# include # include # include # include # include using namespace std; # include "blas0.hpp" # include "blas2.hpp" //****************************************************************************80 void dgemv ( char trans, int m, int n, double alpha, double a[], int lda, double x[], int incx, double beta, double y[], int incy ) //****************************************************************************80 // // Purpose: // // DGEMV computes y := alpha * A * x + beta * y for general matrix A. // // Discussion: // // DGEMV performs one of the matrix-vector operations // y := alpha*A *x + beta*y // or // y := alpha*A'*x + beta*y, // where alpha and beta are scalars, x and y are vectors and A is an // m by n matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 April 2014 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, char TRANS, specifies the operation to be performed: // 'n' or 'N' y := alpha*A *x + beta*y. // 't' or 'T' y := alpha*A'*x + beta*y. // 'c' or 'C' y := alpha*A'*x + beta*y. // // Input, int M, the number of rows of the matrix A. // 0 <= M. // // Input, int N, the number of columns of the matrix A. // 0 <= N. // // Input, double ALPHA, the scalar multiplier for A * x. // // Input, double A[LDA*N]. The M x N subarray contains // the matrix A. // // Input, int LDA, the the first dimension of A as declared // in the calling routine. max ( 1, M ) <= LDA. // // Input, double X[*], an array containing the vector to be // multiplied by the matrix A. // If TRANS = 'N' or 'n', then X must contain N entries, stored in INCX // increments in a space of at least ( 1 + ( N - 1 ) * abs ( INCX ) ) // locations. // Otherwise, X must contain M entries, store in INCX increments // in a space of at least ( 1 + ( M - 1 ) * abs ( INCX ) ) locations. // // Input, int INCX, the increment for the elements of // X. INCX must not be zero. // // Input, double BETA, the scalar multiplier for Y. // // Input/output, double Y[*], an array containing the vector to // be scaled and incremented by A*X. // If TRANS = 'N' or 'n', then Y must contain M entries, stored in INCY // increments in a space of at least ( 1 + ( M - 1 ) * abs ( INCY ) ) // locations. // Otherwise, Y must contain N entries, store in INCY increments // in a space of at least ( 1 + ( N - 1 ) * abs ( INCY ) ) locations. // // Input, int INCY, the increment for the elements of // Y. INCY must not be zero. // { int i; int info; int ix; int iy; int j; int jx; int jy; int kx; int ky; int lenx; int leny; double temp; // // Test the input parameters. // info = 0; if ( ! lsame ( trans, 'N' ) && ! lsame ( trans, 'T' ) && ! lsame ( trans, 'C' ) ) { info = 1; } else if ( m < 0 ) { info = 2; } else if ( n < 0 ) { info = 3; } else if ( lda < i4_max ( 1, m ) ) { info = 6; } else if ( incx == 0 ) { info = 8; } else if ( incy == 0 ) { info = 11; } if ( info != 0 ) { xerbla ( "DGEMV", info ); return; } // // Quick return if possible. // if ( ( m == 0 ) || ( n == 0 ) || ( ( alpha == 0.0 ) && ( beta == 1.0 ) ) ) { return; } // // Set LENX and LENY, the lengths of the vectors x and y, and set // up the start points in X and Y. // if ( lsame ( trans, 'N' ) ) { lenx = n; leny = m; } else { lenx = m; leny = n; } if ( 0 < incx ) { kx = 0; } else { kx = 0 - ( lenx - 1 ) * incx; } if ( 0 < incy ) { ky = 0; } else { ky = 0 - ( leny - 1 ) * incy; } // // Start the operations. In this version the elements of A are // accessed sequentially with one pass through A. // // First form y := beta*y. // if ( beta != 1.0 ) { if ( incy == 1 ) { if ( beta == 0.0 ) { for ( i = 0; i < leny; i++ ) { y[i] = 0.0; } } else { for ( i = 0; i < leny; i++ ) { y[i] = beta * y[i]; } } } else { iy = ky; if ( beta == 0.0 ) { for ( i = 0; i < leny; i++ ) { y[iy] = 0.0; iy = iy + incy; } } else { for ( i = 0; i < leny; i++ ) { y[iy] = beta * y[iy]; iy = iy + incy; } } } } if ( alpha == 0.0 ) { return; } // // Form y := alpha*A*x + y. // if ( lsame ( trans, 'N' ) ) { jx = kx; if ( incy == 1 ) { for ( j = 0; j < n; j++ ) { if ( x[jx] != 0.0 ) { temp = alpha * x[jx]; for ( i = 0; i < m; i++ ) { y[i] = y[i] + temp * a[i+j*lda]; } } jx = jx + incx; } } else { for ( j = 0; j < n; j++ ) { if ( x[jx] != 0.0 ) { temp = alpha * x[jx]; iy = ky; for ( i = 0; i < m; i++ ) { y[iy] = y[iy] + temp * a[i+j*lda]; iy = iy + incy; } } jx = jx + incx; } } } /* Form y := alpha*A'*x + y. */ else { jy = ky; if ( incx == 1 ) { for ( j = 0; j < n; j++ ) { temp = 0.0; for ( i = 0; i < m; i++ ) { temp = temp + a[i+j*lda] * x[i]; } y[jy] = y[jy] + alpha * temp; jy = jy + incy; } } else { for ( j = 0; j < n; j++ ) { temp = 0.0; ix = kx; for ( i = 0; i < m; i++ ) { temp = temp + a[i+j*lda] * x[ix]; ix = ix + incx; } y[jy] = y[jy] + alpha * temp; jy = jy + incy; } } } return; } //****************************************************************************80 void dger ( int m, int n, double alpha, double x[], int incx, double y[], int incy, double a[], int lda ) //****************************************************************************80 // // Purpose: // // DGER computes A := alpha*x*y' + A. // // Discussion: // // DGER performs the rank 1 operation // // A := alpha*x*y' + A, // // where alpha is a scalar, x is an m element vector, y is an n element // vector and A is an m by n matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 April 2014 // // Author: // // Original FORTRAN77 version by Jack Dongarra, Jeremy Du Croz, // Sven Hammarling, Richard Hanson. // This C++ version by John Burkardt. // // Parameters: // // Input, int M, the number of rows of the matrix A. // 0 <= M. // // Input, int N, the number of columns of the matrix A. // 0 <= N. // // Input, double ALPHA, the scalar multiplier. // // Input, double X[1+(M-1)*abs(INCX)], the first vector. // // Input, int INCX, the increment for elements of X. // INCX must not be zero. // // Input, double Y[1+(N-1)*abs(INCY)], the second vector. // // Input, int INCY, the increment for elements of Y. // INCY must not be zero. // // Input/output, double A[LDA*N]. On entry, the leading M by N // part of the array contains the matrix of coefficients. On exit, A is // overwritten by the updated matrix. // // Input, int LDA, the first dimension of A as declared // in the calling program. max ( 1, M ) <= LDA. // { int i; int info; int ix; int j; int jy; int kx; double temp; // // Test the input parameters. // info = 0; if ( m < 0 ) { info = 1; } else if ( n < 0 ) { info = 2; } else if ( incx == 0 ) { info = 5; } else if ( incy == 0 ) { info = 7; } else if ( lda < i4_max ( 1, m ) ) { info = 9; } if ( info != 0 ) { xerbla ( "DGER", info ); return; } // // Quick return if possible. // if ( m == 0 || n == 0 || alpha == 0.0 ) { return; } // // Start the operations. In this version the elements of A are // accessed sequentially with one pass through A. // if ( 0 < incy ) { jy = 0; } else { jy = 0 - ( n - 1 ) * incy; } if ( incx == 1 ) { for ( j = 0; j < n; j++ ) { if ( y[jy] != 0.0 ) { temp = alpha * y[jy]; for ( i = 0; i < m; i++ ) { a[i+j*lda] = a[i+j*lda] + x[i] * temp; } } jy = jy + incy; } } else { if ( 0 < incx ) { kx = 0; } else { kx = 0 - ( m - 1 ) * incx; } for ( j = 0; j < n; j++ ) { if ( y[jy] != 0.0 ) { temp = alpha * y[jy]; ix = kx; for ( i = 0; i < m; i++ ) { a[i+j*lda] = a[i+j*lda] + x[ix] * temp; ix = ix + incx; } } jy = jy + incy; } } return; } //****************************************************************************80 void dtrmv ( char uplo, char trans, char diag, int n, double a[], int lda, double x[], int incx ) //****************************************************************************80 // // Purpose: // // DTRMV computes x: = A*x or x = A'*x for a triangular matrix A. // // Discussion: // // DTRMV performs one of the matrix-vector operations // // x := A*x, or x := A'*x, // // where x is an n element vector and A is an n by n unit, or non-unit, // upper or lower triangular matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 April 2014 // // Author: // // This C++ version by John Burkardt. // // Parameters: // // Input, char UPLO, specifies whether the matrix is an upper or // lower triangular matrix as follows: // 'u' or 'U': A is an upper triangular matrix. // 'l' or 'L': A is a lower triangular matrix. // // Input, char TRANS, specifies the operation to be performed as // follows: // 'n' or 'N': x := A*x. // 't' or 'T': x := A'*x. // 'c' or 'C': x := A'*x. // // Input, char DIAG, specifies whether or not A is unit // triangular as follows: // 'u' or 'U': A is assumed to be unit triangular. // 'n' or 'N': A is not assumed to be unit triangular. // // Input, int N, the order of the matrix A. // 0 <= N. // // Input, double A[LDA*N]. // Before entry with UPLO = 'u' or 'U', the leading n by n // upper triangular part of the array A must contain the upper // triangular matrix and the strictly lower triangular part of // A is not referenced. // Before entry with UPLO = 'l' or 'L', the leading n by n // lower triangular part of the array A must contain the lower // triangular matrix and the strictly upper triangular part of // A is not referenced. // Note that when DIAG = 'u' or 'U', the diagonal elements of // A are not referenced either, but are assumed to be unity. // // Input, int LDA, the first dimension of A as declared // in the calling program. max ( 1, N ) <= LDA. // // Input/output, double X[1+(N-1)*abs( INCX)]. // Before entry, the incremented array X must contain the n // element vector x. On exit, X is overwritten with the // tranformed vector x. // // Input, int INCX, the increment for the elements of // X. INCX must not be zero. // { int i; int info; int ix; int j; int jx; int kx; bool nounit; double temp; // // Test the input parameters. // info = 0; if ( ! lsame ( uplo, 'U' ) && ! lsame ( uplo, 'L' ) ) { info = 1; } else if ( ! lsame ( trans, 'N' ) && ! lsame ( trans, 'T' ) && ! lsame ( trans, 'C' ) ) { info = 2; } else if ( ! lsame ( diag, 'U' ) && ! lsame ( diag, 'N' ) ) { info = 3; } else if ( n < 0 ) { info = 4; } else if ( lda < i4_max ( 1, n ) ) { info = 6; } else if ( incx == 0 ) { info = 8; } if ( info != 0 ) { xerbla ( "DTRMV", info ); return; } // // Quick return if possible. // if ( n == 0 ) { return; } nounit = lsame ( diag, 'N' ); // // Set up the start point in X if the increment is not unity. This // will be ( N - 1 ) * INCX too small for descending loops. // if ( incx <= 0 ) { kx = 0 - ( n - 1 ) * incx; } else if ( incx != 1 ) { kx = 0; } // // Start the operations. In this version the elements of A are // accessed sequentially with one pass through A. // if ( lsame ( trans, 'N' ) ) { // // Form x := A*x. // if ( lsame ( uplo, 'U' ) ) { if ( incx == 1 ) { for ( j = 0; j < n; j++ ) { if ( x[j] != 0.0 ) { temp = x[j]; for ( i = 0; i < j; i++ ) { x[i] = x[i] + temp * a[i+j*lda]; } if ( nounit ) { x[j] = x[j] * a[j+j*lda]; } } } } else { jx = kx; for ( j = 0; j < n; j++ ) { if ( x[jx] != 0.0 ) { temp = x[jx]; ix = kx; for ( i = 0; i < j; i++ ) { x[ix] = x[ix] + temp * a[i+j*lda]; ix = ix + incx; } if ( nounit ) { x[jx] = x[jx] * a[j+j*lda]; } } jx = jx + incx; } } } else { if ( incx == 1 ) { for ( j = n - 1; 0 <= j; j-- ) { if ( x[j] != 0.0 ) { temp = x[j]; for ( i = n - 1; j < i; i-- ) { x[i] = x[i] + temp * a[i+j*lda]; } if ( nounit ) { x[j] = x[j] * a[j+j*lda]; } } } } else { kx = kx + ( n - 1 ) * incx; jx = kx; for ( j = n - 1; 0 <= j; j-- ) { if ( x[jx] != 0.0 ) { temp = x[jx]; ix = kx; for ( i = n - 1; j < i; i-- ) { x[ix] = x[ix] + temp * a[i+j*lda]; ix = ix - incx; } if ( nounit ) { x[jx] = x[jx] * a[j+j*lda]; } } jx = jx - incx; } } } } // // Form x := A'*x. // else { if ( lsame ( uplo, 'U' ) ) { if ( incx == 1 ) { for ( j = n - 1; 0 <= j; j-- ) { temp = x[j]; if ( nounit ) { temp = temp * a[j+j*lda]; } for ( i = j - 1; 0 <= i; i-- ) { temp = temp + a[i+j*lda] * x[i]; } x[j] = temp; } } else { jx = kx + ( n - 1 ) * incx; for ( j = n - 1; 0 <= j; j-- ) { temp = x[jx]; ix = jx; if ( nounit ) { temp = temp * a[j+j*lda]; } for ( i = j - 1; 0 <= i; i-- ) { ix = ix - incx; temp = temp + a[i+j*lda] * x[ix]; } x[jx] = temp; jx = jx - incx; } } } else { if ( incx == 1 ) { for ( j = 0; j < n; j++ ) { temp = x[j]; if ( nounit ) { temp = temp * a[j+j*lda]; } for ( i = j + 1; i < n; i++ ) { temp = temp + a[i+j*lda] * x[i]; } x[j] = temp; } } else { jx = kx; for ( j = 0; j < n; j++ ) { temp = x[jx]; ix = jx; if ( nounit ) { temp = temp * a[j+j*lda]; } for ( i = j + 1; i < n; i++ ) { ix = ix + incx; temp = temp + a[i+j*lda] * x[ix]; } x[jx] = temp; jx = jx + incx; } } } } return; } //****************************************************************************80 void sgemv ( char trans, int m, int n, float alpha, float a[], int lda, float x[], int incx, float beta, float y[], int incy ) //****************************************************************************80 // // Purpose: // // SGEMV computes y := alpha * A * x + beta * y for general matrix A. // // Discussion: // // SGEMV performs one of the matrix-vector operations // y := alpha*A *x + beta*y // or // y := alpha*A'*x + beta*y, // where alpha and beta are scalars, x and y are vectors and A is an // m by n matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 April 2014 // // Author: // // C++ version by John Burkardt // // Parameters: // // Input, char TRANS, specifies the operation to be performed: // 'n' or 'N' y := alpha*A *x + beta*y. // 't' or 'T' y := alpha*A'*x + beta*y. // 'c' or 'C' y := alpha*A'*x + beta*y. // // Input, int M, the number of rows of the matrix A. // 0 <= M. // // Input, int N, the number of columns of the matrix A. // 0 <= N. // // Input, float ALPHA, the scalar multiplier for A * x. // // Input, float A[LDA*N]. The M x N subarray contains // the matrix A. // // Input, int LDA, the the first dimension of A as declared // in the calling routine. max ( 1, M ) <= LDA. // // Input, float X[*], an array containing the vector to be // multiplied by the matrix A. // If TRANS = 'N' or 'n', then X must contain N entries, stored in INCX // increments in a space of at least ( 1 + ( N - 1 ) * abs ( INCX ) ) // locations. // Otherwise, X must contain M entries, store in INCX increments // in a space of at least ( 1 + ( M - 1 ) * abs ( INCX ) ) locations. // // Input, int INCX, the increment for the elements of // X. INCX must not be zero. // // Input, float BETA, the scalar multiplier for Y. // // Input/output, float Y[*], an array containing the vector to // be scaled and incremented by A*X. // If TRANS = 'N' or 'n', then Y must contain M entries, stored in INCY // increments in a space of at least ( 1 + ( M - 1 ) * abs ( INCY ) ) // locations. // Otherwise, Y must contain N entries, store in INCY increments // in a space of at least ( 1 + ( N - 1 ) * abs ( INCY ) ) locations. // // Input, int INCY, the increment for the elements of // Y. INCY must not be zero. // { int i; int info; int ix; int iy; int j; int jx; int jy; int kx; int ky; int lenx; int leny; float temp; // // Test the input parameters. // info = 0; if ( ! lsame ( trans, 'N' ) && ! lsame ( trans, 'T' ) && ! lsame ( trans, 'C' ) ) { info = 1; } else if ( m < 0 ) { info = 2; } else if ( n < 0 ) { info = 3; } else if ( lda < i4_max ( 1, m ) ) { info = 6; } else if ( incx == 0 ) { info = 8; } else if ( incy == 0 ) { info = 11; } if ( info != 0 ) { xerbla ( "SGEMV", info ); return; } // // Quick return if possible. // if ( ( m == 0 ) || ( n == 0 ) || ( ( alpha == 0.0 ) && ( beta == 1.0 ) ) ) { return; } // // Set LENX and LENY, the lengths of the vectors x and y, and set // up the start points in X and Y. // if ( lsame ( trans, 'N' ) ) { lenx = n; leny = m; } else { lenx = m; leny = n; } if ( 0 < incx ) { kx = 0; } else { kx = 0 - ( lenx - 1 ) * incx; } if ( 0 < incy ) { ky = 0; } else { ky = 0 - ( leny - 1 ) * incy; } // // Start the operations. In this version the elements of A are // accessed sequentially with one pass through A. // // First form y := beta*y. // if ( beta != 1.0 ) { if ( incy == 1 ) { if ( beta == 0.0 ) { for ( i = 0; i < leny; i++ ) { y[i] = 0.0; } } else { for ( i = 0; i < leny; i++ ) { y[i] = beta * y[i]; } } } else { iy = ky; if ( beta == 0.0 ) { for ( i = 0; i < leny; i++ ) { y[iy] = 0.0; iy = iy + incy; } } else { for ( i = 0; i < leny; i++ ) { y[iy] = beta * y[iy]; iy = iy + incy; } } } } if ( alpha == 0.0 ) { return; } // // Form y := alpha*A*x + y. // if ( lsame ( trans, 'N' ) ) { jx = kx; if ( incy == 1 ) { for ( j = 0; j < n; j++ ) { if ( x[jx] != 0.0 ) { temp = alpha * x[jx]; for ( i = 0; i < m; i++ ) { y[i] = y[i] + temp * a[i+j*lda]; } } jx = jx + incx; } } else { for ( j = 0; j < n; j++ ) { if ( x[jx] != 0.0 ) { temp = alpha * x[jx]; iy = ky; for ( i = 0; i < m; i++ ) { y[iy] = y[iy] + temp * a[i+j*lda]; iy = iy + incy; } } jx = jx + incx; } } } /* Form y := alpha*A'*x + y. */ else { jy = ky; if ( incx == 1 ) { for ( j = 0; j < n; j++ ) { temp = 0.0; for ( i = 0; i < m; i++ ) { temp = temp + a[i+j*lda] * x[i]; } y[jy] = y[jy] + alpha * temp; jy = jy + incy; } } else { for ( j = 0; j < n; j++ ) { temp = 0.0; ix = kx; for ( i = 0; i < m; i++ ) { temp = temp + a[i+j*lda] * x[ix]; ix = ix + incx; } y[jy] = y[jy] + alpha * temp; jy = jy + incy; } } } return; } //****************************************************************************80 void sger ( int m, int n, float alpha, float x[], int incx, float y[], int incy, float a[], int lda ) //****************************************************************************80 // // Purpose: // // SGER computes A := alpha*x*y' + A. // // Discussion: // // SGER performs the rank 1 operation // // A := alpha*x*y' + A, // // where alpha is a scalar, x is an m element vector, y is an n element // vector and A is an m by n matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 April 2014 // // Author: // // Original FORTRAN77 version by Jack Dongarra, Jeremy Du Croz, // Sven Hammarling, Richard Hanson. // This C++ version by John Burkardt. // // Parameters: // // Input, int M, the number of rows of the matrix A. // 0 <= M. // // Input, int N, the number of columns of the matrix A. // 0 <= N. // // Input, float ALPHA, the scalar multiplier. // // Input, float X[1+(M-1)*abs(INCX)], the first vector. // // Input, int INCX, the increment for elements of X. // INCX must not be zero. // // Input, float Y[1+(N-1)*abs(INCY)], the second vector. // // Input, int INCY, the increment for elements of Y. // INCY must not be zero. // // Input/output, float A[LDA*N]. On entry, the leading M by N // part of the array contains the matrix of coefficients. On exit, A is // overwritten by the updated matrix. // // Input, int LDA, the first dimension of A as declared // in the calling program. max ( 1, M ) <= LDA. // { int i; int info; int ix; int j; int jy; int kx; float temp; // // Test the input parameters. // info = 0; if ( m < 0 ) { info = 1; } else if ( n < 0 ) { info = 2; } else if ( incx == 0 ) { info = 5; } else if ( incy == 0 ) { info = 7; } else if ( lda < i4_max ( 1, m ) ) { info = 9; } if ( info != 0 ) { xerbla ( "SGER", info ); return; } // // Quick return if possible. // if ( m == 0 || n == 0 || alpha == 0.0 ) { return; } // // Start the operations. In this version the elements of A are // accessed sequentially with one pass through A. // if ( 0 < incy ) { jy = 0; } else { jy = 0 - ( n - 1 ) * incy; } if ( incx == 1 ) { for ( j = 0; j < n; j++ ) { if ( y[jy] != 0.0 ) { temp = alpha * y[jy]; for ( i = 0; i < m; i++ ) { a[i+j*lda] = a[i+j*lda] + x[i] * temp; } } jy = jy + incy; } } else { if ( 0 < incx ) { kx = 0; } else { kx = 0 - ( m - 1 ) * incx; } for ( j = 0; j < n; j++ ) { if ( y[jy] != 0.0 ) { temp = alpha * y[jy]; ix = kx; for ( i = 0; i < m; i++ ) { a[i+j*lda] = a[i+j*lda] + x[ix] * temp; ix = ix + incx; } } jy = jy + incy; } } return; } //****************************************************************************80 void strmv ( char uplo, char trans, char diag, int n, float a[], int lda, float x[], int incx ) //****************************************************************************80 // // Purpose: // // STRMV computes x: = A*x or x = A'*x for a triangular matrix A. // // Discussion: // // STRMV performs one of the matrix-vector operations // // x := A*x, or x := A'*x, // // where x is an n element vector and A is an n by n unit, or non-unit, // upper or lower triangular matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 April 2014 // // Author: // // This C++ version by John Burkardt. // // Parameters: // // Input, char UPLO, specifies whether the matrix is an upper or // lower triangular matrix as follows: // 'u' or 'U': A is an upper triangular matrix. // 'l' or 'L': A is a lower triangular matrix. // // Input, char TRANS, specifies the operation to be performed as // follows: // 'n' or 'N': x := A*x. // 't' or 'T': x := A'*x. // 'c' or 'C': x := A'*x. // // Input, char DIAG, specifies whether or not A is unit // triangular as follows: // 'u' or 'U': A is assumed to be unit triangular. // 'n' or 'N': A is not assumed to be unit triangular. // // Input, int N, the order of the matrix A. // 0 <= N. // // Input, float A[LDA*N]. // Before entry with UPLO = 'u' or 'U', the leading n by n // upper triangular part of the array A must contain the upper // triangular matrix and the strictly lower triangular part of // A is not referenced. // Before entry with UPLO = 'l' or 'L', the leading n by n // lower triangular part of the array A must contain the lower // triangular matrix and the strictly upper triangular part of // A is not referenced. // Note that when DIAG = 'u' or 'U', the diagonal elements of // A are not referenced either, but are assumed to be unity. // // Input, int LDA, the first dimension of A as declared // in the calling program. max ( 1, N ) <= LDA. // // Input/output, float X[1+(N-1)*abs( INCX)]. // Before entry, the incremented array X must contain the n // element vector x. On exit, X is overwritten with the // tranformed vector x. // // Input, int INCX, the increment for the elements of // X. INCX must not be zero. // { int i; int info; int ix; int j; int jx; int kx; bool nounit; float temp; // // Test the input parameters. // info = 0; if ( ! lsame ( uplo, 'U' ) && ! lsame ( uplo, 'L' ) ) { info = 1; } else if ( ! lsame ( trans, 'N' ) && ! lsame ( trans, 'T' ) && ! lsame ( trans, 'C' ) ) { info = 2; } else if ( ! lsame ( diag, 'U' ) && ! lsame ( diag, 'N' ) ) { info = 3; } else if ( n < 0 ) { info = 4; } else if ( lda < i4_max ( 1, n ) ) { info = 6; } else if ( incx == 0 ) { info = 8; } if ( info != 0 ) { xerbla ( "STRMV", info ); return; } // // Quick return if possible. // if ( n == 0 ) { return; } nounit = lsame ( diag, 'N' ); // // Set up the start point in X if the increment is not unity. This // will be ( N - 1 ) * INCX too small for descending loops. // if ( incx <= 0 ) { kx = 0 - ( n - 1 ) * incx; } else if ( incx != 1 ) { kx = 0; } // // Start the operations. In this version the elements of A are // accessed sequentially with one pass through A. // if ( lsame ( trans, 'N' ) ) { // // Form x := A*x. // if ( lsame ( uplo, 'U' ) ) { if ( incx == 1 ) { for ( j = 0; j < n; j++ ) { if ( x[j] != 0.0 ) { temp = x[j]; for ( i = 0; i < j; i++ ) { x[i] = x[i] + temp * a[i+j*lda]; } if ( nounit ) { x[j] = x[j] * a[j+j*lda]; } } } } else { jx = kx; for ( j = 0; j < n; j++ ) { if ( x[jx] != 0.0 ) { temp = x[jx]; ix = kx; for ( i = 0; i < j; i++ ) { x[ix] = x[ix] + temp * a[i+j*lda]; ix = ix + incx; } if ( nounit ) { x[jx] = x[jx] * a[j+j*lda]; } } jx = jx + incx; } } } else { if ( incx == 1 ) { for ( j = n - 1; 0 <= j; j-- ) { if ( x[j] != 0.0 ) { temp = x[j]; for ( i = n - 1; j < i; i-- ) { x[i] = x[i] + temp * a[i+j*lda]; } if ( nounit ) { x[j] = x[j] * a[j+j*lda]; } } } } else { kx = kx + ( n - 1 ) * incx; jx = kx; for ( j = n - 1; 0 <= j; j-- ) { if ( x[jx] != 0.0 ) { temp = x[jx]; ix = kx; for ( i = n - 1; j < i; i-- ) { x[ix] = x[ix] + temp * a[i+j*lda]; ix = ix - incx; } if ( nounit ) { x[jx] = x[jx] * a[j+j*lda]; } } jx = jx - incx; } } } } // // Form x := A'*x. // else { if ( lsame ( uplo, 'U' ) ) { if ( incx == 1 ) { for ( j = n - 1; 0 <= j; j-- ) { temp = x[j]; if ( nounit ) { temp = temp * a[j+j*lda]; } for ( i = j - 1; 0 <= i; i-- ) { temp = temp + a[i+j*lda] * x[i]; } x[j] = temp; } } else { jx = kx + ( n - 1 ) * incx; for ( j = n - 1; 0 <= j; j-- ) { temp = x[jx]; ix = jx; if ( nounit ) { temp = temp * a[j+j*lda]; } for ( i = j - 1; 0 <= i; i-- ) { ix = ix - incx; temp = temp + a[i+j*lda] * x[ix]; } x[jx] = temp; jx = jx - incx; } } } else { if ( incx == 1 ) { for ( j = 0; j < n; j++ ) { temp = x[j]; if ( nounit ) { temp = temp * a[j+j*lda]; } for ( i = j + 1; i < n; i++ ) { temp = temp + a[i+j*lda] * x[i]; } x[j] = temp; } } else { jx = kx; for ( j = 0; j < n; j++ ) { temp = x[jx]; ix = jx; if ( nounit ) { temp = temp * a[j+j*lda]; } for ( i = j + 1; i < n; i++ ) { ix = ix + incx; temp = temp + a[i+j*lda] * x[ix]; } x[jx] = temp; jx = jx + incx; } } } } return; }