# include # include # include # include # include using namespace std; # include "asa136.hpp" //****************************************************************************80 void kmns ( double a[], int m, int n, double c[], int k, int ic1[], int nc[], int iter, double wss[], int *ifault ) //****************************************************************************80 // // Purpose: // // KMNS carries out the K-means algorithm. // // Discussion: // // This routine attempts to divide M points in N-dimensional space into // K clusters so that the within cluster sum of squares is minimized. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 February 2008 // // Author: // // Original FORTRAN77 version by John Hartigan, Manchek Wong. // C++ version by John Burkardt // // Reference: // // John Hartigan, Manchek Wong, // Algorithm AS 136: // A K-Means Clustering Algorithm, // Applied Statistics, // Volume 28, Number 1, 1979, pages 100-108. // // Parameters: // // Input, double A(M,N), the points. // // Input, int M, the number of points. // // Input, int N, the number of spatial dimensions. // // Input/output, double C(K,N), the cluster centers. // // Input, int K, the number of clusters. // // Output, int IC1(M), the cluster to which each point // is assigned. // // Output, int NC(K), the number of points in each cluster. // // Input, int ITER, the maximum number of iterations allowed. // // Output, double WSS(K), the within-cluster sum of squares // of each cluster. // // Output, int *IFAULT, error indicator. // 0, no error was detected. // 1, at least one cluster is empty after the initial assignment. A better // set of initial cluster centers is needed. // 2, the allowed maximum number off iterations was exceeded. // 3, K is less than or equal to 1, or greater than or equal to M. // { double aa; double *an1; double *an2; double *d; double da; double db; double dc; double dt[2]; int i; int *ic2; int ii; int ij; int il; int indx; int *itran; int j; int l; int *live; int *ncp; double temp; *ifault = 0; if ( k <= 1 || m <= k ) { *ifault = 3; return; } ic2 = new int[m]; an1 = new double[k]; an2 = new double[k]; ncp = new int[k]; d = new double[m]; itran = new int[k]; live = new int[k]; // // For each point I, find its two closest centers, IC1(I) and // IC2(I). Assign the point to IC1(I). // for ( i = 1; i <= m; i++ ) { ic1[i-1] = 1; ic2[i-1] = 2; for ( il = 1; il <= 2; il++ ) { dt[il-1] = 0.0; for ( j = 1; j <= n; j++ ) { da = a[i-1+(j-1)*m] - c[il-1+(j-1)*k]; dt[il-1] = dt[il-1] + da * da; } } if ( dt[1] < dt[0] ) { ic1[i-1] = 2; ic2[i-1] = 1; temp = dt[0]; dt[0] = dt[1]; dt[1] = temp; } for ( l = 3; l <= k; l++ ) { db = 0.0; for ( j = 1; j <= n; j++ ) { dc = a[i-1+(j-1)*m] - c[l-1+(j-1)*k]; db = db + dc * dc; } if ( db < dt[1] ) { if ( dt[0] <= db ) { dt[1] = db; ic2[i-1] = l; } else { dt[1] = dt[0]; ic2[i-1] = ic1[i-1]; dt[0] = db; ic1[i-1] = l; } } } } // // Update cluster centers to be the average of points contained within them. // for ( l = 1; l <= k; l++ ) { nc[l-1] = 0; for ( j = 1; j <= n; j++ ) { c[l-1+(j-1)*k] = 0.0; } } for ( i = 1; i <= m; i++ ) { l = ic1[i-1]; nc[l-1] = nc[l-1] + 1; for ( j = 1; j <= n; j++ ) { c[l-1+(j-1)*k] = c[l-1+(j-1)*k] + a[i-1+(j-1)*m]; } } // // Check to see if there is any empty cluster at this stage. // *ifault = 1; for ( l = 1; l <= k; l++ ) { if ( nc[l-1] == 0 ) { *ifault = 1; return; } } *ifault = 0; for ( l = 1; l <= k; l++ ) { aa = ( double ) ( nc[l-1] ); for ( j = 1; j <= n; j++ ) { c[l-1+(j-1)*k] = c[l-1+(j-1)*k] / aa; } // // Initialize AN1, AN2, ITRAN and NCP. // // AN1(L) = NC(L) / (NC(L) - 1) // AN2(L) = NC(L) / (NC(L) + 1) // ITRAN(L) = 1 if cluster L is updated in the quick-transfer stage, // = 0 otherwise // // In the optimal-transfer stage, NCP(L) stores the step at which // cluster L is last updated. // // In the quick-transfer stage, NCP(L) stores the step at which // cluster L is last updated plus M. // an2[l-1] = aa / ( aa + 1.0 ); if ( 1.0 < aa ) { an1[l-1] = aa / ( aa - 1.0 ); } else { an1[l-1] = r8_huge ( ); } itran[l-1] = 1; ncp[l-1] = -1; } indx = 0; *ifault = 2; for ( ij = 1; ij <= iter; ij++ ) { // // In this stage, there is only one pass through the data. Each // point is re-allocated, if necessary, to the cluster that will // induce the maximum reduction in within-cluster sum of squares. // optra ( a, m, n, c, k, ic1, ic2, nc, an1, an2, ncp, d, itran, live, &indx ); // // Stop if no transfer took place in the last M optimal transfer steps. // if ( indx == m ) { *ifault = 0; break; } // // Each point is tested in turn to see if it should be re-allocated // to the cluster to which it is most likely to be transferred, // IC2(I), from its present cluster, IC1(I). Loop through the // data until no further change is to take place. // qtran ( a, m, n, c, k, ic1, ic2, nc, an1, an2, ncp, d, itran, &indx ); // // If there are only two clusters, there is no need to re-enter the // optimal transfer stage. // if ( k == 2 ) { *ifault = 0; break; } // // NCP has to be set to 0 before entering OPTRA. // for ( l = 1; l <= k; l++ ) { ncp[l-1] = 0; } } // // If the maximum number of iterations was taken without convergence, // IFAULT is 2 now. This may indicate unforeseen looping. // if ( *ifault == 2 ) { cout << "\n"; cout << "KMNS - Warning!\n"; cout << " Maximum number of iterations reached\n"; cout << " without convergence.\n"; } // // Compute the within-cluster sum of squares for each cluster. // for ( l = 1; l <= k; l++ ) { wss[l-1] = 0.0; for ( j = 1; j <= n; j++ ) { c[l-1+(j-1)*k] = 0.0; } } for ( i = 1; i <= m; i++ ) { ii = ic1[i-1]; for ( j = 1; j <= n; j++ ) { c[ii-1+(j-1)*k] = c[ii-1+(j-1)*k] + a[i-1+(j-1)*m]; } } for ( j = 1; j <= n; j++ ) { for ( l = 1; l <= k; l++ ) { c[l-1+(j-1)*k] = c[l-1+(j-1)*k] / ( double ) ( nc[l-1] ); } for ( i = 1; i <= m; i++ ) { ii = ic1[i-1]; da = a[i-1+(j-1)*m] - c[ii-1+(j-1)*k]; wss[ii-1] = wss[ii-1] + da * da; } } delete [] ic2; delete [] an1; delete [] an2; delete [] ncp; delete [] d; delete [] itran; delete [] live; return; } //****************************************************************************80 void optra ( double a[], int m, int n, double c[], int k, int ic1[], int ic2[], int nc[], double an1[], double an2[], int ncp[], double d[], int itran[], int live[], int *indx ) //****************************************************************************80 // // Purpose: // // OPTRA carries out the optimal transfer stage. // // Discussion: // // This is the optimal transfer stage. // // Each point is re-allocated, if necessary, to the cluster that // will induce a maximum reduction in the within-cluster sum of // squares. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 February 2008 // // Author: // // Original FORTRAN77 version by John Hartigan, Manchek Wong. // C++ version by John Burkardt. // // Reference: // // John Hartigan, Manchek Wong, // Algorithm AS 136: // A K-Means Clustering Algorithm, // Applied Statistics, // Volume 28, Number 1, 1979, pages 100-108. // // Parameters: // // Input, double A(M,N), the points. // // Input, int M, the number of points. // // Input, int N, the number of spatial dimensions. // // Input/output, double C(K,N), the cluster centers. // // Input, int K, the number of clusters. // // Input/output, int IC1(M), the cluster to which each // point is assigned. // // Input/output, int IC2(M), used to store the cluster // which each point is most likely to be transferred to at each step. // // Input/output, int NC(K), the number of points in // each cluster. // // Input/output, double AN1(K). // // Input/output, double AN2(K). // // Input/output, int NCP(K). // // Input/output, double D(M). // // Input/output, int ITRAN(K). // // Input/output, int LIVE(K). // // Input/output, int *INDX, the number of steps since a // transfer took place. // { double al1; double al2; double alt; double alw; double da; double db; double dc; double dd; double de; double df; int i; int j; int l; int l1; int l2; int ll; double r2; double rr; // // If cluster L is updated in the last quick-transfer stage, it // belongs to the live set throughout this stage. Otherwise, at // each step, it is not in the live set if it has not been updated // in the last M optimal transfer steps. // for ( l = 1; l <= k; l++ ) { if ( itran[l-1] == 1) { live[l-1] = m + 1; } } for ( i = 1; i <= m; i++ ) { *indx = *indx + 1; l1 = ic1[i-1]; l2 = ic2[i-1]; ll = l2; // // If point I is the only member of cluster L1, no transfer. // if ( 1 < nc[l1-1] ) { // // If L1 has not yet been updated in this stage, no need to // re-compute D(I). // if ( ncp[l1-1] != 0 ) { de = 0.0; for ( j = 1; j <= n; j++ ) { df = a[i-1+(j-1)*m] - c[l1-1+(j-1)*k]; de = de + df * df; } d[i-1] = de * an1[l1-1]; } // // Find the cluster with minimum R2. // da = 0.0; for ( j = 1; j <= n; j++ ) { db = a[i-1+(j-1)*m] - c[l2-1+(j-1)*k]; da = da + db * db; } r2 = da * an2[l2-1]; for ( l = 1; l <= k; l++ ) { // // If LIVE(L1) <= I, then L1 is not in the live set. If this is // true, we only need to consider clusters that are in the live set // for possible transfer of point I. Otherwise, we need to consider // all possible clusters. // if ( ( i < live[l1-1] || i < live[l2-1] ) && l != l1 && l != ll ) { rr = r2 / an2[l-1]; dc = 0.0; for ( j = 1; j <= n; j++ ) { dd = a[i-1+(j-1)*m] - c[l-1+(j-1)*k]; dc = dc + dd * dd; } if ( dc < rr ) { r2 = dc * an2[l-1]; l2 = l; } } } // // If no transfer is necessary, L2 is the new IC2(I). // if ( d[i-1] <= r2 ) { ic2[i-1] = l2; } // // Update cluster centers, LIVE, NCP, AN1 and AN2 for clusters L1 and // L2, and update IC1(I) and IC2(I). // else { *indx = 0; live[l1-1] = m + i; live[l2-1] = m + i; ncp[l1-1] = i; ncp[l2-1] = i; al1 = ( double ) ( nc[l1-1] ); alw = al1 - 1.0; al2 = ( double ) ( nc[l2-1] ); alt = al2 + 1.0; for ( j = 1; j <= n; j++ ) { c[l1-1+(j-1)*k] = ( c[l1-1+(j-1)*k] * al1 - a[i-1+(j-1)*m] ) / alw; c[l2-1+(j-1)*k] = ( c[l2-1+(j-1)*k] * al2 + a[i-1+(j-1)*m] ) / alt; } nc[l1-1] = nc[l1-1] - 1; nc[l2-1] = nc[l2-1] + 1; an2[l1-1] = alw / al1; if ( 1.0 < alw ) { an1[l1-1] = alw / ( alw - 1.0 ); } else { an1[l1-1] = r8_huge ( ); } an1[l2-1] = alt / al2; an2[l2-1] = alt / ( alt + 1.0 ); ic1[i-1] = l2; ic2[i-1] = l1; } } if ( *indx == m ) { return; } } // // ITRAN(L) = 0 before entering QTRAN. Also, LIVE(L) has to be // decreased by M before re-entering OPTRA. // for ( l = 1; l <= k; l++ ) { itran[l-1] = 0; live[l-1] = live[l-1] - m; } return; } //****************************************************************************80 void qtran ( double a[], int m, int n, double c[], int k, int ic1[], int ic2[], int nc[], double an1[], double an2[], int ncp[], double d[], int itran[], int *indx ) //****************************************************************************80 // // Purpose: // // QTRAN carries out the quick transfer stage. // // Discussion: // // This is the quick transfer stage. // // IC1(I) is the cluster which point I belongs to. // IC2(I) is the cluster which point I is most likely to be // transferred to. // // For each point I, IC1(I) and IC2(I) are switched, if necessary, to // reduce within-cluster sum of squares. The cluster centers are // updated after each step. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 February 2008 // // Author: // // Original FORTRAN77 version by John Hartigan, Manchek Wong. // C++ version by John Burkardt. // // Reference: // // John Hartigan, Manchek Wong, // Algorithm AS 136: // A K-Means Clustering Algorithm, // Applied Statistics, // Volume 28, Number 1, 1979, pages 100-108. // // Parameters: // // Input, double A(M,N), the points. // // Input, int M, the number of points. // // Input, int N, the number of spatial dimensions. // // Input/output, double C(K,N), the cluster centers. // // Input, int K, the number of clusters. // // Input/output, int IC1(M), the cluster to which each // point is assigned. // // Input/output, int IC2(M), used to store the cluster // which each point is most likely to be transferred to at each step. // // Input/output, int NC(K), the number of points in // each cluster. // // Input/output, double AN1(K). // // Input/output, double AN2(K). // // Input/output, int NCP(K). // // Input/output, double D(M). // // Input/output, int ITRAN(K). // // Input/output, int INDX, counts the number of steps // since the last transfer. // { double al1; double al2; double alt; double alw; double da; double db; double dd; double de; int i; int icoun; int istep; int j; int l1; int l2; double r2; // // In the optimal transfer stage, NCP(L) indicates the step at which // cluster L is last updated. In the quick transfer stage, NCP(L) // is equal to the step at which cluster L is last updated plus M. // icoun = 0; istep = 0; for ( ; ; ) { for ( i = 1; i <= m; i++ ) { icoun = icoun + 1; istep = istep + 1; l1 = ic1[i-1]; l2 = ic2[i-1]; // // If point I is the only member of cluster L1, no transfer. // if ( 1 < nc[l1-1] ) { // // If NCP(L1) < ISTEP, no need to re-compute distance from point I to // cluster L1. Note that if cluster L1 is last updated exactly M // steps ago, we still need to compute the distance from point I to // cluster L1. // if ( istep <= ncp[l1-1] ) { da = 0.0; for ( j = 1; j <= n; j++ ) { db = a[i-1+(j-1)*m] - c[l1-1+(j-1)*k]; da = da + db * db; } d[i-1] = da * an1[l1-1]; } // // If NCP(L1) <= ISTEP and NCP(L2) <= ISTEP, there will be no transfer of // point I at this step. // if ( istep < ncp[l1-1] || istep < ncp[l2-1] ) { r2 = d[i-1] / an2[l2-1]; dd = 0.0; for ( j = 1; j <= n; j++ ) { de = a[i-1+(j-1)*m] - c[l2-1+(j-1)*k]; dd = dd + de * de; } // // Update cluster centers, NCP, NC, ITRAN, AN1 and AN2 for clusters // L1 and L2. Also update IC1(I) and IC2(I). Note that if any // updating occurs in this stage, INDX is set back to 0. // if ( dd < r2 ) { icoun = 0; *indx = 0; itran[l1-1] = 1; itran[l2-1] = 1; ncp[l1-1] = istep + m; ncp[l2-1] = istep + m; al1 = ( double ) ( nc[l1-1] ); alw = al1 - 1.0; al2 = ( double ) ( nc[l2-1] ); alt = al2 + 1.0; for ( j = 1; j <= n; j++ ) { c[l1-1+(j-1)*k] = ( c[l1-1+(j-1)*k] * al1 - a[i-1+(j-1)*m] ) / alw; c[l2-1+(j-1)*k] = ( c[l2-1+(j-1)*k] * al2 + a[i-1+(j-1)*m] ) / alt; } nc[l1-1] = nc[l1-1] - 1; nc[l2-1] = nc[l2-1] + 1; an2[l1-1] = alw / al1; if ( 1.0 < alw ) { an1[l1-1] = alw / ( alw - 1.0 ); } else { an1[l1-1] = r8_huge ( ); } an1[l2-1] = alt / al2; an2[l2-1] = alt / ( alt + 1.0 ); ic1[i-1] = l2; ic2[i-1] = l1; } } } // // If no re-allocation took place in the last M steps, return. // if ( icoun == m ) { return; } } } } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // The value returned by this function is NOT required to be the // maximum representable R8. This value varies from machine to machine, // from compiler to compiler, and may cause problems when being printed. // We simply want a "very large" but non-infinite number. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 October 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8 value. // { double value; value = 1.0E+30; return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }