508972451; double d5 = 30.789933034; double ltone = 7.0; double p = 0.398942280444; double q = 0.39990348504; double r = 0.398942280385; bool up; double utzero = 18.66; double value; double y; double z; up = upper; z = x; if ( z < 0.0 ) { up = !up; z = - z; } if ( ltone < z && ( ( !up ) || utzero < z ) ) { if ( up ) { value = 0.0; } else { value = 1.0; } return value; } y = 0.5 * z * z; if ( z <= con ) { value = 0.5 - z * ( p - q * y / ( y + a1 + b1 / ( y + a2 + b2 / ( y + a3 )))); } else { value = r * exp ( - y ) / ( z + c1 + d1 / ( z + c2 + d2 / ( z + c3 + d3 / ( z + c4 + d4 / ( z + c5 + d5 / ( z + c6 )))))); } if ( !up ) { value = 1.0 - value; } return value; } //****************************************************************************80 void chi_square_cdf_values ( int *n_data, int *a, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // CHI_SQUARE_CDF_VALUES returns some values of the Chi-Square CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = ChiSquareDistribution [ df ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int *A, the parameter of the function. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { // # define N_MAX 21 int a_vec[N_MAX] = { 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 3, 3, 3, 3, 3, 10, 10, 10 }; double fx_vec[N_MAX] = { 0.7965567455405796E-01, 0.4987520807317687E-02, 0.1124629160182849E+00, 0.9950166250831946E-02, 0.4729107431344619E+00, 0.1812692469220181E+00, 0.5975750516063926E-01, 0.1752309630642177E-01, 0.6826894921370859E+00, 0.3934693402873666E+00, 0.1987480430987992E+00, 0.9020401043104986E-01, 0.3743422675270363E-01, 0.4275932955291202E+00, 0.6083748237289110E+00, 0.7385358700508894E+00, 0.8282028557032669E+00, 0.8883897749052874E+00, 0.1721156299558408E-03, 0.3659846827343712E-02, 0.1857593622214067E-01 }; double x_vec[N_MAX] = { 0.01E+00, 0.01E+00, 0.02E+00, 0.02E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 2.00E+00, 3.00E+00, 4.00E+00, 5.00E+00, 6.00E+00, 1.00E+00, 2.00E+00, 3.00E+00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0; *x = 0.0; *fx = 0.0; } else { *a = a_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double gammad ( double x, double p, int *ifault ) //****************************************************************************80 // // Purpose: // // GAMMAD computes the Incomplete Gamma Integral // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 January 2008 // // Author: // // Original FORTRAN77 version by B Shea. // C++ version by John Burkardt. // // Reference: // // B Shea, // Algorithm AS 239: // Chi-squared and Incomplete Gamma Integral, // Applied Statistics, // Volume 37, Number 3, 1988, pages 466-473. // // Parameters: // // Input, double X, P, the parameters of the incomplete // gamma ratio. 0 <= X, and 0 < P. // // Output, int IFAULT, error flag. // 0, no error. // 1, X < 0 or P <= 0. // // Output, double GAMMAD, the value of the incomplete // Gamma integral. // { double a; double an; double arg; double b; double c; double elimit = - 88.0; double oflo = 1.0E+37; double plimit = 1000.0; double pn1; double pn2; double pn3; double pn4; double pn5; double pn6; double rn; double tol = 1.0E-14; bool upper; double value; double xbig = 1.0E+08; value = 0.0; // // Check the input. // if ( x < 0.0 ) { *ifault = 1; return value; } if ( p <= 0.0 ) { *ifault = 1; return value; } *ifault = 0; if ( x == 0.0 ) { value = 0.0; return value; } // // If P is large, use a normal approximation. // if ( plimit < p ) { pn1 = 3.0 * sqrt ( p ) * ( pow ( x / p, 1.0 / 3.0 ) + 1.0 / ( 9.0 * p ) - 1.0 ); upper = false; value = alnorm ( pn1, upper ); return value; } // // If X is large set value = 1. // if ( xbig < x ) { value = 1.0; return value; } // // Use Pearson's series expansion. // (Note that P is not large enough to force overflow in ALOGAM). // No need to test IFAULT on exit since P > 0. // if ( x <= 1.0 || x < p ) { arg = p * log ( x ) - x - lgamma ( p + 1.0 ); c = 1.0; value = 1.0; a = p; for ( ; ; ) { a = a + 1.0; c = c * x / a; value = value + c; if ( c <= tol ) { break; } } arg = arg + log ( value ); if ( elimit <= arg ) { value = exp ( arg ); } else { value = 0.0; } } // // Use a continued fraction expansion. // else { arg = p * log ( x ) - x - lgamma ( p ); a = 1.0 - p; b = a + x + 1.0; c = 0.0; pn1 = 1.0; pn2 = x; pn3 = x + 1.0; pn4 = x * b; value = pn3 / pn4; for ( ; ; ) { a = a + 1.0; b = b + 2.0; c = c + 1.0; an = a * c; pn5 = b * pn3 - an * pn1; pn6 = b * pn4 - an * pn2; if ( pn6 != 0.0 ) { rn = pn5 / pn6; if ( fabs ( value - rn ) <= r8_min ( tol, tol * rn ) ) { break; } value = rn; } pn1 = pn3; pn2 = pn4; pn3 = pn5; pn4 = pn6; // // Re-scale terms in continued fraction if terms are large. // if ( oflo <= fabs ( pn5 ) ) { pn1 = pn1 / oflo; pn2 = pn2 / oflo; pn3 = pn3 / oflo; pn4 = pn4 / oflo; } } arg = arg + log ( value ); if ( elimit <= arg ) { value = 1.0 - exp ( arg ); } else { value = 1.0; } } return value; } //****************************************************************************80 double ppchi2 ( double p, double v, double g, int *ifault ) //****************************************************************************80 // // Purpose: // // PPCHI2 evaluates the percentage points of the Chi-squared PDF. // // Discussion // // Incorporates the suggested changes in AS R85 (vol.40(1), // pages 233-5, 1991) which should eliminate the need for the limited // range for P, though these limits have not been removed // from the routine. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2013 // // Author: // // Original FORTRAN77 version by Donald Best, DE Roberts. // C++ version by John Burkardt. // // Reference: // // Donald Best, DE Roberts, // Algorithm AS 91: // The Percentage Points of the Chi-Squared Distribution, // Applied Statistics, // Volume 24, Number 3, 1975, pages 385-390. // // Parameters: // // Input, double P, value of the chi-squared cumulative // probability density function. // 0.000002 <= P <= 0.999998. // // Input, double V, the parameter of the chi-squared probability // density function. // 0 < V. // // Input, double G, the value of log ( Gamma ( V / 2 ) ). // // Output, int *IFAULT, is nonzero if an error occurred. // 0, no error. // 1, P is outside the legal range. // 2, V is not positive. // 3, an error occurred in GAMMAD. // 4, the result is probably as accurate as the machine will allow. // // Output, double PPCHI2, the value of the chi-squared random // deviate with the property that the probability that a chi-squared random // deviate with parameter V is less than or equal to PPCHI2 is P. // { double a; double aa = 0.6931471806; double b; double c; double c1 = 0.01; double c2 = 0.222222; double c3 = 0.32; double c4 = 0.4; double c5 = 1.24; double c6 = 2.2; double c7 = 4.67; double c8 = 6.66; double c9 = 6.73; double c10 = 13.32; double c11 = 60.0; double c12 = 70.0; double c13 = 84.0; double c14 = 105.0; double c15 = 120.0; double c16 = 127.0; double c17 = 140.0; double c18 = 175.0; double c19 = 210.0; double c20 = 252.0; double c21 = 264.0; double c22 = 294.0; double c23 = 346.0; double c24 = 420.0; double c25 = 462.0; double c26 = 606.0; double c27 = 672.0; double c28 = 707.0; double c29 = 735.0; double c30 = 889.0; double c31 = 932.0; double c32 = 966.0; double c33 = 1141.0; double c34 = 1182.0; double c35 = 1278.0; double c36 = 1740.0; double c37 = 2520.0; double c38 = 5040.0; double ch; double e = 0.5E-06; int i; int if1; int maxit = 20; double pmax = 0.999998; double pmin = 0.000002; double p1; double p2; double q; double s1; double s2; double s3; double s4; double s5; double s6; double t; double value; double x; double xx; // // Test arguments and initialize. // value = - 1.0; if ( p < pmin || pmax < p ) { *ifault = 1; return value; } if ( v <= 0.0 ) { *ifault = 2; return value; } *ifault = 0; xx = 0.5 * v; c = xx - 1.0; // // Starting approximation for small chi-squared // if ( v < - c5 * log ( p ) ) { ch = pow ( p * xx * exp ( g + xx * aa ), 1.0 / xx ); if ( ch < e ) { value = ch; return value; } } // // Starting approximation for V less than or equal to 0.32 // else if ( v <= c3 ) { ch = c4; a = log ( 1.0 - p ); for ( ; ; ) { q = ch; p1 = 1.0 + ch * ( c7 + ch ); p2 = ch * (c9 + ch * ( c8 + ch ) ); t = - 0.5 + (c7 + 2.0 * ch ) / p1 - ( c9 + ch * ( c10 + 3.0 * ch ) ) / p2; ch = ch - ( 1.0 - exp ( a + g + 0.5 * ch + c * aa ) * p2 / p1) / t; if ( fabs ( q / ch - 1.0 ) <= c1 ) { break; } } } else { // // Call to algorithm AS 111 - note that P has been tested above. // AS 241 could be used as an alternative. // x = ppnd ( p, ifault ); // // Starting approximation using Wilson and Hilferty estimate // p1 = c2 / v; ch = v * pow ( x * sqrt ( p1 ) + 1.0 - p1, 3 ); // // Starting approximation for P tending to 1. // if ( c6 * v + 6.0 < ch ) { ch = - 2.0 * ( log ( 1.0 - p ) - c * log ( 0.5 * ch ) + g ); } } // // Call to algorithm AS 239 and calculation of seven term // Taylor series // for ( i = 1; i <= maxit; i++ ) { q = ch; p1 = 0.5 * ch; p2 = p - gammad ( p1, xx, &if1 ); if ( if1 != 0 ) { *ifault = 3; return value; } t = p2 * exp ( xx * aa + g + p1 - c * log ( ch ) ); b = t / ch; a = 0.5 * t - b * c; s1 = ( c19 + a * ( c17 + a * ( c14 + a * ( c13 + a * ( c12 + c11 * a ))))) / c24; s2 = ( c24 + a * ( c29 + a * ( c32 + a * ( c33 + c35 * a )))) / c37; s3 = ( c19 + a * ( c25 + a * ( c28 + c31 * a ))) / c37; s4 = ( c20 + a * ( c27 + c34 * a) + c * ( c22 + a * ( c30 + c36 * a ))) / c38; s5 = ( c13 + c21 * a + c * ( c18 + c26 * a )) / c37; s6 = ( c15 + c * ( c23 + c16 * c )) / c38; ch = ch + t * ( 1.0 + 0.5 * t * s1 - b * c * ( s1 - b * ( s2 - b * ( s3 - b * ( s4 - b * ( s5 - b * s6 )))))); if ( e < fabs ( q / ch - 1.0 ) ) { value = ch; return value; } } *ifault = 4; value = ch; return value; } //****************************************************************************80 double ppnd ( double p, int *ifault ) //****************************************************************************80 // // Purpose: // // PPND produces the normal deviate value corresponding to lower tail area = P. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 January 2008 // // Author: // // Original FORTRAN77 version by J Beasley, S Springer. // C++ version by John Burkardt. // // Reference: // // J Beasley, S Springer, // Algorithm AS 111: // The Percentage Points of the Normal Distribution, // Applied Statistics, // Volume 26, Number 1, 1977, pages 118-121. // // Parameters: // // Input, double P, the value of the cumulative probability // densitity function. 0 < P < 1. // // Output, integer *IFAULT, error flag. // 0, no error. // 1, P <= 0 or P >= 1. PPND is returned as 0. // // Output, double PPND, the normal deviate value with the property that // the probability of a standard normal deviate being less than or // equal to PPND is P. // { double a0 = 2.50662823884; double a1 = -18.61500062529; double a2 = 41.39119773534; double a3 = -25.44106049637; double b1 = -8.47351093090; double b2 = 23.08336743743; double b3 = -21.06224101826; double b4 = 3.13082909833; double c0 = -2.78718931138; double c1 = -2.29796479134; double c2 = 4.85014127135; double c3 = 2.32121276858; double d1 = 3.54388924762; double d2 = 1.63706781897; double r; double split = 0.42; double value; *ifault = 0; // // 0.08 < P < 0.92 // if ( fabs ( p - 0.5 ) <= split ) { r = ( p - 0.5 ) * ( p - 0.5 ); value = ( p - 0.5 ) * ( ( ( a3 * r + a2 ) * r + a1 ) * r + a0 ) / ( ( ( ( b4 * r + b3 ) * r + b2 ) * r + b1 ) * r + 1.0 ); } // // P < 0.08 or P > 0.92, // R = min ( P, 1-P ) // else if ( 0.0 < p && p < 1.0 ) { if ( 0.5 < p ) { r = sqrt ( - log ( 1.0 - p ) ); } else { r = sqrt ( - log ( p ) ); } value = ( ( ( c3 * r + c2 ) * r + c1 ) * r + c0 ) / ( ( d2 * r + d1 ) * r + 1.0 ); if ( p < 0.5 ) { value = - value; } } // // P <= 0.0 or 1.0 <= P // else { *ifault = 1; value = 0.0; } return value; } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }