# include # include # include # include # include # include "asa241.hpp" using namespace std; //****************************************************************************80 void normal_01_cdf_values ( int *n_data, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // NORMAL_01_CDF_VALUES returns some values of the Normal01 CDF. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Needs["Statistics`ContinuousDistributions`"] // dist = NormalDistribution [ 0, 1 ] // CDF [ dist, x ] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 28 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 17 double fx_vec[N_MAX] = { 0.5000000000000000E+00, 0.5398278372770290E+00, 0.5792597094391030E+00, 0.6179114221889526E+00, 0.6554217416103242E+00, 0.6914624612740131E+00, 0.7257468822499270E+00, 0.7580363477769270E+00, 0.7881446014166033E+00, 0.8159398746532405E+00, 0.8413447460685429E+00, 0.9331927987311419E+00, 0.9772498680518208E+00, 0.9937903346742239E+00, 0.9986501019683699E+00, 0.9997673709209645E+00, 0.9999683287581669E+00 }; double x_vec[N_MAX] = { 0.0000000000000000E+00, 0.1000000000000000E+00, 0.2000000000000000E+00, 0.3000000000000000E+00, 0.4000000000000000E+00, 0.5000000000000000E+00, 0.6000000000000000E+00, 0.7000000000000000E+00, 0.8000000000000000E+00, 0.9000000000000000E+00, 0.1000000000000000E+01, 0.1500000000000000E+01, 0.2000000000000000E+01, 0.2500000000000000E+01, 0.3000000000000000E+01, 0.3500000000000000E+01, 0.4000000000000000E+01 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *x = 0.0; *fx = 0.0; } else { *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 float r4_huge ( ) //****************************************************************************80 // // Purpose: // // R4_HUGE returns a "huge" R4. // // Discussion: // // The value returned by this function is NOT required to be the // maximum representable R4. This value varies from machine to machine, // from compiler to compiler, and may cause problems when being printed. // We simply want a "very large" but non-infinite number. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 February 2009 // // Author: // // John Burkardt // // Parameters: // // Output, float R4_HUGE, a "huge" R4 value. // { float value; value = 1.0E+30; return value; } //****************************************************************************80 float r4_normal_01_cdf_inverse ( float p ) //****************************************************************************80 // // Purpose: // // R4_NORMAL_01_CDF_INVERSE inverts the standard normal CDF. // // Discussion: // // The result is accurate to about 1 part in 10**7. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 March 2010 // // Author: // // Original FORTRAN77 version by Michael Wichura. // C++ version by John Burkardt. // // Reference: // // Michael Wichura, // The Percentage Points of the Normal Distribution, // Algorithm AS 241, // Applied Statistics, // Volume 37, Number 3, pages 477-484, 1988. // // Parameters: // // Input, float P, the value of the cumulative probability densitity function. // 0 < P < 1. If P is outside this range, an "infinite" result is returned. // // Output, float R4_NORMAL_01_CDF_INVERSE, the normal deviate value with the // property that the probability of a standard normal deviate being less than or // equal to this value is P. // { static float a[4] = { 3.3871327179, 50.434271938, 159.29113202, 59.109374720 }; static float b[4] = { 1.0, 17.895169469, 78.757757664, 67.187563600 }; static float c[4] = { 1.4234372777, 2.7568153900, 1.3067284816, 0.17023821103 }; static float const1 = 0.180625; static float const2 = 1.6; static float d[3] = { 1.0, 0.73700164250, 0.12021132975 }; static float e[4] = { 6.6579051150, 3.0812263860, 0.42868294337, 0.017337203997 }; static float f[3] = { 1.0, 0.24197894225, 0.012258202635 }; float q; float r; static float split1 = 0.425; static float split2 = 5.0; float value; if ( p <= 0.0 ) { value = -r4_huge ( ); return value; } if ( 1.0 <= p ) { value = r4_huge ( ); return value; } q = p - 0.5; if ( fabs ( q ) <= split1 ) { r = const1 - q * q; value = q * r4poly_value ( 4, a, r ) / r4poly_value ( 4, b, r ); } else { if ( q < 0.0 ) { r = p; } else { r = 1.0 - p; } if ( r <= 0.0 ) { value = -1.0; exit ( 1 ); } r = sqrt ( -log ( r ) ); if ( r <= split2 ) { r = r - const2; value = r4poly_value ( 4, c, r ) / r4poly_value ( 3, d, r ); } else { r = r - split2; value = r4poly_value ( 4, e, r ) / r4poly_value ( 3, f, r ); } if ( q < 0.0 ) { value = -value; } } return value; } //****************************************************************************80 float r4poly_value ( int n, float a[], float x ) //****************************************************************************80 // // Purpose: // // R4POLY_VALUE evaluates a real polynomial. // // Discussion: // // For sanity's sake, the value of N indicates the NUMBER of // coefficients, or more precisely, the ORDER of the polynomial, // rather than the DEGREE of the polynomial. The two quantities // differ by 1, but cause a great deal of confusion. // // Given N and A, the form of the polynomial is: // // p(x) = a[0] + a[1] * x + ... + a[n-2] * x^(n-2) + a[n-1] * x^(n-1) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the polynomial. // // Input, float A[N], the coefficients of the polynomial. // A[0] is the constant term. // // Input, float X, the point at which the polynomial is to be evaluated. // // Output, float R4POLY_VALUE, the value of the polynomial at X. // { int i; float value; value = 0.0; for ( i = n-1; 0 <= i; i-- ) { value = value * x + a[i]; } return value; } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // The value returned by this function is NOT required to be the // maximum representable R8. This value varies from machine to machine, // from compiler to compiler, and may cause problems when being printed. // We simply want a "very large" but non-infinite number. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 October 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8 value. // { double value; value = 1.0E+30; return value; } //****************************************************************************80 double r8_normal_01_cdf_inverse ( double p ) //****************************************************************************80 // // Purpose: // // R8_NORMAL_01_CDF_INVERSE inverts the standard normal CDF. // // Discussion: // // The result is accurate to about 1 part in 10**16. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 March 2010 // // Author: // // Original FORTRAN77 version by Michael Wichura. // C++ version by John Burkardt. // // Reference: // // Michael Wichura, // The Percentage Points of the Normal Distribution, // Algorithm AS 241, // Applied Statistics, // Volume 37, Number 3, pages 477-484, 1988. // // Parameters: // // Input, double P, the value of the cumulative probability // densitity function. 0 < P < 1. If P is outside this range, an "infinite" // value is returned. // // Output, double R8_NORMAL_01_CDF_INVERSE, the normal deviate value // with the property that the probability of a standard normal deviate being // less than or equal to this value is P. // { static double a[8] = { 3.3871328727963666080, 1.3314166789178437745e+2, 1.9715909503065514427e+3, 1.3731693765509461125e+4, 4.5921953931549871457e+4, 6.7265770927008700853e+4, 3.3430575583588128105e+4, 2.5090809287301226727e+3 }; static double b[8] = { 1.0, 4.2313330701600911252e+1, 6.8718700749205790830e+2, 5.3941960214247511077e+3, 2.1213794301586595867e+4, 3.9307895800092710610e+4, 2.8729085735721942674e+4, 5.2264952788528545610e+3 }; static double c[8] = { 1.42343711074968357734, 4.63033784615654529590, 5.76949722146069140550, 3.64784832476320460504, 1.27045825245236838258, 2.41780725177450611770e-1, 2.27238449892691845833e-2, 7.74545014278341407640e-4 }; static double const1 = 0.180625; static double const2 = 1.6; static double d[8] = { 1.0, 2.05319162663775882187, 1.67638483018380384940, 6.89767334985100004550e-1, 1.48103976427480074590e-1, 1.51986665636164571966e-2, 5.47593808499534494600e-4, 1.05075007164441684324e-9 }; static double e[8] = { 6.65790464350110377720, 5.46378491116411436990, 1.78482653991729133580, 2.96560571828504891230e-1, 2.65321895265761230930e-2, 1.24266094738807843860e-3, 2.71155556874348757815e-5, 2.01033439929228813265e-7 }; static double f[8] = { 1.0, 5.99832206555887937690e-1, 1.36929880922735805310e-1, 1.48753612908506148525e-2, 7.86869131145613259100e-4, 1.84631831751005468180e-5, 1.42151175831644588870e-7, 2.04426310338993978564e-15 }; double q; double r; static double split1 = 0.425; static double split2 = 5.0; double value; if ( p <= 0.0 ) { value = -r8_huge ( ); return value; } if ( 1.0 <= p ) { value = r8_huge ( ); return value; } q = p - 0.5; if ( fabs ( q ) <= split1 ) { r = const1 - q * q; value = q * r8poly_value ( 8, a, r ) / r8poly_value ( 8, b, r ); } else { if ( q < 0.0 ) { r = p; } else { r = 1.0 - p; } if ( r <= 0.0 ) { value = -1.0; exit ( 1 ); } r = sqrt ( -log ( r ) ); if ( r <= split2 ) { r = r - const2; value = r8poly_value ( 8, c, r ) / r8poly_value ( 8, d, r ); } else { r = r - split2; value = r8poly_value ( 8, e, r ) / r8poly_value ( 8, f, r ); } if ( q < 0.0 ) { value = -value; } } return value; } //****************************************************************************80 double r8poly_value ( int n, double a[], double x ) //****************************************************************************80 // // Purpose: // // R8POLY_VALUE evaluates a double precision polynomial. // // Discussion: // // For sanity's sake, the value of N indicates the NUMBER of // coefficients, or more precisely, the ORDER of the polynomial, // rather than the DEGREE of the polynomial. The two quantities // differ by 1, but cause a great deal of confusion. // // Given N and A, the form of the polynomial is: // // p(x) = a[0] + a[1] * x + ... + a[n-2] * x^(n-2) + a[n-1] * x^(n-1) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the polynomial. // // Input, double A[N], the coefficients of the polynomial. // A[0] is the constant term. // // Input, double X, the point at which the polynomial is to be evaluated. // // Output, double R8POLY_VALUE, the value of the polynomial at X. // { int i; double value; value = 0.0; for ( i = n-1; 0 <= i; i-- ) { value = value * x + a[i]; } return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }