# include # include # include # include # include using namespace std; # include "asa152.hpp" //****************************************************************************80 double alnfac ( int n ) //****************************************************************************80 // // Purpose: // // ALNFAC computes the logarithm of the factorial of N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 January 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the argument of the factorial. // // Output, double ALNFAC, the logarithm of the factorial of N. // { double value; value = lgamma ( ( double ) ( n + 1 ) ); return value; } //****************************************************************************80 double alnorm ( double x, bool upper ) //****************************************************************************80 // // Purpose: // // ALNORM computes the cumulative density of the standard normal distribution. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 January 2008 // // Author: // // Original FORTRAN77 version by David Hill. // C++ version by John Burkardt. // // Reference: // // David Hill, // Algorithm AS 66: // The Normal Integral, // Applied Statistics, // Volume 22, Number 3, 1973, pages 424-427. // // Parameters: // // Input, double X, is one endpoint of the semi-infinite interval // over which the integration takes place. // // Input, bool UPPER, determines whether the upper or lower // interval is to be integrated: // .TRUE. => integrate from X to + Infinity; // .FALSE. => integrate from - Infinity to X. // // Output, double ALNORM, the integral of the standard normal // distribution over the desired interval. // { double a1 = 5.75885480458; double a2 = 2.62433121679; double a3 = 5.92885724438; double b1 = -29.8213557807; double b2 = 48.6959930692; double c1 = -0.000000038052; double c2 = 0.000398064794; double c3 = -0.151679116635; double c4 = 4.8385912808; double c5 = 0.742380924027; double c6 = 3.99019417011; double con = 1.28; double d1 = 1.00000615302; double d2 = 1.98615381364; double d3 = 5.29330324926; double d4 = -15.1508972451; double d5 = 30.789933034; double ltone = 7.0; double p = 0.398942280444; double q = 0.39990348504; double r = 0.398942280385; bool up; double utzero = 18.66; double value; double y; double z; up = upper; z = x; if ( z < 0.0 ) { up = !up; z = - z; } if ( ltone < z && ( ( !up ) || utzero < z ) ) { if ( up ) { value = 0.0; } else { value = 1.0; } return value; } y = 0.5 * z * z; if ( z <= con ) { value = 0.5 - z * ( p - q * y / ( y + a1 + b1 / ( y + a2 + b2 / ( y + a3 )))); } else { value = r * exp ( - y ) / ( z + c1 + d1 / ( z + c2 + d2 / ( z + c3 + d3 / ( z + c4 + d4 / ( z + c5 + d5 / ( z + c6 )))))); } if ( !up ) { value = 1.0 - value; } return value; } //****************************************************************************80 double chyper ( bool point, int kk, int ll, int mm, int nn, int *ifault ) //****************************************************************************80 // // Purpose: // // CHYPER computes point or cumulative hypergeometric probabilities. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 January 2008 // // Author: // // Original FORTRAN77 version by Richard Lund. // C++ version by John Burkardt. // // Reference: // // PR Freeman, // Algorithm AS 59: // Hypergeometric Probabilities, // Applied Statistics, // Volume 22, Number 1, 1973, pages 130-133. // // Richard Lund, // Algorithm AS 152: // Cumulative hypergeometric probabilities, // Applied Statistics, // Volume 29, Number 2, 1980, pages 221-223. // // BL Shea, // Remark AS R77: // A Remark on Algorithm AS 152: Cumulative hypergeometric probabilities, // Applied Statistics, // Volume 38, Number 1, 1989, pages 199-204. // // Parameters: // // Input, bool POINT, is TRUE if the point probability is desired, // and FALSE if the cumulative probability is desired. // // Input, int KK, the sample size. // 0 <= KK <= MM. // // Input, int LL, the number of successes in the sample. // 0 <= LL <= KK. // // Input, int MM, the population size that was sampled. // 0 <= MM. // // Input, int NN, the number of "successes" in the population. // 0 <= NN <= MM. // // Output, int *IFAULT, error flag. // 0, no error occurred. // nonzero, an error occurred. // // Output, double CHYPER, the PDF (point probability) of // exactly LL successes out of KK samples, or the CDF (cumulative // probability) of up to LL successes out of KK samples. // { double arg; bool dir; double elimit = - 88.0; int i; int j; int k; int kl; int l; int m; int mbig = 600; double mean; int mnkl; int mvbig = 1000; int n; int nl; double p; double pt; double rootpi = 2.506628274631001; double scale = 1.0E+35; double sig; double value; *ifault = 0; k = kk + 1; l = ll + 1; m = mm + 1; n = nn + 1; dir = true; // // Check arguments are within permitted limits. // value = 0.0; if ( n < 1 || m < n || k < 1 || m < k ) { *ifault = 1; return value; } if ( l < 1 || m - n < k - l ) { *ifault = 2; return value; } if ( !point ) { value = 1.0; } if ( n < l || k < l ) { *ifault = 2; return value; } *ifault = 0; value = 1.0; if ( k == 1 || k == m || n == 1 || n == m ) { return value; } if ( !point && ll == i4_min ( kk, nn ) ) { return value; } p = ( double ) ( nn ) / ( double ) ( mm - nn ); if ( 16.0 * r8_max ( p, 1.0 / p ) < ( double ) ( i4_min ( kk, mm - kk ) ) && mvbig < mm && - 100.0 < elimit ) { // // Use a normal approximation. // mean = ( double ) ( kk * nn ) / ( double ) ( mm ); sig = sqrt ( mean * ( ( double ) ( mm - nn ) / ( double ) ( mm ) ) * ( ( double ) ( mm - kk ) / ( ( double ) ( mm - 1 ) ) ) ); if ( point ) { arg = - 0.5 * ( pow ( ( ( double ) ( ll ) - mean ) / sig, 2 ) ); if ( elimit <= arg ) { value = exp ( arg ) / ( sig * rootpi ); } else { value = 0.0; } } else { value = alnorm ( ( ( double ) ( ll ) + 0.5 - mean ) / sig, false ); } } else { // // Calculate exact hypergeometric probabilities. // Interchange K and N if this saves calculations. // if ( i4_min ( n - 1, m - n ) < i4_min ( k - 1, m - k ) ) { i = k; k = n; n = i; } if ( m - k < k - 1 ) { dir = !dir; l = n - l + 1; k = m - k + 1; } if ( mbig < mm ) { // // Take logarithms of factorials. // p = alnfac ( nn ) - alnfac ( mm ) + alnfac ( mm - kk ) + alnfac ( kk ) + alnfac ( mm - nn ) - alnfac ( ll ) - alnfac ( nn - ll ) - alnfac ( kk - ll ) - alnfac ( mm - nn - kk + ll ); if ( elimit <= p ) { value = exp ( p ); } else { value = 0.0; } } else { // // Use Freeman/Lund algorithm. // for ( i = 1; i <= l - 1; i++ ) { value = value * ( double ) ( ( k - i ) * ( n - i ) ) / ( double ) ( ( l - i ) * ( m - i ) ); } if ( l != k ) { j = m - n + l; for ( i = l; i <= k - 1; i++ ) { value = value * ( double ) ( j - i ) / ( double ) ( m - i ); } } } if ( point ) { return value; } if ( value == 0.0 ) { // // We must recompute the point probability since it has underflowed. // if ( mm <= mbig ) { p = alnfac ( nn ) - alnfac ( mm ) + alnfac ( kk ) + alnfac ( mm - nn ) - alnfac ( ll ) - alnfac ( nn - ll ) - alnfac ( kk - ll ) - alnfac ( mm - nn - kk + ll ) + alnfac ( mm - kk ); } p = p + log ( scale ); if ( p < elimit ) { *ifault = 3; if ( ( double ) ( nn * kk + nn + kk + 1 ) / ( double ) ( mm + 2 ) < ( double ) ( ll ) ) { value = 1.0; } return value; } else { p = exp ( p ); } } else // // Scale up at this point. // { p = value * scale; } pt = 0.0; nl = n - l; kl = k - l; mnkl = m - n - kl + 1; if ( l <= kl ) { for ( i = 1; i <= l - 1; i++ ) { p = p * ( double ) ( ( l - i ) * ( mnkl - i ) ) / ( double ) ( ( nl + i ) * ( kl + i ) ); pt = pt + p; } } else { dir = !dir; for ( j = 0; j <= kl - 1; j++ ) { p = p * ( double ) ( ( nl - j ) * ( kl - j ) ) / ( double ) ( ( l + j ) * ( mnkl + j ) ); pt = pt + p; } } if ( p == 0.0 ) { *ifault = 3; } if ( dir ) { value = value + ( pt / scale ); } else { value = 1.0 - ( pt / scale ); } } return value; } //****************************************************************************80 void hypergeometric_cdf_values ( int *n_data, int *sam, int *suc, int *pop, int *n, double *fx ) //****************************************************************************80 // // Purpose: // // HYPERGEOMETRIC_CDF_VALUES returns some values of the hypergeometric CDF. // // Discussion: // // CDF(X)(A,B) is the probability of at most X successes in A trials, // given that the probability of success on a single trial is B. // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`DiscreteDistributions`] // dist = HypergeometricDistribution [ sam, suc, pop ] // CDF [ dist, n ] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 September 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, CRC Press, 1996, pages 651-652. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int *SAM, int *SUC, int *POP, the sample size, // success size, and population parameters of the function. // // Output, int *N, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 16 double fx_vec[N_MAX] = { 0.6001858177500578E-01, 0.2615284665839845E+00, 0.6695237889132748E+00, 0.1000000000000000E+01, 0.1000000000000000E+01, 0.5332595856827856E+00, 0.1819495964117640E+00, 0.4448047017527730E-01, 0.9999991751316731E+00, 0.9926860896560750E+00, 0.8410799901444538E+00, 0.3459800113391901E+00, 0.0000000000000000E+00, 0.2088888139634505E-02, 0.3876752992448843E+00, 0.9135215248834896E+00 }; int n_vec[N_MAX] = { 7, 8, 9, 10, 6, 6, 6, 6, 6, 6, 6, 6, 0, 0, 0, 0 }; int pop_vec[N_MAX] = { 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 90, 200, 1000, 10000 }; int sam_vec[N_MAX] = { 10, 10, 10, 10, 6, 7, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10 }; int suc_vec[N_MAX] = { 90, 90, 90, 90, 90, 90, 90, 90, 10, 30, 50, 70, 90, 90, 90, 90 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *sam = 0; *suc = 0; *pop = 0; *n = 0; *fx = 0.0; } else { *sam = sam_vec[*n_data-1]; *suc = suc_vec[*n_data-1]; *pop = pop_vec[*n_data-1]; *n = n_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void hypergeometric_pdf_values ( int *n_data, int *sam, int *suc, int *pop, int *n, double *fx ) //****************************************************************************80 // // Purpose: // // HYPERGEOMETRIC_PDF_VALUES returns some values of the hypergeometric PDF. // // Discussion: // // CDF(X)(A,B) is the probability of X successes in A trials, // given that the probability of success on a single trial is B. // // In Mathematica, the function can be evaluated by: // // dist = HypergeometricDistribution [ sam, suc, pop ] // PDF [ dist, n ] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 January 2008 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, CRC Press, 1996, pages 651-652. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int *SAM, int *SUC, int *POP, the sample size, // success size, and population parameters of the function. // // Output, int *N, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 16 double fx_vec[N_MAX] = { 0.05179370533242827E+00, 0.2015098848089788E+00, 0.4079953223292903E+00, 0.3304762110867252E+00, 0.5223047493549780E+00, 0.3889503452643453E+00, 0.1505614239732950E+00, 0.03927689321042477E+00, 0.00003099828465518108E+00, 0.03145116093938197E+00, 0.2114132170316862E+00, 0.2075776621999210E+00, 0.0000000000000000E+00, 0.002088888139634505E+00, 0.3876752992448843E+00, 0.9135215248834896E+00 }; int n_vec[N_MAX] = { 7, 8, 9, 10, 6, 6, 6, 6, 6, 6, 6, 6, 0, 0, 0, 0 }; int pop_vec[N_MAX] = { 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 90, 200, 1000, 10000 }; int sam_vec[N_MAX] = { 10, 10, 10, 10, 6, 7, 8, 9, 10, 10, 10, 10, 10, 10, 10, 10 }; int suc_vec[N_MAX] = { 90, 90, 90, 90, 90, 90, 90, 90, 10, 30, 50, 70, 90, 90, 90, 90 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *sam = 0; *suc = 0; *pop = 0; *n = 0; *fx = 0.0; } else { *sam = sam_vec[*n_data-1]; *suc = suc_vec[*n_data-1]; *pop = pop_vec[*n_data-1]; *n = n_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( x < y ) { value = y; } else { value = x; } return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }