# include # include # include # include # include # include "asa245.hpp" using namespace std; //****************************************************************************80 double alngam ( double xvalue, int &ifault ) //****************************************************************************80 // // Purpose: // // ALNGAM computes the logarithm of the gamma function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2008 // // Author: // // Original FORTRAN77 version by Allan Macleod. // C++ version by John Burkardt. // // Reference: // // Allan Macleod, // Algorithm AS 245, // A Robust and Reliable Algorithm for the Logarithm of the Gamma Function, // Applied Statistics, // Volume 38, Number 2, 1989, pages 397-402. // // Parameters: // // Input, double XVALUE, the argument of the Gamma function. // // Output, int &IFAULT, error flag. // 0, no error occurred. // 1, XVALUE is less than or equal to 0. // 2, XVALUE is too big. // // Output, double ALNGAM, the logarithm of the gamma function of X. // { double alr2pi = 0.918938533204673; double r1[9] = { -2.66685511495, -24.4387534237, -21.9698958928, 11.1667541262, 3.13060547623, 0.607771387771, 11.9400905721, 31.4690115749, 15.2346874070 }; double r2[9] = { -78.3359299449, -142.046296688, 137.519416416, 78.6994924154, 4.16438922228, 47.0668766060, 313.399215894, 263.505074721, 43.3400022514 }; double r3[9] = { -2.12159572323E+05, 2.30661510616E+05, 2.74647644705E+04, -4.02621119975E+04, -2.29660729780E+03, -1.16328495004E+05, -1.46025937511E+05, -2.42357409629E+04, -5.70691009324E+02 }; double r4[5] = { 0.279195317918525, 0.4917317610505968, 0.0692910599291889, 3.350343815022304, 6.012459259764103 }; double value; double x; double x1; double x2; double xlge = 510000.0; double xlgst = 1.0E+30; double y; x = xvalue; value = 0.0; // // Check the input. // if ( xlgst <= x ) { ifault = 2; return value; } if ( x <= 0.0 ) { ifault = 1; return value; } ifault = 0; // // Calculation for 0 < X < 0.5 and 0.5 <= X < 1.5 combined. // if ( x < 1.5 ) { if ( x < 0.5 ) { value = - log ( x ); y = x + 1.0; // // Test whether X < machine epsilon. // if ( y == 1.0 ) { return value; } } else { value = 0.0; y = x; x = ( x - 0.5 ) - 0.5; } value = value + x * (((( r1[4] * y + r1[3] ) * y + r1[2] ) * y + r1[1] ) * y + r1[0] ) / (((( y + r1[8] ) * y + r1[7] ) * y + r1[6] ) * y + r1[5] ); return value; } // // Calculation for 1.5 <= X < 4.0. // if ( x < 4.0 ) { y = ( x - 1.0 ) - 1.0; value = y * (((( r2[4] * x + r2[3] ) * x + r2[2] ) * x + r2[1] ) * x + r2[0] ) / (((( x + r2[8] ) * x + r2[7] ) * x + r2[6] ) * x + r2[5] ); } // // Calculation for 4.0 <= X < 12.0. // else if ( x < 12.0 ) { value = (((( r3[4] * x + r3[3] ) * x + r3[2] ) * x + r3[1] ) * x + r3[0] ) / (((( x + r3[8] ) * x + r3[7] ) * x + r3[6] ) * x + r3[5] ); } // // Calculation for 12.0 <= X. // else { y = log ( x ); value = x * ( y - 1.0 ) - 0.5 * y + alr2pi; if ( x <= xlge ) { x1 = 1.0 / x; x2 = x1 * x1; value = value + x1 * ( ( r4[2] * x2 + r4[1] ) * x2 + r4[0] ) / ( ( x2 + r4[4] ) * x2 + r4[3] ); } } return value; } //****************************************************************************80 void gamma_log_values ( int &n_data, double &x, double &fx ) //****************************************************************************80 // // Purpose: // // GAMMA_LOG_VALUES returns some values of the Log Gamma function. // // Discussion: // // In Mathematica, the function can be evaluated by: // // Log[Gamma[x]] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 August 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions, // National Bureau of Standards, 1964, // ISBN: 0-486-61272-4, // LC: QA47.A34. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Cambridge University Press, 1999, // ISBN: 0-521-64314-7, // LC: QA76.95.W65. // // Parameters: // // Input/output, int &N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double &X, the argument of the function. // // Output, double &FX, the value of the function. // { # define N_MAX 20 double fx_vec[N_MAX] = { 0.1524063822430784E+01, 0.7966778177017837E+00, 0.3982338580692348E+00, 0.1520596783998375E+00, 0.0000000000000000E+00, -0.4987244125983972E-01, -0.8537409000331584E-01, -0.1081748095078604E+00, -0.1196129141723712E+00, -0.1207822376352452E+00, -0.1125917656967557E+00, -0.9580769740706586E-01, -0.7108387291437216E-01, -0.3898427592308333E-01, 0.00000000000000000E+00, 0.69314718055994530E+00, 0.17917594692280550E+01, 0.12801827480081469E+02, 0.39339884187199494E+02, 0.71257038967168009E+02 }; double x_vec[N_MAX] = { 0.20E+00, 0.40E+00, 0.60E+00, 0.80E+00, 1.00E+00, 1.10E+00, 1.20E+00, 1.30E+00, 1.40E+00, 1.50E+00, 1.60E+00, 1.70E+00, 1.80E+00, 1.90E+00, 2.00E+00, 3.00E+00, 4.00E+00, 10.00E+00, 20.00E+00, 30.00E+00 }; if ( n_data < 0 ) { n_data = 0; } n_data = n_data + 1; if ( N_MAX < n_data ) { n_data = 0; x = 0.0; fx = 0.0; } else { x = x_vec[n_data-1]; fx = fx_vec[n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double lngamma ( double z, int &ier ) //****************************************************************************80 // // Purpose: // // LNGAMMA computes Log(Gamma(X)) using a Lanczos approximation. // // Discussion: // // This algorithm is not part of the Applied Statistics algorithms. // It is slower but gives 14 or more significant decimal digits // accuracy, except around X = 1 and X = 2. The Lanczos series from // which this algorithm is derived is interesting in that it is a // convergent series approximation for the gamma function, whereas // the familiar series due to De Moivre (and usually wrongly called // the Stirling approximation) is only an asymptotic approximation, as // is the true and preferable approximation due to Stirling. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2008 // // Author: // // Original FORTRAN77 version by Alan Miller. // C++ version by John Burkardt. // // Reference: // // Cornelius Lanczos, // A precision approximation of the gamma function, // SIAM Journal on Numerical Analysis, B, // Volume 1, 1964, pages 86-96. // // Parameters: // // Input, double Z, the argument of the Gamma function. // // Output, int &IER, error flag. // 0, no error occurred. // 1, Z is less than or equal to 0. // // Output, double LNGAMMA, the logarithm of the gamma function of Z. // { double a[9] = { 0.9999999999995183, 676.5203681218835, - 1259.139216722289, 771.3234287757674, - 176.6150291498386, 12.50734324009056, - 0.1385710331296526, 0.9934937113930748E-05, 0.1659470187408462E-06 }; int j; double lnsqrt2pi = 0.9189385332046727; double tmp; double value; if ( z <= 0.0 ) { ier = 1; value = 0.0; return value; } ier = 0; value = 0.0; tmp = z + 7.0; for ( j = 8; 1 <= j; j-- ) { value = value + a[j] / tmp; tmp = tmp - 1.0; } value = value + a[0]; value = log ( value ) + lnsqrt2pi - ( z + 6.5 ) + ( z - 0.5 ) * log ( z + 6.5 ); return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }