# include # include # include # include # include # include using namespace std; # include "asa266.hpp" //****************************************************************************80 double alngam ( double xvalue, int *ifault ) //****************************************************************************80 // // Purpose: // // ALNGAM computes the logarithm of the gamma function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2008 // // Author: // // Original FORTRAN77 version by Allan Macleod. // C++ version by John Burkardt. // // Reference: // // Allan Macleod, // Algorithm AS 245, // A Robust and Reliable Algorithm for the Logarithm of the Gamma Function, // Applied Statistics, // Volume 38, Number 2, 1989, pages 397-402. // // Parameters: // // Input, double XVALUE, the argument of the Gamma function. // // Output, int IFAULT, error flag. // 0, no error occurred. // 1, XVALUE is less than or equal to 0. // 2, XVALUE is too big. // // Output, double ALNGAM, the logarithm of the gamma function of X. // { double alr2pi = 0.918938533204673; double r1[9] = { -2.66685511495, -24.4387534237, -21.9698958928, 11.1667541262, 3.13060547623, 0.607771387771, 11.9400905721, 31.4690115749, 15.2346874070 }; double r2[9] = { -78.3359299449, -142.046296688, 137.519416416, 78.6994924154, 4.16438922228, 47.0668766060, 313.399215894, 263.505074721, 43.3400022514 }; double r3[9] = { -2.12159572323E+05, 2.30661510616E+05, 2.74647644705E+04, -4.02621119975E+04, -2.29660729780E+03, -1.16328495004E+05, -1.46025937511E+05, -2.42357409629E+04, -5.70691009324E+02 }; double r4[5] = { 0.279195317918525, 0.4917317610505968, 0.0692910599291889, 3.350343815022304, 6.012459259764103 }; double value; double x; double x1; double x2; double xlge = 510000.0; double xlgst = 1.0E+30; double y; x = xvalue; value = 0.0; // // Check the input. // if ( xlgst <= x ) { *ifault = 2; return value; } if ( x <= 0.0 ) { *ifault = 1; return value; } *ifault = 0; // // Calculation for 0 < X < 0.5 and 0.5 <= X < 1.5 combined. // if ( x < 1.5 ) { if ( x < 0.5 ) { value = - log ( x ); y = x + 1.0; // // Test whether X < machine epsilon. // if ( y == 1.0 ) { return value; } } else { value = 0.0; y = x; x = ( x - 0.5 ) - 0.5; } value = value + x * (((( r1[4] * y + r1[3] ) * y + r1[2] ) * y + r1[1] ) * y + r1[0] ) / (((( y + r1[8] ) * y + r1[7] ) * y + r1[6] ) * y + r1[5] ); return value; } // // Calculation for 1.5 <= X < 4.0. // if ( x < 4.0 ) { y = ( x - 1.0 ) - 1.0; value = y * (((( r2[4] * x + r2[3] ) * x + r2[2] ) * x + r2[1] ) * x + r2[0] ) / (((( x + r2[8] ) * x + r2[7] ) * x + r2[6] ) * x + r2[5] ); } // // Calculation for 4.0 <= X < 12.0. // else if ( x < 12.0 ) { value = (((( r3[4] * x + r3[3] ) * x + r3[2] ) * x + r3[1] ) * x + r3[0] ) / (((( x + r3[8] ) * x + r3[7] ) * x + r3[6] ) * x + r3[5] ); } // // Calculation for 12.0 <= X. // else { y = log ( x ); value = x * ( y - 1.0 ) - 0.5 * y + alr2pi; if ( x <= xlge ) { x1 = 1.0 / x; x2 = x1 * x1; value = value + x1 * ( ( r4[2] * x2 + r4[1] ) * x2 + r4[0] ) / ( ( x2 + r4[4] ) * x2 + r4[3] ); } } return value; } //****************************************************************************80 double alnorm ( double x, bool upper ) //****************************************************************************80 // // Purpose: // // ALNORM computes the cumulative density of the standard normal distribution. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 January 2008 // // Author: // // Original FORTRAN77 version by David Hill. // C++ version by John Burkardt. // // Reference: // // David Hill, // Algorithm AS 66: // The Normal Integral, // Applied Statistics, // Volume 22, Number 3, 1973, pages 424-427. // // Parameters: // // Input, double X, is one endpoint of the semi-infinite interval // over which the integration takes place. // // Input, bool UPPER, determines whether the upper or lower // interval is to be integrated: // .TRUE. => integrate from X to + Infinity; // .FALSE. => integrate from - Infinity to X. // // Output, double ALNORM, the integral of the standard normal // distribution over the desired interval. // { double a1 = 5.75885480458; double a2 = 2.62433121679; double a3 = 5.92885724438; double b1 = -29.8213557807; double b2 = 48.6959930692; double c1 = -0.000000038052; double c2 = 0.000398064794; double c3 = -0.151679116635; double c4 = 4.8385912808; double c5 = 0.742380924027; double c6 = 3.99019417011; double con = 1.28; double d1 = 1.00000615302; double d2 = 1.98615381364; double d3 = 5.29330324926; double d4 = -15.1508972451; double d5 = 30.789933034; double ltone = 7.0; double p = 0.398942280444; double q = 0.39990348504; double r = 0.398942280385; bool up; double utzero = 18.66; double value; double y; double z; up = upper; z = x; if ( z < 0.0 ) { up = !up; z = - z; } if ( ltone < z && ( ( !up ) || utzero < z ) ) { if ( up ) { value = 0.0; } else { value = 1.0; } return value; } y = 0.5 * z * z; if ( z <= con ) { value = 0.5 - z * ( p - q * y / ( y + a1 + b1 / ( y + a2 + b2 / ( y + a3 )))); } else { value = r * exp ( - y ) / ( z + c1 + d1 / ( z + c2 + d2 / ( z + c3 + d3 / ( z + c4 + d4 / ( z + c5 + d5 / ( z + c6 )))))); } if ( !up ) { value = 1.0 - value; } return value; } //****************************************************************************80 double alogam ( double x, int *ifault ) //****************************************************************************80 // // Purpose: // // ALOGAM computes the logarithm of the Gamma function. // // Modified: // // 22 January 2008 // // Author: // // Original FORTRAN77 version by Malcolm Pike, David Hill. // C++ version by John Burkardt. // // Reference: // // Malcolm Pike, David Hill, // Algorithm 291: // Logarithm of Gamma Function, // Communications of the ACM, // Volume 9, Number 9, September 1966, page 684. // // Parameters: // // Input, double X, the argument of the Gamma function. // X should be greater than 0. // // Output, int *IFAULT, error flag. // 0, no error. // 1, X <= 0. // // Output, double ALOGAM, the logarithm of the Gamma // function of X. // { double f; double value; double y; double z; if ( x <= 0.0 ) { *ifault = 1; value = 0.0; return value; } *ifault = 0; y = x; if ( x < 7.0 ) { f = 1.0; z = y; while ( z < 7.0 ) { f = f * z; z = z + 1.0; } y = z; f = - log ( f ); } else { f = 0.0; } z = 1.0 / y / y; value = f + ( y - 0.5 ) * log ( y ) - y + 0.918938533204673 + ((( - 0.000595238095238 * z + 0.000793650793651 ) * z - 0.002777777777778 ) * z + 0.083333333333333 ) / y; return value; } //****************************************************************************80 double digamma ( double x ) //****************************************************************************80 // // Purpose: // // DIGAMMA calculates DIGAMMA ( X ) = d ( LOG ( GAMMA ( X ) ) ) / dX // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 June 2013 // // Author: // // Original FORTRAN77 version by Jose Bernardo. // C++ version by John Burkardt. // // Reference: // // Jose Bernardo, // Algorithm AS 103: // Psi ( Digamma ) Function, // Applied Statistics, // Volume 25, Number 3, 1976, pages 315-317. // // Parameters: // // Input, double X, the argument of the digamma function. // 0 < X. // // Output, double DIGAMMA, the value of the digamma function at X. // { double euler_mascheroni = 0.57721566490153286060; double r; double value; double x2; // // Check the input. // if ( x <= 0.0 ) { cerr << "\n"; cerr << "DIGAMMA - Fatal error!\n"; cerr << " X <= 0.0.\n"; exit ( 1 ); } // // Initialize. // x2 = x; value = 0.0; // // Use approximation for small argument. // if ( x2 <= 0.00001 ) { value = - euler_mascheroni - 1.0 / x2; return value; } // // Reduce to DIGAMMA(X + N). // while ( x2 < 8.5 ) { value = value - 1.0 / x2; x2 = x2 + 1.0; } // // Use Stirling's (actually de Moivre's) expansion. // r = 1.0 / x2; value = value + log ( x2 ) - 0.5 * r; r = r * r; value = value - r * ( 1.0 / 12.0 - r * ( 1.0 / 120.0 - r * 1.0 / 252.0 ) ); return value; } //****************************************************************************80 void dirichlet_check ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // DIRICHLET_CHECK checks the parameters of the Dirichlet PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components. // // Input, double A[N], the probabilities for each component. // Each A(I) should be nonnegative, and at least one should be positive. // { int i; int positive; positive = 0; for ( i = 0; i < n; i++ ) { if ( a[i] < 0.0 ) { cerr << "\n"; cerr << "DIRICHLET_CHECK - Fatal error!\n"; cerr << " A(I) < 0.\n"; cerr << " For I = " << i << "\n"; cerr << " A[I] = " << a[i] << "\n"; exit ( 1 ); } else if ( 0.0 < a[i] ) { positive = 1; } } if ( ! positive ) { cerr << "\n"; cerr << "DIRICHLET_CHECK - Fatal error!\n"; cerr << " All parameters are zero!\n"; exit ( 1 ); } return; } //****************************************************************************80 void dirichlet_estimate ( int k, int n, double x[], int ix, int init, double alpha[], double &rlogl, double v[], double g[], int &niter, double &s, double &eps, int &ifault ) //****************************************************************************80 // // Purpose: // // DIRICHLET_ESTIMATE estimates the parameters of a Dirichlet distribution. // // Discussion: // // This routine requires several auxilliary routines: // // ALOGAM (CACM algorithm 291 or AS 245), // DIGAMA (AS 103), // GAMMAD (AS 239), // PPCHI2 (AS 91), // TRIGAM (AS 121). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2013 // // Author: // // Original FORTRAN77 version by A Naryanan. // C++ version by John Burkardt. // // Reference: // // A. Naryanan, // Algorithm AS 266: // Maximum Likelihood Estimation of the Parameters of the // Dirichlet Distribution, // Applied Statistics, // Volume 40, Number 2, 1991, pages 365-374. // // Parameters: // // Input, int K, the number of parameters. // 2 <= K. // // Input, int N, the number of observations. // K < N. // // Input, double X[IX*K], contains the N by K array of samples // from the distribution. X(I,J) is the J-th component of // the I-th sample. // // Input, int IX, the leading dimension of the array X. // N <= IX. // // Input, int INIT, specifies how the parameter estimates // are to be initialized: // 1, use the method of moments; // 2, initialize each ALPHA to the minimum of X; // otherwise, the input values of ALPHA already contain estimates. // // Input/output, double ALPHA[K]. // On input, if INIT is not 1 or 2, then ALPHA must contain // initial estimates for the parameters. // On output, with IFAULT = 0, ALPHA contains the computed // estimates for the parameters. // // Output, double &RLOGL, the value of the log-likelihood function // at the solution point. // // Output, double V[K*K]; the covariance between ALPHA(I) and ALPHA(J). // // Output, double G[K], contains an estimate of the derivative of // the log-likelihood with respect to each component of ALPHA. // // Output, int &NITER, contains the number of Newton-Raphson // iterations performed. // // Output, double &S, the value of the chi-squared statistic. // // Output, double &EPS, contains the probability that the // chi-squared statistic is less than S. // // Output, int &IFAULT, error indicator. // 0, no error, the results were computed successfully; // 1, K < 2; // 2, N <= K; // 3, IX < N; // 4, if X(I,J) <= 0 for any I or J, or if // ABS ( Sum ( 1 <= J <= K ) X(I,J) - 1 ) >= GAMMA = 0.001; // 5, if IFAULT is returned nonzero from the chi-square // routine PPCHI2; // 6, if ALPHA(J) <= 0 for any J during any step of the iteration; // 7, if MAXIT iterations were carried out but convergence // was not achieved. // { double alpha_min = 0.00001; double an; double beta; double chi2; double gamma = 0.0001; double gg; int i; int i2; int ifault2; int it_max = 100; int it_num; int j; int kk; double rk; double sum1; double sum2; double temp; double varp1; double *work; double *work2; double x_min; double x11; double x12; ifault = 0; // // Check the input arguments. // if ( k < 2 ) { ifault = 1; cerr << "\n"; cerr << "DIRICHLET_ESTIMATE - Fatal error!\n"; cerr << " K < 2.\n"; exit ( 1 ); } if ( n <= k ) { ifault = 2; cerr << "\n"; cerr << "DIRICHLET_ESTIMATE - Fatal error!\n"; cerr << " N <= K.\n"; exit ( 1 ); } if ( ix < n ) { ifault = 3; cerr << "\n"; cerr << "DIRICHLET_ESTIMATE - Fatal error!\n"; cerr << " IX < N.\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { for ( j = 0; j < k; j++ ) { if ( x[i+j*ix] <= 0.0 ) { niter = i; ifault = 4; cerr << "\n"; cerr << "DIRICHLET_ESTIMATE - Fatal error!\n"; cerr << " X(I,J) <= 0.\n"; exit ( 1 ); } } sum2 = 0.0; for ( j = 0; j < k; j++ ) { sum2 = sum2 + x[i+j*ix]; } if ( gamma <= fabs ( sum2 - 1.0 ) ) { ifault = 4; niter = i; cerr << "\n"; cerr << "DIRICHLET_ESTIMATE - Fatal error!\n"; cerr << " Row I does not sum to 1.\n"; exit ( 1 ); } } ifault = 0; an = ( double ) ( n ); rk = ( double ) ( k ); niter = 0; // // Calculate initial estimates using the method of moments. // if ( init == 1 ) { sum2 = 0.0; for ( j = 0; j < k - 1; j++ ) { sum1 = 0.0; for ( i = 0; i < n; i++ ) { sum1 = sum1 + x[i+j*ix]; } alpha[j] = sum1 / an; sum2 = sum2 + alpha[j]; } alpha[k-1] = 1.0 - sum2; x12 = 0.0; for ( i = 0; i < n; i++ ) { x12 = x12 + pow ( x[i+0*ix], 2 ); } x12 = x12 / an; varp1 = x12 - pow ( alpha[0], 2 ); x11 = ( alpha[0] - x12 ) / varp1; for ( j = 0; j < k; j++ ) { alpha[j] = x11 * alpha[j]; } } // // Calculate initial estimates using Ronning's suggestion. // else if ( init == 2 ) { x_min = x[0+0*ix]; for ( j = 0; j < k; j++ ) { for ( i = 0; i < n; i++ ) { x_min = r8_min ( x_min, x[i+j*ix] ); } } x_min = r8_max ( x_min, alpha_min ); for ( j = 0; j < k; j++ ) { alpha[j] = x_min; } } // // Check whether any ALPHA's are negative or zero. // for ( j = 0; j < k; j++ ) { if ( alpha[j] <= 0.0 ) { ifault = 6; cerr << "\n"; cerr << "DIRICHLET_ESTIMATE - Fatal error!\n"; cerr << " For J = " << j << "\n"; cerr << " ALPHA(J) = " << alpha[j] << "\n"; cerr << " but ALPHA(J) must be positive.\n"; exit ( 1 ); } } // // Calculate N * log ( G(J) ) for J = 1,2,...,K and store in WORK array. // work = new double[k]; for ( j = 0; j < k; j++ ) { work[j] = 0.0; for ( i = 0; i < n; i++ ) { work[j] = work[j] + log ( x[i+j*ix] ); } } // // Call Algorithm AS 91 to compute CHI2, the chi-squared value. // gg = lgamma ( rk / 2.0 ); chi2 = ppchi2 ( gamma, rk, gg, &ifault2 ); if ( ifault2 != 0 ) { ifault = 5; cerr << "\n"; cerr << "DIRICHLET_ESTIMATE - Fatal error!\n"; cerr << " PPCHI2 returns error code.\n"; exit ( 1 ); } // // Carry out the Newton iteration. // work2 = new double[k]; for ( it_num = 1; it_num <= it_max; it_num++ ) { sum2 = r8vec_sum ( k, alpha ); sum1 = 0.0; for ( j = 0; j < k; j++ ) { work2[j] = trigamma ( alpha[j], &ifault2 ); sum1 = sum1 + 1.0 / work2[j]; } beta = trigamma ( sum2, &ifault2 ); beta = an * beta / ( 1.0 - beta * sum1 ); temp = digamma ( sum2 ); for ( j = 0; j < k; j++ ) { g[j] = an * ( temp - digamma ( alpha[j] ) ) + work[j]; } // // Calculate the lower triangle of the Variance-Covariance matrix V. // sum2 = beta / an / an; for ( i = 0; i < k; i++ ) { for ( j = 0; j < k; j++ ) { v[i+j*k] = sum2 / ( work2[i] * work2[j] ); if ( i == j ) { v[i+j*k] = v[i+j*k] + 1.0 / ( an * work2[j] ); } } } // // Postmultiply the Variance-Covariance matrix V by G and store in WORK2. // delete [] work2; work2 = r8mat_mv_new ( k, k, v, g ); // // Update the ALPHA's. // niter = it_num; for ( j = 0; j < k; j++ ) { alpha[j] = alpha[j] + work2[j]; alpha[j] = r8_max ( alpha[j], alpha_min ); } for ( j = 0; j < k; j++ ) { if ( alpha[j] <= 0.0 ) { ifault = 6; cerr << "\n"; cerr << "DIRICHLET_ESTIMATE - Fatal error!\n"; cerr << " Newton iteration " << it_num << "\n"; cerr << " Computed ALPHA[J] <= 0.\n"; cerr << " J = " << j << "\n"; cerr << " ALPHA[J] = " << alpha[j] << "\n"; exit ( 1 ); } } // // Test for convergence. // s = r8vec_dot_product ( k, g, work2 ); if ( s < chi2 ) { eps = gammad ( s / 2.0, rk / 2.0, &ifault2 ); sum2 = r8vec_sum ( k, alpha ); rlogl = 0.0; for ( j = 0; j < k; j++ ) { rlogl = rlogl + ( alpha[j] - 1.0 ) * work[j] - an * lgamma ( alpha[j] ); } rlogl = rlogl + an * lgamma ( sum2 ); delete [] work; delete [] work2; return; } } ifault = 7; cerr << "\n"; cerr << "DIRICHLET_ESTIMATE - Fatal error!\n"; cerr << " No convergence.\n"; exit ( 1 ); } //****************************************************************************80 double *dirichlet_mean ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // DIRICHLET_MEAN returns the means of the Dirichlet PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components. // // Input, double A[N], the probabilities for each component. // Each A[I] should be nonnegative, and at least one should be positive. // // Output, double DIRICHLET_MEAN[N], the means of the PDF. // { double a_sum; int i; double *mean; dirichlet_check ( n, a ); mean = new double[n]; a_sum = r8vec_sum ( n, a ); for ( i = 0; i < n; i++ ) { mean[i] = a[i] / a_sum; } return mean; } //****************************************************************************80 double *dirichlet_mix_mean ( int comp_max, int comp_num, int elem_num, double a[], double comp_weight[] ) //****************************************************************************80 // // Purpose: // // DIRICHLET_MIX_MEAN returns the means of a Dirichlet mixture PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int COMP_MAX, the leading dimension of A, which // must be at least COMP_NUM. // // Input, int COMP_NUM, the number of components in the // Dirichlet mixture density, that is, the number of distinct Dirichlet PDF's // that are mixed together. // // Input, int ELEM_NUM, the number of elements of an // observation. // // Input, double A[COMP_MAX*ELEM_NUM], the probabilities for // element ELEM_NUM in component COMP_NUM. // Each A(I,J) should be greater than or equal to 0.0. // // Input, double COMP_WEIGHT[COMP_NUM], the mixture weights of // the densities. // These do not need to be normalized. The weight of a given component is // the relative probability that that component will be used to generate // the sample. // // Output, double DIRICHLET_MIX_MEAN[ELEM_NUM], the means for each element. // { double *a_sum; int comp_i; double comp_weight_sum; int elem_i; double *mean; // // Check. // for ( comp_i = 0; comp_i < comp_num; comp_i++ ) { for ( elem_i = 0; elem_i < elem_num; elem_i++ ) { if ( a[comp_i+elem_i*comp_max] < 0.0 ) { cerr << "\n"; cerr << "DIRICHLET_MIX_MEAN - Fatal error!\n"; cerr << " A(COMP,ELEM) < 0.\n"; cerr << " COMP = " << comp_i << "\n"; cerr << " ELEM = " << elem_i << "\n"; cerr << " A[COMP,ELEM] = " << a[comp_i+elem_i*comp_max] << "\n"; exit ( 1 ); } } } comp_weight_sum = r8vec_sum ( comp_num, comp_weight ); a_sum = new double[comp_num]; for ( comp_i = 0; comp_i < comp_num; comp_i++ ) { a_sum[comp_i] = 0.0; for ( elem_i = 0; elem_i < elem_num; elem_i++ ) { a_sum[comp_i] = a_sum[comp_i] + a[comp_i+elem_i*comp_max]; } } mean = new double[elem_num]; for ( elem_i = 0; elem_i < elem_num; elem_i++ ) { mean[elem_i] = 0.0; for ( comp_i = 0; comp_i < comp_num; comp_i++ ) { mean[elem_i] = mean[elem_i] + comp_weight[comp_i] * a[comp_i+elem_i*comp_max] / a_sum[comp_i]; } mean[elem_i] = mean[elem_i] / comp_weight_sum; } delete [] a_sum; return mean; } //****************************************************************************80 double *dirichlet_mix_sample ( int comp_max, int comp_num, int elem_num, double a[], double comp_weight[], int &seed, int &comp ) //****************************************************************************80 // // Purpose: // // DIRICHLET_MIX_SAMPLE samples a Dirichlet mixture PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int COMP_MAX, the leading dimension of A, which // must be at least COMP_NUM. // // Input, int COMP_NUM, the number of components in the // Dirichlet mixture density, that is, the number of distinct Dirichlet PDF's // that are mixed together. // // Input, int ELEM_NUM, the number of elements of an // observation. // // Input, double A[COMP_MAX*ELEM_NUM], the probabilities for // element ELEM_NUM in component COMP_NUM. // Each A(I,J) should be greater than or equal to 0.0. // // Input, double COMP_WEIGHT[COMP_NUM], the mixture weights of // the densities. // These do not need to be normalized. The weight of a given component is // the relative probability that that component will be used to generate // the sample. // // Input/output, int &SEED, a seed for the random // number generator. // // Output, int &COMP, the index of the component of the // Dirichlet mixture that was chosen to generate the sample. // // Output, double DIRICHLET_MIX_SAMPLE[ELEM_NUM], a sample of the PDF. // { int comp_i; double comp_weight_sum; int elem_i; double r; double sum2; double *x; double x_sum; // // Check. // for ( comp_i = 0; comp_i < comp_num; comp_i++ ) { for ( elem_i = 0; elem_i < elem_num; elem_i++ ) { if ( a[comp_i+elem_i*comp_max] < 0.0 ) { cerr << "\n"; cerr << "DIRICHLET_MIX_SAMPLE - Fatal error!\n"; cerr << " A(COMP,ELEM) < 0.'\n"; cerr << " COMP = " << comp_i << "\n"; cerr << " ELEM = " << elem_i << "\n"; cerr << " A(COMP,ELEM) = " << a[comp_i+elem_i*comp_max] << "\n"; exit ( 1 ); } } } // // Choose a particular density MIX. // comp_weight_sum = r8vec_sum ( comp_num, comp_weight ); r = r8_uniform_ab ( 0.0, comp_weight_sum, seed ); comp = 0; sum2 = 0.0; while ( comp < comp_num ) { sum2 = sum2 + comp_weight[comp]; if ( r <= sum2 ) { break; } comp = comp + 1; } // // Sample density COMP. // x = new double[elem_num]; for ( elem_i = 0; elem_i < elem_num; elem_i++ ) { x[elem_i] = gamma_sample ( a[comp+elem_i*comp_max], 1.0, seed ); } // // Normalize the result. // x_sum = r8vec_sum ( elem_num, x ); for ( elem_i = 0; elem_i < elem_num; elem_i++ ) { x[elem_i] = x[elem_i] / x_sum; } return x; } //****************************************************************************80 double *dirichlet_sample ( int n, double a[], int &seed ) //****************************************************************************80 // // Purpose: // // DIRICHLET_SAMPLE samples the Dirichlet PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2013 // // Author: // // John Burkardt // // Reference: // // Jerry Banks, editor, // Handbook of Simulation, // Engineering and Management Press Books, 1998, page 169. // // Parameters: // // Input, int N, the number of components. // // Input, double A[N], the probabilities for each component. // Each A(I) should be nonnegative, and at least one should be // positive. // // Input/output, int &SEED, a seed for the random // number generator. // // Output, double DIRICHLET_SAMPLE[N], a sample of the PDF. The entries // of X should sum to 1. // { int i; double *x; double x_sum; dirichlet_check ( n, a ); x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = gamma_sample ( a[i], 1.0, seed ); } // // Normalize the result. // x_sum = r8vec_sum ( n, x ); for ( i = 0; i < n; i++ ) { x[i] = x[i] / x_sum; } return x; } //****************************************************************************80 double *dirichlet_variance ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // DIRICHLET_VARIANCE returns the variances of the Dirichlet PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components. // // Input, double A[N], the probabilities for each component. // Each A[I] should be nonnegative, and at least one should be positive. // // Output, double DIRICHLET_VARIANCE[N], the variances of the PDF. // { double a_sum; int i; double *variance; dirichlet_check ( n, a ); a_sum = r8vec_sum ( n, a ); variance = new double[n]; for ( i = 0; i < n; i++ ) { variance[i] = a[i] * ( a_sum - a[i] ) / ( a_sum * a_sum * ( a_sum + 1.0 ) ); } return variance; } //****************************************************************************80 double exponential_01_sample ( int &seed ) //****************************************************************************80 // // Purpose: // // EXPONENTIAL_01_SAMPLE samples the Exponential PDF with parameters 0, 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2013 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &SEED, a seed for the random // number generator. // // Output, double EXPONENTIAL_01_SAMPLE, a sample of the PDF. // { double a; double b; double cdf; double x; cdf = r8_uniform_01 ( seed ); a = 0.0; b = 1.0; x = exponential_cdf_inv ( cdf, a, b ); return x; } //****************************************************************************80 double exponential_cdf_inv ( double cdf, double a, double b ) //****************************************************************************80 // // Purpose: // // EXPONENTIAL_CDF_INV inverts the Exponential CDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2013 // // Author: // // John Burkardt // // Parameters: // // Input, double CDF, the value of the CDF. // 0.0 <= CDF <= 1.0. // // Input, double A, B, the parameters of the PDF. // 0.0 < B. // // Output, double EXPONENTIAL_CDF_INV, the corresponding argument. // { double x; // // Check. // if ( b <= 0.0 ) { cerr << "\n"; cerr << "EXPONENTIAL_CDF_INV - Fatal error!\n"; cerr << " B <= 0.0\n"; exit ( 1 ); } if ( cdf < 0.0 || 1.0 < cdf ) { cerr << "\n"; cerr << "EXPONENTIAL_CDF_INV - Fatal error!\n"; cerr << " CDF < 0 or 1 < CDF.\n"; exit ( 1 ); } x = a - b * log ( 1.0 - cdf ); return x; } //****************************************************************************80 double gamain ( double x, double p, int *ifault ) //****************************************************************************80 // // Purpose: // // GAMAIN computes the incomplete gamma ratio. // // Discussion: // // A series expansion is used if P > X or X <= 1. Otherwise, a // continued fraction approximation is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 January 2008 // // Author: // // Original FORTRAN77 version by G Bhattacharjee. // C++ version by John Burkardt. // // Reference: // // G Bhattacharjee, // Algorithm AS 32: // The Incomplete Gamma Integral, // Applied Statistics, // Volume 19, Number 3, 1970, pages 285-287. // // Parameters: // // Input, double X, P, the parameters of the incomplete // gamma ratio. 0 <= X, and 0 < P. // // Output, int *IFAULT, error flag. // 0, no errors. // 1, P <= 0. // 2, X < 0. // 3, underflow. // 4, error return from the Log Gamma routine. // // Output, double GAMAIN, the value of the incomplete gamma ratio. // { double a; double acu = 1.0E-08; double an; double arg; double b; double dif; double factor; double g; double gin; int i; double oflo = 1.0E+37; double pn[6]; double rn; double term; double uflo = 1.0E-37; double value; *ifault = 0; // // Check the input. // if ( p <= 0.0 ) { *ifault = 1; value = 0.0; return value; } if ( x < 0.0 ) { *ifault = 2; value = 0.0; return value; } if ( x == 0.0 ) { *ifault = 0; value = 0.0; return value; } g = lgamma ( p ); arg = p * log ( x ) - x - g; if ( arg < log ( uflo ) ) { *ifault = 3; value = 0.0; return value; } *ifault = 0; factor = exp ( arg ); // // Calculation by series expansion. // if ( x <= 1.0 || x < p ) { gin = 1.0; term = 1.0; rn = p; for ( ; ; ) { rn = rn + 1.0; term = term * x / rn; gin = gin + term; if ( term <= acu ) { break; } } value = gin * factor / p; return value; } // // Calculation by continued fraction. // a = 1.0 - p; b = a + x + 1.0; term = 0.0; pn[0] = 1.0; pn[1] = x; pn[2] = x + 1.0; pn[3] = x * b; gin = pn[2] / pn[3]; for ( ; ; ) { a = a + 1.0; b = b + 2.0; term = term + 1.0; an = a * term; for ( i = 0; i <= 1; i++ ) { pn[i+4] = b * pn[i+2] - an * pn[i]; } if ( pn[5] != 0.0 ) { rn = pn[4] / pn[5]; dif = fabs ( gin - rn ); // // Absolute error tolerance satisfied? // if ( dif <= acu ) { // // Relative error tolerance satisfied? // if ( dif <= acu * rn ) { value = 1.0 - factor * gin; break; } } gin = rn; } for ( i = 0; i < 4; i++ ) { pn[i] = pn[i+2]; } if ( oflo <= fabs ( pn[4] ) ) { for ( i = 0; i < 4; i++ ) { pn[i] = pn[i] / oflo; } } } return value; } //****************************************************************************80 double gamma_sample ( double a, double b, int &seed ) //****************************************************************************80 // // Purpose: // // GAMMA_SAMPLE samples the Gamma PDF. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2013 // // Author: // // Original FORTRAN77 version by Joachim Ahrens, Ulrich Dieter. // C++ version by John Burkardt. // // Reference: // // Joachim Ahrens, Ulrich Dieter, // Computer Methods for Sampling from Gamma, Beta, Poisson and // Binomial Distributions, // Computing, // Volume 12, Number 3, September 1974, pages 223-246. // // Joachim Ahrens, Ulrich Dieter, // Generating Gamma Variates by a Modified Rejection Technique, // Communications of the ACM, // Volume 25, Number 1, January 1982, pages 47-54. // // Parameters: // // Input, double A, B, the parameters of the PDF. // 0.0 < A, // 0.0 < B. // // Input/output, int &SEED, a seed for the random // number generator. // // Output, double GAMMA_SAMPLE, a sample of the PDF. // { const double a1 = 0.3333333; const double a2 = -0.2500030; const double a3 = 0.2000062; const double a4 = -0.1662921; const double a5 = 0.1423657; const double a6 = -0.1367177; const double a7 = 0.1233795; const double e1 = 1.0; const double e2 = 0.4999897; const double e3 = 0.1668290; const double e4 = 0.0407753; const double e5 = 0.0102930; const double q1 = 0.04166669; const double q2 = 0.02083148; const double q3 = 0.00801191; const double q4 = 0.00144121; const double q5 = -0.00007388; const double q6 = 0.00024511; const double q7 = 0.00024240; double bcoef; double c; double d; double e; double p; double q; double q0; double r; double s; double s2; double si; double t; double u; double v; double w; double x; // // Allow A = 0. // if ( a == 0.0 ) { x = 0.0; return x; } // // A < 1. // if ( a < 1.0 ) { for ( ; ; ) { p = r8_uniform_01 ( seed ); p = ( 1.0 + 0.3678794 * a ) * p; e = exponential_01_sample ( seed ); if ( 1.0 <= p ) { x = - log ( ( 1.0 + 0.3678794 * a - p ) / a ); if ( ( 1.0 - a ) * log ( x ) <= e ) { x = x / b; return x; } } else { x = exp ( log ( p ) / a ); if ( x <= e ) { x = x / b; return x; } } } } // // 1 <= A. // else { s2 = a - 0.5; s = sqrt ( a - 0.5 ); d = sqrt ( 32.0 ) - 12.0 * sqrt ( a - 0.5 ); t = r8_normal_01 ( seed ); x = pow ( sqrt ( a - 0.5 ) + 0.5 * t, 2 ); if ( 0.0 <= t ) { x = x / b; return x; } u = r8_uniform_01 ( seed ); if ( d * u <= t * t * t ) { x = x / b; return x; } r = 1.0 / a; q0 = ( ( ( ( ( ( q7 * r + q6 ) * r + q5 ) * r + q4 ) * r + q3 ) * r + q2 ) * r + q1 ) * r; if ( a <= 3.686 ) { bcoef = 0.463 + s - 0.178 * s2; si = 1.235; c = 0.195 / s - 0.079 + 0.016 * s; } else if ( a <= 13.022 ) { bcoef = 1.654 + 0.0076 * s2; si = 1.68 / s + 0.275; c = 0.062 / s + 0.024; } else { bcoef = 1.77; si = 0.75; c = 0.1515 / s; } if ( 0.0 < sqrt ( a - 0.5 ) + 0.5 * t ) { v = 0.5 * t / s; if ( 0.25 < fabs ( v ) ) { q = q0 - s * t + 0.25 * t * t + 2.0 * s2 * log ( 1.0 + v ); } else { q = q0 + 0.5 * t * t * ( ( ( ( ( ( a7 * v + a6 ) * v + a5 ) * v + a4 ) * v + a3 ) * v + a2 ) * v + a1 ) * v; } if ( log ( 1.0 - u ) <= q ) { x = x / b; return x; } } for ( ; ; ) { e = exponential_01_sample ( seed ); u = r8_uniform_01 ( seed ); if ( u < 0.5 ) { t = bcoef - fabs ( si * e ); } else { t = bcoef + fabs ( si * e ); } if ( - 0.7187449 <= t ) { v = 0.5 * t / s; if ( 0.25 < fabs ( v ) ) { q = q0 - s * t + 0.25 * t * t + 2.0 * s2 * log ( 1.0 + v ); } else { q = q0 + 0.5 * t * t * ( ( ( ( ( ( a7 * v + a6 ) * v + a5 ) * v + a4 ) * v + a3 ) * v + a2 ) * v + a1 ) * v; } if ( 0.0 < q ) { if ( 0.5 < q ) { w = exp ( q ) - 1.0; } else { w = ( ( ( ( e5 * q + e4 ) * q + e3 ) * q + e2 ) * q + e1 ) * q; } if ( c * fabs ( u ) <= w * exp ( e - 0.5 * t * t ) ) { x = pow ( s + 0.5 * t, 2 ) / b; return x; } } } } } return x; } //****************************************************************************80 double gammad ( double x, double p, int *ifault ) //****************************************************************************80 // // Purpose: // // GAMMAD computes the Incomplete Gamma Integral // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 January 2008 // // Author: // // Original FORTRAN77 version by B Shea. // C++ version by John Burkardt. // // Reference: // // B Shea, // Algorithm AS 239: // Chi-squared and Incomplete Gamma Integral, // Applied Statistics, // Volume 37, Number 3, 1988, pages 466-473. // // Parameters: // // Input, double X, P, the parameters of the incomplete // gamma ratio. 0 <= X, and 0 < P. // // Output, int IFAULT, error flag. // 0, no error. // 1, X < 0 or P <= 0. // // Output, double GAMMAD, the value of the incomplete // Gamma integral. // { double a; double an; double arg; double b; double c; double elimit = - 88.0; double oflo = 1.0E+37; double plimit = 1000.0; double pn1; double pn2; double pn3; double pn4; double pn5; double pn6; double rn; double tol = 1.0E-14; bool upper; double value; double xbig = 1.0E+08; value = 0.0; // // Check the input. // if ( x < 0.0 ) { *ifault = 1; return value; } if ( p <= 0.0 ) { *ifault = 1; return value; } *ifault = 0; if ( x == 0.0 ) { value = 0.0; return value; } // // If P is large, use a normal approximation. // if ( plimit < p ) { pn1 = 3.0 * sqrt ( p ) * ( pow ( x / p, 1.0 / 3.0 ) + 1.0 / ( 9.0 * p ) - 1.0 ); upper = false; value = alnorm ( pn1, upper ); return value; } // // If X is large set value = 1. // if ( xbig < x ) { value = 1.0; return value; } // // Use Pearson's series expansion. // if ( x <= 1.0 || x < p ) { arg = p * log ( x ) - x - lgamma ( p + 1.0 ); c = 1.0; value = 1.0; a = p; for ( ; ; ) { a = a + 1.0; c = c * x / a; value = value + c; if ( c <= tol ) { break; } } arg = arg + log ( value ); if ( elimit <= arg ) { value = exp ( arg ); } else { value = 0.0; } } // // Use a continued fraction expansion. // else { arg = p * log ( x ) - x - lgamma ( p ); a = 1.0 - p; b = a + x + 1.0; c = 0.0; pn1 = 1.0; pn2 = x; pn3 = x + 1.0; pn4 = x * b; value = pn3 / pn4; for ( ; ; ) { a = a + 1.0; b = b + 2.0; c = c + 1.0; an = a * c; pn5 = b * pn3 - an * pn1; pn6 = b * pn4 - an * pn2; if ( pn6 != 0.0 ) { rn = pn5 / pn6; if ( fabs ( value - rn ) <= r8_min ( tol, tol * rn ) ) { break; } value = rn; } pn1 = pn3; pn2 = pn4; pn3 = pn5; pn4 = pn6; // // Re-scale terms in continued fraction if terms are large. // if ( oflo <= fabs ( pn5 ) ) { pn1 = pn1 / oflo; pn2 = pn2 / oflo; pn3 = pn3 / oflo; pn4 = pn4 / oflo; } } arg = arg + log ( value ); if ( elimit <= arg ) { value = 1.0 - exp ( arg ); } else { value = 1.0; } } return value; } //****************************************************************************80 double gammds ( double x, double p, int *ifault ) //****************************************************************************80 // // Purpose: // // GAMMDS computes the incomplete Gamma integral. // // Discussion: // // The parameters must be positive. An infinite series is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 January 2008 // // Author: // // Original FORTRAN77 version by Chi Leung Lau. // C++ version by John Burkardt. // // Reference: // // Chi Leung Lau, // Algorithm AS 147: // A Simple Series for the Incomplete Gamma Integral, // Applied Statistics, // Volume 29, Number 1, 1980, pages 113-114. // // Parameters: // // Input, double X, P, the arguments of the incomplete // Gamma integral. X and P must be greater than 0. // // Output, int *IFAULT, error flag. // 0, no errors. // 1, X <= 0 or P <= 0. // 2, underflow during the computation. // // Output, double GAMMDS, the value of the incomplete // Gamma integral. // { double a; double arg; double c; double e = 1.0E-09; double f; int ifault2; double uflo = 1.0E-37; double value; // // Check the input. // if ( x <= 0.0 ) { *ifault = 1; value = 0.0; return value; } if ( p <= 0.0 ) { *ifault = 1; value = 0.0; return value; } // // LGAMMA is the natural logarithm of the gamma function. // arg = p * log ( x ) - lgamma ( p + 1.0 ) - x; if ( arg < log ( uflo ) ) { value = 0.0; *ifault = 2; return value; } f = exp ( arg ); if ( f == 0.0 ) { value = 0.0; *ifault = 2; return value; } *ifault = 0; // // Series begins. // c = 1.0; value = 1.0; a = p; for ( ; ; ) { a = a + 1.0; c = c * x / a; value = value + c; if ( c <= e * value ) { break; } } value = value * f; return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 double lngamma ( double z, int *ier ) //****************************************************************************80 // // Purpose: // // LNGAMMA computes Log(Gamma(X)) using a Lanczos approximation. // // Discussion: // // This algorithm is not part of the Applied Statistics algorithms. // It is slower but gives 14 or more significant decimal digits // accuracy, except around X = 1 and X = 2. The Lanczos series from // which this algorithm is derived is interesting in that it is a // convergent series approximation for the gamma function, whereas // the familiar series due to De Moivre (and usually wrongly called // the Stirling approximation) is only an asymptotic approximation, as // is the true and preferable approximation due to Stirling. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 January 2008 // // Author: // // Original FORTRAN77 version by Alan Miller. // C++ version by John Burkardt. // // Reference: // // Cornelius Lanczos, // A precision approximation of the gamma function, // SIAM Journal on Numerical Analysis, B, // Volume 1, 1964, pages 86-96. // // Parameters: // // Input, double Z, the argument of the Gamma function. // // Output, int *IER, error flag. // 0, no error occurred. // 1, Z is less than or equal to 0. // // Output, double LNGAMMA, the logarithm of the gamma function of Z. // { double a[9] = { 0.9999999999995183, 676.5203681218835, - 1259.139216722289, 771.3234287757674, - 176.6150291498386, 12.50734324009056, - 0.1385710331296526, 0.9934937113930748E-05, 0.1659470187408462E-06 }; int j; double lnsqrt2pi = 0.9189385332046727; double tmp; double value; if ( z <= 0.0 ) { *ier = 1; value = 0.0; return value; } *ier = 0; value = 0.0; tmp = z + 7.0; for ( j = 8; 1 <= j; j-- ) { value = value + a[j] / tmp; tmp = tmp - 1.0; } value = value + a[0]; value = log ( value ) + lnsqrt2pi - ( z + 6.5 ) + ( z - 0.5 ) * log ( z + 6.5 ); return value; } //****************************************************************************80 void normp ( double z, double *p, double *q, double *pdf ) //****************************************************************************80 // // Purpose: // // NORMP computes the cumulative density of the standard normal distribution. // // Discussion: // // This is algorithm 5666 from Hart, et al. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 January 2008 // // Author: // // Original FORTRAN77 version by Alan Miller. // C++ version by John Burkardt. // // Reference: // // John Hart, Ward Cheney, Charles Lawson, Hans Maehly, // Charles Mesztenyi, John Rice, Henry Thacher, // Christoph Witzgall, // Computer Approximations, // Wiley, 1968, // LC: QA297.C64. // // Parameters: // // Input, double Z, divides the real line into two // semi-infinite intervals, over each of which the standard normal // distribution is to be integrated. // // Output, double *P, *Q, the integrals of the standard normal // distribution over the intervals ( - Infinity, Z] and // [Z, + Infinity ), respectively. // // Output, double *PDF, the value of the standard normal distribution // at Z. // { double cutoff = 7.071; double expntl; double p0 = 220.2068679123761; double p1 = 221.2135961699311; double p2 = 112.0792914978709; double p3 = 33.91286607838300; double p4 = 6.373962203531650; double p5 = 0.7003830644436881; double p6 = 0.03526249659989109; double q0 = 440.4137358247522; double q1 = 793.8265125199484; double q2 = 637.3336333788311; double q3 = 296.5642487796737; double q4 = 86.78073220294608; double q5 = 16.06417757920695; double q6 = 1.755667163182642; double q7 = 0.08838834764831844; double root2pi = 2.506628274631001; double zabs; zabs = fabs ( z ); // // 37 < |Z|. // if ( 37.0 < zabs ) { *pdf = 0.0; *p = 0.0; } // // |Z| <= 37. // else { expntl = exp ( - 0.5 * zabs * zabs ); *pdf = expntl / root2pi; // // |Z| < CUTOFF = 10 / sqrt(2). // if ( zabs < cutoff ) { *p = expntl * (((((( p6 * zabs + p5 ) * zabs + p4 ) * zabs + p3 ) * zabs + p2 ) * zabs + p1 ) * zabs + p0 ) / ((((((( q7 * zabs + q6 ) * zabs + q5 ) * zabs + q4 ) * zabs + q3 ) * zabs + q2 ) * zabs + q1 ) * zabs + q0 ); } // // CUTOFF <= |Z|. // else { *p = *pdf / ( zabs + 1.0 / ( zabs + 2.0 / ( zabs + 3.0 / ( zabs + 4.0 / ( zabs + 0.65 ))))); } } if ( z < 0.0 ) { *q = 1.0 - *p; } else { *q = *p; *p = 1.0 - *q; } return; } //****************************************************************************80 void nprob ( double z, double *p, double *q, double *pdf ) //****************************************************************************80 // // Purpose: // // NPROB computes the cumulative density of the standard normal distribution. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 January 2008 // // Author: // // Original FORTRAN77 version by AG Adams. // C++ version by John Burkardt. // // Reference: // // AG Adams, // Algorithm 39: // Areas Under the Normal Curve, // Computer Journal, // Volume 12, Number 2, May 1969, pages 197-198. // // Parameters: // // Input, double Z, divides the real line into // two semi-infinite intervals, over each of which the standard normal // distribution is to be integrated. // // Output, double *P, *Q, the integrals of the standard normal // distribution over the intervals ( - Infinity, Z] and // [Z, + Infinity ), respectively. // // Output, double *PDF, the value of the standard normal // distribution at Z. // { double a0 = 0.5; double a1 = 0.398942280444; double a2 = 0.399903438504; double a3 = 5.75885480458; double a4 = 29.8213557808; double a5 = 2.62433121679; double a6 = 48.6959930692; double a7 = 5.92885724438; double b0 = 0.398942280385; double b1 = 0.000000038052; double b2 = 1.00000615302; double b3 = 0.000398064794; double b4 = 1.98615381364; double b5 = 0.151679116635; double b6 = 5.29330324926; double b7 = 4.8385912808; double b8 = 15.1508972451; double b9 = 0.742380924027; double b10 = 30.789933034; double b11 = 3.99019417011; double y; double zabs; zabs = fabs ( z ); // // |Z| between 0 and 1.28 // if ( zabs <= 1.28 ) { y = a0 * z * z; *pdf = exp ( - y ) * b0; *q = a0 - zabs * ( a1 - a2 * y / ( y + a3 - a4 / ( y + a5 + a6 / ( y + a7 )))); } // // |Z| between 1.28 and 12.7 // else if ( zabs <= 12.7 ) { y = a0 * z * z; *pdf = exp ( - y ) * b0; *q = *pdf / ( zabs - b1 + b2 / ( zabs + b3 + b4 / ( zabs - b5 + b6 / ( zabs + b7 - b8 / ( zabs + b9 + b10 / ( zabs + b11 )))))); } // // Z far out in tail. // else { *q = 0.0; *pdf = 0.0; } if ( z < 0.0 ) { *p = *q; *q = 1.0 - *p; } else { *p = 1.0 - *q; } return; } //****************************************************************************80 double ppchi2 ( double p, double v, double g, int *ifault ) //****************************************************************************80 // // Purpose: // // PPCHI2 evaluates the percentage points of the Chi-squared PDF. // // Discussion // // Incorporates the suggested changes in AS R85 (vol.40(1), // pages 233-5, 1991) which should eliminate the need for the limited // range for P, though these limits have not been removed // from the routine. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 February 2008 // // Author: // // Original FORTRAN77 version by Donald Best, DE Roberts. // C++ version by John Burkardt. // // Reference: // // Donald Best, DE Roberts, // Algorithm AS 91: // The Percentage Points of the Chi-Squared Distribution, // Applied Statistics, // Volume 24, Number 3, 1975, pages 385-390. // // Parameters: // // Input, double P, value of the chi-squared cumulative // probability density function. // 0.000002 <= P <= 0.999998. // // Input, double V, the parameter of the chi-squared probability // density function. // 0 < V. // // Input, double G, the value of log ( Gamma ( V / 2 ) ). // // Output, int *IFAULT, is nonzero if an error occurred. // 0, no error. // 1, P is outside the legal range. // 2, V is not positive. // 3, an error occurred in GAMMAD. // 4, the result is probably as accurate as the machine will allow. // // Output, double PPCHI2, the value of the chi-squared random // deviate with the property that the probability that a chi-squared random // deviate with parameter V is less than or equal to PPCHI2 is P. // { double a; double aa = 0.6931471806; double b; double c; double c1 = 0.01; double c2 = 0.222222; double c3 = 0.32; double c4 = 0.4; double c5 = 1.24; double c6 = 2.2; double c7 = 4.67; double c8 = 6.66; double c9 = 6.73; double c10 = 13.32; double c11 = 60.0; double c12 = 70.0; double c13 = 84.0; double c14 = 105.0; double c15 = 120.0; double c16 = 127.0; double c17 = 140.0; double c18 = 175.0; double c19 = 210.0; double c20 = 252.0; double c21 = 264.0; double c22 = 294.0; double c23 = 346.0; double c24 = 420.0; double c25 = 462.0; double c26 = 606.0; double c27 = 672.0; double c28 = 707.0; double c29 = 735.0; double c30 = 889.0; double c31 = 932.0; double c32 = 966.0; double c33 = 1141.0; double c34 = 1182.0; double c35 = 1278.0; double c36 = 1740.0; double c37 = 2520.0; double c38 = 5040.0; double ch; double e = 0.5E-06; int i; int if1; int maxit = 20; double pmax = 0.999998; double pmin = 0.000002; double p1; double p2; double q; double s1; double s2; double s3; double s4; double s5; double s6; double t; double value; double x; double xx; // // Test arguments and initialize. // value = - 1.0; if ( p < pmin || pmax < p ) { *ifault = 1; return value; } if ( v <= 0.0 ) { *ifault = 2; return value; } *ifault = 0; xx = 0.5 * v; c = xx - 1.0; // // Starting approximation for small chi-squared // if ( v < - c5 * log ( p ) ) { ch = pow ( p * xx * exp ( g + xx * aa ), 1.0 / xx ); if ( ch < e ) { value = ch; return value; } } // // Starting approximation for V less than or equal to 0.32 // else if ( v <= c3 ) { ch = c4; a = log ( 1.0 - p ); for ( ; ; ) { q = ch; p1 = 1.0 + ch * ( c7 + ch ); p2 = ch * (c9 + ch * ( c8 + ch ) ); t = - 0.5 + (c7 + 2.0 * ch ) / p1 - ( c9 + ch * ( c10 + 3.0 * ch ) ) / p2; ch = ch - ( 1.0 - exp ( a + g + 0.5 * ch + c * aa ) * p2 / p1) / t; if ( fabs ( q / ch - 1.0 ) <= c1 ) { break; } } } else { // // Call to algorithm AS 111 - note that P has been tested above. // AS 241 could be used as an alternative. // x = ppnd ( p, ifault ); // // Starting approximation using Wilson and Hilferty estimate // p1 = c2 / v; ch = v * pow ( x * sqrt ( p1 ) + 1.0 - p1, 3 ); // // Starting approximation for P tending to 1. // if ( c6 * v + 6.0 < ch ) { ch = - 2.0 * ( log ( 1.0 - p ) - c * log ( 0.5 * ch ) + g ); } } // // Call to algorithm AS 239 and calculation of seven term // Taylor series // for ( i = 1; i <= maxit; i++ ) { q = ch; p1 = 0.5 * ch; p2 = p - gammad ( p1, xx, &if1 ); if ( if1 != 0 ) { *ifault = 3; return value; } t = p2 * exp ( xx * aa + g + p1 - c * log ( ch ) ); b = t / ch; a = 0.5 * t - b * c; s1 = ( c19 + a * ( c17 + a * ( c14 + a * ( c13 + a * ( c12 + c11 * a ))))) / c24; s2 = ( c24 + a * ( c29 + a * ( c32 + a * ( c33 + c35 * a )))) / c37; s3 = ( c19 + a * ( c25 + a * ( c28 + c31 * a ))) / c37; s4 = ( c20 + a * ( c27 + c34 * a) + c * ( c22 + a * ( c30 + c36 * a ))) / c38; s5 = ( c13 + c21 * a + c * ( c18 + c26 * a )) / c37; s6 = ( c15 + c * ( c23 + c16 * c )) / c38; ch = ch + t * ( 1.0 + 0.5 * t * s1 - b * c * ( s1 - b * ( s2 - b * ( s3 - b * ( s4 - b * ( s5 - b * s6 )))))); if ( e < fabs ( q / ch - 1.0 ) ) { value = ch; return value; } } *ifault = 4; value = ch; return value; } //****************************************************************************80 double ppnd ( double p, int *ifault ) //****************************************************************************80 // // Purpose: // // PPND produces the normal deviate value corresponding to lower tail area = P. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 January 2008 // // Author: // // Original FORTRAN77 version by J Beasley, S Springer. // C++ version by John Burkardt. // // Reference: // // J Beasley, S Springer, // Algorithm AS 111: // The Percentage Points of the Normal Distribution, // Applied Statistics, // Volume 26, Number 1, 1977, pages 118-121. // // Parameters: // // Input, double P, the value of the cumulative probability // densitity function. 0 < P < 1. // // Output, integer *IFAULT, error flag. // 0, no error. // 1, P <= 0 or P >= 1. PPND is returned as 0. // // Output, double PPND, the normal deviate value with the property that // the probability of a standard normal deviate being less than or // equal to PPND is P. // { double a0 = 2.50662823884; double a1 = -18.61500062529; double a2 = 41.39119773534; double a3 = -25.44106049637; double b1 = -8.47351093090; double b2 = 23.08336743743; double b3 = -21.06224101826; double b4 = 3.13082909833; double c0 = -2.78718931138; double c1 = -2.29796479134; double c2 = 4.85014127135; double c3 = 2.32121276858; double d1 = 3.54388924762; double d2 = 1.63706781897; double r; double split = 0.42; double value; *ifault = 0; // // 0.08 < P < 0.92 // if ( fabs ( p - 0.5 ) <= split ) { r = ( p - 0.5 ) * ( p - 0.5 ); value = ( p - 0.5 ) * ( ( ( a3 * r + a2 ) * r + a1 ) * r + a0 ) / ( ( ( ( b4 * r + b3 ) * r + b2 ) * r + b1 ) * r + 1.0 ); } // // P < 0.08 or P > 0.92, // R = min ( P, 1-P ) // else if ( 0.0 < p && p < 1.0 ) { if ( 0.5 < p ) { r = sqrt ( - log ( 1.0 - p ) ); } else { r = sqrt ( - log ( p ) ); } value = ( ( ( c3 * r + c2 ) * r + c1 ) * r + c0 ) / ( ( d2 * r + d1 ) * r + 1.0 ); if ( p < 0.5 ) { value = - value; } } // // P <= 0.0 or 1.0 <= P // else { *ifault = 1; value = 0.0; } return value; } //****************************************************************************80 double ppnd16 ( double p, int *ifault ) //****************************************************************************80 // // Purpose: // // PPND16 inverts the standard normal CDF. // // Discussion: // // The result is accurate to about 1 part in 10**16. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 March 2010 // // Author: // // Original FORTRAN77 version by Michael Wichura. // C++ version by John Burkardt. // // Reference: // // Michael Wichura, // The Percentage Points of the Normal Distribution, // Algorithm AS 241, // Applied Statistics, // Volume 37, Number 3, pages 477-484, 1988. // // Parameters: // // Input, double P, the value of the cumulative probability // densitity function. 0 < P < 1. If P is outside this range, an "infinite" // value is returned. // // Output, integer *IFAULT, error flag. // 0, no error. // 1, P <= 0 or P >= 1. PPND is returned as 0. // // Output, double PPND16, the normal deviate value // with the property that the probability of a standard normal deviate being // less than or equal to this value is P. // { static double a[8] = { 3.3871328727963666080, 1.3314166789178437745e+2, 1.9715909503065514427e+3, 1.3731693765509461125e+4, 4.5921953931549871457e+4, 6.7265770927008700853e+4, 3.3430575583588128105e+4, 2.5090809287301226727e+3 }; static double b[8] = { 1.0, 4.2313330701600911252e+1, 6.8718700749205790830e+2, 5.3941960214247511077e+3, 2.1213794301586595867e+4, 3.9307895800092710610e+4, 2.8729085735721942674e+4, 5.2264952788528545610e+3 }; static double c[8] = { 1.42343711074968357734, 4.63033784615654529590, 5.76949722146069140550, 3.64784832476320460504, 1.27045825245236838258, 2.41780725177450611770e-1, 2.27238449892691845833e-2, 7.74545014278341407640e-4 }; static double const1 = 0.180625; static double const2 = 1.6; static double d[8] = { 1.0, 2.05319162663775882187, 1.67638483018380384940, 6.89767334985100004550e-1, 1.48103976427480074590e-1, 1.51986665636164571966e-2, 5.47593808499534494600e-4, 1.05075007164441684324e-9 }; static double e[8] = { 6.65790464350110377720, 5.46378491116411436990, 1.78482653991729133580, 2.96560571828504891230e-1, 2.65321895265761230930e-2, 1.24266094738807843860e-3, 2.71155556874348757815e-5, 2.01033439929228813265e-7 }; static double f[8] = { 1.0, 5.99832206555887937690e-1, 1.36929880922735805310e-1, 1.48753612908506148525e-2, 7.86869131145613259100e-4, 1.84631831751005468180e-5, 1.42151175831644588870e-7, 2.04426310338993978564e-15 }; double q; double r; static double split1 = 0.425; static double split2 = 5.0; double value; *ifault = 0; if ( p <= 0.0 ) { *ifault = 1; value = -r8_huge ( ); return value; } if ( 1.0 <= p ) { *ifault = 1; value = r8_huge ( ); return value; } q = p - 0.5; if ( fabs ( q ) <= split1 ) { r = const1 - q * q; value = q * r8poly_value ( 8, a, r ) / r8poly_value ( 8, b, r ); } else { if ( q < 0.0 ) { r = p; } else { r = 1.0 - p; } if ( r <= 0.0 ) { value = -1.0; exit ( 1 ); } r = sqrt ( -log ( r ) ); if ( r <= split2 ) { r = r - const2; value = r8poly_value ( 8, c, r ) / r8poly_value ( 8, d, r ); } else { r = r - split2; value = r8poly_value ( 8, e, r ) / r8poly_value ( 8, f, r ); } if ( q < 0.0 ) { value = -value; } } return value; } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 double r8_gamma_log ( double x ) //****************************************************************************80 // // Purpose: // // R8_GAMMA_LOG evaluates the logarithm of the gamma function. // // Discussion: // // This routine calculates the LOG(GAMMA) function for a positive real // argument X. Computation is based on an algorithm outlined in // references 1 and 2. The program uses rational functions that // theoretically approximate LOG(GAMMA) to at least 18 significant // decimal digits. The approximation for X > 12 is from reference // 3, while approximations for X < 12.0 are similar to those in // reference 1, but are unpublished. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 April 2013 // // Author: // // Original FORTRAN77 version by William Cody, Laura Stoltz. // C++ version by John Burkardt. // // Reference: // // William Cody, Kenneth Hillstrom, // Chebyshev Approximations for the Natural Logarithm of the // Gamma Function, // Mathematics of Computation, // Volume 21, Number 98, April 1967, pages 198-203. // // Kenneth Hillstrom, // ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, // May 1969. // // John Hart, Ward Cheney, Charles Lawson, Hans Maehly, // Charles Mesztenyi, John Rice, Henry Thatcher, // Christoph Witzgall, // Computer Approximations, // Wiley, 1968, // LC: QA297.C64. // // Parameters: // // Input, double X, the argument of the function. // // Output, double R8_GAMMA_LOG, the value of the function. // { double c[7] = { -1.910444077728E-03, 8.4171387781295E-04, -5.952379913043012E-04, 7.93650793500350248E-04, -2.777777777777681622553E-03, 8.333333333333333331554247E-02, 5.7083835261E-03 }; double corr; static double d1 = -5.772156649015328605195174E-01; static double d2 = 4.227843350984671393993777E-01; static double d4 = 1.791759469228055000094023; static double frtbig = 2.25E+76; int i; double p1[8] = { 4.945235359296727046734888, 2.018112620856775083915565E+02, 2.290838373831346393026739E+03, 1.131967205903380828685045E+04, 2.855724635671635335736389E+04, 3.848496228443793359990269E+04, 2.637748787624195437963534E+04, 7.225813979700288197698961E+03 }; double p2[8] = { 4.974607845568932035012064, 5.424138599891070494101986E+02, 1.550693864978364947665077E+04, 1.847932904445632425417223E+05, 1.088204769468828767498470E+06, 3.338152967987029735917223E+06, 5.106661678927352456275255E+06, 3.074109054850539556250927E+06 }; double p4[8] = { 1.474502166059939948905062E+04, 2.426813369486704502836312E+06, 1.214755574045093227939592E+08, 2.663432449630976949898078E+09, 2.940378956634553899906876E+10, 1.702665737765398868392998E+11, 4.926125793377430887588120E+11, 5.606251856223951465078242E+11 }; double q1[8] = { 6.748212550303777196073036E+01, 1.113332393857199323513008E+03, 7.738757056935398733233834E+03, 2.763987074403340708898585E+04, 5.499310206226157329794414E+04, 6.161122180066002127833352E+04, 3.635127591501940507276287E+04, 8.785536302431013170870835E+03 }; double q2[8] = { 1.830328399370592604055942E+02, 7.765049321445005871323047E+03, 1.331903827966074194402448E+05, 1.136705821321969608938755E+06, 5.267964117437946917577538E+06, 1.346701454311101692290052E+07, 1.782736530353274213975932E+07, 9.533095591844353613395747E+06 }; double q4[8] = { 2.690530175870899333379843E+03, 6.393885654300092398984238E+05, 4.135599930241388052042842E+07, 1.120872109616147941376570E+09, 1.488613728678813811542398E+10, 1.016803586272438228077304E+11, 3.417476345507377132798597E+11, 4.463158187419713286462081E+11 }; double res; static double sqrtpi = 0.9189385332046727417803297; static double xbig = 2.55E+305; double xden; static double xinf = 1.79E+308; double xm1; double xm2; double xm4; double xnum; double y; double ysq; y = x; if ( 0.0 < y && y <= xbig ) { if ( y <= r8_epsilon ( ) ) { res = - log ( y ); } // // EPS < X <= 1.5. // else if ( y <= 1.5 ) { if ( y < 0.6796875 ) { corr = -log ( y ); xm1 = y; } else { corr = 0.0; xm1 = ( y - 0.5 ) - 0.5; } if ( y <= 0.5 || 0.6796875 <= y ) { xden = 1.0; xnum = 0.0; for ( i = 0; i < 8; i++ ) { xnum = xnum * xm1 + p1[i]; xden = xden * xm1 + q1[i]; } res = corr + ( xm1 * ( d1 + xm1 * ( xnum / xden ) ) ); } else { xm2 = ( y - 0.5 ) - 0.5; xden = 1.0; xnum = 0.0; for ( i = 0; i < 8; i++ ) { xnum = xnum * xm2 + p2[i]; xden = xden * xm2 + q2[i]; } res = corr + xm2 * ( d2 + xm2 * ( xnum / xden ) ); } } // // 1.5 < X <= 4.0. // else if ( y <= 4.0 ) { xm2 = y - 2.0; xden = 1.0; xnum = 0.0; for ( i = 0; i < 8; i++ ) { xnum = xnum * xm2 + p2[i]; xden = xden * xm2 + q2[i]; } res = xm2 * ( d2 + xm2 * ( xnum / xden ) ); } // // 4.0 < X <= 12.0. // else if ( y <= 12.0 ) { xm4 = y - 4.0; xden = -1.0; xnum = 0.0; for ( i = 0; i < 8; i++ ) { xnum = xnum * xm4 + p4[i]; xden = xden * xm4 + q4[i]; } res = d4 + xm4 * ( xnum / xden ); } // // Evaluate for 12 <= argument. // else { res = 0.0; if ( y <= frtbig ) { res = c[6]; ysq = y * y; for ( i = 0; i < 6; i++ ) { res = res / ysq + c[i]; } } res = res / y; corr = log ( y ); res = res + sqrtpi - 0.5 * corr; res = res + y * ( corr - 1.0 ); } } // // Return for bad arguments. // else { res = xinf; } // // Final adjustments and return. // return res; } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // The value returned by this function is NOT required to be the // maximum representable R8. This value varies from machine to machine, // from compiler to compiler, and may cause problems when being printed. // We simply want a "very large" but non-infinite number. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 October 2007 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8 value. // { double value; value = 1.0E+30; return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( y < x ) { value = x; } else { value = y; } return value; } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } //****************************************************************************80 double r8_normal_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_NORMAL_01 samples the standard normal probability distribution. // // Discussion: // // The standard normal probability distribution function (PDF) has // mean 0 and standard deviation 1. // // The Box-Muller method is used, which is efficient, but // generates two values at a time. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2013 // // Author: // // John Burkardt // // Parameters: // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8_NORMAL_01, a normally distributed random value. // { double pi = 3.141592653589793; double r1; double r2; static int seed2 = 0; static int used = 0; double x; static double y = 0.0; // // If we've used an even number of values so far, generate two more, // return one, and save one. // if ( ( used % 2 )== 0 ) { r1 = r8_uniform_01 ( seed ); seed2 = seed; r2 = r8_uniform_01 ( seed2 ); x = sqrt ( -2.0 * log ( r1 ) ) * cos ( 2.0 * pi * r2 ); y = sqrt ( -2.0 * log ( r1 ) ) * sin ( 2.0 * pi * r2 ); } else { seed = seed2; x = y; } used = used + 1; return x; } //****************************************************************************80 double r8_psi ( double xx ) //****************************************************************************80 // // Purpose: // // R8_PSI evaluates the psi function. // // Discussion: // // This routine evaluates the logarithmic derivative of the // Gamma function, // // PSI(X) = d/dX ( GAMMA(X) ) / GAMMA(X) // = d/dX LN ( GAMMA(X) ) // // for real X, where either // // - XMAX1 < X < - XMIN, and X is not a negative integer, // // or // // XMIN < X. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 June 2013 // // Author: // // Original FORTRAN77 version by William Cody, Anthony Strecok, Henry Thacher. // C++ version by John Burkardt. // // Reference: // // William Cody, Anthony Strecok, Henry Thacher, // Chebyshev Approximations for the Psi Function, // Mathematics of Computation, // Volume 27, Number 121, January 1973, pages 123-127. // // Parameters: // // Input, double XX, the argument of the psi function. // // Output, double R8_PSI, the value of the psi function. // PSI is assigned the value 0 when the psi function is undefined. // { double aug; double den; double fourth = 0.25; int i; int n; int nq; double p1[9] = { 4.5104681245762934160E-03, 5.4932855833000385356E+00, 3.7646693175929276856E+02, 7.9525490849151998065E+03, 7.1451595818951933210E+04, 3.0655976301987365674E+05, 6.3606997788964458797E+05, 5.8041312783537569993E+05, 1.6585695029761022321E+05 }; double p2[7] = { -2.7103228277757834192E+00, -1.5166271776896121383E+01, -1.9784554148719218667E+01, -8.8100958828312219821E+00, -1.4479614616899842986E+00, -7.3689600332394549911E-02, -6.5135387732718171306E-21 }; double piov4 = 0.78539816339744830962; double q1[8] = { 9.6141654774222358525E+01, 2.6287715790581193330E+03, 2.9862497022250277920E+04, 1.6206566091533671639E+05, 4.3487880712768329037E+05, 5.4256384537269993733E+05, 2.4242185002017985252E+05, 6.4155223783576225996E-08 }; double q2[6] = { 4.4992760373789365846E+01, 2.0240955312679931159E+02, 2.4736979003315290057E+02, 1.0742543875702278326E+02, 1.7463965060678569906E+01, 8.8427520398873480342E-01 }; double sgn; double three = 3.0; double upper; double value; double w; double x; double x01 = 187.0E+00; double x01d = 128.0E+00; double x02 = 6.9464496836234126266E-04; double xinf = 1.70E+38; double xlarge = 2.04E+15; double xmax1 = 3.60E+16; double xmin1 = 5.89E-39; double xsmall = 2.05E-09; double z; x = xx; w = fabs ( x ); aug = 0.0; // // Check for valid arguments, then branch to appropriate algorithm. // if ( xmax1 <= - x || w < xmin1 ) { if ( 0.0 < x ) { value = - r8_huge ( ); } else { value = r8_huge ( ); } return value; } // // X < 0.5, use reflection formula: psi(1-x) = psi(x) + pi * cot(pi*x) // Use 1/X for PI*COTAN(PI*X) when XMIN1 < |X| <= XSMALL. // if ( x < 0.5 ) { if ( w <= xsmall ) { aug = - 1.0 / x; } // // Argument reduction for cotangent. // else { if ( x < 0.0 ) { sgn = piov4; } else { sgn = - piov4; } w = w - ( double ) ( ( int ) ( w ) ); nq = ( int ) ( w * 4.0 ); w = 4.0 * ( w - ( double ) ( nq ) * fourth ); // // W is now related to the fractional part of 4.0 * X. // Adjust argument to correspond to values in the first // quadrant and determine the sign. // n = nq / 2; if ( n + n != nq ) { w = 1.0 - w; } z = piov4 * w; if ( ( n % 2 ) != 0 ) { sgn = - sgn; } // // Determine the final value for -pi * cotan(pi*x). // n = ( nq + 1 ) / 2; if ( ( n % 2 ) == 0 ) { // // Check for singularity. // if ( z == 0.0 ) { if ( 0.0 < x ) { value = - r8_huge ( ); } else { value = r8_huge ( ); } return value; } aug = sgn * ( 4.0 / tan ( z ) ); } else { aug = sgn * ( 4.0 * tan ( z ) ); } } x = 1.0 - x; } // // 0.5 <= X <= 3.0. // if ( x <= three ) { den = x; upper = p1[0] * x; for ( i = 0; i < 7; i++ ) { den = ( den + q1[i] ) * x; upper = ( upper + p1[i+1] ) * x; } den = ( upper + p1[8] ) / ( den + q1[7] ); x = ( x - x01 / x01d ) - x02; value = den * x + aug; return value; } // // 3.0 < X. // if ( x < xlarge ) { w = 1.0 / ( x * x ); den = w; upper = p2[0] * w; for ( i = 0; i < 5; i++ ) { den = ( den + q2[i] ) * w; upper = ( upper + p2[i+1] ) * w; } aug = ( upper + p2[6] ) / ( den + q2[5] ) - 0.5 / x + aug; } value = aug + log ( x ); return value; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 double r8_uniform_ab ( double a, double b, int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_AB returns a scaled pseudorandom R8. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Parameters: // // Input, double A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, double R8_UNIFORM_AB, a number strictly between A and B. // { int i4_huge = 2147483647; int k; double value; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } value = ( double ) ( seed ) * 4.656612875E-10; value = a + ( b - a ) * value; return value; } //****************************************************************************80 double *r8col_mean ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8COL_MEAN returns the column means of an R8COL. // // Discussion: // // An R8COL is an M by N array of R8's, regarded as an array of N columns, // each of length M. // // Example: // // A = // 1 2 3 // 2 6 7 // // R8COL_MEAN = // 1.5 4.0 5.0 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], the array to be examined. // // Output, double R8COL_MEAN[N], the means, or averages, of the columns. // { int i; int j; double *mean; mean = new double[n]; for ( j = 0; j < n; j++ ) { mean[j] = 0.0; for ( i = 0; i < m; i++ ) { mean[j] = mean[j] + a[i+j*m]; } mean[j] = mean[j] / ( double ) ( m ); } return mean; } //****************************************************************************80 double *r8col_variance ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8COL_VARIANCE returns the variances of an R8COL. // // Discussion: // // An R8COL is an M by N array of R8's, regarded as an array of N columns, // each of length M. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns in the array. // // Input, double A[M*N], the array whose variances are desired. // // Output, double R8COL_VARIANCE[N], the variances of the rows. // { int i; int j; double mean; double *variance; variance = new double[n]; for ( j = 0; j < n; j++ ) { mean = 0.0; for ( i = 0; i < m; i++ ) { mean = mean + a[i+j*m]; } mean = mean / ( double ) ( m ); variance[j] = 0.0; for ( i = 0; i < m; i++ ) { variance[j] = variance[j] + pow ( a[i+j*m] - mean, 2 ); } if ( 1 < m ) { variance[j] = variance[j] / ( double ) ( m - 1 ); } else { variance[j] = 0.0; } } return variance; } //****************************************************************************80 double *r8mat_mv_new ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8MAT_MV_NEW multiplies a matrix times a vector. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // For this routine, the result is returned as the function value. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 April 2007 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, double A[M,N], the M by N matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8MAT_MV_NEW[M], the product A*X. // { int i; int j; double *y; y = new double[m]; for ( i = 0; i < m; i++ ) { y[i] = 0.0; for ( j = 0; j < n; j++ ) { y[i] = y[i] + a[i+j*m] * x[j]; } } return y; } //****************************************************************************80 void r8mat_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT prints an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Entry A(I,J) is stored as A[I+J*M] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { r8mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT_SOME prints some of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j - 1 << " "; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i - 1 << ": "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double r8poly_value ( int m, double c[], double x ) //****************************************************************************80 // // Purpose: // // R8POLY_VALUE evaluates a polynomial. // // Discussion: // // The polynomial // // p(x) = c1 + c2 * x + c3 * x^2 + ... + cm * x^(m-1) // // is to be evaluated at the vector of values X. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 September 2012 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the degree. // // Input, double C[M+1], the polynomial coefficients. // C[0] is the constant term. // // Input, double X, the evaluation points. // // Output, double R8POLY_VALUE, the value of the polynomial at the // evaluation points. // { int i; int j; double p; p = c[m]; for ( i = m - 1; 0 <= i; i-- ) { p = p * x + c[i]; } return p; } //****************************************************************************80 double r8vec_dot_product ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of a pair of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double r8vec_sum ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_SUM returns the sum of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Input, double A[N], the vector. // // Output, double R8VEC_SUM, the sum of the vector. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a[i]; } return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 double trigamma ( double x, int *ifault ) //****************************************************************************80 // // Purpose: // // TRIGAMMA calculates trigamma(x) = d**2 log(gamma(x)) / dx**2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 January 2008 // // Author: // // Original FORTRAN77 version by BE Schneider. // C++ version by John Burkardt. // // Reference: // // BE Schneider, // Algorithm AS 121: // Trigamma Function, // Applied Statistics, // Volume 27, Number 1, pages 97-99, 1978. // // Parameters: // // Input, double X, the argument of the trigamma function. // 0 < X. // // Output, int *IFAULT, error flag. // 0, no error. // 1, X <= 0. // // Output, double TRIGAMMA, the value of the trigamma function at X. // { double a = 0.0001; double b = 5.0; double b2 = 0.1666666667; double b4 = -0.03333333333; double b6 = 0.02380952381; double b8 = -0.03333333333; double value; double y; double z; // // Check the input. // if ( x <= 0.0 ) { *ifault = 1; value = 0.0; return value; } *ifault = 0; z = x; // // Use small value approximation if X <= A. // if ( x <= a ) { value = 1.0 / x / x; return value; } // // Increase argument to ( X + I ) >= B. // value = 0.0; while ( z < b ) { value = value + 1.0 / z / z; z = z + 1.0; } // // Apply asymptotic formula if argument is B or greater. // y = 1.0 / z / z; value = value + 0.5 * y + ( 1.0 + y * ( b2 + y * ( b4 + y * ( b6 + y * b8 )))) / z; return value; }