# include # include # include # include # include # include using namespace std; # include "black_scholes.hpp" //****************************************************************************80 double *asset_path ( double s0, double mu, double sigma, double t1, int n, int *seed ) //****************************************************************************80 // // Purpose: // // ASSET_PATH simulates the behavior of an asset price over time. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2012 // // Author: // // Original MATLAB version by Desmond Higham. // C++ version by John Burkardt. // // Reference: // // Desmond Higham, // Black-Scholes for Scientific Computing Students, // Computing in Science and Engineering, // November/December 2004, Volume 6, Number 6, pages 72-79. // // Parameters: // // Input, double S0, the asset price at time 0. // // Input, double MU, the expected growth rate. // // Input, double SIGMA, the volatility of the asset. // // Input, double T1, the expiry date. // // Input, integer N, the number of steps to take between 0 and T1. // // Input/output, int SEED, a seed for the random number generator. // // Output, double ASSET_PATH[N+1], the option values from time 0 to T1 // in equal steps. // { double dt; int i; double p; double *r; double *s; dt = t1 / ( double ) ( n ); r = r8vec_normal_01_new ( n, seed ); s = new double[n+1]; s[0] = s0; p = s0; for ( i = 1; i <= n; i++ ) { p = p * exp ( ( mu - sigma * sigma ) * dt + sigma * sqrt ( dt ) * r[i-1] ); s[i] = p; } delete [] r; return s; } //****************************************************************************80 double binomial ( double s0, double e, double r, double sigma, double t1, int m ) //****************************************************************************80 // // Purpose: // // BINOMIAL uses the binomial method for a European call. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2012 // // Author: // // Original MATLAB version by Desmond Higham. // C++ version by John Burkardt. // // Reference: // // Desmond Higham, // Black-Scholes for Scientific Computing Students, // Computing in Science and Engineering, // November/December 2004, Volume 6, Number 6, pages 72-79. // // Parameters: // // Input, double S0, the asset price at time 0. // // Input, double E, the exercise price. // // Input, double R, the interest rate. // // Input, double SIGMA, the volatility of the asset. // // Input, double T1, the expiry date. // // Input, int M, the number of steps to take // between 0 and T1. // // Output, double BIONOMIAL, the option value at time 0. // { double a; double b; double c; double d; double dt; int i; int n; double p; double u; double *w; // // Time stepsize. // dt = t1 / ( double ) ( m ); a = 0.5 * ( exp ( - r * dt ) + exp ( ( r + sigma * sigma ) * dt ) ); d = a - sqrt ( a * a - 1.0 ); u = a + sqrt ( a * a - 1.0 ); p = ( exp ( r * dt ) - d ) / ( u - d ); w = new double[m+1]; for ( i = 0; i <= m; i++ ) { w[i] = r8_max ( s0 * pow ( d, m - i ) * pow ( u, i ) - e, 0.0 ); } // // Trace backwards to get the option value at time 0. // for ( n = m - 1; 0 <= n; n-- ) { for ( i = 0; i <= n; i++ ) { w[i] = ( 1.0 - p ) * w[i] + p * w[i+1]; } } for ( i = 0; i < m + 1; i++ ) { w[i] = exp ( - r * t1 ) * w[i]; } c = w[0]; delete [] w; return c; } //****************************************************************************80 double bsf ( double s0, double t0, double e, double r, double sigma, double t1 ) //****************************************************************************80 // // Purpose: // // BSF evaluates the Black-Scholes formula for a European call. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2012 // // Author: // // Original MATLAB version by Desmond Higham. // C++ version by John Burkardt. // // Reference: // // Desmond Higham, // Black-Scholes for Scientific Computing Students, // Computing in Science and Engineering, // November/December 2004, Volume 6, Number 6, pages 72-79. // // Parameters: // // Input, double S0, the asset price at time T0. // // Input, double T0, the time at which the asset price is known. // // Input, double E, the exercise price. // // Input, double R, the interest rate. // // Input, double SIGMA, the volatility of the asset. // // Input, double T1, the expiry date. // // Output, double BSF, the value of the call option. // { double c; double d1; double d2; double n1; double n2; double tau; tau = t1 - t0; if ( 0.0 < tau ) { d1 = ( log ( s0 / e ) + ( r + 0.5 * sigma * sigma ) * tau ) / ( sigma * sqrt ( tau ) ); d2 = d1 - sigma * sqrt ( tau ); n1 = 0.5 * ( 1.0 + erf ( d1 / sqrt ( 2.0 ) ) ); n2 = 0.5 * ( 1.0 + erf ( d2 / sqrt ( 2.0 ) ) ); c = s0 * n1 - e * exp ( - r * tau ) * n2; } else { c = r8_max ( s0 - e, 0.0 ); } return c; } //****************************************************************************80 double *forward ( double e, double r, double sigma, double t1, int nx, int nt, double smax ) //****************************************************************************80 // // Purpose: // // FORWARD uses the forward difference method to value a European call option. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2012 // // Author: // // Original MATLAB version by Desmond Higham. // C++ version by John Burkardt. // // Reference: // // Desmond Higham, // Black-Scholes for Scientific Computing Students, // Computing in Science and Engineering, // November/December 2004, Volume 6, Number 6, pages 72-79. // // Parameters: // // Input, double E, the exercise price. // // Input, double R, the interest rate. // // Input, double SIGMA, the volatility of the asset. // // Input, double T1, the expiry date. // // Input, int NX, the number of "space" steps used to // divide the interval [0,L]. // // Input, int NT, the number of time steps. // // Input, double SMAX, the maximum value of S to consider. // // Output, double U[(NX-1)*(NT+1)], the value of the European // call option. // { double *a; double *b; double *c; double dt; double dx; int i; int j; double p; double t; double *u; double u0; dt = t1 / ( double ) ( nt ); dx = smax / ( double ) ( nx ); a = new double[nx-1]; b = new double[nx-1]; c = new double[nx-1]; for ( i = 0; i < nx - 1; i++ ) { b[i] = 1.0 - r * dt - dt * pow ( sigma * ( i + 1 ), 2 ); } for ( i = 0; i < nx - 2; i++ ) { c[i] = 0.5 * dt * pow ( sigma * ( i + 1 ), 2 ) + 0.5 * dt * r * ( i + 1 ); } for ( i = 1; i < nx - 1; i++ ) { a[i] = 0.5 * dt * pow ( sigma * ( i + 1 ), 2 ) - 0.5 * dt * r * ( i + 1 ); } u = new double[(nx-1)*(nt+1)]; u0 = 0.0; for ( i = 0; i < nx - 1; i++ ) { u0 = u0 + dx; u[i+0*(nx-1)] = r8_max ( u0 - e, 0.0 ); } for ( j = 0; j < nt; j++ ) { t = ( double ) ( j ) * t1 / ( double ) ( nt ); p = 0.5 * dt * ( nx - 1 ) * ( sigma * sigma * ( nx - 1 ) + r ) * ( smax - e * exp ( - r * t ) ); for ( i = 0; i < nx - 1; i++ ) { u[i+(j+1)*(nx-1)] = b[i] * u[i+j*(nx-1)]; } for ( i = 0; i < nx - 2; i++ ) { u[i+(j+1)*(nx-1)] = u[i+(j+1)*(nx-1)] + c[i] * u[i+1+j*(nx-1)]; } for ( i = 1; i < nx - 1; i++ ) { u[i+(j+1)*(nx-1)] = u[i+(j+1)*(nx-1)] + a[i] * u[i-1+j*(nx-1)]; } u[nx-2+(j+1)*(nx-1)] = u[nx-2+(j+1)*(nx-1)] + p; } delete [] a; delete [] b; delete [] c; return u; } //****************************************************************************80 double *mc ( double s0, double e, double r, double sigma, double t1, int m, int *seed ) //****************************************************************************80 // // Purpose: // // MC uses Monte Carlo valuation on a European call. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2012 // // Author: // // Original MATLAB version by Desmond Higham. // C++ version by John Burkardt. // // Reference: // // Desmond Higham, // Black-Scholes for Scientific Computing Students, // Computing in Science and Engineering, // November/December 2004, Volume 6, Number 6, pages 72-79. // // Parameters: // // Input, double S0, the asset price at time 0. // // Input, double E, the exercise price. // // Input, double R, the interest rate. // // Input, double SIGMA, the volatility of the asset. // // Input, double T1, the expiry date. // // Input, int M, the number of simulations. // // Input/output, int SEED, a seed for the random // number generator. // // Output, double MC[2], the estimated range of the valuation. // { double *conf; int i; double pmean; double *pvals; double std; double *svals; double *u; double width; u = r8vec_normal_01_new ( m, seed ); svals = new double[m]; for ( i = 0; i < m; i++ ) { svals[i] = s0 * exp ( ( r - 0.5 * sigma * sigma ) * t1 + sigma * sqrt ( t1 ) * u[i] ); } pvals = new double[m]; for ( i = 0; i < m; i++ ) { pvals[i] = exp ( - r * t1 ) * r8_max ( svals[i] - e, 0.0 ); } pmean = 0.0; for ( i = 0; i < m; i++ ) { pmean = pmean + pvals[i]; } pmean = pmean / ( double ) ( m ); std = 0.0; for ( i = 0; i < m; i++ ) { std = std + pow ( pvals[i] - pmean, 2 ); } std = sqrt ( std / ( double ) ( m - 1 ) ); width = 1.96 * std / sqrt ( ( double ) ( m ) ); conf = new double[2]; conf[0] = pmean - width; conf[1] = pmean + width; delete [] pvals; delete [] svals; delete [] u; return conf; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( y < x ) { value = x; } else { value = y; } return value; } //****************************************************************************80 double *r8vec_normal_01_new ( int n, int *seed ) //****************************************************************************80 // // Purpose: // // R8VEC_NORMAL_01_NEW returns a unit pseudonormal R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // The standard normal probability distribution function (PDF) has // mean 0 and standard deviation 1. // // This routine can generate a vector of values on one call. It // has the feature that it should provide the same results // in the same order no matter how we break up the task. // // Before calling this routine, the user may call RANDOM_SEED // in order to set the seed of the random number generator. // // The Box-Muller method is used, which is efficient, but // generates an even number of values each time. On any call // to this routine, an even number of new values are generated. // Depending on the situation, one value may be left over. // In that case, it is saved for the next call. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 February 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of values desired. If N is negative, // then the code will flush its internal memory; in particular, // if there is a saved value to be used on the next call, it is // instead discarded. This is useful if the user has reset the // random number seed, for instance. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double R8VEC_NORMAL_01_NEW[N], a sample of the standard normal PDF. // // Local parameters: // // Local, int MADE, records the number of values that have // been computed. On input with negative N, this value overwrites // the return value of N, so the user can get an accounting of // how much work has been done. // // Local, double R[N+1], is used to store some uniform random values. // Its dimension is N+1, but really it is only needed to be the // smallest even number greater than or equal to N. // // Local, int SAVED, is 0 or 1 depending on whether there is a // single saved value left over from the previous call. // // Local, int X_LO, X_HI, records the range of entries of // X that we need to compute. This starts off as 1:N, but is adjusted // if we have a saved value that can be immediately stored in X(1), // and so on. // // Local, double Y, the value saved from the previous call, if // SAVED is 1. // { int i; int m; static int made = 0; double pi = 3.141592653589793; double *r; static int saved = 0; double *x; int x_hi; int x_lo; static double y = 0.0; // // I'd like to allow the user to reset the internal data. // But this won't work properly if we have a saved value Y. // I'm making a crock option that allows the user to signal // explicitly that any internal memory should be flushed, // by passing in a negative value for N. // if ( n < 0 ) { made = 0; saved = 0; y = 0.0; return NULL; } else if ( n == 0 ) { return NULL; } x = new double[n]; // // Record the range of X we need to fill in. // x_lo = 1; x_hi = n; // // Use up the old value, if we have it. // if ( saved == 1 ) { x[0] = y; saved = 0; x_lo = 2; } // // Maybe we don't need any more values. // if ( x_hi - x_lo + 1 == 0 ) { } // // If we need just one new value, do that here to avoid null arrays. // else if ( x_hi - x_lo + 1 == 1 ) { r = r8vec_uniform_01_new ( 2, seed ); x[x_hi-1] = sqrt ( -2.0 * log ( r[0] ) ) * cos ( 2.0 * pi * r[1] ); y = sqrt ( -2.0 * log ( r[0] ) ) * sin ( 2.0 * pi * r[1] ); saved = 1; made = made + 2; delete [] r; } // // If we require an even number of values, that's easy. // else if ( ( x_hi - x_lo + 1 ) % 2 == 0 ) { m = ( x_hi - x_lo + 1 ) / 2; r = r8vec_uniform_01_new ( 2*m, seed ); for ( i = 0; i <= 2*m-2; i = i + 2 ) { x[x_lo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * pi * r[i+1] ); x[x_lo+i ] = sqrt ( -2.0 * log ( r[i] ) ) * sin ( 2.0 * pi * r[i+1] ); } made = made + x_hi - x_lo + 1; delete [] r; } // // If we require an odd number of values, we generate an even number, // and handle the last pair specially, storing one in X(N), and // saving the other for later. // else { x_hi = x_hi - 1; m = ( x_hi - x_lo + 1 ) / 2 + 1; r = r8vec_uniform_01_new ( 2*m, seed ); for ( i = 0; i <= 2*m-4; i = i + 2 ) { x[x_lo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * pi * r[i+1] ); x[x_lo+i ] = sqrt ( -2.0 * log ( r[i] ) ) * sin ( 2.0 * pi * r[i+1] ); } i = 2*m - 2; x[x_lo+i-1] = sqrt ( -2.0 * log ( r[i] ) ) * cos ( 2.0 * pi * r[i+1] ); y = sqrt ( -2.0 * log ( r[i] ) ) * sin ( 2.0 * pi * r[i+1] ); saved = 1; made = made + x_hi - x_lo + 2; delete [] r; } return x; } //****************************************************************************80 void r8vec_print_part ( int n, double a[], int max_print, string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT_PART prints "part" of an R8VEC. // // Discussion: // // The user specifies MAX_PRINT, the maximum number of lines to print. // // If N, the size of the vector, is no more than MAX_PRINT, then // the entire vector is printed, one entry per line. // // Otherwise, if possible, the first MAX_PRINT-2 entries are printed, // followed by a line of periods suggesting an omission, // and the last entry. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 February 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries of the vector. // // Input, double A[N], the vector to be printed. // // Input, int MAX_PRINT, the maximum number of lines // to print. // // Input, string TITLE, a title. // { int i; if ( max_print <= 0 ) { return; } if ( n <= 0 ) { return; } cout << "\n"; cout << title << "\n"; cout << "\n"; if ( n <= max_print ) { for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << " " << setw(14) << a[i] << "\n"; } } else if ( 3 <= max_print ) { for ( i = 0; i < max_print - 2; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } cout << " ........ ..............\n"; i = n - 1; cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } else { for ( i = 0; i < max_print - 1; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } i = max_print - 1; cout << " " << setw(8) << i << ": " << setw(14) << a[i] << " " << "...more entries...\n"; } return; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int *seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int *SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; int i4_huge = 2147483647; int k; double *r; if ( *seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + i4_huge; } r[i] = ( double ) ( *seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 void r8vec_write ( string output_filename, int n, double x[] ) //****************************************************************************80 // // Purpose: // // R8VEC_WRITE writes an R8VEC file. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 July 2011 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int N, the number of points. // // Input, double X[N], the data. // { int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8VEC_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } // // Write the data. // for ( j = 0; j < n; j++ ) { output << " " << setw(24) << setprecision(16) << x[j] << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }