# include # include # include # include # include using namespace std; # include "asa103.hpp" //****************************************************************************80 double digama ( double x, int *ifault ) //****************************************************************************80 // // Purpose: // // DIGAMA calculates DIGAMMA ( X ) = d ( LOG ( GAMMA ( X ) ) ) / dX // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 June 2013 // // Author: // // Original FORTRAN77 version by Jose Bernardo. // C++ version by John Burkardt. // // Reference: // // Jose Bernardo, // Algorithm AS 103: // Psi ( Digamma ) Function, // Applied Statistics, // Volume 25, Number 3, 1976, pages 315-317. // // Parameters: // // Input, double X, the argument of the digamma function. // 0 < X. // // Output, int *IFAULT, error flag. // 0, no error. // 1, X <= 0. // // Output, double DIGAMA, the value of the digamma function at X. // { double euler_mascheroni = 0.57721566490153286060; double r; double value; double x2; // // Check the input. // if ( x <= 0.0 ) { value = 0.0; *ifault = 1; return value; } // // Initialize. // *ifault = 0; x2 = x; value = 0.0; // // Use approximation for small argument. // if ( x2 <= 0.00001 ) { value = - euler_mascheroni - 1.0 / x2; return value; } // // Reduce to DIGAMA(X + N). // while ( x2 < 8.5 ) { value = value - 1.0 / x2; x2 = x2 + 1.0; } // // Use Stirling's (actually de Moivre's) expansion. // r = 1.0 / x2; value = value + log ( x2 ) - 0.5 * r; r = r * r; value = value - r * ( 1.0 / 12.0 - r * ( 1.0 / 120.0 - r * 1.0 / 252.0 ) ); return value; } //****************************************************************************80 void psi_values ( int *n_data, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // PSI_VALUES returns some values of the Psi or Digamma function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // PolyGamma[x] // // or // // Polygamma[0,x] // // PSI(X) = d ln ( Gamma ( X ) ) / d X = Gamma'(X) / Gamma(X) // // PSI(1) = -Euler's constant. // // PSI(X+1) = PSI(X) + 1 / X. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 11 double fx_vec[N_MAX] = { -0.5772156649015329E+00, -0.4237549404110768E+00, -0.2890398965921883E+00, -0.1691908888667997E+00, -0.6138454458511615E-01, 0.3648997397857652E-01, 0.1260474527734763E+00, 0.2085478748734940E+00, 0.2849914332938615E+00, 0.3561841611640597E+00, 0.4227843350984671E+00 }; double x_vec[N_MAX] = { 1.0E+00, 1.1E+00, 1.2E+00, 1.3E+00, 1.4E+00, 1.5E+00, 1.6E+00, 1.7E+00, 1.8E+00, 1.9E+00, 2.0E+00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *x = 0.0; *fx = 0.0; } else { *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }