# include # include # include # include # include # include "asa113.hpp" using namespace std; int main ( ); void test01 ( ); double crswap ( double varval[], int klass[], int clsize[], int in, int ik, int iv, double *critvl, int i, int j, int l, int m, int iswitch ); double crtran ( double varval[], int klass[], int clsize[], int in, int ik, int iv, double *critvl, int i, int m, int l, int iswitch ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for ASA113_PRB. // // Discussion: // // ASA136_PRB tests the ASA113 library. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 February 2008 // // Author: // // John Burkardt // { timestamp ( ); cout << "\n"; cout << "ASA113_PRB:\n"; cout << " C++ version\n"; cout << " Test the ASA113 library.\n"; test01 ( ); // // Terminate. // cout << "\n"; cout << "ASA113_PRB:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void test01 ( ) //****************************************************************************80 // // Purpose: // // TEST01 tries out the ASA113 routine. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 February 2008 // // Author: // // John Burkardt // { double *a; int *c; double *c_center; int *c_size; int ci; double critvl; int i; int ifault; ifstream input; int j; int k = 5; int m = 100; int n = 2; int ntrans1; int ntrans2; double *wss; a = new double[m*n]; c = new int[m]; c_center = new double[k*n]; c_size = new int[k]; wss = new double[k]; cout << "\n"; cout << "TEST01\n"; cout << " Test the ASA113 classification algorithm.\n"; // // Read the data. // input.open ( "points_100.txt" ); for ( i = 1; i <= m; i++ ) { for ( j = 1; j <= n; j++ ) { input >> a[i-1+(j-1)*m]; } } input.close ( ); // // Print a few data values. // cout << "\n"; cout << " First 5 data values:\n"; cout << "\n"; for ( i = 1; i <= 5; i++ ) { cout << " " << setw(8) << i; for ( j = 1; j <= n; j++ ) { cout << " " << setw(14) << a[i-1+(j-1)*m]; } cout << "\n"; } // // Assign points randomly to classes. // for ( i = 1; i <= m; i++ ) { c[i-1] = ( i % k ) + 1; } // // Define the critical value as the sum of the squares of the distances // of the points to their cluster center. // for ( i = 1; i <= k; i++ ) { c_size[i-1] = 0; for ( j = 1; j <= n; j++ ) { c_center[i-1+(j-1)*k] = 0.0; } } for ( i = 1; i <= m; i++ ) { ci = c[i-1]; c_size[ci-1] = c_size[ci-1] + 1; for ( j = 1; j <= n; j++ ) { c_center[ci-1+(j-1)*k] = c_center[ci-1+(j-1)*k] + a[i-1+(j-1)*m]; } } for ( i = 1; i <= k; i++ ) { for ( j = 1; j <= n; j++ ) { c_center[i-1+(j-1)*k] = c_center[i-1+(j-1)*k] / ( double ) ( c_size[i-1] ); } } for ( i = 1; i <= k; i++ ) { wss[i-1] = 0.0; } for ( i = 1; i <= m; i++ ) { ci = c[i-1]; for ( j = 1; j <= n; j++ ) { wss[ci-1] = wss[ci-1] + pow ( a[i-1+(j-1)*m] - c_center[ci-1+(j-1)*k], 2 ); } } critvl = 0.0; for ( i = 1; i <= k; i++ ) { critvl = critvl + wss[i-1]; } cout << "\n"; cout << " Initial CRITVL = " << critvl << "\n"; // // Compute the clusters. // ntrans1 = -1; ntrans2 = -1; for ( ; ; ) { trnsfr ( a, c, c_size, m, k, n, &critvl, &ntrans1, &ifault ); if ( ntrans1 == 0 && ntrans2 == 0 ) { break; } cout << " After TRNSFR, CRITVL = " << critvl << "\n"; swap ( a, c, c_size, m, k, n, &critvl, &ntrans2, &ifault ); if ( ntrans1 == 0 && ntrans2 == 0 ) { break; } cout << " After SWAP, CRITVL = " << critvl << "\n"; } // // Define the critical value as the sum of the squares of the distances // of the points to their cluster center. // for ( i = 1; i <= k; i++ ) { for ( j = 1; j <= n; j++ ) { c_center[i-1+(j-1)*k] = 0.0; } } for ( i = 1; i <= m; i++ ) { ci = c[i-1]; for ( j = 1; j <= n; j++ ) { c_center[ci-1+(j-1)*k] = c_center[ci-1+(j-1)*k] + a[i-1+(j-1)*m]; } } for ( i = 1; i <= k; i++ ) { for ( j = 1; j <= n; j++ ) { c_center[i-1+(j-1)*k] = c_center[i-1+(j-1)*k] / ( double ) ( c_size[i-1] ); } } for ( i = 1; i <= k; i++ ) { wss[i-1] = 0.0; } for ( i = 1; i <= m; i++ ) { ci = c[i-1]; for ( j = 1; j <= n; j++ ) { wss[ci-1] = wss[ci-1] + pow ( a[i-1+(j-1)*m] - c_center[ci-1+(j-1)*k], 2 ); } } cout << "\n"; cout << " Cluster Population Energy\n"; cout << "\n"; for ( i = 1; i <= k; i++ ) { cout << " " << setw(8) << i << " " << setw(8) << c_size[i-1] << " " << setw(14) << wss[i-1] << "\n"; } cout << "\n"; cout << " Total" << " " << setw(8) << m << " " << setw(14) << critvl << "\n"; delete [] a; delete [] c; delete [] c_center; delete [] c_size; delete [] wss; return; } //****************************************************************************80 double crswap ( double a[], int c[], int c_size[], int m, int k, int n, double *critvl, int i1, int i2, int c1, int c2, int iswitch ) //****************************************************************************80 // // Purpose: // // CRSWAP determines the effect of swapping two objects. // // Discussion: // // This computation is very inefficient. It is only set up so that we // can compare algorithm ASA 113 to the K-means algorithms ASA 058 and // ASA 136. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 February 2008 // // Author: // // John Burkardt // // Reference: // // Colin Banfield, LC Bassill, // Algorithm AS 113: // A transfer for non-hierarchichal classification, // Applied Statistics, // Volume 26, Number 2, 1977, pages 206-210. // // Parameters: // // Input, double A(M,N), the data values. There are M objects, // each having spatial dimension N. // // Input, int C(M), the classification of each object. // // Input, int C_SIZE(K), the number of objects in each class. // // Input, int M, the number of objects. // // Input, int K, the number of classes. // // Input, int N, the number of spatial dimensions, or variates, // of the objects. // // Input, double *CRITVL, the current value of the criterion. // // Input, int I1, I2, the objects to be swapped. // // Input, int C1, C2, the current classes of objects I1 and I2. // // Input, int ISWITCH: // 1, indicates that I1 and I2 should be temporarily swapped, the // change in CRITVL should be computed, and then I1 and I2 restored. // 2, indicates that I1 and I2 will be swapped. // // Output, double CRSWAP, the change to CRITVL that would occur if I1 and // I2 were swapped. This is only computed for ISWITCH = 1. // { double *c_center; int ci; double critvl_new; int i; double inc; int j; if ( iswitch == 2 ) { inc = 0.0; return inc; } c_center = new double[k*n]; // // Move object I1 from class C1 to class C2. // Move object I2 from class C2 to class C1. // c[i1-1] = c2; c[i2-1] = c1; // // Define the critical value as the sum of the squares of the distances // of the points to their cluster center. // for ( i = 1; i <= k; i++ ) { c_size[i-1] = 0; for ( j = 1; j <= n; j++ ) { c_center[i-1+(j-1)*k] = 0.0; } } for ( i = 1; i <= m; i++ ) { ci = c[i-1]; c_size[ci-1] = c_size[ci-1] + 1; for ( j = 1; j <= n; j++ ) { c_center[ci-1+(j-1)*k] = c_center[ci-1+(j-1)*k] + a[i-1+(j-1)*m]; } } for ( i = 1; i <= k; i++ ) { for ( j = 1; j <= n; j++ ) { c_center[i-1+(j-1)*k] = c_center[i-1+(j-1)*k] / ( double ) ( c_size[i-1] ); } } critvl_new = 0.0; for ( i = 1; i <= m; i++ ) { ci = c[i-1]; for ( j = 1; j <= n; j++ ) { critvl_new = critvl_new + pow ( a[i-1+(j-1)*m] - c_center[ci-1+(j-1)*k], 2 ); } } inc = critvl_new - *critvl; // // Move object I1 from class C2 to class C1. // Move object I2 from class C1 to class C2. // c[i1-1] = c1; c[i2-1] = c2; delete [] c_center; return inc; } //****************************************************************************80 double crtran ( double a[], int c[], int c_size[], int m, int k, int n, double *critvl, int i1, int c1, int c2, int iswitch ) //****************************************************************************80 // // Purpose: // // CRTRAN determines the effect of moving an object to another class. // // Discussion: // // This computation is very inefficient. It is only set up so that we // can compare algorithm ASA 113 to the K-means algorithms ASA 058 and // ASA 136. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 February 2008 // // Author: // // John Burkardt // // Reference: // // Colin Banfield, LC Bassill, // Algorithm AS 113: // A transfer for non-hierarchichal classification, // Applied Statistics, // Volume 26, Number 2, 1977, pages 206-210. // // Parameters: // // Input, double AL(M,N), the data values. There are M objects, // each having spatial dimension N. // // Input, int C(M), the classification of each object. // // Input, int C_SIZE(K), the number of objects in each class. // // Input, int M, the number of objects. // // Input, int K, the number of classes. // // Input, int N, the number of spatial dimensions, or variates, // of the objects. // // Input, double *CRITVL, the current value of the criterion. // // Input, int I1, the object to be transferred. // // Input, int C1, C2, the current class of object I1, and the // class to which it may be transferred. // // Input, int ISWITCH: // 1, indicates that I1 should be temporarily transferred, the // change in CRITVL should be computed, and then I1 restored. // 2, indicates that I1 will be permanently transferred. // // Output, double CRTRAN, the change to CRITVL that would occur if I1 were // transferred from class C1 to C2. This is only computed for ISWITCH = 1. // { double *c_center; int ci; double critvl_new; int i; double inc; int j; if ( iswitch == 2 ) { inc = 0.0; return inc; } c_center = new double[k*n]; // // Move object I from class C1 to class C2. // c[i1-1] = c2; c_size[c1-1] = c_size[c1-1] - 1; c_size[c2-1] = c_size[c2-1] + 1; // // Define the critical value as the sum of the squares of the distances // of the points to their cluster center. // for ( i = 1; i <= k; i++ ) { c_size[i-1] = 0; for ( j = 1; j <= n; j++ ) { c_center[i-1+(j-1)*k] = 0.0; } } for ( i = 1; i <= m; i++ ) { ci = c[i-1]; c_size[ci-1] = c_size[ci-1] + 1; for ( j = 1; j <= n; j++ ) { c_center[ci-1+(j-1)*k] = c_center[ci-1+(j-1)*k] + a[i-1+(j-1)*m]; } } for ( i = 1; i <= k; i++ ) { for ( j = 1; j <= n; j++ ) { c_center[i-1+(j-1)*k] = c_center[i-1+(j-1)*k] / ( double ) ( c_size[i-1] ); } } critvl_new = 0.0; for ( i = 1; i <= m; i++ ) { ci = c[i-1]; for ( j = 1; j <= n; j++ ) { critvl_new = critvl_new + pow ( a[i-1+(j-1)*m] - c_center[ci-1+(j-1)*k], 2 ); } } inc = critvl_new - *critvl; // // Move object I1 from class C2 to class C1. // c[i1-1] = c1; c_size[c1-1] = c_size[c1-1] + 1; c_size[c2-1] = c_size[c2-1] - 1; delete [] c_center; return inc; }