# include # include # include # include # include using namespace std; # include "asa310.hpp" //****************************************************************************80 double alnorm ( double x, bool upper ) //****************************************************************************80 // // Purpose: // // ALNORM computes the cumulative density of the standard normal distribution. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 January 2008 // // Author: // // Original FORTRAN77 version by David Hill. // C++ version by John Burkardt. // // Reference: // // David Hill, // Algorithm AS 66: // The Normal Integral, // Applied Statistics, // Volume 22, Number 3, 1973, pages 424-427. // // Parameters: // // Input, double X, is one endpoint of the semi-infinite interval // over which the integration takes place. // // Input, bool UPPER, determines whether the upper or lower // interval is to be integrated: // .TRUE. => integrate from X to + Infinity; // .FALSE. => integrate from - Infinity to X. // // Output, double ALNORM, the integral of the standard normal // distribution over the desired interval. // { double a1 = 5.75885480458; double a2 = 2.62433121679; double a3 = 5.92885724438; double b1 = -29.8213557807; double b2 = 48.6959930692; double c1 = -0.000000038052; double c2 = 0.000398064794; double c3 = -0.151679116635; double c4 = 4.8385912808; double c5 = 0.742380924027; double c6 = 3.99019417011; double con = 1.28; double d1 = 1.00000615302; double d2 = 1.98615381364; double d3 = 5.29330324926; double d4 = -15.1508972451; double d5 = 30.789933034; double ltone = 7.0; double p = 0.398942280444; double q = 0.39990348504; double r = 0.398942280385; bool up; double utzero = 18.66; double value; double y; double z; up = upper; z = x; if ( z < 0.0 ) { up = !up; z = - z; } if ( ltone < z && ( ( !up ) || utzero < z ) ) { if ( up ) { value = 0.0; } else { value = 1.0; } return value; } y = 0.5 * z * z; if ( z <= con ) { value = 0.5 - z * ( p - q * y / ( y + a1 + b1 / ( y + a2 + b2 / ( y + a3 )))); } else { value = r * exp ( - y ) / ( z + c1 + d1 / ( z + c2 + d2 / ( z + c3 + d3 / ( z + c4 + d4 / ( z + c5 + d5 / ( z + c6 )))))); } if ( !up ) { value = 1.0 - value; } return value; } //****************************************************************************80 void beta_noncentral_cdf_values ( int *n_data, double *a, double *b, double *lambda, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // BETA_NONCENTRAL_CDF_VALUES returns some values of the noncentral Beta CDF. // // Discussion: // // The values presented here are taken from the reference, where they // were given to a limited number of decimal places. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 January 2008 // // Author: // // John Burkardt // // Reference: // // R Chattamvelli, R Shanmugam, // Algorithm AS 310: // Computing the Non-central Beta Distribution Function, // Applied Statistics, // Volume 46, Number 1, 1997, pages 146-156. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 // before the first call. On each call, the routine increments N_DATA by 1, // and returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double *A, *B, the shape parameters. // // Output, double *LAMBDA, the noncentrality parameter. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 25 double a_vec[N_MAX] = { 5.0, 5.0, 5.0, 10.0, 10.0, 10.0, 20.0, 20.0, 20.0, 10.0, 10.0, 15.0, 20.0, 20.0, 20.0, 30.0, 30.0, 10.0, 10.0, 10.0, 15.0, 10.0, 12.0, 30.0, 35.0 }; double b_vec[N_MAX] = { 5.0, 5.0, 5.0, 10.0, 10.0, 10.0, 20.0, 20.0, 20.0, 20.0, 10.0, 5.0, 10.0, 30.0, 50.0, 20.0, 40.0, 5.0, 10.0, 30.0, 20.0, 5.0, 17.0, 30.0, 30.0 }; double fx_vec[N_MAX] = { 0.4563021, 0.1041337, 0.6022353, 0.9187770, 0.6008106, 0.0902850, 0.9998655, 0.9925997, 0.9641112, 0.9376626573, 0.7306817858, 0.1604256918, 0.1867485313, 0.6559386874, 0.9796881486, 0.1162386423, 0.9930430054, 0.0506899273, 0.1030959706, 0.9978417832, 0.2555552369, 0.0668307064, 0.0113601067, 0.7813366615, 0.8867126477 }; double lambda_vec[N_MAX] = { 54.0, 140.0, 170.0, 54.0, 140.0, 250.0, 54.0, 140.0, 250.0, 150.0, 120.0, 80.0, 110.0, 65.0, 130.0, 80.0, 130.0, 20.0, 54.0, 80.0, 120.0, 55.0, 64.0, 140.0, 20.0 }; double x_vec[N_MAX] = { 0.8640, 0.9000, 0.9560, 0.8686, 0.9000, 0.9000, 0.8787, 0.9000, 0.9220, 0.868, 0.900, 0.880, 0.850, 0.660, 0.720, 0.720, 0.800, 0.644, 0.700, 0.780, 0.760, 0.795, 0.560, 0.800, 0.670 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0.0; *b = 0.0; *lambda = 0.0; *x = 0.0; *fx = 0.0; } else { *a = a_vec[*n_data-1]; *b = b_vec[*n_data-1]; *lambda = lambda_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double betain ( double x, double p, double q, double beta, int *ifault ) //****************************************************************************80 // // Purpose: // // BETAIN computes the incomplete Beta function ratio. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2008 // // Author: // // Original FORTRAN77 version by KL Majumder, GP Bhattacharjee. // C++ version by John Burkardt. // // Reference: // // KL Majumder, GP Bhattacharjee, // Algorithm AS 63: // The incomplete Beta Integral, // Applied Statistics, // Volume 22, Number 3, 1973, pages 409-411. // // Parameters: // // Input, double X, the argument, between 0 and 1. // // Input, double P, Q, the parameters, which // must be positive. // // Input, double BETA, the logarithm of the complete // beta function. // // Output, int *IFAULT, error flag. // 0, no error. // nonzero, an error occurred. // // Output, double BETAIN, the value of the incomplete // Beta function ratio. // { double acu = 0.1E-14; double ai; double betain; double cx; bool indx; int ns; double pp; double psq; double qq; double rx; double temp; double term; double value; double xx; value = x; *ifault = 0; // // Check the input arguments. // if ( p <= 0.0 || q <= 0.0 ) { *ifault = 1; return value; } if ( x < 0.0 || 1.0 < x ) { *ifault = 2; return value; } // // Special cases. // if ( x == 0.0 || x == 1.0 ) { return value; } // // Change tail if necessary and determine S. // psq = p + q; cx = 1.0 - x; if ( p < psq * x ) { xx = cx; cx = x; pp = q; qq = p; indx = true; } else { xx = x; pp = p; qq = q; indx = false; } term = 1.0; ai = 1.0; value = 1.0; ns = ( int ) ( qq + cx * psq ); // // Use the Soper reduction formula. // rx = xx / cx; temp = qq - ai; if ( ns == 0 ) { rx = xx; } for ( ; ; ) { term = term * temp * rx / ( pp + ai ); value = value + term;; temp = fabs ( term ); if ( temp <= acu && temp <= acu * value ) { value = value * exp ( pp * log ( xx ) + ( qq - 1.0 ) * log ( cx ) - beta ) / pp; if ( indx ) { value = 1.0 - value; } break; } ai = ai + 1.0; ns = ns - 1; if ( 0 <= ns ) { temp = qq - ai; if ( ns == 0 ) { rx = xx; } } else { temp = psq; psq = psq + 1.0; } } return value; } //****************************************************************************80 double betanc ( double x, double a, double b, double lambda, int *ifault ) //****************************************************************************80 // // Purpose: // // BETANC computes the tail of the noncentral Beta distribution. // // Discussion: // // This routine returns the cumulative probability of X for the non-central // Beta distribution with parameters A, B and non-centrality LAMBDA. // // Note that if LAMBDA = 0, the standard Beta distribution is defined. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 January 2008 // // Author: // // Original FORTRAN77 version by Russell Lenth. // C++ version by John Burkardt. // // Reference: // // Russell Lenth, // Algorithm AS 226: // Computing Noncentral Beta Probabilities, // Applied Statistics, // Volume 36, Number 2, 1987, pages 241-244. // // H Frick, // Algorithm AS R84: // A Remark on Algorithm AS 226: // Computing Noncentral Beta Probabilities, // Applied Statistics, // Volume 39, Number 2, 1990, pages 311-312. // // Parameters: // // Input, double X, the value defining the cumulative // probability lower tail. Normally, 0 <= X <= 1, but any value // is allowed. // // Input, double A, B, the parameters of the distribution. // 0 < A, 0 < B. // // Input, double LAMBDA, the noncentrality parameter // of the distribution. 0 <= LAMBDA. The program can produce reasonably // accurate results for values of LAMBDA up to about 100. // // Output, int *IFAULT, error flag. // 0, no error occurred. // nonzero, an error occurred. // // Output, double BETANC, the cumulative probability // of X. // { double a0; double ax; double beta; double c; double errbd; double errmax = 1.0E-07; double gx; int itrmax = 150; double q; double sumq; double temp; double ualpha = 5.0; double value; double x0; double xj; *ifault = 0; if ( lambda < 0.0 || a <= 0.0 || b <= 0.0 ) { *ifault = 2; value = -1.0; return value; } if ( x <= 0.0 ) { value = 0.0; return value; } if ( 1.0 <= x ) { value = 1.0; return value; } c = 0.5 * lambda; // // Initialize the series. // beta = lgamma ( a ) + lgamma ( b ) - lgamma ( a + b ); temp = betain ( x, a, b, beta, ifault ); gx = exp ( a * log ( x ) + b * log ( 1.0 - x ) - beta - log ( a ) ); q = exp ( - c ); xj = 0.0; ax = q * temp; sumq = 1.0 - q; value = ax; // // Recur over subsequent terms until convergence is achieved. // *ifault = 1; for ( ; ; ) { xj = xj + 1.0; temp = temp - gx; gx = x * ( a + b + xj - 1.0 ) * gx / ( a + xj ); q = q * c / xj; sumq = sumq - q; ax = temp * q; value = value + ax; // // Check for convergence and act accordingly. // errbd = fabs ( ( temp - gx ) * sumq ); if ( errbd <= errmax ) { *ifault = 0; break; } if ( itrmax < ( int ) xj ) { break; } } return value; } //****************************************************************************80 double gammad ( double x, double p, int *ifault ) //****************************************************************************80 // // Purpose: // // GAMMAD computes the Incomplete Gamma Integral // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 January 2008 // // Author: // // Original FORTRAN77 version by B Shea. // C++ version by John Burkardt. // // Reference: // // B Shea, // Algorithm AS 239: // Chi-squared and Incomplete Gamma Integral, // Applied Statistics, // Volume 37, Number 3, 1988, pages 466-473. // // Parameters: // // Input, double X, P, the parameters of the incomplete // gamma ratio. 0 <= X, and 0 < P. // // Output, int IFAULT, error flag. // 0, no error. // 1, X < 0 or P <= 0. // // Output, double GAMMAD, the value of the incomplete // Gamma integral. // { double a; double an; double arg; double b; double c; double elimit = - 88.0; double oflo = 1.0E+37; double plimit = 1000.0; double pn1; double pn2; double pn3; double pn4; double pn5; double pn6; double rn; double tol = 1.0E-14; bool upper; double value; double xbig = 1.0E+08; value = 0.0; // // Check the input. // if ( x < 0.0 ) { *ifault = 1; return value; } if ( p <= 0.0 ) { *ifault = 1; return value; } *ifault = 0; if ( x == 0.0 ) { value = 0.0; return value; } // // If P is large, use a normal approximation. // if ( plimit < p ) { pn1 = 3.0 * sqrt ( p ) * ( pow ( x / p, 1.0 / 3.0 ) + 1.0 / ( 9.0 * p ) - 1.0 ); upper = false; value = alnorm ( pn1, upper ); return value; } // // If X is large set value = 1. // if ( xbig < x ) { value = 1.0; return value; } // // Use Pearson's series expansion. // if ( x <= 1.0 || x < p ) { arg = p * log ( x ) - x - lgamma ( p + 1.0 ); c = 1.0; value = 1.0; a = p; for ( ; ; ) { a = a + 1.0; c = c * x / a; value = value + c; if ( c <= tol ) { break; } } arg = arg + log ( value ); if ( elimit <= arg ) { value = exp ( arg ); } else { value = 0.0; } } // // Use a continued fraction expansion. // else { arg = p * log ( x ) - x - lgamma ( p ); a = 1.0 - p; b = a + x + 1.0; c = 0.0; pn1 = 1.0; pn2 = x; pn3 = x + 1.0; pn4 = x * b; value = pn3 / pn4; for ( ; ; ) { a = a + 1.0; b = b + 2.0; c = c + 1.0; an = a * c; pn5 = b * pn3 - an * pn1; pn6 = b * pn4 - an * pn2; if ( pn6 != 0.0 ) { rn = pn5 / pn6; if ( fabs ( value - rn ) <= r8_min ( tol, tol * rn ) ) { break; } value = rn; } pn1 = pn3; pn2 = pn4; pn3 = pn5; pn4 = pn6; // // Re-scale terms in continued fraction if terms are large. // if ( oflo <= abs ( pn5 ) ) { pn1 = pn1 / oflo; pn2 = pn2 / oflo; pn3 = pn3 / oflo; pn4 = pn4 / oflo; } } arg = arg + log ( value ); if ( elimit <= arg ) { value = 1.0 - exp ( arg ); } else { value = 1.0; } } return value; } //****************************************************************************80 double ncbeta ( double a, double b, double lambda, double x, double errmax, int *ifault ) //****************************************************************************80 // // Purpose: // // NCBETA computes the noncentral Beta CDF. // // Discussion: // // Three corrections needed to be made to the text of this routine. // They are noted in the comments below. // // Two of these corrections were errors in transcription made when // producing the online copy distributed by APSTAT. // // One error, an error of omission, occurred in the original printed // copy of the routine, and was carried over into the online copy. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 February 2008 // // Author: // // Original FORTRAN77 version by R Chattamvelli, R Shanmugam. // C++ version by John Burkardt. // // Reference: // // R Chattamvelli, R Shanmugam, // Algorithm AS 310: // Computing the Non-central Beta Distribution Function, // Applied Statistics, // Volume 46, Number 1, 1997, pages 146-156. // // Parameters: // // Input, double A, B, the shape parameters. // 0 <= A, 0 <= B. // // Input, double LAMBDA, the noncentrality parameter. // 0 <= LAMBDA. // // Input, double X, the value at which the CDF is desired. // // Input, double ERRMAX, the precision tolerance. // // Output, int *IFAULT, error flag. // 0, no error occurred. // 1, X is 0 or 1. // 2, X < 0 or 1 < X. // 3, A, B or LAMBDA is less than 0. // // Output, double NCBETA, the value of the noncentral Beta CDF. // { double beta; double c; double ebd; double errbd; double ftemp; double fx; double gx; int i; int iter1; int iter2; int iterhi; int iterlo; int j; int m; double mr; double psum; double q; double r; double s; double s0; double s1; double sum; double t; double t0; double t1; double temp; double value; int xj; *ifault = 0; value = x; // // Check parameters. // if ( lambda <= 0.0 ) { *ifault = 3; return value; } if ( a <= 0.0 ) { *ifault = 3; return value; } if ( b <= 0.0 ) { *ifault = 3; return value; } if ( x <= 0.0 ) { value = 0.0; return value; } if ( 1.0 <= x ) { value = 1.0; return value; } c = 0.5 * lambda; xj = 0.0; // // AS 226 as it stands is sufficient in this situation. // if ( lambda < 54.0 ) { value = betanc ( x, a, b, lambda, ifault ); return value; } else { m = ( int ) ( c + 0.5 ); mr = ( double ) ( m ); iterlo = m - ( int ) ( 5.0 * sqrt ( mr ) ); iterhi = m + ( int ) ( 5.0 * sqrt ( mr ) ); t = - c + mr * log ( c ) - lgamma ( mr + 1.0 ); q = exp ( t ); r = q; psum = q; beta = lgamma ( a + mr ) + lgamma ( b ) - lgamma ( a + mr + b ); s1 = ( a + mr ) * log ( x ) + b * log ( 1.0 - x ) - log ( a + mr ) - beta; gx = exp ( s1 ); fx = gx; temp = betain ( x, a + mr, b, beta, ifault ); ftemp = temp; xj = xj + 1.0; // // The online copy of AS 310 has "SUM = Q - TEMP" which is incorrect. // sum = q * temp; iter1 = m; // // The first set of iterations starts from M and goes downwards // for ( ; ; ) { if ( iter1 < iterlo ) { break; } if ( q < errmax ) { break; } // // The online copy of AS 310 has "Q = Q - ITER1 / C" which is incorrect. // q = q * iter1 / c; xj = xj + 1.0; gx = ( a + iter1 ) / ( x * ( a + b + iter1 - 1.0 ) ) * gx; iter1 = iter1 - 1; temp = temp + gx; psum = psum + q; sum = sum + q * temp; } t0 = lgamma ( a + b ) - lgamma ( a + 1.0 ) - lgamma ( b ); s0 = a * log ( x ) + b * log ( 1.0 - x ); // // Both the online copy of AS 310 and the text printed in the reference // did not initialize the variable S to zero, which is incorrect. // JVB, 12 January 2008. // s = 0.0; for ( i = 1; i <= iter1; i++ ) { j = i - 1; s = s + exp ( t0 + s0 + j * log ( x ) ); t1 = log ( a + b + j ) - log ( a + 1.0 + j ) + t0; t0 = t1; } // // Compute the first part of error bound. // errbd = ( 1.0 - gammad ( c, ( double ) ( iter1 ), ifault ) ) * ( temp + s ); q = r; temp = ftemp; gx = fx; iter2 = m; for ( ; ; ) { ebd = errbd + ( 1.0 - psum ) * temp; if ( ebd < errmax || iterhi <= iter2 ) { break; } iter2 = iter2 + 1; xj = xj + 1.0; q = q * c / iter2; psum = psum + q; temp = temp - gx; gx = x * ( a + b + iter2 - 1.0 ) / ( a + iter2 ) * gx; sum = sum + q * temp; } } value = sum; return value; } //****************************************************************************80 double r8_min ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MIN returns the minimum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MIN, the minimum of X and Y. // { double value; if ( y < x ) { value = y; } else { value = x; } return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }