# include # include # include # include # include # include using namespace std; # include "asa314.hpp" //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 void i4mat_print ( int m, int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4MAT_PRINT prints an I4MAT. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, int A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { i4mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void i4mat_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // I4MAT_PRINT_SOME prints some of an I4MAT. // // Discussion: // // An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 10 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of INCX. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col:"; for ( j = j2lo; j <= j2hi; j++ ) { cout << " " << setw(6) << j - 1; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to INCX) entries in row I, that lie in the current strip. // cout << setw(5) << i - 1 << ":"; for ( j = j2lo; j <= j2hi; j++ ) { cout << " " << setw(6) << a[i-1+(j-1)*m]; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void invmod ( int mat[], int imat[], int rmod[], int cmod[], int nrow, int &ifault ) //****************************************************************************80 // // Purpose: // // INVMOD inverts a matrix using modulo arithmetic. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2013 // // Author: // // Original FORTRAN77 version by Roger Payne. // C++ version by John Burkardt. // // Reference: // // Roger Payne, // Inversion of matrices with contents subject to modulo arithmetic, // Applied Statistics, // Volume 46, Number 2, 1997, pages 295-298. // // Parameters: // // Input/output, int MAT[NROW*NROW]. // On input, the matrix to be inverted. // On output, the product of the input matrix and IMAT. // // Output, int IMAT[NROW*NROW], the inverse matrix. // If IFAULT = -1 on output, then IMAT is only a left inverse. // // Input, int RMOD[NROW], the modulus for values in each row. // // Input, int CMOD[NROW], the modulus for values // in each column. // // Input, int NROW, the order of the matrix. // // Output, int &IFAULT, an error flag. // 0, no error was detected. // -1, only a left inverse could be formed. // 1, the matrix contains elements that are negative, or too large. // 2, the matrix contains nonzero elements in mixed modulus positions. // 3, the matrix cannot be inverted. // { int all_zero; int *csort; int i; int ir; int j; int k; int kir; int kjr; int n; int *rsort; // // Check that elements in 'mixed-moduli' positions are all zero. // n = 0; for ( i = 1; i <= nrow; i++ ) { for ( j = 1; j <= nrow; j++ ) { n = n + 1; if ( ( rmod[i-1] != cmod[j-1] ) && ( 0 < mat[n-1] ) ) { ifault = 2; return; } if ( ( rmod[i-1] < mat[n-1] ) ||( mat[n-1] < 0 ) ) { ifault = 1; return; } } } n = 0; for ( i = 1; i <= nrow; i++ ) { for ( j = 1; j <= nrow; j++ ) { n = n + 1; imat[n-1] = 0; } } // // Sort rows and columns into ascending order of moduli // rsort = new int[nrow]; csort = new int[nrow]; msort ( mat, imat, rmod, cmod, rsort, csort, nrow ); // // Complete initialization of inverse matrix // for ( n = 1; n <= nrow * nrow; n = n + nrow + 1 ) { imat[n-1] = 1; } // // Invert the matrix. // for ( ir = 1; ir <= nrow; ir++ ) { kir = ( ir - 1 ) * nrow; if ( mat[kir+ir-1] == 0 ) { // // Find a row JR below IR such that K(JR,IR)>0 // all_zero = 1; for ( kjr = kir + nrow + ir; kjr <= nrow * nrow; kjr = kjr + nrow ) { if ( 0 < mat[kjr-1] ) { all_zero = 0; break; } } // // Column IR contains all zeros in rows IR or below: // look for a row above with zeros to left of column IR // and K(JR,IR)>0 // if ( all_zero ) { for ( kjr = ir; kjr <= kir; kjr = kjr + nrow ) { if ( 0 < mat[kjr-1] ) { for ( i = kjr - ir + 1; i < kjr; i++ ) { if ( 0 < mat[i-1] ) { ifault = 3; return; } } all_zero = 0; break; } } } // // Column IR contains all zeros // if ( all_zero ) { continue; } // // Switch row JR with row IR // kjr = kjr - ir; for ( i = 1; i <= nrow; i++ ) { k = mat[kir+i-1]; mat[kir+i-1] = mat[kjr+i-1]; mat[kjr+i-1] = k; k = imat[kir+i-1]; imat[kir+i-1] = imat[kjr+i-1]; imat[kjr+i-1] = k; } } // // Find a multiplier N such that N*MAT(IR,IR)=1 mod(P{IR}) // k = mat[kir+ir-1]; for ( n = 1; n < rmod[ir-1]; n++ ) { if ( ( n * k ) % rmod[ir-1] == 1 ) { break; } } // // Multiply row IR by N. // if ( 1 < n ) { for ( i = kir + 1; i <= ir * nrow; i++ ) { mat[i-1] = mat[i-1] * n; imat[i-1] = imat[i-1] * n; } } // // Subtract MAT(JR,IR) * row IR from each row JR // for ( kjr = 0; kjr < nrow * nrow; kjr = kjr + nrow ) { n = rmod[ir-1] - mat[kjr+ir-1]; if ( ( kjr != kir ) && ( n != 0 ) ) { for ( i = 1; i <= nrow; i++ ) { mat[kjr+i-1] = ( mat[kjr+i-1] + n * mat[kir+i-1] ) % cmod[i-1]; imat[kjr+i-1] = ( imat[kjr+i-1] + n * imat[kir+i-1] ) % cmod[i-1]; } } } } // // Check inversion was possible - that result has // non-zero elements only on diagonal. // ifault = 0; // // If we encounter a zero diagonal element, then only a left inverse // will be formed. // for ( n = 1; n <= nrow * nrow; n = n + nrow + 1 ) { if ( mat[n-1] == 0 ) { ifault = -1; } mat[n-1] = - mat[n-1]; } for ( n = 1; n <= nrow * nrow; n++ ) { if ( 0 < mat[n-1] ) { ifault = 3; return; } } for ( n = 1; n <= nrow * nrow; n = n + nrow + 1 ) { mat[n-1] = - mat[n-1]; } // // Unsort the rows and columns back into their original order. // musort ( mat, imat, rmod, cmod, rsort, csort, nrow ); delete [] csort; delete [] rsort; return; } //****************************************************************************80 void msort ( int mat[], int imat[], int rmod[], int cmod[], int rsort[], int csort[], int nrow ) //****************************************************************************80 // // Purpose: // // MSORT sorts matrix rows and columns in ascending order of moduli. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2013 // // Author: // // Original FORTRAN77 version by Roger Payne. // C++ version by John Burkardt. // // Reference: // // Roger Payne, // Inversion of matrices with contents subject to modulo arithmetic, // Applied Statistics, // Volume 46, Number 2, 1997, pages 295-298. // // Parameters: // // Input/output, int MAT[NROW*NROW]. // On output, the matrix has been sorted. // // Ignoreput, int IMAT[NROW*NROW]. // This quantity is ignored. // // Input/output, int RMOD[NROW], the modulus for values in // each row. On output, these have been rearranged according to the sorting. // // Input/output, int CMOD[NROW], the modulus for values in // each column. On output, these have been rearranged according to the // sorting. // // Output, int RSORT[NROW], the sorted row indices. // // Output, int CSORT[NROW], the sorted column indices. // // Input, int NROW, the order of the matrix. // { int i; int irc; int j; int jrc; int kirc; int kjrc; int p; // // Initialize row and column addresses. // for ( i = 1; i <= nrow; i++ ) { rsort[i-1] = i; csort[i-1] = i; } // // Sort the rows. // for ( irc = 1; irc <= nrow; irc++ ) { // // Find the next row. // jrc = irc; p = rmod[irc-1]; for ( i = irc + 1; i <= nrow; i++ ) { if ( rmod[i-1] < p ) { p = rmod[i-1]; jrc = i; } } if ( irc != jrc ) { i = rmod[irc-1]; rmod[irc-1] = rmod[jrc-1]; rmod[jrc-1] = i; i = rsort[irc-1]; rsort[irc-1] = rsort[jrc-1]; rsort[jrc-1] = i; // // Switch the rows. // kirc = ( irc - 1 ) * nrow; kjrc = ( jrc - 1 ) * nrow; for ( j = 1; j <= nrow; j++ ) { i = mat[kirc+j-1]; mat[kirc+j-1] = mat[kjrc+j-1]; mat[kjrc+j-1] = i; } } } // // Sort the columns. // for ( irc = 1; irc <= nrow; irc++ ) { // // Find the next column. // jrc = irc; p = cmod[irc-1]; for ( i = irc + 1; i <= nrow; i++ ) { if ( cmod[i-1] < p ) { p = cmod[i-1]; jrc = i; } } if ( irc != jrc ) { i = cmod[irc-1]; cmod[irc-1] = cmod[jrc-1]; cmod[jrc-1] = i; i = csort[irc-1]; csort[irc-1] = csort[jrc-1]; csort[jrc-1] = i; // // Switch the columns. // for ( j = 0; j < nrow * nrow; j = j + nrow ) { i = mat[irc+j-1]; mat[irc+j-1] = mat[jrc+j-1]; mat[jrc+j-1] = i; } } } return; } //****************************************************************************80 void musort ( int mat[], int imat[], int rmod[], int cmod[], int rsort[], int csort[], int nrow ) //****************************************************************************80 // // Purpose: // // MUSORT unsorts the inverse matrix rows and columns into the original order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 December 2013 // // Author: // // Original FORTRAN77 version by Roger Payne. // C++ version by John Burkardt. // // Reference: // // Roger Payne, // Inversion of matrices with contents subject to modulo arithmetic, // Applied Statistics, // Volume 46, Number 2, 1997, pages 295-298. // // Parameters: // // Input/output, int MAT[NROW*NROW]. // On output, the matrix has been "unsorted". // // Input/output, int IMAT[NROW*NROW]. // On output, the matrix has been "unsorted". // // Input/output, int RMOD[NROW], the modulus for values in // each row. On output, these have been restored to their original ordering. // // Input/output, int CMOD[NROW], the modulus for values in // each column. On output, these have been restored to their original // ordering. // // Input/output, int RSORT[NROW], the sorted row indices. // // Input/output, int CSORT[NROW], the sorted column indices. // // Input, int NROW, the order of the matrix. // { int i; int irc; int j; int jrc; int kirc; int kjrc; // // Sort rows of inverse (= columns of original). // for ( irc = 1; irc <= nrow; irc++ ) { // // Find next row. // if ( csort[irc-1] != irc ) { for ( jrc = irc + 1; jrc <= nrow; jrc++ ) { if ( csort[jrc-1] == irc ) { break; } } i = cmod[irc-1]; cmod[irc-1] = cmod[jrc-1]; cmod[jrc-1] = i; i = csort[irc-1]; csort[irc-1] = csort[jrc-1]; csort[jrc-1] = i; // // Switch rows. // kirc = ( irc - 1 ) * nrow; kjrc = ( jrc - 1 ) * nrow; for ( j = 1; j <= nrow; j++ ) { i = imat[kirc+j-1]; imat[kirc+j-1] = imat[kjrc+j-1]; imat[kjrc+j-1] = i; } } } // // Sort the columns of the inverse (= rows of original). // for ( irc = 1; irc <= nrow; irc++ ) { // // Find the next column. // if ( rsort[irc-1] != irc ) { for ( jrc = irc + 1; jrc <= nrow; jrc++ ) { if ( rsort[jrc-1] == irc ) { break; } } i = rmod[irc-1]; rmod[irc-1] = rmod[jrc-1]; rmod[jrc-1] = i; i = rsort[irc-1]; rsort[irc-1] = rsort[jrc-1]; rsort[jrc-1] = i; // // Switch the columns of IMAT. // for ( j = 0; j < nrow * nrow; j = j + nrow ) { i = imat[irc+j-1]; imat[irc+j-1] = imat[jrc+j-1]; imat[jrc+j-1] = i; } // // Switch the diagonal elements of MAT (others are zero). // kirc = ( irc - 1 ) * nrow + irc; kjrc = ( jrc - 1 ) * nrow + jrc; i = mat[kirc-1]; mat[kirc-1] = mat[kjrc-1]; mat[kjrc-1] = i; } } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }