# include # include # include # include # include # include # include using namespace std; # include "burgers_solution.hpp" //****************************************************************************80 double *burgers_solution ( double nu, int vxn, double vx[], int vtn, double vt[] ) //****************************************************************************80 // // Purpose: // // BURGERS_SOLUTION evaluates a solution to the Burgers equation. // // Discussion: // // The form of the Burgers equation considered here is // // du du d^2 u // -- + u * -- = nu * ----- // dt dx dx^2 // // for -1.0 < x < +1.0, and 0 < t. // // Initial conditions are u(x,0) = - sin(pi*x). Boundary conditions // are u(-1,t) = u(+1,t) = 0. The viscosity parameter nu is taken // to be 0.01 / pi, although this is not essential. // // The authors note an integral representation for the solution u(x,t), // and present a better version of the formula that is amenable to // approximation using Hermite quadrature. // // This program library does little more than evaluate the exact solution // at a user-specified set of points, using the quadrature rule. // Internally, the order of this quadrature rule is set to 8, but the // user can easily modify this value if greater accuracy is desired. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 November 2011 // // Author: // // John Burkardt. // // Reference: // // Claude Basdevant, Michel Deville, Pierre Haldenwang, J Lacroix, // J Ouazzani, Roger Peyret, Paolo Orlandi, Anthony Patera, // Spectral and finite difference solutions of the Burgers equation, // Computers and Fluids, // Volume 14, Number 1, 1986, pages 23-41. // // Parameters: // // Input, double NU, the viscoscity. // // Input, int VXN, the number of spatial grid points. // // Input, double VX[VXN], the spatial grid points. // // Input, int VTN, the number of time grid points. // // Input, double VT[VTN], the time grid points. // // Output, double BURGERS_SOLUTION VU[VXN*VTN], the solution of the Burgers // equation at each space and time grid point. // { double bot; double c; double pi = 3.141592653589793; int qi; int qn = 8; double *qw; double *qx; int vti; int vxi; double *vu; double top; // // Compute the rule. // qx = new double[qn]; qw = new double[qn]; hermite_ek_compute ( qn, qx, qw ); // // Evaluate U(X,T) for later times. // vu = new double[vxn*vtn]; for ( vti = 0; vti < vtn; vti++ ) { if ( vt[vti] == 0.0 ) { for ( vxi = 0; vxi < vxn; vxi++ ) { vu[vxi+vti*vxn] = - sin ( pi * vx[vxi] ); } } else { for ( vxi = 0; vxi < vxn; vxi++ ) { top = 0.0; bot = 0.0; for ( qi = 0; qi < qn; qi++ ) { c = 2.0 * sqrt ( nu * vt[vti] ); top = top - qw[qi] * c * sin ( pi * ( vx[vxi] - c * qx[qi] ) ) * exp ( - cos ( pi * ( vx[vxi] - c * qx[qi] ) ) / ( 2.0 * pi * nu ) ); bot = bot + qw[qi] * c * exp ( - cos ( pi * ( vx[vxi] - c * qx[qi] ) ) / ( 2.0 * pi * nu ) ); vu[vxi+vti*vxn] = top / bot; } } } } delete [] qx; delete [] qw; return vu; } //****************************************************************************80 void hermite_ek_compute ( int n, double x[], double w[] ) //****************************************************************************80 // // Purpose: // // HERMITE_EK_COMPUTE computes a Gauss-Hermite quadrature rule. // // Discussion: // // The code uses an algorithm by Elhay and Kautsky. // // The abscissas are the zeros of the N-th order Hermite polynomial. // // The integral: // // integral ( -oo < x < +oo ) exp ( - x * x ) * f(x) dx // // The quadrature rule: // // sum ( 1 <= i <= n ) w(i) * f ( x(i) ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 April 2011 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Parameters: // // Input, int N, the number of abscissas. // // Output, double X[N], the abscissas. // // Output, double W[N], the weights. // { double arg; double *bj; int i; double zemu; // // Define the zero-th moment. // arg = 0.5; zemu = tgamma ( arg ); // // Define the Jacobi matrix. // bj = new double[n]; for ( i = 0; i < n; i++ ) { bj[i] = sqrt ( ( double ) ( i + 1 ) / 2.0 ); } for ( i = 0; i < n; i++ ) { x[i] = 0.0; } w[0] = sqrt ( zemu ); for ( i = 1; i < n; i++ ) { w[i] = 0.0; } // // Diagonalize the Jacobi matrix. // imtqlx ( n, x, bj, w ); for ( i = 0; i < n; i++ ) { w[i] = w[i] * w[i]; } delete [] bj; return; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 void imtqlx ( int n, double d[], double e[], double z[] ) //****************************************************************************80 // // Purpose: // // IMTQLX diagonalizes a symmetric tridiagonal matrix. // // Discussion: // // This routine is a slightly modified version of the EISPACK routine to // perform the implicit QL algorithm on a symmetric tridiagonal matrix. // // The authors thank the authors of EISPACK for permission to use this // routine. // // It has been modified to produce the product Q' * Z, where Z is an input // vector and Q is the orthogonal matrix diagonalizing the input matrix. // The changes consist (essentially) of applying the orthogonal transformations // directly to Z as they are generated. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 January 2010 // // Author: // // Original FORTRAN77 version by Sylvan Elhay, Jaroslav Kautsky. // C++ version by John Burkardt. // // Reference: // // Sylvan Elhay, Jaroslav Kautsky, // Algorithm 655: IQPACK, FORTRAN Subroutines for the Weights of // Interpolatory Quadrature, // ACM Transactions on Mathematical Software, // Volume 13, Number 4, December 1987, pages 399-415. // // Roger Martin, James Wilkinson, // The Implicit QL Algorithm, // Numerische Mathematik, // Volume 12, Number 5, December 1968, pages 377-383. // // Parameters: // // Input, int N, the order of the matrix. // // Input/output, double D(N), the diagonal entries of the matrix. // On output, the information in D has been overwritten. // // Input/output, double E(N), the subdiagonal entries of the // matrix, in entries E(1) through E(N-1). On output, the information in // E has been overwritten. // // Input/output, double Z(N). On input, a vector. On output, // the value of Q' * Z, where Q is the matrix that diagonalizes the // input symmetric tridiagonal matrix. // { double b; double c; double f; double g; int i; int ii; int itn = 30; int j; int k; int l; int m; int mml; double p; double prec; double r; double s; prec = r8_epsilon ( ); if ( n == 1 ) { return; } e[n-1] = 0.0; for ( l = 1; l <= n; l++ ) { j = 0; for ( ; ; ) { for ( m = l; m <= n; m++ ) { if ( m == n ) { break; } if ( r8_abs ( e[m-1] ) <= prec * ( r8_abs ( d[m-1] ) + r8_abs ( d[m] ) ) ) { break; } } p = d[l-1]; if ( m == l ) { break; } if ( itn <= j ) { cerr << "\n"; cerr << "IMTQLX - Fatal error!\n"; cerr << " Iteration limit exceeded\n"; exit ( 1 ); } j = j + 1; g = ( d[l] - p ) / ( 2.0 * e[l-1] ); r = sqrt ( g * g + 1.0 ); g = d[m-1] - p + e[l-1] / ( g + r8_abs ( r ) * r8_sign ( g ) ); s = 1.0; c = 1.0; p = 0.0; mml = m - l; for ( ii = 1; ii <= mml; ii++ ) { i = m - ii; f = s * e[i-1]; b = c * e[i-1]; if ( r8_abs ( g ) <= r8_abs ( f ) ) { c = g / f; r = sqrt ( c * c + 1.0 ); e[i] = f * r; s = 1.0 / r; c = c * s; } else { s = f / g; r = sqrt ( s * s + 1.0 ); e[i] = g * r; c = 1.0 / r; s = s * c; } g = d[i] - p; r = ( d[i-1] - g ) * s + 2.0 * c * b; p = s * r; d[i] = g + p; g = c * r - b; f = z[i]; z[i] = s * z[i-1] + c * f; z[i-1] = c * z[i-1] - s * f; } d[l-1] = d[l-1] - p; e[l-1] = g; e[m-1] = 0.0; } } // // Sorting. // for ( ii = 2; ii <= m; ii++ ) { i = ii - 1; k = i; p = d[i-1]; for ( j = ii; j <= n; j++ ) { if ( d[j-1] < p ) { k = j; p = d[j-1]; } } if ( k != i ) { d[k-1] = d[i-1]; d[i-1] = p; p = z[i-1]; z[i-1] = z[k-1]; z[k-1] = p; } } return; } //****************************************************************************80 double r8_abs ( double x ) //****************************************************************************80 // // Purpose: // // R8_ABS returns the absolute value of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2006 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the quantity whose absolute value is desired. // // Output, double R8_ABS, the absolute value of X. // { double value; if ( 0.0 <= x ) { value = + x; } else { value = - x; } return value; } //****************************************************************************80 double r8_add ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_ADD adds two R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the numbers to be added. // // Output, double R8_ADD, the sum of X and Y. // { double value; value = x + y; return value; } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 double r8_sign ( double x ) //****************************************************************************80 // // Purpose: // // R8_SIGN returns the sign of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the number whose sign is desired. // // Output, double R8_SIGN, the sign of X. // { double value; if ( x < 0.0 ) { value = -1.0; } else { value = 1.0; } return value; } //****************************************************************************80 void r8mat_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT prints an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Entry A(I,J) is stored as A[I+J*M] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { r8mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT_SOME prints some of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 August 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j - 1 << " "; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i - 1 << ": "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8mat_write ( string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(24) << setprecision(16) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 double *r8vec_even_new ( int n, double alo, double ahi ) //****************************************************************************80 // // Purpose: // // R8VEC_EVEN_NEW returns an R8VEC of values evenly spaced between ALO and AHI. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 May 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of values. // // Input, double ALO, AHI, the low and high values. // // Output, double R8VEC_EVEN_NEW[N], N evenly spaced values. // Normally, A[0] = ALO and A[N-1] = AHI. // However, if N = 1, then A[0] = 0.5*(ALO+AHI). // { double *a; int i; a = new double[n]; if ( n == 1 ) { a[0] = 0.5 * ( alo + ahi ); } else { for ( i = 0; i < n; i++ ) { a[i] = ( ( double ) ( n - i - 1 ) * alo + ( double ) ( i ) * ahi ) / ( double ) ( n - 1 ); } } return a; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }