# include # include # include # include using namespace std; # include "brent.hpp" namespace brent{ //****************************************************************************80 double glomin ( double a, double b, double c, double m, double e, double t, func_base& f, double &x ) //****************************************************************************80 // // Purpose: // // GLOMIN seeks a global minimum of a function F(X) in an interval [A,B]. // // Discussion: // // This function assumes that F(X) is twice continuously differentiable // over [A,B] and that F''(X) <= M for all X in [A,B]. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 July 2011 // // Author: // // Original FORTRAN77 version by Richard Brent. // C++ version by John Burkardt. // // Reference: // // Richard Brent, // Algorithms for Minimization Without Derivatives, // Dover, 2002, // ISBN: 0-486-41998-3, // LC: QA402.5.B74. // // Parameters: // // Input, double A, B, the endpoints of the interval. // It must be the case that A < B. // // Input, double C, an initial guess for the global // minimizer. If no good guess is known, C = A or B is acceptable. // // Input, double M, the bound on the second derivative. // // Input, double E, a positive tolerance, a bound for the // absolute error in the evaluation of F(X) for any X in [A,B]. // // Input, double T, a positive error tolerance. // // Input, func_base& F, a user-supplied c++ functor whose // global minimum is being sought. The input and output // of F() are of type double. // // Output, double &X, the estimated value of the abscissa // for which F attains its global minimum value in [A,B]. // // Output, double GLOMIN, the value F(X). // { double a0; double a2; double a3; double d0; double d1; double d2; double h; int k; double m2; double macheps; double p; double q; double qs; double r; double s; double sc; double y; double y0; double y1; double y2; double y3; double yb; double z0; double z1; double z2; a0 = b; x = a0; a2 = a; y0 = f ( b ); yb = y0; y2 = f ( a ); y = y2; if ( y0 < y ) { y = y0; } else { x = a; } if ( m <= 0.0 || b <= a ) { return y; } macheps = r8_epsilon ( ); m2 = 0.5 * ( 1.0 + 16.0 * macheps ) * m; if ( c <= a || b <= c ) { sc = 0.5 * ( a + b ); } else { sc = c; } y1 = f ( sc ); k = 3; d0 = a2 - sc; h = 9.0 / 11.0; if ( y1 < y ) { x = sc; y = y1; } // // Loop. // for ( ; ; ) { d1 = a2 - a0; d2 = sc - a0; z2 = b - a2; z0 = y2 - y1; z1 = y2 - y0; r = d1 * d1 * z0 - d0 * d0 * z1; p = r; qs = 2.0 * ( d0 * z1 - d1 * z0 ); q = qs; if ( k < 1000000 || y2 <= y ) { for ( ; ; ) { if ( q * ( r * ( yb - y2 ) + z2 * q * ( ( y2 - y ) + t ) ) < z2 * m2 * r * ( z2 * q - r ) ) { a3 = a2 + r / q; y3 = f ( a3 ); if ( y3 < y ) { x = a3; y = y3; } } k = ( ( 1611 * k ) % 1048576 ); q = 1.0; r = ( b - a ) * 0.00001 * ( double ) ( k ); if ( z2 <= r ) { break; } } } else { k = ( ( 1611 * k ) % 1048576 ); q = 1.0; r = ( b - a ) * 0.00001 * ( double ) ( k ); while ( r < z2 ) { if ( q * ( r * ( yb - y2 ) + z2 * q * ( ( y2 - y ) + t ) ) < z2 * m2 * r * ( z2 * q - r ) ) { a3 = a2 + r / q; y3 = f ( a3 ); if ( y3 < y ) { x = a3; y = y3; } } k = ( ( 1611 * k ) % 1048576 ); q = 1.0; r = ( b - a ) * 0.00001 * ( double ) ( k ); } } r = m2 * d0 * d1 * d2; s = sqrt ( ( ( y2 - y ) + t ) / m2 ); h = 0.5 * ( 1.0 + h ); p = h * ( p + 2.0 * r * s ); q = q + 0.5 * qs; r = - 0.5 * ( d0 + ( z0 + 2.01 * e ) / ( d0 * m2 ) ); if ( r < s || d0 < 0.0 ) { r = a2 + s; } else { r = a2 + r; } if ( 0.0 < p * q ) { a3 = a2 + p / q; } else { a3 = r; } for ( ; ; ) { a3 = r8_max ( a3, r ); if ( b <= a3 ) { a3 = b; y3 = yb; } else { y3 = f ( a3 ); } if ( y3 < y ) { x = a3; y = y3; } d0 = a3 - a2; if ( a3 <= r ) { break; } p = 2.0 * ( y2 - y3 ) / ( m * d0 ); if ( ( 1.0 + 9.0 * macheps ) * d0 <= r8_abs ( p ) ) { break; } if ( 0.5 * m2 * ( d0 * d0 + p * p ) <= ( y2 - y ) + ( y3 - y ) + 2.0 * t ) { break; } a3 = 0.5 * ( a2 + a3 ); h = 0.9 * h; } if ( b <= a3 ) { break; } a0 = sc; sc = a2; a2 = a3; y0 = y1; y1 = y2; y2 = y3; } return y; } //****************************************************************************80 double local_min ( double a, double b, double t, func_base& f, double &x ) //****************************************************************************80 // // Purpose: // // LOCAL_MIN seeks a local minimum of a function F(X) in an interval [A,B]. // // Discussion: // // The method used is a combination of golden section search and // successive parabolic interpolation. Convergence is never much slower // than that for a Fibonacci search. If F has a continuous second // derivative which is positive at the minimum (which is not at A or // B), then convergence is superlinear, and usually of the order of // about 1.324.... // // The values EPS and T define a tolerance TOL = EPS * abs ( X ) + T. // F is never evaluated at two points closer than TOL. // // If F is a unimodal function and the computed values of F are always // unimodal when separated by at least SQEPS * abs ( X ) + (T/3), then // LOCAL_MIN approximates the abscissa of the global minimum of F on the // interval [A,B] with an error less than 3*SQEPS*abs(LOCAL_MIN)+T. // // If F is not unimodal, then LOCAL_MIN may approximate a local, but // perhaps non-global, minimum to the same accuracy. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 July 2011 // // Author: // // Original FORTRAN77 version by Richard Brent. // C++ version by John Burkardt. // // Reference: // // Richard Brent, // Algorithms for Minimization Without Derivatives, // Dover, 2002, // ISBN: 0-486-41998-3, // LC: QA402.5.B74. // // Parameters: // // Input, double A, B, the endpoints of the interval. // // Input, double T, a positive absolute error tolerance. // // Input, func_base& F, a user-supplied c++ functor whose // local minimum is being sought. The input and output // of F() are of type double. // // Output, double &X, the estimated value of an abscissa // for which F attains a local minimum value in [A,B]. // // Output, double LOCAL_MIN, the value F(X). // { double c; double d; double e; double eps; double fu; double fv; double fw; double fx; double m; double p; double q; double r; double sa; double sb; double t2; double tol; double u; double v; double w; // // C is the square of the inverse of the golden ratio. // c = 0.5 * ( 3.0 - sqrt ( 5.0 ) ); eps = sqrt ( r8_epsilon ( ) ); sa = a; sb = b; x = sa + c * ( b - a ); w = x; v = w; e = 0.0; fx = f ( x ); fw = fx; fv = fw; for ( ; ; ) { m = 0.5 * ( sa + sb ) ; tol = eps * r8_abs ( x ) + t; t2 = 2.0 * tol; // // Check the stopping criterion. // if ( r8_abs ( x - m ) <= t2 - 0.5 * ( sb - sa ) ) { break; } // // Fit a parabola. // r = 0.0; q = r; p = q; if ( tol < r8_abs ( e ) ) { r = ( x - w ) * ( fx - fv ); q = ( x - v ) * ( fx - fw ); p = ( x - v ) * q - ( x - w ) * r; q = 2.0 * ( q - r ); if ( 0.0 < q ) { p = - p; } q = r8_abs ( q ); r = e; e = d; } if ( r8_abs ( p ) < r8_abs ( 0.5 * q * r ) && q * ( sa - x ) < p && p < q * ( sb - x ) ) { // // Take the parabolic interpolation step. // d = p / q; u = x + d; // // F must not be evaluated too close to A or B. // if ( ( u - sa ) < t2 || ( sb - u ) < t2 ) { if ( x < m ) { d = tol; } else { d = - tol; } } } // // A golden-section step. // else { if ( x < m ) { e = sb - x; } else { e = sa - x; } d = c * e; } // // F must not be evaluated too close to X. // if ( tol <= r8_abs ( d ) ) { u = x + d; } else if ( 0.0 < d ) { u = x + tol; } else { u = x - tol; } fu = f ( u ); // // Update A, B, V, W, and X. // if ( fu <= fx ) { if ( u < x ) { sb = x; } else { sa = x; } v = w; fv = fw; w = x; fw = fx; x = u; fx = fu; } else { if ( u < x ) { sa = u; } else { sb = u; } if ( fu <= fw || w == x ) { v = w; fv = fw; w = u; fw = fu; } else if ( fu <= fv || v == x || v == w ) { v = u; fv = fu; } } } return fx; } //****************************************************************************80 double local_min_rc ( double &a, double &b, int &status, double value ) //****************************************************************************80 // // Purpose: // // LOCAL_MIN_RC seeks a minimizer of a scalar function of a scalar variable. // // Discussion: // // This routine seeks an approximation to the point where a function // F attains a minimum on the interval (A,B). // // The method used is a combination of golden section search and // successive parabolic interpolation. Convergence is never much // slower than that for a Fibonacci search. If F has a continuous // second derivative which is positive at the minimum (which is not // at A or B), then convergence is superlinear, and usually of the // order of about 1.324... // // The routine is a revised version of the Brent local minimization // algorithm, using reverse communication. // // It is worth stating explicitly that this routine will NOT be // able to detect a minimizer that occurs at either initial endpoint // A or B. If this is a concern to the user, then the user must // either ensure that the initial interval is larger, or to check // the function value at the returned minimizer against the values // at either endpoint. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 July 2011 // // Author: // // John Burkardt // // Reference: // // Richard Brent, // Algorithms for Minimization Without Derivatives, // Dover, 2002, // ISBN: 0-486-41998-3, // LC: QA402.5.B74. // // David Kahaner, Cleve Moler, Steven Nash, // Numerical Methods and Software, // Prentice Hall, 1989, // ISBN: 0-13-627258-4, // LC: TA345.K34. // // Parameters // // Input/output, double &A, &B. On input, the left and right // endpoints of the initial interval. On output, the lower and upper // bounds for an interval containing the minimizer. It is required // that A < B. // // Input/output, int &STATUS, used to communicate between // the user and the routine. The user only sets STATUS to zero on the first // call, to indicate that this is a startup call. The routine returns STATUS // positive to request that the function be evaluated at ARG, or returns // STATUS as 0, to indicate that the iteration is complete and that // ARG is the estimated minimizer. // // Input, double VALUE, the function value at ARG, as requested // by the routine on the previous call. // // Output, double LOCAL_MIN_RC, the currently considered point. // On return with STATUS positive, the user is requested to evaluate the // function at this point, and return the value in VALUE. On return with // STATUS zero, this is the routine's estimate for the function minimizer. // // Local parameters: // // C is the squared inverse of the golden ratio. // // EPS is the square root of the relative machine precision. // { static double arg; static double c; static double d; static double e; static double eps; static double fu; static double fv; static double fw; static double fx; static double midpoint; static double p; static double q; static double r; static double tol; static double tol1; static double tol2; static double u; static double v; static double w; static double x; // // STATUS (INPUT) = 0, startup. // if ( status == 0 ) { if ( b <= a ) { cout << "\n"; cout << "LOCAL_MIN_RC - Fatal error!\n"; cout << " A < B is required, but\n"; cout << " A = " << a << "\n"; cout << " B = " << b << "\n"; status = -1; exit ( 1 ); } c = 0.5 * ( 3.0 - sqrt ( 5.0 ) ); eps = sqrt ( r8_epsilon ( ) ); tol = r8_epsilon ( ); v = a + c * ( b - a ); w = v; x = v; e = 0.0; status = 1; arg = x; return arg; } // // STATUS (INPUT) = 1, return with initial function value of FX. // else if ( status == 1 ) { fx = value; fv = fx; fw = fx; } // // STATUS (INPUT) = 2 or more, update the data. // else if ( 2 <= status ) { fu = value; if ( fu <= fx ) { if ( x <= u ) { a = x; } else { b = x; } v = w; fv = fw; w = x; fw = fx; x = u; fx = fu; } else { if ( u < x ) { a = u; } else { b = u; } if ( fu <= fw || w == x ) { v = w; fv = fw; w = u; fw = fu; } else if ( fu <= fv || v == x || v == w ) { v = u; fv = fu; } } } // // Take the next step. // midpoint = 0.5 * ( a + b ); tol1 = eps * r8_abs ( x ) + tol / 3.0; tol2 = 2.0 * tol1; // // If the stopping criterion is satisfied, we can exit. // if ( r8_abs ( x - midpoint ) <= ( tol2 - 0.5 * ( b - a ) ) ) { status = 0; return arg; } // // Is golden-section necessary? // if ( r8_abs ( e ) <= tol1 ) { if ( midpoint <= x ) { e = a - x; } else { e = b - x; } d = c * e; } // // Consider fitting a parabola. // else { r = ( x - w ) * ( fx - fv ); q = ( x - v ) * ( fx - fw ); p = ( x - v ) * q - ( x - w ) * r; q = 2.0 * ( q - r ); if ( 0.0 < q ) { p = - p; } q = r8_abs ( q ); r = e; e = d; // // Choose a golden-section step if the parabola is not advised. // if ( ( r8_abs ( 0.5 * q * r ) <= r8_abs ( p ) ) || ( p <= q * ( a - x ) ) || ( q * ( b - x ) <= p ) ) { if ( midpoint <= x ) { e = a - x; } else { e = b - x; } d = c * e; } // // Choose a parabolic interpolation step. // else { d = p / q; u = x + d; if ( ( u - a ) < tol2 ) { d = tol1 * r8_sign ( midpoint - x ); } if ( ( b - u ) < tol2 ) { d = tol1 * r8_sign ( midpoint - x ); } } } // // F must not be evaluated too close to X. // if ( tol1 <= r8_abs ( d ) ) { u = x + d; } if ( r8_abs ( d ) < tol1 ) { u = x + tol1 * r8_sign ( d ); } // // Request value of F(U). // arg = u; status = status + 1; return arg; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 May 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = x; } else { value = - x; } return value; } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { double value; if ( y < x ) { value = x; } else { value = y; } return value; } //****************************************************************************80 double r8_sign ( double x ) //****************************************************************************80 // // Purpose: // // R8_SIGN returns the sign of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the number whose sign is desired. // // Output, double R8_SIGN, the sign of X. // { double value; if ( x < 0.0 ) { value = -1.0; } else { value = 1.0; } return value; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { const int TIME_SIZE(40); static char time_buffer[TIME_SIZE]; const struct tm *tm; time_t now; now = time ( NULL ); tm = localtime ( &now ); strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; } //****************************************************************************80 double zero ( double a, double b, double t, func_base& f ) //****************************************************************************80 // // Purpose: // // ZERO seeks the root of a function F(X) in an interval [A,B]. // // Discussion: // // The interval [A,B] must be a change of sign interval for F. // That is, F(A) and F(B) must be of opposite signs. Then // assuming that F is continuous implies the existence of at least // one value C between A and B for which F(C) = 0. // // The location of the zero is determined to within an accuracy // of 6 * MACHEPS * r8_abs ( C ) + 2 * T. // // Thanks to Thomas Secretin for pointing out a transcription error in the // setting of the value of P, 11 February 2013. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 February 2013 // // Author: // // Original FORTRAN77 version by Richard Brent. // C++ version by John Burkardt. // // Reference: // // Richard Brent, // Algorithms for Minimization Without Derivatives, // Dover, 2002, // ISBN: 0-486-41998-3, // LC: QA402.5.B74. // // Parameters: // // Input, double A, B, the endpoints of the change of sign interval. // // Input, double T, a positive error tolerance. // // Input, func_base& F, the name of a user-supplied c++ functor // whose zero is being sought. The input and output // of F() are of type double. // // Output, double ZERO, the estimated value of a zero of // the function F. // { double c; double d; double e; double fa; double fb; double fc; double m; double macheps; double p; double q; double r; double s; double sa; double sb; double tol; // // Make local copies of A and B. // sa = a; sb = b; fa = f ( sa ); fb = f ( sb ); c = sa; fc = fa; e = sb - sa; d = e; macheps = r8_epsilon ( ); for ( ; ; ) { if ( r8_abs ( fc ) < r8_abs ( fb ) ) { sa = sb; sb = c; c = sa; fa = fb; fb = fc; fc = fa; } tol = 2.0 * macheps * r8_abs ( sb ) + t; m = 0.5 * ( c - sb ); if ( r8_abs ( m ) <= tol || fb == 0.0 ) { break; } if ( r8_abs ( e ) < tol || r8_abs ( fa ) <= r8_abs ( fb ) ) { e = m; d = e; } else { s = fb / fa; if ( sa == c ) { p = 2.0 * m * s; q = 1.0 - s; } else { q = fa / fc; r = fb / fc; p = s * ( 2.0 * m * q * ( q - r ) - ( sb - sa ) * ( r - 1.0 ) ); q = ( q - 1.0 ) * ( r - 1.0 ) * ( s - 1.0 ); } if ( 0.0 < p ) { q = - q; } else { p = - p; } s = e; e = d; if ( 2.0 * p < 3.0 * m * q - r8_abs ( tol * q ) && p < r8_abs ( 0.5 * s * q ) ) { d = p / q; } else { e = m; d = e; } } sa = sb; fa = fb; if ( tol < r8_abs ( d ) ) { sb = sb + d; } else if ( 0.0 < m ) { sb = sb + tol; } else { sb = sb - tol; } fb = f ( sb ); if ( ( 0.0 < fb && 0.0 < fc ) || ( fb <= 0.0 && fc <= 0.0 ) ) { c = sa; fc = fa; e = sb - sa; d = e; } } return sb; } //****************************************************************************80 void zero_rc ( double a, double b, double t, double &arg, int &status, double value ) //****************************************************************************80 // // Purpose: // // ZERO_RC seeks the root of a function F(X) using reverse communication. // // Discussion: // // The interval [A,B] must be a change of sign interval for F. // That is, F(A) and F(B) must be of opposite signs. Then // assuming that F is continuous implies the existence of at least // one value C between A and B for which F(C) = 0. // // The location of the zero is determined to within an accuracy // of 6 * MACHEPS * r8_abs ( C ) + 2 * T. // // The routine is a revised version of the Brent zero finder // algorithm, using reverse communication. // // Thanks to Thomas Secretin for pointing out a transcription error in the // setting of the value of P, 11 February 2013. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 February 2013 // // Author: // // John Burkardt // // Reference: // // Richard Brent, // Algorithms for Minimization Without Derivatives, // Dover, 2002, // ISBN: 0-486-41998-3, // LC: QA402.5.B74. // // Parameters: // // Input, double A, B, the endpoints of the change of sign interval. // // Input, double T, a positive error tolerance. // // Output, double &ARG, the currently considered point. The user // does not need to initialize this value. On return with STATUS positive, // the user is requested to evaluate the function at ARG, and return // the value in VALUE. On return with STATUS zero, ARG is the routine's // estimate for the function's zero. // // Input/output, int &STATUS, used to communicate between // the user and the routine. The user only sets STATUS to zero on the first // call, to indicate that this is a startup call. The routine returns STATUS // positive to request that the function be evaluated at ARG, or returns // STATUS as 0, to indicate that the iteration is complete and that // ARG is the estimated zero // // Input, double VALUE, the function value at ARG, as requested // by the routine on the previous call. // { static double c; static double d; static double e; static double fa; static double fb; static double fc; double m; static double macheps; double p; double q; double r; double s; static double sa; static double sb; double tol; // // Input STATUS = 0. // Initialize, request F(A). // if ( status == 0 ) { macheps = r8_epsilon ( ); sa = a; sb = b; e = sb - sa; d = e; status = 1; arg = a; return; } // // Input STATUS = 1. // Receive F(A), request F(B). // else if ( status == 1 ) { fa = value; status = 2; arg = sb; return; } // // Input STATUS = 2 // Receive F(B). // else if ( status == 2 ) { fb = value; if ( 0.0 < fa * fb ) { status = -1; return; } c = sa; fc = fa; } else { fb = value; if ( ( 0.0 < fb && 0.0 < fc ) || ( fb <= 0.0 && fc <= 0.0 ) ) { c = sa; fc = fa; e = sb - sa; d = e; } } // // Compute the next point at which a function value is requested. // if ( r8_abs ( fc ) < r8_abs ( fb ) ) { sa = sb; sb = c; c = sa; fa = fb; fb = fc; fc = fa; } tol = 2.0 * macheps * r8_abs ( sb ) + t; m = 0.5 * ( c - sb ); if ( r8_abs ( m ) <= tol || fb == 0.0 ) { status = 0; arg = sb; return; } if ( r8_abs ( e ) < tol || r8_abs ( fa ) <= r8_abs ( fb ) ) { e = m; d = e; } else { s = fb / fa; if ( sa == c ) { p = 2.0 * m * s; q = 1.0 - s; } else { q = fa / fc; r = fb / fc; p = s * ( 2.0 * m * q * ( q - r ) - ( sb - sa ) * ( r - 1.0 ) ); q = ( q - 1.0 ) * ( r - 1.0 ) * ( s - 1.0 ); } if ( 0.0 < p ) { q = - q; } else { p = - p; } s = e; e = d; if ( 2.0 * p < 3.0 * m * q - r8_abs ( tol * q ) && p < r8_abs ( 0.5 * s * q ) ) { d = p / q; } else { e = m; d = e; } } sa = sb; fa = fb; if ( tol < r8_abs ( d ) ) { sb = sb + d; } else if ( 0.0 < m ) { sb = sb + tol; } else { sb = sb - tol; } arg = sb; status = status + 1; return; } // ====================================================================== // === Simple wrapper functions // === for convenience and/or compatibility. // // === The three functions are the same as above, // === except that they take a plain function F // === instead of a c++ functor. In all cases, the // === input and output of F() are of type double. typedef double DoubleOfDouble (double); class func_wrapper : public func_base { DoubleOfDouble* func; public: func_wrapper(DoubleOfDouble* f) { func = f; } virtual double operator() (double x){ return func(x); } }; //****************************************************************************80 double glomin ( double a, double b, double c, double m, double e, double t, double f ( double x ), double &x ){ func_wrapper foo(f); return glomin(a, b, c, m, e, t, foo, x); } //****************************************************************************80 double local_min ( double a, double b, double t, double f ( double x ), double &x ){ func_wrapper foo(f); return local_min(a, b, t, foo, x); } //****************************************************************************80 double zero ( double a, double b, double t, double f ( double x ) ){ func_wrapper foo(f); return zero(a, b, t, foo); } // ====================================================================== // Generally useful functor to evaluate a monic polynomial. // For details, see class definition in brent.hpp double monicPoly::operator()(double x){ double rslt(1); for (int ii = coeff.size()-1; ii >= 0; ii--){ rslt *= x; rslt += coeff[ii]; } return rslt; } // Similarly, evaluate a general polynomial (not necessarily monic): double Poly::operator()(double x){ double rslt(0); for (int ii = coeff.size()-1; ii >= 0; ii--){ rslt *= x; rslt += coeff[ii]; } return rslt; } } // end namespace brent