# include # include # include # include # include # include using namespace std; # include "cdflib.hpp" //****************************************************************************80 double algdiv ( double *a, double *b ) //****************************************************************************80 // // Purpose: // // ALGDIV computes ln ( Gamma ( B ) / Gamma ( A + B ) ) when 8 <= B. // // Discussion: // // In this algorithm, DEL(X) is the function defined by // // ln ( Gamma(X) ) = ( X - 0.5 ) * ln ( X ) - X + 0.5 * ln ( 2 * PI ) // + DEL(X). // // Parameters: // // Input, double *A, *B, define the arguments. // // Output, double ALGDIV, the value of ln(Gamma(B)/Gamma(A+B)). // { static double algdiv; static double c; static double c0 = 0.833333333333333e-01; static double c1 = -0.277777777760991e-02; static double c2 = 0.793650666825390e-03; static double c3 = -0.595202931351870e-03; static double c4 = 0.837308034031215e-03; static double c5 = -0.165322962780713e-02; static double d; static double h; static double s11; static double s3; static double s5; static double s7; static double s9; static double t; static double T1; static double u; static double v; static double w; static double x; static double x2; if ( *b <= *a ) { h = *b / *a; c = 1.0e0 / ( 1.0e0 + h ); x = h / ( 1.0e0 + h ); d = *a + ( *b - 0.5e0 ); } else { h = *a / *b; c = h / ( 1.0e0 + h ); x = 1.0e0 / ( 1.0e0 + h ); d = *b + ( *a - 0.5e0 ); } // // SET SN = (1 - X**N)/(1 - X) // x2 = x * x; s3 = 1.0e0 + ( x + x2 ); s5 = 1.0e0 + ( x + x2 * s3 ); s7 = 1.0e0 + ( x + x2 * s5 ); s9 = 1.0e0 + ( x + x2 * s7 ); s11 = 1.0e0 + ( x + x2 * s9 ); // // SET W = DEL(B) - DEL(A + B) // t = pow ( 1.0e0 / *b, 2.0 ); w = (((( c5 * s11 * t + c4 * s9 ) * t + c3 * s7 ) * t + c2 * s5 ) * t + c1 * s3 ) * t + c0; w *= ( c / *b ); // // Combine the results. // T1 = *a / *b; u = d * alnrel ( &T1 ); v = *a * ( log ( *b ) - 1.0e0 ); if ( v < u ) { algdiv = w - v - u; } else { algdiv = w - u - v; } return algdiv; } //****************************************************************************80 double alnrel ( double *a ) //****************************************************************************80 // // Purpose: // // ALNREL evaluates the function ln ( 1 + A ). // // Modified: // // 17 November 2006 // // Reference: // // Armido DiDinato, Alfred Morris, // Algorithm 708: // Significant Digit Computation of the Incomplete Beta Function Ratios, // ACM Transactions on Mathematical Software, // Volume 18, 1993, pages 360-373. // // Parameters: // // Input, double *A, the argument. // // Output, double ALNREL, the value of ln ( 1 + A ). // { double alnrel; static double p1 = -0.129418923021993e+01; static double p2 = 0.405303492862024e+00; static double p3 = -0.178874546012214e-01; static double q1 = -0.162752256355323e+01; static double q2 = 0.747811014037616e+00; static double q3 = -0.845104217945565e-01; double t; double t2; double w; double x; if ( fabs ( *a ) <= 0.375e0 ) { t = *a / ( *a + 2.0e0 ); t2 = t * t; w = (((p3*t2+p2)*t2+p1)*t2+1.0e0) / (((q3*t2+q2)*t2+q1)*t2+1.0e0); alnrel = 2.0e0 * t * w; } else { x = 1.0e0 + *a; alnrel = log ( x ); } return alnrel; } //****************************************************************************80 double apser ( double *a, double *b, double *x, double *eps ) //****************************************************************************80 // // Purpose: // // APSER computes the incomplete beta ratio I(SUB(1-X))(B,A). // // Discussion: // // APSER is used only for cases where // // A <= min ( EPS, EPS * B ), // B * X <= 1, and // X <= 0.5. // // Parameters: // // Input, double *A, *B, *X, the parameters of teh // incomplete beta ratio. // // Input, double *EPS, a tolerance. // // Output, double APSER, the computed value of the // incomplete beta ratio. // { static double g = 0.577215664901533e0; static double apser,aj,bx,c,j,s,t,tol; bx = *b**x; t = *x-bx; if(*b**eps > 2.e-2) goto S10; c = log(*x)+psi(b)+g+t; goto S20; S10: c = log(bx)+g+t; S20: tol = 5.0e0**eps*fabs(c); j = 1.0e0; s = 0.0e0; S30: j = j + 1.0e0; t = t * (*x-bx/j); aj = t/j; s = s + aj; if(fabs(aj) > tol) goto S30; apser = -(*a*(c+s)); return apser; } //****************************************************************************80 double bcorr ( double *a0, double *b0 ) //****************************************************************************80 // // Purpose: // // BCORR evaluates DEL(A0) + DEL(B0) - DEL(A0 + B0). // // Discussion: // // The function DEL(A) is a remainder term that is used in the expression: // // ln ( Gamma ( A ) ) = ( A - 0.5 ) * ln ( A ) // - A + 0.5 * ln ( 2 * PI ) + DEL ( A ), // // or, in other words, DEL ( A ) is defined as: // // DEL ( A ) = ln ( Gamma ( A ) ) - ( A - 0.5 ) * ln ( A ) // + A + 0.5 * ln ( 2 * PI ). // // Parameters: // // Input, double *A0, *B0, the arguments. // It is assumed that 8 <= A0 and 8 <= B0. // // Output, double *BCORR, the value of the function. // { static double c0 = 0.833333333333333e-01; static double c1 = -0.277777777760991e-02; static double c2 = 0.793650666825390e-03; static double c3 = -0.595202931351870e-03; static double c4 = 0.837308034031215e-03; static double c5 = -0.165322962780713e-02; static double bcorr,a,b,c,h,s11,s3,s5,s7,s9,t,w,x,x2; a = fifdmin1 ( *a0, *b0 ); b = fifdmax1 ( *a0, *b0 ); h = a / b; c = h / ( 1.0e0 + h ); x = 1.0e0 / ( 1.0e0 + h ); x2 = x * x; // // SET SN = (1 - X**N)/(1 - X) // s3 = 1.0e0 + ( x + x2 ); s5 = 1.0e0 + ( x + x2 * s3 ); s7 = 1.0e0 + ( x + x2 * s5 ); s9 = 1.0e0 + ( x + x2 * s7 ); s11 = 1.0e0 + ( x + x2 * s9 ); // // SET W = DEL(B) - DEL(A + B) // t = pow ( 1.0e0 / b, 2.0 ); w = (((( c5 * s11 * t + c4 * s9 ) * t + c3 * s7 ) * t + c2 * s5 ) * t + c1 * s3 ) * t + c0; w *= ( c / b ); // // COMPUTE DEL(A) + W // t = pow ( 1.0e0 / a, 2.0 ); bcorr = ((((( c5 * t + c4 ) * t + c3 ) * t + c2 ) * t + c1 ) * t + c0 ) / a + w; return bcorr; } //****************************************************************************80 double beta ( double a, double b ) //****************************************************************************80 // // Purpose: // // BETA evaluates the beta function. // // Modified: // // 03 December 1999 // // Author: // // John Burkardt // // Parameters: // // Input, double A, B, the arguments of the beta function. // // Output, double BETA, the value of the beta function. // { return ( exp ( beta_log ( &a, &b ) ) ); } //****************************************************************************80 double beta_asym ( double *a, double *b, double *lambda, double *eps ) //****************************************************************************80 // // Purpose: // // BETA_ASYM computes an asymptotic expansion for IX(A,B), for large A and B. // // Parameters: // // Input, double *A, *B, the parameters of the function. // A and B should be nonnegative. It is assumed that both A and B // are greater than or equal to 15. // // Input, double *LAMBDA, the value of ( A + B ) * Y - B. // It is assumed that 0 <= LAMBDA. // // Input, double *EPS, the tolerance. // { static double e0 = 1.12837916709551e0; static double e1 = .353553390593274e0; static int num = 20; // // NUM IS THE MAXIMUM VALUE THAT N CAN TAKE IN THE DO LOOP // ENDING AT STATEMENT 50. IT IS REQUIRED THAT NUM BE EVEN. // THE ARRAYS A0, B0, C, D HAVE DIMENSION NUM + 1. // E0 = 2/SQRT(PI) // E1 = 2**(-3/2) // static int K3 = 1; static double value; static double bsum,dsum,f,h,h2,hn,j0,j1,r,r0,r1,s,sum,t,t0,t1,u,w,w0,z,z0, z2,zn,znm1; static int i,im1,imj,j,m,mm1,mmj,n,np1; static double a0[21],b0[21],c[21],d[21],T1,T2; value = 0.0e0; if(*a >= *b) goto S10; h = *a/ *b; r0 = 1.0e0/(1.0e0+h); r1 = (*b-*a)/ *b; w0 = 1.0e0/sqrt(*a*(1.0e0+h)); goto S20; S10: h = *b/ *a; r0 = 1.0e0/(1.0e0+h); r1 = (*b-*a)/ *a; w0 = 1.0e0/sqrt(*b*(1.0e0+h)); S20: T1 = -(*lambda/ *a); T2 = *lambda/ *b; f = *a*rlog1(&T1)+*b*rlog1(&T2); t = exp(-f); if(t == 0.0e0) return value; z0 = sqrt(f); z = 0.5e0*(z0/e1); z2 = f+f; a0[0] = 2.0e0/3.0e0*r1; c[0] = -(0.5e0*a0[0]); d[0] = -c[0]; j0 = 0.5e0/e0 * error_fc ( &K3, &z0 ); j1 = e1; sum = j0+d[0]*w0*j1; s = 1.0e0; h2 = h*h; hn = 1.0e0; w = w0; znm1 = z; zn = z2; for ( n = 2; n <= num; n += 2 ) { hn = h2*hn; a0[n-1] = 2.0e0*r0*(1.0e0+h*hn)/((double)n+2.0e0); np1 = n+1; s += hn; a0[np1-1] = 2.0e0*r1*s/((double)n+3.0e0); for ( i = n; i <= np1; i++ ) { r = -(0.5e0*((double)i+1.0e0)); b0[0] = r*a0[0]; for ( m = 2; m <= i; m++ ) { bsum = 0.0e0; mm1 = m-1; for ( j = 1; j <= mm1; j++ ) { mmj = m-j; bsum += (((double)j*r-(double)mmj)*a0[j-1]*b0[mmj-1]); } b0[m-1] = r*a0[m-1]+bsum/(double)m; } c[i-1] = b0[i-1]/((double)i+1.0e0); dsum = 0.0e0; im1 = i-1; for ( j = 1; j <= im1; j++ ) { imj = i-j; dsum += (d[imj-1]*c[j-1]); } d[i-1] = -(dsum+c[i-1]); } j0 = e1*znm1+((double)n-1.0e0)*j0; j1 = e1*zn+(double)n*j1; znm1 = z2*znm1; zn = z2*zn; w = w0*w; t0 = d[n-1]*w*j0; w = w0*w; t1 = d[np1-1]*w*j1; sum += (t0+t1); if(fabs(t0)+fabs(t1) <= *eps*sum) goto S80; } S80: u = exp(-bcorr(a,b)); value = e0*t*u*sum; return value; } //****************************************************************************80 double beta_frac ( double *a, double *b, double *x, double *y, double *lambda, double *eps ) //****************************************************************************80 // // Purpose: // // BETA_FRAC evaluates a continued fraction expansion for IX(A,B). // // Parameters: // // Input, double *A, *B, the parameters of the function. // A and B should be nonnegative. It is assumed that both A and // B are greater than 1. // // Input, double *X, *Y. X is the argument of the // function, and should satisy 0 <= X <= 1. Y should equal 1 - X. // // Input, double *LAMBDA, the value of ( A + B ) * Y - B. // // Input, double *EPS, a tolerance. // // Output, double BETA_FRAC, the value of the continued // fraction approximation for IX(A,B). // { static double bfrac,alpha,an,anp1,beta,bn,bnp1,c,c0,c1,e,n,p,r,r0,s,t,w,yp1; bfrac = beta_rcomp ( a, b, x, y ); if ( bfrac == 0.0e0 ) { return bfrac; } c = 1.0e0+*lambda; c0 = *b/ *a; c1 = 1.0e0+1.0e0/ *a; yp1 = *y+1.0e0; n = 0.0e0; p = 1.0e0; s = *a+1.0e0; an = 0.0e0; bn = anp1 = 1.0e0; bnp1 = c/c1; r = c1/c; // // CONTINUED FRACTION CALCULATION // S10: n = n + 1.0e0; t = n/ *a; w = n*(*b-n)**x; e = *a/s; alpha = p*(p+c0)*e*e*(w**x); e = (1.0e0+t)/(c1+t+t); beta = n+w/s+e*(c+n*yp1); p = 1.0e0+t; s += 2.0e0; // // UPDATE AN, BN, ANP1, AND BNP1 // t = alpha*an+beta*anp1; an = anp1; anp1 = t; t = alpha*bn+beta*bnp1; bn = bnp1; bnp1 = t; r0 = r; r = anp1/bnp1; if ( fabs(r-r0) <= (*eps) * r ) { goto S20; } // // RESCALE AN, BN, ANP1, AND BNP1 // an /= bnp1; bn /= bnp1; anp1 = r; bnp1 = 1.0e0; goto S10; // // TERMINATION // S20: bfrac = bfrac * r; return bfrac; } //****************************************************************************80 void beta_grat ( double *a, double *b, double *x, double *y, double *w, double *eps,int *ierr ) //****************************************************************************80 // // Purpose: // // BETA_GRAT evaluates an asymptotic expansion for IX(A,B). // // Parameters: // // Input, double *A, *B, the parameters of the function. // A and B should be nonnegative. It is assumed that 15 <= A // and B <= 1, and that B is less than A. // // Input, double *X, *Y. X is the argument of the // function, and should satisy 0 <= X <= 1. Y should equal 1 - X. // // Input/output, double *W, a quantity to which the // result of the computation is to be added on output. // // Input, double *EPS, a tolerance. // // Output, int *IERR, an error flag, which is 0 if no error // was detected. // { static double bm1,bp2n,cn,coef,dj,j,l,lnx,n2,nu,p,q,r,s,sum,t,t2,u,v,z; static int i,n,nm1; static double c[30],d[30],T1; bm1 = *b-0.5e0-0.5e0; nu = *a+0.5e0*bm1; if(*y > 0.375e0) goto S10; T1 = -*y; lnx = alnrel(&T1); goto S20; S10: lnx = log(*x); S20: z = -(nu*lnx); if(*b*z == 0.0e0) goto S70; // // COMPUTATION OF THE EXPANSION // SET R = EXP(-Z)*Z**B/GAMMA(B) // r = *b*(1.0e0+gam1(b))*exp(*b*log(z)); r *= (exp(*a*lnx)*exp(0.5e0*bm1*lnx)); u = algdiv(b,a)+*b*log(nu); u = r*exp(-u); if(u == 0.0e0) goto S70; gamma_rat1 ( b, &z, &r, &p, &q, eps ); v = 0.25e0*pow(1.0e0/nu,2.0); t2 = 0.25e0*lnx*lnx; l = *w/u; j = q/r; sum = j; t = cn = 1.0e0; n2 = 0.0e0; for ( n = 1; n <= 30; n++ ) { bp2n = *b+n2; j = (bp2n*(bp2n+1.0e0)*j+(z+bp2n+1.0e0)*t)*v; n2 = n2 + 2.0e0; t *= t2; cn /= (n2*(n2+1.0e0)); c[n-1] = cn; s = 0.0e0; if(n == 1) goto S40; nm1 = n-1; coef = *b-(double)n; for ( i = 1; i <= nm1; i++ ) { s = s + (coef*c[i-1]*d[n-i-1]); coef = coef + *b; } S40: d[n-1] = bm1*cn+s/(double)n; dj = d[n-1]*j; sum = sum + dj; if(sum <= 0.0e0) goto S70; if(fabs(dj) <= *eps*(sum+l)) goto S60; } S60: // // ADD THE RESULTS TO W // *ierr = 0; *w = *w + (u*sum); return; S70: // // THE EXPANSION CANNOT BE COMPUTED // *ierr = 1; return; } //****************************************************************************80 void beta_inc ( double *a, double *b, double *x, double *y, double *w, double *w1, int *ierr ) //****************************************************************************80 // // Purpose: // // BETA_INC evaluates the incomplete beta function IX(A,B). // // Author: // // Alfred H Morris, Jr, // Naval Surface Weapons Center, // Dahlgren, Virginia. // // Parameters: // // Input, double *A, *B, the parameters of the function. // A and B should be nonnegative. // // Input, double *X, *Y. X is the argument of the // function, and should satisy 0 <= X <= 1. Y should equal 1 - X. // // Output, double *W, *W1, the values of IX(A,B) and // 1-IX(A,B). // // Output, int *IERR, the error flag. // 0, no error was detected. // 1, A or B is negative; // 2, A = B = 0; // 3, X < 0 or 1 < X; // 4, Y < 0 or 1 < Y; // 5, X + Y /= 1; // 6, X = A = 0; // 7, Y = B = 0. // { static int K1 = 1; static double a0,b0,eps,lambda,t,x0,y0,z; static int ierr1,ind,n; static double T2,T3,T4,T5; // // EPS IS A MACHINE DEPENDENT CONSTANT. EPS IS THE SMALLEST // NUMBER FOR WHICH 1.0 + EPS .GT. 1.0 // eps = dpmpar ( &K1 ); *w = *w1 = 0.0e0; if(*a < 0.0e0 || *b < 0.0e0) goto S270; if(*a == 0.0e0 && *b == 0.0e0) goto S280; if(*x < 0.0e0 || *x > 1.0e0) goto S290; if(*y < 0.0e0 || *y > 1.0e0) goto S300; z = *x+*y-0.5e0-0.5e0; if(fabs(z) > 3.0e0*eps) goto S310; *ierr = 0; if(*x == 0.0e0) goto S210; if(*y == 0.0e0) goto S230; if(*a == 0.0e0) goto S240; if(*b == 0.0e0) goto S220; eps = fifdmax1(eps,1.e-15); if(fifdmax1(*a,*b) < 1.e-3*eps) goto S260; ind = 0; a0 = *a; b0 = *b; x0 = *x; y0 = *y; if(fifdmin1(a0,b0) > 1.0e0) goto S40; // // PROCEDURE FOR A0 .LE. 1 OR B0 .LE. 1 // if(*x <= 0.5e0) goto S10; ind = 1; a0 = *b; b0 = *a; x0 = *y; y0 = *x; S10: if(b0 < fifdmin1(eps,eps*a0)) goto S90; if(a0 < fifdmin1(eps,eps*b0) && b0*x0 <= 1.0e0) goto S100; if(fifdmax1(a0,b0) > 1.0e0) goto S20; if(a0 >= fifdmin1(0.2e0,b0)) goto S110; if(pow(x0,a0) <= 0.9e0) goto S110; if(x0 >= 0.3e0) goto S120; n = 20; goto S140; S20: if(b0 <= 1.0e0) goto S110; if(x0 >= 0.3e0) goto S120; if(x0 >= 0.1e0) goto S30; if(pow(x0*b0,a0) <= 0.7e0) goto S110; S30: if(b0 > 15.0e0) goto S150; n = 20; goto S140; S40: // // PROCEDURE FOR A0 .GT. 1 AND B0 .GT. 1 // if(*a > *b) goto S50; lambda = *a-(*a+*b)**x; goto S60; S50: lambda = (*a+*b)**y-*b; S60: if(lambda >= 0.0e0) goto S70; ind = 1; a0 = *b; b0 = *a; x0 = *y; y0 = *x; lambda = fabs(lambda); S70: if(b0 < 40.0e0 && b0*x0 <= 0.7e0) goto S110; if(b0 < 40.0e0) goto S160; if(a0 > b0) goto S80; if(a0 <= 100.0e0) goto S130; if(lambda > 0.03e0*a0) goto S130; goto S200; S80: if(b0 <= 100.0e0) goto S130; if(lambda > 0.03e0*b0) goto S130; goto S200; S90: // // EVALUATION OF THE APPROPRIATE ALGORITHM // *w = fpser(&a0,&b0,&x0,&eps); *w1 = 0.5e0+(0.5e0-*w); goto S250; S100: *w1 = apser(&a0,&b0,&x0,&eps); *w = 0.5e0+(0.5e0-*w1); goto S250; S110: *w = beta_pser(&a0,&b0,&x0,&eps); *w1 = 0.5e0+(0.5e0-*w); goto S250; S120: *w1 = beta_pser(&b0,&a0,&y0,&eps); *w = 0.5e0+(0.5e0-*w1); goto S250; S130: T2 = 15.0e0*eps; *w = beta_frac ( &a0,&b0,&x0,&y0,&lambda,&T2 ); *w1 = 0.5e0+(0.5e0-*w); goto S250; S140: *w1 = beta_up ( &b0, &a0, &y0, &x0, &n, &eps ); b0 = b0 + (double)n; S150: T3 = 15.0e0*eps; beta_grat (&b0,&a0,&y0,&x0,w1,&T3,&ierr1); *w = 0.5e0+(0.5e0-*w1); goto S250; S160: n = ( int ) b0; b0 -= (double)n; if(b0 != 0.0e0) goto S170; n -= 1; b0 = 1.0e0; S170: *w = beta_up ( &b0, &a0, &y0, &x0, &n, &eps ); if(x0 > 0.7e0) goto S180; *w = *w + beta_pser(&a0,&b0,&x0,&eps); *w1 = 0.5e0+(0.5e0-*w); goto S250; S180: if(a0 > 15.0e0) goto S190; n = 20; *w = *w + beta_up ( &a0, &b0, &x0, &y0, &n, &eps ); a0 = a0 + (double)n; S190: T4 = 15.0e0*eps; beta_grat ( &a0, &b0, &x0, &y0, w, &T4, &ierr1 ); *w1 = 0.5e0+(0.5e0-*w); goto S250; S200: T5 = 100.0e0*eps; *w = beta_asym ( &a0, &b0, &lambda, &T5 ); *w1 = 0.5e0+(0.5e0-*w); goto S250; S210: // // TERMINATION OF THE PROCEDURE // if(*a == 0.0e0) goto S320; S220: *w = 0.0e0; *w1 = 1.0e0; return; S230: if(*b == 0.0e0) goto S330; S240: *w = 1.0e0; *w1 = 0.0e0; return; S250: if(ind == 0) return; t = *w; *w = *w1; *w1 = t; return; S260: // // PROCEDURE FOR A AND B .LT. 1.E-3*EPS // *w = *b/(*a+*b); *w1 = *a/(*a+*b); return; S270: // // ERROR RETURN // *ierr = 1; return; S280: *ierr = 2; return; S290: *ierr = 3; return; S300: *ierr = 4; return; S310: *ierr = 5; return; S320: *ierr = 6; return; S330: *ierr = 7; return; } //****************************************************************************80 void beta_inc_values ( int *n_data, double *a, double *b, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // BETA_INC_VALUES returns some values of the incomplete Beta function. // // Discussion: // // The incomplete Beta function may be written // // BETA_INC(A,B,X) = Integral (0 to X) T**(A-1) * (1-T)**(B-1) dT // / Integral (0 to 1) T**(A-1) * (1-T)**(B-1) dT // // Thus, // // BETA_INC(A,B,0.0) = 0.0 // BETA_INC(A,B,1.0) = 1.0 // // Note that in Mathematica, the expressions: // // BETA[A,B] = Integral (0 to 1) T**(A-1) * (1-T)**(B-1) dT // BETA[X,A,B] = Integral (0 to X) T**(A-1) * (1-T)**(B-1) dT // // and thus, to evaluate the incomplete Beta function requires: // // BETA_INC(A,B,X) = BETA[X,A,B] / BETA[A,B] // // Modified: // // 09 June 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Karl Pearson, // Tables of the Incomplete Beta Function, // Cambridge University Press, 1968. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double *A, *B, the parameters of the function. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 30 double a_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 5.5E+00, 10.0E+00, 10.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 30.0E+00, 30.0E+00, 40.0E+00 }; double b_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 2.0E+00, 5.0E+00, 0.5E+00, 5.0E+00, 5.0E+00, 10.0E+00, 5.0E+00, 10.0E+00, 10.0E+00, 20.0E+00, 20.0E+00, 10.0E+00, 10.0E+00, 20.0E+00 }; double fx_vec[N_MAX] = { 0.0637686E+00, 0.2048328E+00, 1.0000000E+00, 0.0E+00, 0.0050126E+00, 0.0513167E+00, 0.2928932E+00, 0.5000000E+00, 0.028E+00, 0.104E+00, 0.216E+00, 0.352E+00, 0.500E+00, 0.648E+00, 0.784E+00, 0.896E+00, 0.972E+00, 0.4361909E+00, 0.1516409E+00, 0.0897827E+00, 1.0000000E+00, 0.5000000E+00, 0.4598773E+00, 0.2146816E+00, 0.9507365E+00, 0.5000000E+00, 0.8979414E+00, 0.2241297E+00, 0.7586405E+00, 0.7001783E+00 }; double x_vec[N_MAX] = { 0.01E+00, 0.10E+00, 1.00E+00, 0.0E+00, 0.01E+00, 0.10E+00, 0.50E+00, 0.50E+00, 0.1E+00, 0.2E+00, 0.3E+00, 0.4E+00, 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 0.50E+00, 0.90E+00, 0.50E+00, 1.00E+00, 0.50E+00, 0.80E+00, 0.60E+00, 0.80E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.70E+00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0.0E+00; *b = 0.0E+00; *x = 0.0E+00; *fx = 0.0E+00; } else { *a = a_vec[*n_data-1]; *b = b_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double beta_log ( double *a0, double *b0 ) //****************************************************************************80 // // Purpose: // // BETA_LOG evaluates the logarithm of the beta function. // // Reference: // // Armido DiDinato and Alfred Morris, // Algorithm 708: // Significant Digit Computation of the Incomplete Beta Function Ratios, // ACM Transactions on Mathematical Software, // Volume 18, 1993, pages 360-373. // // Parameters: // // Input, double *A0, *B0, the parameters of the function. // A0 and B0 should be nonnegative. // // Output, double *BETA_LOG, the value of the logarithm // of the Beta function. // { static double e = .918938533204673e0; static double value,a,b,c,h,u,v,w,z; static int i,n; static double T1; a = fifdmin1(*a0,*b0); b = fifdmax1(*a0,*b0); if(a >= 8.0e0) goto S100; if(a >= 1.0e0) goto S20; // // PROCEDURE WHEN A .LT. 1 // if(b >= 8.0e0) goto S10; T1 = a+b; value = gamma_log ( &a )+( gamma_log ( &b )- gamma_log ( &T1 )); return value; S10: value = gamma_log ( &a )+algdiv(&a,&b); return value; S20: // // PROCEDURE WHEN 1 .LE. A .LT. 8 // if(a > 2.0e0) goto S40; if(b > 2.0e0) goto S30; value = gamma_log ( &a )+ gamma_log ( &b )-gsumln(&a,&b); return value; S30: w = 0.0e0; if(b < 8.0e0) goto S60; value = gamma_log ( &a )+algdiv(&a,&b); return value; S40: // // REDUCTION OF A WHEN B .LE. 1000 // if(b > 1000.0e0) goto S80; n = ( int ) ( a - 1.0e0 ); w = 1.0e0; for ( i = 1; i <= n; i++ ) { a -= 1.0e0; h = a/b; w *= (h/(1.0e0+h)); } w = log(w); if(b < 8.0e0) goto S60; value = w+ gamma_log ( &a )+algdiv(&a,&b); return value; S60: // // REDUCTION OF B WHEN B .LT. 8 // n = ( int ) ( b - 1.0e0 ); z = 1.0e0; for ( i = 1; i <= n; i++ ) { b -= 1.0e0; z *= (b/(a+b)); } value = w+log(z)+( gamma_log ( &a )+( gamma_log ( &b )-gsumln(&a,&b))); return value; S80: // // REDUCTION OF A WHEN B .GT. 1000 // n = ( int ) ( a - 1.0e0 ); w = 1.0e0; for ( i = 1; i <= n; i++ ) { a -= 1.0e0; w *= (a/(1.0e0+a/b)); } value = log(w)-(double)n*log(b)+( gamma_log ( &a )+algdiv(&a,&b)); return value; S100: // // PROCEDURE WHEN A .GE. 8 // w = bcorr(&a,&b); h = a/b; c = h/(1.0e0+h); u = -((a-0.5e0)*log(c)); v = b*alnrel(&h); if(u <= v) goto S110; value = -(0.5e0*log(b))+e+w-v-u; return value; S110: value = -(0.5e0*log(b))+e+w-u-v; return value; } //****************************************************************************80 double beta_pser ( double *a, double *b, double *x, double *eps ) //****************************************************************************80 // // Purpose: // // BETA_PSER uses a power series expansion to evaluate IX(A,B)(X). // // Discussion: // // BETA_PSER is used when B <= 1 or B*X <= 0.7. // // Parameters: // // Input, double *A, *B, the parameters. // // Input, double *X, the point where the function // is to be evaluated. // // Input, double *EPS, the tolerance. // // Output, double BETA_PSER, the approximate value of IX(A,B)(X). // { static double bpser,a0,apb,b0,c,n,sum,t,tol,u,w,z; static int i,m; bpser = 0.0e0; if(*x == 0.0e0) return bpser; // // COMPUTE THE FACTOR X**A/(A*BETA(A,B)) // a0 = fifdmin1(*a,*b); if(a0 < 1.0e0) goto S10; z = *a*log(*x)-beta_log(a,b); bpser = exp(z)/ *a; goto S100; S10: b0 = fifdmax1(*a,*b); if(b0 >= 8.0e0) goto S90; if(b0 > 1.0e0) goto S40; // // PROCEDURE FOR A0 .LT. 1 AND B0 .LE. 1 // bpser = pow(*x,*a); if(bpser == 0.0e0) return bpser; apb = *a+*b; if(apb > 1.0e0) goto S20; z = 1.0e0+gam1(&apb); goto S30; S20: u = *a+*b-1.e0; z = (1.0e0+gam1(&u))/apb; S30: c = (1.0e0+gam1(a))*(1.0e0+gam1(b))/z; bpser *= (c*(*b/apb)); goto S100; S40: // // PROCEDURE FOR A0 .LT. 1 AND 1 .LT. B0 .LT. 8 // u = gamma_ln1 ( &a0 ); m = ( int ) ( b0 - 1.0e0 ); if(m < 1) goto S60; c = 1.0e0; for ( i = 1; i <= m; i++ ) { b0 -= 1.0e0; c *= (b0/(a0+b0)); } u = log(c)+u; S60: z = *a*log(*x)-u; b0 -= 1.0e0; apb = a0+b0; if(apb > 1.0e0) goto S70; t = 1.0e0+gam1(&apb); goto S80; S70: u = a0+b0-1.e0; t = (1.0e0+gam1(&u))/apb; S80: bpser = exp(z)*(a0/ *a)*(1.0e0+gam1(&b0))/t; goto S100; S90: // // PROCEDURE FOR A0 .LT. 1 AND B0 .GE. 8 // u = gamma_ln1 ( &a0 ) + algdiv ( &a0, &b0 ); z = *a*log(*x)-u; bpser = a0/ *a*exp(z); S100: if(bpser == 0.0e0 || *a <= 0.1e0**eps) return bpser; // // COMPUTE THE SERIES // sum = n = 0.0e0; c = 1.0e0; tol = *eps/ *a; S110: n = n + 1.0e0; c *= ((0.5e0+(0.5e0-*b/n))**x); w = c/(*a+n); sum = sum + w; if(fabs(w) > tol) goto S110; bpser *= (1.0e0+*a*sum); return bpser; } //****************************************************************************80 double beta_rcomp ( double *a, double *b, double *x, double *y ) //****************************************************************************80 // // Purpose: // // BETA_RCOMP evaluates X**A * Y**B / Beta(A,B). // // Parameters: // // Input, double *A, *B, the parameters of the Beta function. // A and B should be nonnegative. // // Input, double *X, *Y, define the numerator of the fraction. // // Output, double BETA_RCOMP, the value of X**A * Y**B / Beta(A,B). // { static double Const = .398942280401433e0; static double brcomp,a0,apb,b0,c,e,h,lambda,lnx,lny,t,u,v,x0,y0,z; static int i,n; // // CONST = 1/SQRT(2*PI) // static double T1,T2; brcomp = 0.0e0; if(*x == 0.0e0 || *y == 0.0e0) return brcomp; a0 = fifdmin1(*a,*b); if(a0 >= 8.0e0) goto S130; if(*x > 0.375e0) goto S10; lnx = log(*x); T1 = -*x; lny = alnrel(&T1); goto S30; S10: if(*y > 0.375e0) goto S20; T2 = -*y; lnx = alnrel(&T2); lny = log(*y); goto S30; S20: lnx = log(*x); lny = log(*y); S30: z = *a*lnx+*b*lny; if(a0 < 1.0e0) goto S40; z -= beta_log(a,b); brcomp = exp(z); return brcomp; S40: // // PROCEDURE FOR A .LT. 1 OR B .LT. 1 // b0 = fifdmax1(*a,*b); if(b0 >= 8.0e0) goto S120; if(b0 > 1.0e0) goto S70; // // ALGORITHM FOR B0 .LE. 1 // brcomp = exp(z); if(brcomp == 0.0e0) return brcomp; apb = *a+*b; if(apb > 1.0e0) goto S50; z = 1.0e0+gam1(&apb); goto S60; S50: u = *a+*b-1.e0; z = (1.0e0+gam1(&u))/apb; S60: c = (1.0e0+gam1(a))*(1.0e0+gam1(b))/z; brcomp = brcomp*(a0*c)/(1.0e0+a0/b0); return brcomp; S70: // // ALGORITHM FOR 1 .LT. B0 .LT. 8 // u = gamma_ln1 ( &a0 ); n = ( int ) ( b0 - 1.0e0 ); if(n < 1) goto S90; c = 1.0e0; for ( i = 1; i <= n; i++ ) { b0 -= 1.0e0; c *= (b0/(a0+b0)); } u = log(c)+u; S90: z -= u; b0 -= 1.0e0; apb = a0+b0; if(apb > 1.0e0) goto S100; t = 1.0e0+gam1(&apb); goto S110; S100: u = a0+b0-1.e0; t = (1.0e0+gam1(&u))/apb; S110: brcomp = a0*exp(z)*(1.0e0+gam1(&b0))/t; return brcomp; S120: // // ALGORITHM FOR B0 .GE. 8 // u = gamma_ln1 ( &a0 ) + algdiv ( &a0, &b0 ); brcomp = a0*exp(z-u); return brcomp; S130: // // PROCEDURE FOR A .GE. 8 AND B .GE. 8 // if(*a > *b) goto S140; h = *a/ *b; x0 = h/(1.0e0+h); y0 = 1.0e0/(1.0e0+h); lambda = *a-(*a+*b)**x; goto S150; S140: h = *b/ *a; x0 = 1.0e0/(1.0e0+h); y0 = h/(1.0e0+h); lambda = (*a+*b)**y-*b; S150: e = -(lambda/ *a); if(fabs(e) > 0.6e0) goto S160; u = rlog1(&e); goto S170; S160: u = e-log(*x/x0); S170: e = lambda/ *b; if(fabs(e) > 0.6e0) goto S180; v = rlog1(&e); goto S190; S180: v = e-log(*y/y0); S190: z = exp(-(*a*u+*b*v)); brcomp = Const*sqrt(*b*x0)*z*exp(-bcorr(a,b)); return brcomp; } //****************************************************************************80 double beta_rcomp1 ( int *mu, double *a, double *b, double *x, double *y ) //****************************************************************************80 // // Purpose: // // BETA_RCOMP1 evaluates exp(MU) * X**A * Y**B / Beta(A,B). // // Parameters: // // Input, int MU, ? // // Input, double A, B, the parameters of the Beta function. // A and B should be nonnegative. // // Input, double X, Y, ? // // Output, double BETA_RCOMP1, the value of // exp(MU) * X**A * Y**B / Beta(A,B). // { static double Const = .398942280401433e0; static double brcmp1,a0,apb,b0,c,e,h,lambda,lnx,lny,t,u,v,x0,y0,z; static int i,n; // // CONST = 1/SQRT(2*PI) // static double T1,T2,T3,T4; a0 = fifdmin1(*a,*b); if(a0 >= 8.0e0) goto S130; if(*x > 0.375e0) goto S10; lnx = log(*x); T1 = -*x; lny = alnrel(&T1); goto S30; S10: if(*y > 0.375e0) goto S20; T2 = -*y; lnx = alnrel(&T2); lny = log(*y); goto S30; S20: lnx = log(*x); lny = log(*y); S30: z = *a*lnx+*b*lny; if(a0 < 1.0e0) goto S40; z -= beta_log(a,b); brcmp1 = esum(mu,&z); return brcmp1; S40: // // PROCEDURE FOR A .LT. 1 OR B .LT. 1 // b0 = fifdmax1(*a,*b); if(b0 >= 8.0e0) goto S120; if(b0 > 1.0e0) goto S70; // // ALGORITHM FOR B0 .LE. 1 // brcmp1 = esum(mu,&z); if(brcmp1 == 0.0e0) return brcmp1; apb = *a+*b; if(apb > 1.0e0) goto S50; z = 1.0e0+gam1(&apb); goto S60; S50: u = *a+*b-1.e0; z = (1.0e0+gam1(&u))/apb; S60: c = (1.0e0+gam1(a))*(1.0e0+gam1(b))/z; brcmp1 = brcmp1*(a0*c)/(1.0e0+a0/b0); return brcmp1; S70: // // ALGORITHM FOR 1 .LT. B0 .LT. 8 // u = gamma_ln1 ( &a0 ); n = ( int ) ( b0 - 1.0e0 ); if(n < 1) goto S90; c = 1.0e0; for ( i = 1; i <= n; i++ ) { b0 -= 1.0e0; c *= (b0/(a0+b0)); } u = log(c)+u; S90: z -= u; b0 -= 1.0e0; apb = a0+b0; if(apb > 1.0e0) goto S100; t = 1.0e0+gam1(&apb); goto S110; S100: u = a0+b0-1.e0; t = (1.0e0+gam1(&u))/apb; S110: brcmp1 = a0*esum(mu,&z)*(1.0e0+gam1(&b0))/t; return brcmp1; S120: // // ALGORITHM FOR B0 .GE. 8 // u = gamma_ln1 ( &a0 ) + algdiv ( &a0, &b0 ); T3 = z-u; brcmp1 = a0*esum(mu,&T3); return brcmp1; S130: // // PROCEDURE FOR A .GE. 8 AND B .GE. 8 // if(*a > *b) goto S140; h = *a/ *b; x0 = h/(1.0e0+h); y0 = 1.0e0/(1.0e0+h); lambda = *a-(*a+*b)**x; goto S150; S140: h = *b/ *a; x0 = 1.0e0/(1.0e0+h); y0 = h/(1.0e0+h); lambda = (*a+*b)**y-*b; S150: e = -(lambda/ *a); if(fabs(e) > 0.6e0) goto S160; u = rlog1(&e); goto S170; S160: u = e-log(*x/x0); S170: e = lambda/ *b; if(fabs(e) > 0.6e0) goto S180; v = rlog1(&e); goto S190; S180: v = e-log(*y/y0); S190: T4 = -(*a*u+*b*v); z = esum(mu,&T4); brcmp1 = Const*sqrt(*b*x0)*z*exp(-bcorr(a,b)); return brcmp1; } //****************************************************************************80 double beta_up ( double *a, double *b, double *x, double *y, int *n, double *eps ) //****************************************************************************80 // // Purpose: // // BETA_UP evaluates IX(A,B) - IX(A+N,B) where N is a positive integer. // // Parameters: // // Input, double *A, *B, the parameters of the function. // A and B should be nonnegative. // // Input, double *X, *Y, ? // // Input, int *N, ? // // Input, double *EPS, the tolerance. // // Output, double BETA_UP, the value of IX(A,B) - IX(A+N,B). // { static int K1 = 1; static int K2 = 0; static double bup,ap1,apb,d,l,r,t,w; static int i,k,kp1,mu,nm1; // // OBTAIN THE SCALING FACTOR EXP(-MU) AND // EXP(MU)*(X**A*Y**B/BETA(A,B))/A // apb = *a+*b; ap1 = *a+1.0e0; mu = 0; d = 1.0e0; if(*n == 1 || *a < 1.0e0) goto S10; if(apb < 1.1e0*ap1) goto S10; mu = ( int ) fabs ( exparg(&K1) ); k = ( int ) exparg ( &K2 ); if(k < mu) mu = k; t = mu; d = exp(-t); S10: bup = beta_rcomp1 ( &mu, a, b, x, y ) / *a; if(*n == 1 || bup == 0.0e0) return bup; nm1 = *n-1; w = d; // // LET K BE THE INDEX OF THE MAXIMUM TERM // k = 0; if(*b <= 1.0e0) goto S50; if(*y > 1.e-4) goto S20; k = nm1; goto S30; S20: r = (*b-1.0e0)**x/ *y-*a; if(r < 1.0e0) goto S50; t = ( double ) nm1; k = nm1; if ( r < t ) k = ( int ) r; S30: // // ADD THE INCREASING TERMS OF THE SERIES // for ( i = 1; i <= k; i++ ) { l = i-1; d = (apb+l)/(ap1+l)**x*d; w = w + d; } if(k == nm1) goto S70; S50: // // ADD THE REMAINING TERMS OF THE SERIES // kp1 = k+1; for ( i = kp1; i <= nm1; i++ ) { l = i-1; d = (apb+l)/(ap1+l)**x*d; w = w + d; if(d <= *eps*w) goto S70; } S70: // // TERMINATE THE PROCEDURE // bup *= w; return bup; } //****************************************************************************80 void binomial_cdf_values ( int *n_data, int *a, double *b, int *x, double *fx ) //****************************************************************************80 // // Purpose: // // BINOMIAL_CDF_VALUES returns some values of the binomial CDF. // // Discussion: // // CDF(X)(A,B) is the probability of at most X successes in A trials, // given that the probability of success on a single trial is B. // // Modified: // // 31 May 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, CRC Press, 1996, pages 651-652. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int *A, double *B, the parameters of the function. // // Output, int *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 17 int a_vec[N_MAX] = { 2, 2, 2, 2, 2, 4, 4, 4, 4, 10, 10, 10, 10, 10, 10, 10, 10 }; double b_vec[N_MAX] = { 0.05E+00, 0.05E+00, 0.05E+00, 0.50E+00, 0.50E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.25E+00, 0.05E+00, 0.10E+00, 0.15E+00, 0.20E+00, 0.25E+00, 0.30E+00, 0.40E+00, 0.50E+00 }; double fx_vec[N_MAX] = { 0.9025E+00, 0.9975E+00, 1.0000E+00, 0.2500E+00, 0.7500E+00, 0.3164E+00, 0.7383E+00, 0.9492E+00, 0.9961E+00, 0.9999E+00, 0.9984E+00, 0.9901E+00, 0.9672E+00, 0.9219E+00, 0.8497E+00, 0.6331E+00, 0.3770E+00 }; int x_vec[N_MAX] = { 0, 1, 2, 0, 1, 0, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0; *b = 0.0E+00; *x = 0; *fx = 0.0E+00; } else { *a = a_vec[*n_data-1]; *b = b_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cdfbet ( int *which, double *p, double *q, double *x, double *y, double *a, double *b, int *status, double *bound ) //****************************************************************************80 // // Purpose: // // CDFBET evaluates the CDF of the Beta Distribution. // // Discussion: // // This routine calculates any one parameter of the beta distribution // given the others. // // The value P of the cumulative distribution function is calculated // directly by code associated with the reference. // // Computation of the other parameters involves a seach for a value that // produces the desired value of P. The search relies on the // monotonicity of P with respect to the other parameters. // // The beta density is proportional to t^(A-1) * (1-t)^(B-1). // // Modified: // // 09 June 2004 // // Reference: // // Armido DiDinato and Alfred Morris, // Algorithm 708: // Significant Digit Computation of the Incomplete Beta Function Ratios, // ACM Transactions on Mathematical Software, // Volume 18, 1993, pages 360-373. // // Parameters: // // Input, int *WHICH, indicates which of the next four argument // values is to be calculated from the others. // 1: Calculate P and Q from X, Y, A and B; // 2: Calculate X and Y from P, Q, A and B; // 3: Calculate A from P, Q, X, Y and B; // 4: Calculate B from P, Q, X, Y and A. // // Input/output, double *P, the integral from 0 to X of the // chi-square distribution. Input range: [0, 1]. // // Input/output, double *Q, equals 1-P. Input range: [0, 1]. // // Input/output, double *X, the upper limit of integration // of the beta density. If it is an input value, it should lie in // the range [0,1]. If it is an output value, it will be searched for // in the range [0,1]. // // Input/output, double *Y, equal to 1-X. If it is an input // value, it should lie in the range [0,1]. If it is an output value, // it will be searched for in the range [0,1]. // // Input/output, double *A, the first parameter of the beta // density. If it is an input value, it should lie in the range // (0, +infinity). If it is an output value, it will be searched // for in the range [1D-300,1D300]. // // Input/output, double *B, the second parameter of the beta // density. If it is an input value, it should lie in the range // (0, +infinity). If it is an output value, it will be searched // for in the range [1D-300,1D300]. // // Output, int *STATUS, reports the status of the computation. // 0, if the calculation completed correctly; // -I, if the input parameter number I is out of range; // +1, if the answer appears to be lower than lowest search bound; // +2, if the answer appears to be higher than greatest search bound; // +3, if P + Q /= 1; // +4, if X + Y /= 1. // // Output, double *BOUND, is only defined if STATUS is nonzero. // If STATUS is negative, then this is the value exceeded by parameter I. // if STATUS is 1 or 2, this is the search bound that was exceeded. // { # define tol (1.0e-8) # define atol (1.0e-50) # define zero (1.0e-300) # define inf 1.0e300 # define one 1.0e0 static int K1 = 1; static double K2 = 0.0e0; static double K3 = 1.0e0; static double K8 = 0.5e0; static double K9 = 5.0e0; static double fx,xhi,xlo,cum,ccum,xy,pq; static unsigned long qhi,qleft,qporq; static double T4,T5,T6,T7,T10,T11,T12,T13,T14,T15; *status = 0; *bound = 0.0; // // Check arguments // if(!(*which < 1 || *which > 4)) goto S30; if(!(*which < 1)) goto S10; *bound = 1.0e0; goto S20; S10: *bound = 4.0e0; S20: *status = -1; return; S30: if(*which == 1) goto S70; // // P // if(!(*p < 0.0e0 || *p > 1.0e0)) goto S60; if(!(*p < 0.0e0)) goto S40; *bound = 0.0e0; goto S50; S40: *bound = 1.0e0; S50: *status = -2; return; S70: S60: if(*which == 1) goto S110; // // Q // if(!(*q < 0.0e0 || *q > 1.0e0)) goto S100; if(!(*q < 0.0e0)) goto S80; *bound = 0.0e0; goto S90; S80: *bound = 1.0e0; S90: *status = -3; return; S110: S100: if(*which == 2) goto S150; // // X // if(!(*x < 0.0e0 || *x > 1.0e0)) goto S140; if(!(*x < 0.0e0)) goto S120; *bound = 0.0e0; goto S130; S120: *bound = 1.0e0; S130: *status = -4; return; S150: S140: if(*which == 2) goto S190; // // Y // if(!(*y < 0.0e0 || *y > 1.0e0)) goto S180; if(!(*y < 0.0e0)) goto S160; *bound = 0.0e0; goto S170; S160: *bound = 1.0e0; S170: *status = -5; return; S190: S180: if(*which == 3) goto S210; // // A // if(!(*a <= 0.0e0)) goto S200; *bound = 0.0e0; *status = -6; return; S210: S200: if(*which == 4) goto S230; // // B // if(!(*b <= 0.0e0)) goto S220; *bound = 0.0e0; *status = -7; return; S230: S220: if(*which == 1) goto S270; // // P + Q // pq = *p+*q; if(!(fabs(pq-0.5e0-0.5e0) > 3.0e0 * dpmpar ( &K1 ) ) ) goto S260; if(!(pq < 0.0e0)) goto S240; *bound = 0.0e0; goto S250; S240: *bound = 1.0e0; S250: *status = 3; return; S270: S260: if(*which == 2) goto S310; // // X + Y // xy = *x+*y; if(!(fabs(xy-0.5e0-0.5e0) > 3.0e0 * dpmpar ( &K1 ) ) ) goto S300; if(!(xy < 0.0e0)) goto S280; *bound = 0.0e0; goto S290; S280: *bound = 1.0e0; S290: *status = 4; return; S310: S300: if(!(*which == 1)) qporq = *p <= *q; // // Select the minimum of P or Q // Calculate ANSWERS // if(1 == *which) { // // Calculating P and Q // cumbet(x,y,a,b,p,q); *status = 0; } else if(2 == *which) { // // Calculating X and Y // T4 = atol; T5 = tol; dstzr(&K2,&K3,&T4,&T5); if(!qporq) goto S340; *status = 0; dzror(status,x,&fx,&xlo,&xhi,&qleft,&qhi); *y = one-*x; S320: if(!(*status == 1)) goto S330; cumbet(x,y,a,b,&cum,&ccum); fx = cum-*p; dzror(status,x,&fx,&xlo,&xhi,&qleft,&qhi); *y = one-*x; goto S320; S330: goto S370; S340: *status = 0; dzror(status,y,&fx,&xlo,&xhi,&qleft,&qhi); *x = one-*y; S350: if(!(*status == 1)) goto S360; cumbet(x,y,a,b,&cum,&ccum); fx = ccum-*q; dzror(status,y,&fx,&xlo,&xhi,&qleft,&qhi); *x = one-*y; goto S350; S370: S360: if(!(*status == -1)) goto S400; if(!qleft) goto S380; *status = 1; *bound = 0.0e0; goto S390; S380: *status = 2; *bound = 1.0e0; S400: S390: ; } else if(3 == *which) { // // Computing A // *a = 5.0e0; T6 = zero; T7 = inf; T10 = atol; T11 = tol; dstinv(&T6,&T7,&K8,&K8,&K9,&T10,&T11); *status = 0; dinvr(status,a,&fx,&qleft,&qhi); S410: if(!(*status == 1)) goto S440; cumbet(x,y,a,b,&cum,&ccum); if(!qporq) goto S420; fx = cum-*p; goto S430; S420: fx = ccum-*q; S430: dinvr(status,a,&fx,&qleft,&qhi); goto S410; S440: if(!(*status == -1)) goto S470; if(!qleft) goto S450; *status = 1; *bound = zero; goto S460; S450: *status = 2; *bound = inf; S470: S460: ; } else if(4 == *which) { // // Computing B // *b = 5.0e0; T12 = zero; T13 = inf; T14 = atol; T15 = tol; dstinv(&T12,&T13,&K8,&K8,&K9,&T14,&T15); *status = 0; dinvr(status,b,&fx,&qleft,&qhi); S480: if(!(*status == 1)) goto S510; cumbet(x,y,a,b,&cum,&ccum); if(!qporq) goto S490; fx = cum-*p; goto S500; S490: fx = ccum-*q; S500: dinvr(status,b,&fx,&qleft,&qhi); goto S480; S510: if(!(*status == -1)) goto S540; if(!qleft) goto S520; *status = 1; *bound = zero; goto S530; S520: *status = 2; *bound = inf; S530: ; } S540: return; # undef tol # undef atol # undef zero # undef inf # undef one } //****************************************************************************80 void cdfbin ( int *which, double *p, double *q, double *s, double *xn, double *pr, double *ompr, int *status, double *bound ) //****************************************************************************80 // // Purpose: // // CDFBIN evaluates the CDF of the Binomial distribution. // // Discussion: // // This routine calculates any one parameter of the binomial distribution // given the others. // // The value P of the cumulative distribution function is calculated // directly. // // Computation of the other parameters involves a seach for a value that // produces the desired value of P. The search relies on the // monotonicity of P with respect to the other parameters. // // P is the probablility of S or fewer successes in XN binomial trials, // each trial having an individual probability of success of PR. // // Modified: // // 09 June 2004 // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions // 1966, Formula 26.5.24. // // Parameters: // // Input, int *WHICH, indicates which of argument values is to // be calculated from the others. // 1: Calculate P and Q from S, XN, PR and OMPR; // 2: Calculate S from P, Q, XN, PR and OMPR; // 3: Calculate XN from P, Q, S, PR and OMPR; // 4: Calculate PR and OMPR from P, Q, S and XN. // // Input/output, double *P, the cumulation, from 0 to S, // of the binomial distribution. If P is an input value, it should // lie in the range [0,1]. // // Input/output, double *Q, equal to 1-P. If Q is an input // value, it should lie in the range [0,1]. If Q is an output value, // it will lie in the range [0,1]. // // Input/output, double *S, the number of successes observed. // Whether this is an input or output value, it should lie in the // range [0,XN]. // // Input/output, double *XN, the number of binomial trials. // If this is an input value it should lie in the range: (0, +infinity). // If it is an output value it will be searched for in the // range [1.0D-300, 1.0D+300]. // // Input/output, double *PR, the probability of success in each // binomial trial. Whether this is an input or output value, it should // lie in the range: [0,1]. // // Input/output, double *OMPR, equal to 1-PR. Whether this is an // input or output value, it should lie in the range [0,1]. Also, it should // be the case that PR + OMPR = 1. // // Output, int *STATUS, reports the status of the computation. // 0, if the calculation completed correctly; // -I, if the input parameter number I is out of range; // +1, if the answer appears to be lower than lowest search bound; // +2, if the answer appears to be higher than greatest search bound; // +3, if P + Q /= 1; // +4, if PR + OMPR /= 1. // // Output, double *BOUND, is only defined if STATUS is nonzero. // If STATUS is negative, then this is the value exceeded by parameter I. // if STATUS is 1 or 2, this is the search bound that was exceeded. // { # define atol (1.0e-50) # define tol (1.0e-8) # define zero (1.0e-300) # define inf 1.0e300 # define one 1.0e0 static int K1 = 1; static double K2 = 0.0e0; static double K3 = 0.5e0; static double K4 = 5.0e0; static double K11 = 1.0e0; static double fx,xhi,xlo,cum,ccum,pq,prompr; static unsigned long qhi,qleft,qporq; static double T5,T6,T7,T8,T9,T10,T12,T13; *status = 0; *bound = 0.0; // // Check arguments // if(!(*which < 1 && *which > 4)) goto S30; if(!(*which < 1)) goto S10; *bound = 1.0e0; goto S20; S10: *bound = 4.0e0; S20: *status = -1; return; S30: if(*which == 1) goto S70; // // P // if(!(*p < 0.0e0 || *p > 1.0e0)) goto S60; if(!(*p < 0.0e0)) goto S40; *bound = 0.0e0; goto S50; S40: *bound = 1.0e0; S50: *status = -2; return; S70: S60: if(*which == 1) goto S110; // // Q // if(!(*q < 0.0e0 || *q > 1.0e0)) goto S100; if(!(*q < 0.0e0)) goto S80; *bound = 0.0e0; goto S90; S80: *bound = 1.0e0; S90: *status = -3; return; S110: S100: if(*which == 3) goto S130; // // XN // if(!(*xn <= 0.0e0)) goto S120; *bound = 0.0e0; *status = -5; return; S130: S120: if(*which == 2) goto S170; // // S // if(!(*s < 0.0e0 || *which != 3 && *s > *xn)) goto S160; if(!(*s < 0.0e0)) goto S140; *bound = 0.0e0; goto S150; S140: *bound = *xn; S150: *status = -4; return; S170: S160: if(*which == 4) goto S210; // // PR // if(!(*pr < 0.0e0 || *pr > 1.0e0)) goto S200; if(!(*pr < 0.0e0)) goto S180; *bound = 0.0e0; goto S190; S180: *bound = 1.0e0; S190: *status = -6; return; S210: S200: if(*which == 4) goto S250; // // OMPR // if(!(*ompr < 0.0e0 || *ompr > 1.0e0)) goto S240; if(!(*ompr < 0.0e0)) goto S220; *bound = 0.0e0; goto S230; S220: *bound = 1.0e0; S230: *status = -7; return; S250: S240: if(*which == 1) goto S290; // // P + Q // pq = *p+*q; if(!(fabs(pq-0.5e0-0.5e0) > 3.0e0 * dpmpar ( &K1 ) ) ) goto S280; if(!(pq < 0.0e0)) goto S260; *bound = 0.0e0; goto S270; S260: *bound = 1.0e0; S270: *status = 3; return; S290: S280: if(*which == 4) goto S330; // // PR + OMPR // prompr = *pr+*ompr; if(!(fabs(prompr-0.5e0-0.5e0) > 3.0e0 * dpmpar ( &K1 ) ) ) goto S320; if(!(prompr < 0.0e0)) goto S300; *bound = 0.0e0; goto S310; S300: *bound = 1.0e0; S310: *status = 4; return; S330: S320: if(!(*which == 1)) qporq = *p <= *q; // // Select the minimum of P or Q // Calculate ANSWERS // if(1 == *which) { // // Calculating P // cumbin(s,xn,pr,ompr,p,q); *status = 0; } else if(2 == *which) { // // Calculating S // *s = 5.0e0; T5 = atol; T6 = tol; dstinv(&K2,xn,&K3,&K3,&K4,&T5,&T6); *status = 0; dinvr(status,s,&fx,&qleft,&qhi); S340: if(!(*status == 1)) goto S370; cumbin(s,xn,pr,ompr,&cum,&ccum); if(!qporq) goto S350; fx = cum-*p; goto S360; S350: fx = ccum-*q; S360: dinvr(status,s,&fx,&qleft,&qhi); goto S340; S370: if(!(*status == -1)) goto S400; if(!qleft) goto S380; *status = 1; *bound = 0.0e0; goto S390; S380: *status = 2; *bound = *xn; S400: S390: ; } else if(3 == *which) { // // Calculating XN // *xn = 5.0e0; T7 = zero; T8 = inf; T9 = atol; T10 = tol; dstinv(&T7,&T8,&K3,&K3,&K4,&T9,&T10); *status = 0; dinvr(status,xn,&fx,&qleft,&qhi); S410: if(!(*status == 1)) goto S440; cumbin(s,xn,pr,ompr,&cum,&ccum); if(!qporq) goto S420; fx = cum-*p; goto S430; S420: fx = ccum-*q; S430: dinvr(status,xn,&fx,&qleft,&qhi); goto S410; S440: if(!(*status == -1)) goto S470; if(!qleft) goto S450; *status = 1; *bound = zero; goto S460; S450: *status = 2; *bound = inf; S470: S460: ; } else if(4 == *which) { // // Calculating PR and OMPR // T12 = atol; T13 = tol; dstzr(&K2,&K11,&T12,&T13); if(!qporq) goto S500; *status = 0; dzror(status,pr,&fx,&xlo,&xhi,&qleft,&qhi); *ompr = one-*pr; S480: if(!(*status == 1)) goto S490; cumbin(s,xn,pr,ompr,&cum,&ccum); fx = cum-*p; dzror(status,pr,&fx,&xlo,&xhi,&qleft,&qhi); *ompr = one-*pr; goto S480; S490: goto S530; S500: *status = 0; dzror(status,ompr,&fx,&xlo,&xhi,&qleft,&qhi); *pr = one-*ompr; S510: if(!(*status == 1)) goto S520; cumbin(s,xn,pr,ompr,&cum,&ccum); fx = ccum-*q; dzror(status,ompr,&fx,&xlo,&xhi,&qleft,&qhi); *pr = one-*ompr; goto S510; S530: S520: if(!(*status == -1)) goto S560; if(!qleft) goto S540; *status = 1; *bound = 0.0e0; goto S550; S540: *status = 2; *bound = 1.0e0; S550: ; } S560: return; # undef atol # undef tol # undef zero # undef inf # undef one } //****************************************************************************80 void cdfchi ( int *which, double *p, double *q, double *x, double *df, int *status, double *bound ) //****************************************************************************80 // // Purpose: // // CDFCHI evaluates the CDF of the chi square distribution. // // Discussion: // // This routine calculates any one parameter of the chi square distribution // given the others. // // The value P of the cumulative distribution function is calculated // directly. // // Computation of the other parameters involves a seach for a value that // produces the desired value of P. The search relies on the // monotonicity of P with respect to the other parameters. // // The CDF of the chi square distribution can be evaluated // within Mathematica by commands such as: // // Needs["Statistics`ContinuousDistributions`"] // CDF [ ChiSquareDistribution [ DF ], X ] // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions // 1966, Formula 26.4.19. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input, int *WHICH, indicates which argument is to be calculated // from the others. // 1: Calculate P and Q from X and DF; // 2: Calculate X from P, Q and DF; // 3: Calculate DF from P, Q and X. // // Input/output, double *P, the integral from 0 to X of // the chi-square distribution. If this is an input value, it should // lie in the range [0,1]. // // Input/output, double *Q, equal to 1-P. If Q is an input // value, it should lie in the range [0,1]. If Q is an output value, // it will lie in the range [0,1]. // // Input/output, double *X, the upper limit of integration // of the chi-square distribution. If this is an input // value, it should lie in the range: [0, +infinity). If it is an output // value, it will be searched for in the range: [0,1.0D+300]. // // Input/output, double *DF, the degrees of freedom of the // chi-square distribution. If this is an input value, it should lie // in the range: (0, +infinity). If it is an output value, it will be // searched for in the range: [ 1.0D-300, 1.0D+300]. // // Output, int *STATUS, reports the status of the computation. // 0, if the calculation completed correctly; // -I, if the input parameter number I is out of range; // +1, if the answer appears to be lower than lowest search bound; // +2, if the answer appears to be higher than greatest search bound; // +3, if P + Q /= 1; // +10, an error was returned from CUMGAM. // // Output, double *BOUND, is only defined if STATUS is nonzero. // If STATUS is negative, then this is the value exceeded by parameter I. // if STATUS is 1 or 2, this is the search bound that was exceeded. // { # define tol (1.0e-8) # define atol (1.0e-50) # define zero (1.0e-300) # define inf 1.0e300 static int K1 = 1; static double K2 = 0.0e0; static double K4 = 0.5e0; static double K5 = 5.0e0; static double fx,cum,ccum,pq,porq; static unsigned long qhi,qleft,qporq; static double T3,T6,T7,T8,T9,T10,T11; *status = 0; *bound = 0.0; // // Check arguments // if(!(*which < 1 || *which > 3)) goto S30; if(!(*which < 1)) goto S10; *bound = 1.0e0; goto S20; S10: *bound = 3.0e0; S20: *status = -1; return; S30: if(*which == 1) goto S70; // // P // if(!(*p < 0.0e0 || *p > 1.0e0)) goto S60; if(!(*p < 0.0e0)) goto S40; *bound = 0.0e0; goto S50; S40: *bound = 1.0e0; S50: *status = -2; return; S70: S60: if(*which == 1) goto S110; // // Q // if(!(*q <= 0.0e0 || *q > 1.0e0)) goto S100; if(!(*q <= 0.0e0)) goto S80; *bound = 0.0e0; goto S90; S80: *bound = 1.0e0; S90: *status = -3; return; S110: S100: if(*which == 2) goto S130; // // X // if(!(*x < 0.0e0)) goto S120; *bound = 0.0e0; *status = -4; return; S130: S120: if(*which == 3) goto S150; // // DF // if(!(*df <= 0.0e0)) goto S140; *bound = 0.0e0; *status = -5; return; S150: S140: if(*which == 1) goto S190; // // P + Q // pq = *p+*q; if(!(fabs(pq-0.5e0-0.5e0) > 3.0e0 * dpmpar ( &K1 ) ) ) goto S180; if(!(pq < 0.0e0)) goto S160; *bound = 0.0e0; goto S170; S160: *bound = 1.0e0; S170: *status = 3; return; S190: S180: if(*which == 1) goto S220; // // Select the minimum of P or Q // qporq = *p <= *q; if(!qporq) goto S200; porq = *p; goto S210; S200: porq = *q; S220: S210: // // Calculate ANSWERS // if(1 == *which) { // // Calculating P and Q // *status = 0; cumchi(x,df,p,q); if(porq > 1.5e0) { *status = 10; return; } } else if(2 == *which) { // // Calculating X // *x = 5.0e0; T3 = inf; T6 = atol; T7 = tol; dstinv(&K2,&T3,&K4,&K4,&K5,&T6,&T7); *status = 0; dinvr(status,x,&fx,&qleft,&qhi); S230: if(!(*status == 1)) goto S270; cumchi(x,df,&cum,&ccum); if(!qporq) goto S240; fx = cum-*p; goto S250; S240: fx = ccum-*q; S250: if(!(fx+porq > 1.5e0)) goto S260; *status = 10; return; S260: dinvr(status,x,&fx,&qleft,&qhi); goto S230; S270: if(!(*status == -1)) goto S300; if(!qleft) goto S280; *status = 1; *bound = 0.0e0; goto S290; S280: *status = 2; *bound = inf; S300: S290: ; } else if(3 == *which) { // // Calculating DF // *df = 5.0e0; T8 = zero; T9 = inf; T10 = atol; T11 = tol; dstinv(&T8,&T9,&K4,&K4,&K5,&T10,&T11); *status = 0; dinvr(status,df,&fx,&qleft,&qhi); S310: if(!(*status == 1)) goto S350; cumchi(x,df,&cum,&ccum); if(!qporq) goto S320; fx = cum-*p; goto S330; S320: fx = ccum-*q; S330: if(!(fx+porq > 1.5e0)) goto S340; *status = 10; return; S340: dinvr(status,df,&fx,&qleft,&qhi); goto S310; S350: if(!(*status == -1)) goto S380; if(!qleft) goto S360; *status = 1; *bound = zero; goto S370; S360: *status = 2; *bound = inf; S370: ; } S380: return; # undef tol # undef atol # undef zero # undef inf } //****************************************************************************80 void cdfchn ( int *which, double *p, double *q, double *x, double *df, double *pnonc, int *status, double *bound ) //****************************************************************************80 // // Purpose: // // CDFCHN evaluates the CDF of the Noncentral Chi-Square. // // Discussion: // // This routine calculates any one parameter of the noncentral chi-square // distribution given values for the others. // // The value P of the cumulative distribution function is calculated // directly. // // Computation of the other parameters involves a seach for a value that // produces the desired value of P. The search relies on the // monotonicity of P with respect to the other parameters. // // The computation time required for this routine is proportional // to the noncentrality parameter (PNONC). Very large values of // this parameter can consume immense computer resources. This is // why the search range is bounded by 10,000. // // The CDF of the noncentral chi square distribution can be evaluated // within Mathematica by commands such as: // // Needs["Statistics`ContinuousDistributions`"] // CDF[ NoncentralChiSquareDistribution [ DF, LAMBDA ], X ] // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions // 1966, Formula 26.5.25. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input, int *WHICH, indicates which argument is to be calculated // from the others. // 1: Calculate P and Q from X, DF and PNONC; // 2: Calculate X from P, DF and PNONC; // 3: Calculate DF from P, X and PNONC; // 4: Calculate PNONC from P, X and DF. // // Input/output, double *P, the integral from 0 to X of // the noncentral chi-square distribution. If this is an input // value, it should lie in the range: [0, 1.0-1.0D-16). // // Input/output, double *Q, is generally not used by this // subroutine and is only included for similarity with other routines. // However, if P is to be computed, then a value will also be computed // for Q. // // Input, double *X, the upper limit of integration of the // noncentral chi-square distribution. If this is an input value, it // should lie in the range: [0, +infinity). If it is an output value, // it will be sought in the range: [0,1.0D+300]. // // Input/output, double *DF, the number of degrees of freedom // of the noncentral chi-square distribution. If this is an input value, // it should lie in the range: (0, +infinity). If it is an output value, // it will be searched for in the range: [ 1.0D-300, 1.0D+300]. // // Input/output, double *PNONC, the noncentrality parameter of // the noncentral chi-square distribution. If this is an input value, it // should lie in the range: [0, +infinity). If it is an output value, // it will be searched for in the range: [0,1.0D+4] // // Output, int *STATUS, reports on the calculation. // 0, if calculation completed correctly; // -I, if input parameter number I is out of range; // 1, if the answer appears to be lower than the lowest search bound; // 2, if the answer appears to be higher than the greatest search bound. // // Output, double *BOUND, is only defined if STATUS is nonzero. // If STATUS is negative, then this is the value exceeded by parameter I. // if STATUS is 1 or 2, this is the search bound that was exceeded. // { # define tent4 1.0e4 # define tol (1.0e-8) # define atol (1.0e-50) # define zero (1.0e-300) # define one (1.0e0-1.0e-16) # define inf 1.0e300 static double K1 = 0.0e0; static double K3 = 0.5e0; static double K4 = 5.0e0; static double fx,cum,ccum; static unsigned long qhi,qleft; static double T2,T5,T6,T7,T8,T9,T10,T11,T12,T13; *status = 0; *bound = 0.0; // // Check arguments // if(!(*which < 1 || *which > 4)) goto S30; if(!(*which < 1)) goto S10; *bound = 1.0e0; goto S20; S10: *bound = 4.0e0; S20: *status = -1; return; S30: if(*which == 1) goto S70; // // P // if(!(*p < 0.0e0 || *p > one)) goto S60; if(!(*p < 0.0e0)) goto S40; *bound = 0.0e0; goto S50; S40: *bound = one; S50: *status = -2; return; S70: S60: if(*which == 2) goto S90; // // X // if(!(*x < 0.0e0)) goto S80; *bound = 0.0e0; *status = -4; return; S90: S80: if(*which == 3) goto S110; // // DF // if(!(*df <= 0.0e0)) goto S100; *bound = 0.0e0; *status = -5; return; S110: S100: if(*which == 4) goto S130; // // PNONC // if(!(*pnonc < 0.0e0)) goto S120; *bound = 0.0e0; *status = -6; return; S130: S120: // // Calculate ANSWERS // if(1 == *which) { // // Calculating P and Q // cumchn(x,df,pnonc,p,q); *status = 0; } else if(2 == *which) { // // Calculating X // *x = 5.0e0; T2 = inf; T5 = atol; T6 = tol; dstinv(&K1,&T2,&K3,&K3,&K4,&T5,&T6); *status = 0; dinvr(status,x,&fx,&qleft,&qhi); S140: if(!(*status == 1)) goto S150; cumchn(x,df,pnonc,&cum,&ccum); fx = cum-*p; dinvr(status,x,&fx,&qleft,&qhi); goto S140; S150: if(!(*status == -1)) goto S180; if(!qleft) goto S160; *status = 1; *bound = 0.0e0; goto S170; S160: *status = 2; *bound = inf; S180: S170: ; } else if(3 == *which) { // // Calculating DF // *df = 5.0e0; T7 = zero; T8 = inf; T9 = atol; T10 = tol; dstinv(&T7,&T8,&K3,&K3,&K4,&T9,&T10); *status = 0; dinvr(status,df,&fx,&qleft,&qhi); S190: if(!(*status == 1)) goto S200; cumchn(x,df,pnonc,&cum,&ccum); fx = cum-*p; dinvr(status,df,&fx,&qleft,&qhi); goto S190; S200: if(!(*status == -1)) goto S230; if(!qleft) goto S210; *status = 1; *bound = zero; goto S220; S210: *status = 2; *bound = inf; S230: S220: ; } else if(4 == *which) { // // Calculating PNONC // *pnonc = 5.0e0; T11 = tent4; T12 = atol; T13 = tol; dstinv(&K1,&T11,&K3,&K3,&K4,&T12,&T13); *status = 0; dinvr(status,pnonc,&fx,&qleft,&qhi); S240: if(!(*status == 1)) goto S250; cumchn(x,df,pnonc,&cum,&ccum); fx = cum-*p; dinvr(status,pnonc,&fx,&qleft,&qhi); goto S240; S250: if(!(*status == -1)) goto S280; if(!qleft) goto S260; *status = 1; *bound = zero; goto S270; S260: *status = 2; *bound = tent4; S270: ; } S280: return; # undef tent4 # undef tol # undef atol # undef zero # undef one # undef inf } //****************************************************************************80 void cdff ( int *which, double *p, double *q, double *f, double *dfn, double *dfd, int *status, double *bound ) //****************************************************************************80 // // Purpose: // // CDFF evaluates the CDF of the F distribution. // // Discussion: // // This routine calculates any one parameter of the F distribution // given the others. // // The value P of the cumulative distribution function is calculated // directly. // // Computation of the other parameters involves a seach for a value that // produces the desired value of P. The search relies on the // monotonicity of P with respect to the other parameters. // // The value of the cumulative F distribution is not necessarily // monotone in either degree of freedom. There thus may be two // values that provide a given CDF value. This routine assumes // monotonicity and will find an arbitrary one of the two values. // // Modified: // // 14 April 2007 // // Reference: // // Milton Abramowitz, Irene Stegun, // Handbook of Mathematical Functions // 1966, Formula 26.6.2. // // Parameters: // // Input, int *WHICH, indicates which argument is to be calculated // from the others. // 1: Calculate P and Q from F, DFN and DFD; // 2: Calculate F from P, Q, DFN and DFD; // 3: Calculate DFN from P, Q, F and DFD; // 4: Calculate DFD from P, Q, F and DFN. // // Input/output, double *P, the integral from 0 to F of // the F-density. If it is an input value, it should lie in the // range [0,1]. // // Input/output, double *Q, equal to 1-P. If Q is an input // value, it should lie in the range [0,1]. If Q is an output value, // it will lie in the range [0,1]. // // Input/output, double *F, the upper limit of integration // of the F-density. If this is an input value, it should lie in the // range [0, +infinity). If it is an output value, it will be searched // for in the range [0,1.0D+300]. // // Input/output, double *DFN, the number of degrees of // freedom of the numerator sum of squares. If this is an input value, // it should lie in the range: (0, +infinity). If it is an output value, // it will be searched for in the range: [ 1.0D-300, 1.0D+300]. // // Input/output, double *DFD, the number of degrees of freedom // of the denominator sum of squares. If this is an input value, it should // lie in the range: (0, +infinity). If it is an output value, it will // be searched for in the range: [ 1.0D-300, 1.0D+300]. // // Output, int *STATUS, reports the status of the computation. // 0, if the calculation completed correctly; // -I, if the input parameter number I is out of range; // +1, if the answer appears to be lower than lowest search bound; // +2, if the answer appears to be higher than greatest search bound; // +3, if P + Q /= 1. // // Output, double *BOUND, is only defined if STATUS is nonzero. // If STATUS is negative, then this is the value exceeded by parameter I. // if STATUS is 1 or 2, this is the search bound that was exceeded. // { # define tol (1.0e-8) # define atol (1.0e-50) # define zero (1.0e-300) # define inf 1.0e300 static int K1 = 1; static double K2 = 0.0e0; static double K4 = 0.5e0; static double K5 = 5.0e0; static double pq,fx,cum,ccum; static unsigned long qhi,qleft,qporq; static double T3,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15; *status = 0; *bound = 0.0; // // Check arguments // if(!(*which < 1 || *which > 4)) goto S30; if(!(*which < 1)) goto S10; *bound = 1.0e0; goto S20; S10: *bound = 4.0e0; S20: *status = -1; return; S30: if(*which == 1) goto S70; // // P // if(!(*p < 0.0e0 || *p > 1.0e0)) goto S60; if(!(*p < 0.0e0)) goto S40; *bound = 0.0e0; goto S50; S40: *bound = 1.0e0; S50: *status = -2; return; S70: S60: if(*which == 1) goto S110; // // Q // if(!(*q <= 0.0e0 || *q > 1.0e0)) goto S100; if(!(*q <= 0.0e0)) goto S80; *bound = 0.0e0; goto S90; S80: *bound = 1.0e0; S90: *status = -3; return; S110: S100: if(*which == 2) goto S130; // // F // if(!(*f < 0.0e0)) goto S120; *bound = 0.0e0; *status = -4; return; S130: S120: if(*which == 3) goto S150; // // DFN // if(!(*dfn <= 0.0e0)) goto S140; *bound = 0.0e0; *status = -5; return; S150: S140: if(*which == 4) goto S170; // // DFD // if(!(*dfd <= 0.0e0)) goto S160; *bound = 0.0e0; *status = -6; return; S170: S160: if(*which == 1) goto S210; // // P + Q // pq = *p+*q; if(!(fabs(pq-0.5e0-0.5e0) > 3.0e0 * dpmpar ( &K1 ) ) ) goto S200; if(!(pq < 0.0e0)) goto S180; *bound = 0.0e0; goto S190; S180: *bound = 1.0e0; S190: *status = 3; return; S210: S200: if(!(*which == 1)) qporq = *p <= *q; // // Select the minimum of P or Q // Calculate ANSWERS // if(1 == *which) { // // Calculating P // cumf(f,dfn,dfd,p,q); *status = 0; } else if(2 == *which) { // // Calculating F // *f = 5.0e0; T3 = inf; T6 = atol; T7 = tol; dstinv(&K2,&T3,&K4,&K4,&K5,&T6,&T7); *status = 0; dinvr(status,f,&fx,&qleft,&qhi); S220: if(!(*status == 1)) goto S250; cumf(f,dfn,dfd,&cum,&ccum); if(!qporq) goto S230; fx = cum-*p; goto S240; S230: fx = ccum-*q; S240: dinvr(status,f,&fx,&qleft,&qhi); goto S220; S250: if(!(*status == -1)) goto S280; if(!qleft) goto S260; *status = 1; *bound = 0.0e0; goto S270; S260: *status = 2; *bound = inf; S280: S270: ; } // // Calculate DFN. // // Note that, in the original calculation, the lower bound for DFN was 0. // Using DFN = 0 causes an error in CUMF when it calls BETA_INC. // The lower bound was set to the more reasonable value of 1. // JVB, 14 April 2007. // else if ( 3 == *which ) { T8 = 1.0; T9 = inf; T10 = atol; T11 = tol; dstinv ( &T8, &T9, &K4, &K4, &K5, &T10, &T11 ); *status = 0; *dfn = 5.0; fx = 0.0; dinvr ( status, dfn, &fx, &qleft, &qhi ); while ( *status == 1 ) { cumf ( f, dfn, dfd, &cum, &ccum ); if ( *p <= *q ) { fx = cum - *p; } else { fx = ccum - *q; } dinvr ( status, dfn, &fx, &qleft, &qhi ); } if ( *status == -1 ) { if ( qleft ) { *status = 1; *bound = 1.0; } else { *status = 2; *bound = inf; } } } // // Calculate DFD. // // Note that, in the original calculation, the lower bound for DFD was 0. // Using DFD = 0 causes an error in CUMF when it calls BETA_INC. // The lower bound was set to the more reasonable value of 1. // JVB, 14 April 2007. // // else if ( 4 == *which ) { T12 = 1.0; T13 = inf; T14 = atol; T15 = tol; dstinv ( &T12, &T13, &K4, &K4, &K5, &T14, &T15 ); *status = 0; *dfd = 5.0; fx = 0.0; dinvr ( status, dfd, &fx, &qleft, &qhi ); while ( *status == 1 ) { cumf ( f, dfn, dfd, &cum, &ccum ); if ( *p <= *q ) { fx = cum - *p; } else { fx = ccum - *q; } dinvr ( status, dfd, &fx, &qleft, &qhi ); } if ( *status == -1 ) { if ( qleft ) { *status = 1; *bound = 1.0; } else { *status = 2; *bound = inf; } } } return; # undef tol # undef atol # undef zero # undef inf } //****************************************************************************80 void cdffnc ( int *which, double *p, double *q, double *f, double *dfn, double *dfd, double *phonc, int *status, double *bound ) //****************************************************************************80 // // Purpose: // // CDFFNC evaluates the CDF of the Noncentral F distribution. // // Discussion: // // This routine originally used 1.0E+300 as the upper bound for the // interval in which many of the missing parameters are to be sought. // Since the underlying rootfinder routine needs to evaluate the // function at this point, it is no surprise that the program was // experiencing overflows. A less extravagant upper bound // is being tried for now! // // // This routine calculates any one parameter of the Noncentral F distribution // given the others. // // The value P of the cumulative distribution function is calculated // directly. // // Computation of the other parameters involves a seach for a value that // produces the desired value of P. The search relies on the // monotonicity of P with respect to the other parameters. // // The computation time required for this routine is proportional // to the noncentrality parameter PNONC. Very large values of // this parameter can consume immense computer resources. This is // why the search range is bounded by 10,000. // // The value of the cumulative noncentral F distribution is not // necessarily monotone in either degree of freedom. There thus // may be two values that provide a given CDF value. This routine // assumes monotonicity and will find an arbitrary one of the two // values. // // The CDF of the noncentral F distribution can be evaluated // within Mathematica by commands such as: // // Needs["Statistics`ContinuousDistributions`"] // CDF [ NoncentralFRatioDistribution [ DFN, DFD, PNONC ], X ] // // Modified: // // 15 June 2004 // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions // 1966, Formula 26.6.20. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input, int *WHICH, indicates which argument is to be calculated // from the others. // 1: Calculate P and Q from F, DFN, DFD and PNONC; // 2: Calculate F from P, Q, DFN, DFD and PNONC; // 3: Calculate DFN from P, Q, F, DFD and PNONC; // 4: Calculate DFD from P, Q, F, DFN and PNONC; // 5: Calculate PNONC from P, Q, F, DFN and DFD. // // Input/output, double *P, the integral from 0 to F of // the noncentral F-density. If P is an input value it should // lie in the range [0,1) (Not including 1!). // // Dummy, double *Q, is not used by this subroutine, // and is only included for similarity with the other routines. // Its input value is not checked. If P is to be computed, the // Q is set to 1 - P. // // Input/output, double *F, the upper limit of integration // of the noncentral F-density. If this is an input value, it should // lie in the range: [0, +infinity). If it is an output value, it // will be searched for in the range: [0,1.0D+30]. // // Input/output, double *DFN, the number of degrees of freedom // of the numerator sum of squares. If this is an input value, it should // lie in the range: (0, +infinity). If it is an output value, it will // be searched for in the range: [ 1.0, 1.0D+30]. // // Input/output, double *DFD, the number of degrees of freedom // of the denominator sum of squares. If this is an input value, it should // be in range: (0, +infinity). If it is an output value, it will be // searched for in the range [1.0, 1.0D+30]. // // Input/output, double *PNONC, the noncentrality parameter // If this is an input value, it should be nonnegative. // If it is an output value, it will be searched for in the range: [0,1.0D+4]. // // Output, int *STATUS, reports the status of the computation. // 0, if the calculation completed correctly; // -I, if the input parameter number I is out of range; // +1, if the answer appears to be lower than lowest search bound; // +2, if the answer appears to be higher than greatest search bound; // +3, if P + Q /= 1. // // Output, double *BOUND, is only defined if STATUS is nonzero. // If STATUS is negative, then this is the value exceeded by parameter I. // if STATUS is 1 or 2, this is the search bound that was exceeded. // { # define tent4 1.0e4 # define tol (1.0e-8) # define atol (1.0e-50) # define zero (1.0e-300) # define one (1.0e0-1.0e-16) # define inf 1.0e300 static double K1 = 0.0e0; static double K3 = 0.5e0; static double K4 = 5.0e0; static double fx,cum,ccum; static unsigned long qhi,qleft; static double T2,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16,T17; *status = 0; *bound = 0.0; // // Check arguments // if(!(*which < 1 || *which > 5)) goto S30; if(!(*which < 1)) goto S10; *bound = 1.0e0; goto S20; S10: *bound = 5.0e0; S20: *status = -1; return; S30: if(*which == 1) goto S70; // // P // if(!(*p < 0.0e0 || *p > one)) goto S60; if(!(*p < 0.0e0)) goto S40; *bound = 0.0e0; goto S50; S40: *bound = one; S50: *status = -2; return; S70: S60: if(*which == 2) goto S90; // // F // if(!(*f < 0.0e0)) goto S80; *bound = 0.0e0; *status = -4; return; S90: S80: if(*which == 3) goto S110; // // DFN // if(!(*dfn <= 0.0e0)) goto S100; *bound = 0.0e0; *status = -5; return; S110: S100: if(*which == 4) goto S130; // // DFD // if(!(*dfd <= 0.0e0)) goto S120; *bound = 0.0e0; *status = -6; return; S130: S120: if(*which == 5) goto S150; // // PHONC // if(!(*phonc < 0.0e0)) goto S140; *bound = 0.0e0; *status = -7; return; S150: S140: // // Calculate ANSWERS // if(1 == *which) { // // Calculating P // cumfnc(f,dfn,dfd,phonc,p,q); *status = 0; } else if(2 == *which) { // // Calculating F // *f = 5.0e0; T2 = inf; T5 = atol; T6 = tol; dstinv(&K1,&T2,&K3,&K3,&K4,&T5,&T6); *status = 0; dinvr(status,f,&fx,&qleft,&qhi); S160: if(!(*status == 1)) goto S170; cumfnc(f,dfn,dfd,phonc,&cum,&ccum); fx = cum-*p; dinvr(status,f,&fx,&qleft,&qhi); goto S160; S170: if(!(*status == -1)) goto S200; if(!qleft) goto S180; *status = 1; *bound = 0.0e0; goto S190; S180: *status = 2; *bound = inf; S200: S190: ; } else if(3 == *which) { // // Calculating DFN // *dfn = 5.0e0; T7 = zero; T8 = inf; T9 = atol; T10 = tol; dstinv(&T7,&T8,&K3,&K3,&K4,&T9,&T10); *status = 0; dinvr(status,dfn,&fx,&qleft,&qhi); S210: if(!(*status == 1)) goto S220; cumfnc(f,dfn,dfd,phonc,&cum,&ccum); fx = cum-*p; dinvr(status,dfn,&fx,&qleft,&qhi); goto S210; S220: if(!(*status == -1)) goto S250; if(!qleft) goto S230; *status = 1; *bound = zero; goto S240; S230: *status = 2; *bound = inf; S250: S240: ; } else if(4 == *which) { // // Calculating DFD // *dfd = 5.0e0; T11 = zero; T12 = inf; T13 = atol; T14 = tol; dstinv(&T11,&T12,&K3,&K3,&K4,&T13,&T14); *status = 0; dinvr(status,dfd,&fx,&qleft,&qhi); S260: if(!(*status == 1)) goto S270; cumfnc(f,dfn,dfd,phonc,&cum,&ccum); fx = cum-*p; dinvr(status,dfd,&fx,&qleft,&qhi); goto S260; S270: if(!(*status == -1)) goto S300; if(!qleft) goto S280; *status = 1; *bound = zero; goto S290; S280: *status = 2; *bound = inf; S300: S290: ; } else if(5 == *which) { // // Calculating PHONC // *phonc = 5.0e0; T15 = tent4; T16 = atol; T17 = tol; dstinv(&K1,&T15,&K3,&K3,&K4,&T16,&T17); *status = 0; dinvr(status,phonc,&fx,&qleft,&qhi); S310: if(!(*status == 1)) goto S320; cumfnc(f,dfn,dfd,phonc,&cum,&ccum); fx = cum-*p; dinvr(status,phonc,&fx,&qleft,&qhi); goto S310; S320: if(!(*status == -1)) goto S350; if(!qleft) goto S330; *status = 1; *bound = 0.0e0; goto S340; S330: *status = 2; *bound = tent4; S340: ; } S350: return; # undef tent4 # undef tol # undef atol # undef zero # undef one # undef inf } //****************************************************************************80 void cdfgam ( int *which, double *p, double *q, double *x, double *shape, double *scale, int *status, double *bound ) //****************************************************************************80 // // Purpose: // // CDFGAM evaluates the CDF of the Gamma Distribution. // // Discussion: // // This routine calculates any one parameter of the Gamma distribution // given the others. // // The cumulative distribution function P is calculated directly. // // Computation of the other parameters involves a seach for a value that // produces the desired value of P. The search relies on the // monotonicity of P with respect to the other parameters. // // The gamma density is proportional to T**(SHAPE - 1) * EXP(- SCALE * T) // // Reference: // // Armido DiDinato and Alfred Morris, // Computation of the incomplete gamma function ratios and their inverse, // ACM Transactions on Mathematical Software, // Volume 12, 1986, pages 377-393. // // Parameters: // // Input, int *WHICH, indicates which argument is to be calculated // from the others. // 1: Calculate P and Q from X, SHAPE and SCALE; // 2: Calculate X from P, Q, SHAPE and SCALE; // 3: Calculate SHAPE from P, Q, X and SCALE; // 4: Calculate SCALE from P, Q, X and SHAPE. // // Input/output, double *P, the integral from 0 to X of the // Gamma density. If this is an input value, it should lie in the // range: [0,1]. // // Input/output, double *Q, equal to 1-P. If Q is an input // value, it should lie in the range [0,1]. If Q is an output value, // it will lie in the range [0,1]. // // Input/output, double *X, the upper limit of integration of // the Gamma density. If this is an input value, it should lie in the // range: [0, +infinity). If it is an output value, it will lie in // the range: [0,1E300]. // // Input/output, double *SHAPE, the shape parameter of the // Gamma density. If this is an input value, it should lie in the range: // (0, +infinity). If it is an output value, it will be searched for // in the range: [1.0D-300,1.0D+300]. // // Input/output, double *SCALE, the scale parameter of the // Gamma density. If this is an input value, it should lie in the range // (0, +infinity). If it is an output value, it will be searched for // in the range: (1.0D-300,1.0D+300]. // // Output, int *STATUS, reports the status of the computation. // 0, if the calculation completed correctly; // -I, if the input parameter number I is out of range; // +1, if the answer appears to be lower than lowest search bound; // +2, if the answer appears to be higher than greatest search bound; // +3, if P + Q /= 1; // +10, if the Gamma or inverse Gamma routine cannot compute the answer. // This usually happens only for X and SHAPE very large (more than 1.0D+10. // // Output, double *BOUND, is only defined if STATUS is nonzero. // If STATUS is negative, then this is the value exceeded by parameter I. // if STATUS is 1 or 2, this is the search bound that was exceeded. // { # define tol (1.0e-8) # define atol (1.0e-50) # define zero (1.0e-300) # define inf 1.0e300 static int K1 = 1; static double K5 = 0.5e0; static double K6 = 5.0e0; static double xx,fx,xscale,cum,ccum,pq,porq; static int ierr; static unsigned long qhi,qleft,qporq; static double T2,T3,T4,T7,T8,T9; *status = 0; *bound = 0.0; // // Check arguments // if(!(*which < 1 || *which > 4)) goto S30; if(!(*which < 1)) goto S10; *bound = 1.0e0; goto S20; S10: *bound = 4.0e0; S20: *status = -1; return; S30: if(*which == 1) goto S70; // // P // if(!(*p < 0.0e0 || *p > 1.0e0)) goto S60; if(!(*p < 0.0e0)) goto S40; *bound = 0.0e0; goto S50; S40: *bound = 1.0e0; S50: *status = -2; return; S70: S60: if(*which == 1) goto S110; // // Q // if(!(*q <= 0.0e0 || *q > 1.0e0)) goto S100; if(!(*q <= 0.0e0)) goto S80; *bound = 0.0e0; goto S90; S80: *bound = 1.0e0; S90: *status = -3; return; S110: S100: if(*which == 2) goto S130; // // X // if(!(*x < 0.0e0)) goto S120; *bound = 0.0e0; *status = -4; return; S130: S120: if(*which == 3) goto S150; // // SHAPE // if(!(*shape <= 0.0e0)) goto S140; *bound = 0.0e0; *status = -5; return; S150: S140: if(*which == 4) goto S170; // // SCALE // if(!(*scale <= 0.0e0)) goto S160; *bound = 0.0e0; *status = -6; return; S170: S160: if(*which == 1) goto S210; // // P + Q // pq = *p+*q; if(!(fabs(pq-0.5e0-0.5e0) > 3.0e0*dpmpar(&K1))) goto S200; if(!(pq < 0.0e0)) goto S180; *bound = 0.0e0; goto S190; S180: *bound = 1.0e0; S190: *status = 3; return; S210: S200: if(*which == 1) goto S240; // // Select the minimum of P or Q // qporq = *p <= *q; if(!qporq) goto S220; porq = *p; goto S230; S220: porq = *q; S240: S230: // // Calculate ANSWERS // if(1 == *which) { // // Calculating P // *status = 0; xscale = *x**scale; cumgam(&xscale,shape,p,q); if(porq > 1.5e0) *status = 10; } else if(2 == *which) { // // Computing X // T2 = -1.0e0; gamma_inc_inv ( shape, &xx, &T2, p, q, &ierr ); if(ierr < 0.0e0) { *status = 10; return; } else { *x = xx/ *scale; *status = 0; } } else if(3 == *which) { // // Computing SHAPE // *shape = 5.0e0; xscale = *x**scale; T3 = zero; T4 = inf; T7 = atol; T8 = tol; dstinv(&T3,&T4,&K5,&K5,&K6,&T7,&T8); *status = 0; dinvr(status,shape,&fx,&qleft,&qhi); S250: if(!(*status == 1)) goto S290; cumgam(&xscale,shape,&cum,&ccum); if(!qporq) goto S260; fx = cum-*p; goto S270; S260: fx = ccum-*q; S270: if(!(qporq && cum > 1.5e0 || !qporq && ccum > 1.5e0)) goto S280; *status = 10; return; S280: dinvr(status,shape,&fx,&qleft,&qhi); goto S250; S290: if(!(*status == -1)) goto S320; if(!qleft) goto S300; *status = 1; *bound = zero; goto S310; S300: *status = 2; *bound = inf; S320: S310: ; } else if(4 == *which) { // // Computing SCALE // T9 = -1.0e0; gamma_inc_inv ( shape, &xx, &T9, p, q, &ierr ); if(ierr < 0.0e0) { *status = 10; return; } else { *scale = xx/ *x; *status = 0; } } return; # undef tol # undef atol # undef zero # undef inf } //****************************************************************************80 void cdfnbn ( int *which, double *p, double *q, double *s, double *xn, double *pr, double *ompr, int *status, double *bound ) //****************************************************************************80 // // Purpose: // // CDFNBN evaluates the CDF of the Negative Binomial distribution // // Discussion: // // This routine calculates any one parameter of the negative binomial // distribution given values for the others. // // The cumulative negative binomial distribution returns the // probability that there will be F or fewer failures before the // S-th success in binomial trials each of which has probability of // success PR. // // The individual term of the negative binomial is the probability of // F failures before S successes and is // Choose( F, S+F-1 ) * PR^(S) * (1-PR)^F // // Computation of other parameters involve a seach for a value that // produces the desired value of P. The search relies on the // monotonicity of P with respect to the other parameters. // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions // 1966, Formula 26.5.26. // // Parameters: // // Input, int WHICH, indicates which argument is to be calculated // from the others. // 1: Calculate P and Q from F, S, PR and OMPR; // 2: Calculate F from P, Q, S, PR and OMPR; // 3: Calculate S from P, Q, F, PR and OMPR; // 4: Calculate PR and OMPR from P, Q, F and S. // // Input/output, double P, the cumulation from 0 to F of // the negative binomial distribution. If P is an input value, it // should lie in the range [0,1]. // // Input/output, double Q, equal to 1-P. If Q is an input // value, it should lie in the range [0,1]. If Q is an output value, // it will lie in the range [0,1]. // // Input/output, double F, the upper limit of cumulation of // the binomial distribution. There are F or fewer failures before // the S-th success. If this is an input value, it may lie in the // range [0,+infinity), and if it is an output value, it will be searched // for in the range [0,1.0D+300]. // // Input/output, double S, the number of successes. // If this is an input value, it should lie in the range: [0, +infinity). // If it is an output value, it will be searched for in the range: // [0, 1.0D+300]. // // Input/output, double PR, the probability of success in each // binomial trial. Whether an input or output value, it should lie in the // range [0,1]. // // Input/output, double OMPR, the value of (1-PR). Whether an // input or output value, it should lie in the range [0,1]. // // Output, int STATUS, reports the status of the computation. // 0, if the calculation completed correctly; // -I, if the input parameter number I is out of range; // +1, if the answer appears to be lower than lowest search bound; // +2, if the answer appears to be higher than greatest search bound; // +3, if P + Q /= 1; // +4, if PR + OMPR /= 1. // // Output, double BOUND, is only defined if STATUS is nonzero. // If STATUS is negative, then this is the value exceeded by parameter I. // if STATUS is 1 or 2, this is the search bound that was exceeded. // { # define tol (1.0e-8) # define atol (1.0e-50) # define inf 1.0e300 # define one 1.0e0 static int K1 = 1; static double K2 = 0.0e0; static double K4 = 0.5e0; static double K5 = 5.0e0; static double K11 = 1.0e0; static double fx,xhi,xlo,pq,prompr,cum,ccum; static unsigned long qhi,qleft,qporq; static double T3,T6,T7,T8,T9,T10,T12,T13; *status = 0; *bound = 0.0; // // Check arguments // if(!(*which < 1 || *which > 4)) goto S30; if(!(*which < 1)) goto S10; *bound = 1.0e0; goto S20; S10: *bound = 4.0e0; S20: *status = -1; return; S30: if(*which == 1) goto S70; // // P // if(!(*p < 0.0e0 || *p > 1.0e0)) goto S60; if(!(*p < 0.0e0)) goto S40; *bound = 0.0e0; goto S50; S40: *bound = 1.0e0; S50: *status = -2; return; S70: S60: if(*which == 1) goto S110; // // Q // if(!(*q <= 0.0e0 || *q > 1.0e0)) goto S100; if(!(*q <= 0.0e0)) goto S80; *bound = 0.0e0; goto S90; S80: *bound = 1.0e0; S90: *status = -3; return; S110: S100: if(*which == 2) goto S130; // // S // if(!(*s < 0.0e0)) goto S120; *bound = 0.0e0; *status = -4; return; S130: S120: if(*which == 3) goto S150; // // XN // if(!(*xn < 0.0e0)) goto S140; *bound = 0.0e0; *status = -5; return; S150: S140: if(*which == 4) goto S190; // // PR // if(!(*pr < 0.0e0 || *pr > 1.0e0)) goto S180; if(!(*pr < 0.0e0)) goto S160; *bound = 0.0e0; goto S170; S160: *bound = 1.0e0; S170: *status = -6; return; S190: S180: if(*which == 4) goto S230; // // OMPR // if(!(*ompr < 0.0e0 || *ompr > 1.0e0)) goto S220; if(!(*ompr < 0.0e0)) goto S200; *bound = 0.0e0; goto S210; S200: *bound = 1.0e0; S210: *status = -7; return; S230: S220: if(*which == 1) goto S270; // // P + Q // pq = *p+*q; if(!(fabs(pq-0.5e0-0.5e0) > 3.0e0*dpmpar(&K1))) goto S260; if(!(pq < 0.0e0)) goto S240; *bound = 0.0e0; goto S250; S240: *bound = 1.0e0; S250: *status = 3; return; S270: S260: if(*which == 4) goto S310; // // PR + OMPR // prompr = *pr+*ompr; if(!(fabs(prompr-0.5e0-0.5e0) > 3.0e0*dpmpar(&K1))) goto S300; if(!(prompr < 0.0e0)) goto S280; *bound = 0.0e0; goto S290; S280: *bound = 1.0e0; S290: *status = 4; return; S310: S300: if(!(*which == 1)) qporq = *p <= *q; // // Select the minimum of P or Q // Calculate ANSWERS // if(1 == *which) { // // Calculating P // cumnbn(s,xn,pr,ompr,p,q); *status = 0; } else if(2 == *which) { // // Calculating S // *s = 5.0e0; T3 = inf; T6 = atol; T7 = tol; dstinv(&K2,&T3,&K4,&K4,&K5,&T6,&T7); *status = 0; dinvr(status,s,&fx,&qleft,&qhi); S320: if(!(*status == 1)) goto S350; cumnbn(s,xn,pr,ompr,&cum,&ccum); if(!qporq) goto S330; fx = cum-*p; goto S340; S330: fx = ccum-*q; S340: dinvr(status,s,&fx,&qleft,&qhi); goto S320; S350: if(!(*status == -1)) goto S380; if(!qleft) goto S360; *status = 1; *bound = 0.0e0; goto S370; S360: *status = 2; *bound = inf; S380: S370: ; } else if(3 == *which) { // // Calculating XN // *xn = 5.0e0; T8 = inf; T9 = atol; T10 = tol; dstinv(&K2,&T8,&K4,&K4,&K5,&T9,&T10); *status = 0; dinvr(status,xn,&fx,&qleft,&qhi); S390: if(!(*status == 1)) goto S420; cumnbn(s,xn,pr,ompr,&cum,&ccum); if(!qporq) goto S400; fx = cum-*p; goto S410; S400: fx = ccum-*q; S410: dinvr(status,xn,&fx,&qleft,&qhi); goto S390; S420: if(!(*status == -1)) goto S450; if(!qleft) goto S430; *status = 1; *bound = 0.0e0; goto S440; S430: *status = 2; *bound = inf; S450: S440: ; } else if(4 == *which) { // // Calculating PR and OMPR // T12 = atol; T13 = tol; dstzr(&K2,&K11,&T12,&T13); if(!qporq) goto S480; *status = 0; dzror(status,pr,&fx,&xlo,&xhi,&qleft,&qhi); *ompr = one-*pr; S460: if(!(*status == 1)) goto S470; cumnbn(s,xn,pr,ompr,&cum,&ccum); fx = cum-*p; dzror(status,pr,&fx,&xlo,&xhi,&qleft,&qhi); *ompr = one-*pr; goto S460; S470: goto S510; S480: *status = 0; dzror(status,ompr,&fx,&xlo,&xhi,&qleft,&qhi); *pr = one-*ompr; S490: if(!(*status == 1)) goto S500; cumnbn(s,xn,pr,ompr,&cum,&ccum); fx = ccum-*q; dzror(status,ompr,&fx,&xlo,&xhi,&qleft,&qhi); *pr = one-*ompr; goto S490; S510: S500: if(!(*status == -1)) goto S540; if(!qleft) goto S520; *status = 1; *bound = 0.0e0; goto S530; S520: *status = 2; *bound = 1.0e0; S530: ; } S540: return; # undef tol # undef atol # undef inf # undef one } //****************************************************************************80 void cdfnor ( int *which, double *p, double *q, double *x, double *mean, double *sd, int *status, double *bound ) //****************************************************************************80 // // Purpose: // // CDFNOR evaluates the CDF of the Normal distribution. // // Discussion: // // A slightly modified version of ANORM from SPECFUN // is used to calculate the cumulative standard normal distribution. // // The rational functions from pages 90-95 of Kennedy and Gentle // are used as starting values to Newton's Iterations which // compute the inverse standard normal. Therefore no searches are // necessary for any parameter. // // For X < -15, the asymptotic expansion for the normal is used as // the starting value in finding the inverse standard normal. // // The normal density is proportional to // exp( - 0.5D+00 * (( X - MEAN)/SD)**2) // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions // 1966, Formula 26.2.12. // // William Cody, // Algorithm 715: SPECFUN - A Portable FORTRAN Package of // Special Function Routines and Test Drivers, // ACM Transactions on Mathematical Software, // Volume 19, pages 22-32, 1993. // // Kennedy and Gentle, // Statistical Computing, // Marcel Dekker, NY, 1980, // QA276.4 K46 // // Parameters: // // Input, int *WHICH, indicates which argument is to be calculated // from the others. // 1: Calculate P and Q from X, MEAN and SD; // 2: Calculate X from P, Q, MEAN and SD; // 3: Calculate MEAN from P, Q, X and SD; // 4: Calculate SD from P, Q, X and MEAN. // // Input/output, double *P, the integral from -infinity to X // of the Normal density. If this is an input or output value, it will // lie in the range [0,1]. // // Input/output, double *Q, equal to 1-P. If Q is an input // value, it should lie in the range [0,1]. If Q is an output value, // it will lie in the range [0,1]. // // Input/output, double *X, the upper limit of integration of // the Normal density. // // Input/output, double *MEAN, the mean of the Normal density. // // Input/output, double *SD, the standard deviation of the // Normal density. If this is an input value, it should lie in the // range (0,+infinity). // // Output, int *STATUS, the status of the calculation. // 0, if calculation completed correctly; // -I, if input parameter number I is out of range; // 1, if answer appears to be lower than lowest search bound; // 2, if answer appears to be higher than greatest search bound; // 3, if P + Q /= 1. // // Output, double *BOUND, is only defined if STATUS is nonzero. // If STATUS is negative, then this is the value exceeded by parameter I. // if STATUS is 1 or 2, this is the search bound that was exceeded. // { static int K1 = 1; static double z,pq; *status = 0; *bound = 0.0; // // Check arguments // *status = 0; if(!(*which < 1 || *which > 4)) goto S30; if(!(*which < 1)) goto S10; *bound = 1.0e0; goto S20; S10: *bound = 4.0e0; S20: *status = -1; return; S30: if(*which == 1) goto S70; // // P // if(!(*p <= 0.0e0 || *p > 1.0e0)) goto S60; if(!(*p <= 0.0e0)) goto S40; *bound = 0.0e0; goto S50; S40: *bound = 1.0e0; S50: *status = -2; return; S70: S60: if(*which == 1) goto S110; // // Q // if(!(*q <= 0.0e0 || *q > 1.0e0)) goto S100; if(!(*q <= 0.0e0)) goto S80; *bound = 0.0e0; goto S90; S80: *bound = 1.0e0; S90: *status = -3; return; S110: S100: if(*which == 1) goto S150; // // P + Q // pq = *p+*q; if(!(fabs(pq-0.5e0-0.5e0) > 3.0e0*dpmpar(&K1))) goto S140; if(!(pq < 0.0e0)) goto S120; *bound = 0.0e0; goto S130; S120: *bound = 1.0e0; S130: *status = 3; return; S150: S140: if(*which == 4) goto S170; // // SD // if(!(*sd <= 0.0e0)) goto S160; *bound = 0.0e0; *status = -6; return; S170: S160: // // Calculate ANSWERS // if(1 == *which) { // // Computing P // z = (*x-*mean)/ *sd; cumnor(&z,p,q); } else if(2 == *which) { // // Computing X // z = dinvnr(p,q); *x = *sd*z+*mean; } else if(3 == *which) { // // Computing the MEAN // z = dinvnr(p,q); *mean = *x-*sd*z; } else if(4 == *which) { // // Computing SD // z = dinvnr(p,q); *sd = (*x-*mean)/z; } return; } //****************************************************************************80 void cdfpoi ( int *which, double *p, double *q, double *s, double *xlam, int *status, double *bound ) //****************************************************************************80 // // Purpose: // // CDFPOI evaluates the CDF of the Poisson distribution. // // Discussion: // // This routine calculates any one parameter of the Poisson distribution // given the others. // // The value P of the cumulative distribution function is calculated // directly. // // Computation of other parameters involve a seach for a value that // produces the desired value of P. The search relies on the // monotonicity of P with respect to the other parameters. // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions // 1966, Formula 26.4.21. // // Parameters: // // Input, int *WHICH, indicates which argument is to be calculated // from the others. // 1: Calculate P and Q from S and XLAM; // 2: Calculate A from P, Q and XLAM; // 3: Calculate XLAM from P, Q and S. // // Input/output, double *P, the cumulation from 0 to S of the // Poisson density. Whether this is an input or output value, it will // lie in the range [0,1]. // // Input/output, double *Q, equal to 1-P. If Q is an input // value, it should lie in the range [0,1]. If Q is an output value, // it will lie in the range [0,1]. // // Input/output, double *S, the upper limit of cumulation of // the Poisson CDF. If this is an input value, it should lie in // the range: [0, +infinity). If it is an output value, it will be // searched for in the range: [0,1.0D+300]. // // Input/output, double *XLAM, the mean of the Poisson // distribution. If this is an input value, it should lie in the range // [0, +infinity). If it is an output value, it will be searched for // in the range: [0,1E300]. // // Output, int *STATUS, reports the status of the computation. // 0, if the calculation completed correctly; // -I, if the input parameter number I is out of range; // +1, if the answer appears to be lower than lowest search bound; // +2, if the answer appears to be higher than greatest search bound; // +3, if P + Q /= 1. // // Output, double *BOUND, is only defined if STATUS is nonzero. // If STATUS is negative, then this is the value exceeded by parameter I. // if STATUS is 1 or 2, this is the search bound that was exceeded. // { # define tol (1.0e-8) # define atol (1.0e-50) # define inf 1.0e300 static int K1 = 1; static double K2 = 0.0e0; static double K4 = 0.5e0; static double K5 = 5.0e0; static double fx,cum,ccum,pq; static unsigned long qhi,qleft,qporq; static double T3,T6,T7,T8,T9,T10; *status = 0; *bound = 0.0; // // Check arguments // if(!(*which < 1 || *which > 3)) goto S30; if(!(*which < 1)) goto S10; *bound = 1.0e0; goto S20; S10: *bound = 3.0e0; S20: *status = -1; return; S30: if(*which == 1) goto S70; // // P // if(!(*p < 0.0e0 || *p > 1.0e0)) goto S60; if(!(*p < 0.0e0)) goto S40; *bound = 0.0e0; goto S50; S40: *bound = 1.0e0; S50: *status = -2; return; S70: S60: if(*which == 1) goto S110; // // Q // if(!(*q <= 0.0e0 || *q > 1.0e0)) goto S100; if(!(*q <= 0.0e0)) goto S80; *bound = 0.0e0; goto S90; S80: *bound = 1.0e0; S90: *status = -3; return; S110: S100: if(*which == 2) goto S130; // // S // if(!(*s < 0.0e0)) goto S120; *bound = 0.0e0; *status = -4; return; S130: S120: if(*which == 3) goto S150; // // XLAM // if(!(*xlam < 0.0e0)) goto S140; *bound = 0.0e0; *status = -5; return; S150: S140: if(*which == 1) goto S190; // // P + Q // pq = *p+*q; if(!(fabs(pq-0.5e0-0.5e0) > 3.0e0*dpmpar(&K1))) goto S180; if(!(pq < 0.0e0)) goto S160; *bound = 0.0e0; goto S170; S160: *bound = 1.0e0; S170: *status = 3; return; S190: S180: if(!(*which == 1)) qporq = *p <= *q; // // Select the minimum of P or Q // Calculate ANSWERS // if(1 == *which) { // // Calculating P // cumpoi(s,xlam,p,q); *status = 0; } else if(2 == *which) { // // Calculating S // *s = 5.0e0; T3 = inf; T6 = atol; T7 = tol; dstinv(&K2,&T3,&K4,&K4,&K5,&T6,&T7); *status = 0; dinvr(status,s,&fx,&qleft,&qhi); S200: if(!(*status == 1)) goto S230; cumpoi(s,xlam,&cum,&ccum); if(!qporq) goto S210; fx = cum-*p; goto S220; S210: fx = ccum-*q; S220: dinvr(status,s,&fx,&qleft,&qhi); goto S200; S230: if(!(*status == -1)) goto S260; if(!qleft) goto S240; *status = 1; *bound = 0.0e0; goto S250; S240: *status = 2; *bound = inf; S260: S250: ; } else if(3 == *which) { // // Calculating XLAM // *xlam = 5.0e0; T8 = inf; T9 = atol; T10 = tol; dstinv(&K2,&T8,&K4,&K4,&K5,&T9,&T10); *status = 0; dinvr(status,xlam,&fx,&qleft,&qhi); S270: if(!(*status == 1)) goto S300; cumpoi(s,xlam,&cum,&ccum); if(!qporq) goto S280; fx = cum-*p; goto S290; S280: fx = ccum-*q; S290: dinvr(status,xlam,&fx,&qleft,&qhi); goto S270; S300: if(!(*status == -1)) goto S330; if(!qleft) goto S310; *status = 1; *bound = 0.0e0; goto S320; S310: *status = 2; *bound = inf; S320: ; } S330: return; # undef tol # undef atol # undef inf } //****************************************************************************80 void cdft ( int *which, double *p, double *q, double *t, double *df, int *status, double *bound ) //****************************************************************************80 // // Purpose: // // CDFT evaluates the CDF of the T distribution. // // Discussion: // // This routine calculates any one parameter of the T distribution // given the others. // // The value P of the cumulative distribution function is calculated // directly. // // Computation of other parameters involve a seach for a value that // produces the desired value of P. The search relies on the // monotonicity of P with respect to the other parameters. // // The original version of this routine allowed the search interval // to extend from -1.0E+300 to +1.0E+300, which is fine until you // try to evaluate a function at such a point! // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions // 1966, Formula 26.5.27. // // Parameters: // // Input, int *WHICH, indicates which argument is to be calculated // from the others. // 1 : Calculate P and Q from T and DF; // 2 : Calculate T from P, Q and DF; // 3 : Calculate DF from P, Q and T. // // Input/output, double *P, the integral from -infinity to T of // the T-density. Whether an input or output value, this will lie in the // range [0,1]. // // Input/output, double *Q, equal to 1-P. If Q is an input // value, it should lie in the range [0,1]. If Q is an output value, // it will lie in the range [0,1]. // // Input/output, double *T, the upper limit of integration of // the T-density. If this is an input value, it may have any value. // It it is an output value, it will be searched for in the range // [ -1.0D+30, 1.0D+30 ]. // // Input/output, double *DF, the number of degrees of freedom // of the T distribution. If this is an input value, it should lie // in the range: (0 , +infinity). If it is an output value, it will be // searched for in the range: [1, 1.0D+10]. // // Output, int *STATUS, reports the status of the computation. // 0, if the calculation completed correctly; // -I, if the input parameter number I is out of range; // +1, if the answer appears to be lower than lowest search bound; // +2, if the answer appears to be higher than greatest search bound; // +3, if P + Q /= 1. // // Output, double *BOUND, is only defined if STATUS is nonzero. // If STATUS is negative, then this is the value exceeded by parameter I. // if STATUS is 1 or 2, this is the search bound that was exceeded. // { # define tol (1.0e-8) # define atol (1.0e-50) # define zero (1.0e-300) # define inf 1.0e30 # define maxdf 1.0e10 static int K1 = 1; static double K4 = 0.5e0; static double K5 = 5.0e0; static double fx,cum,ccum,pq; static unsigned long qhi,qleft,qporq; static double T2,T3,T6,T7,T8,T9,T10,T11; *status = 0; *bound = 0.0; // // Check arguments // if(!(*which < 1 || *which > 3)) goto S30; if(!(*which < 1)) goto S10; *bound = 1.0e0; goto S20; S10: *bound = 3.0e0; S20: *status = -1; return; S30: if(*which == 1) goto S70; // // P // if(!(*p <= 0.0e0 || *p > 1.0e0)) goto S60; if(!(*p <= 0.0e0)) goto S40; *bound = 0.0e0; goto S50; S40: *bound = 1.0e0; S50: *status = -2; return; S70: S60: if(*which == 1) goto S110; // // Q // if(!(*q <= 0.0e0 || *q > 1.0e0)) goto S100; if(!(*q <= 0.0e0)) goto S80; *bound = 0.0e0; goto S90; S80: *bound = 1.0e0; S90: *status = -3; return; S110: S100: if(*which == 3) goto S130; // // DF // if(!(*df <= 0.0e0)) goto S120; *bound = 0.0e0; *status = -5; return; S130: S120: if(*which == 1) goto S170; // // P + Q // pq = *p+*q; if(!(fabs(pq-0.5e0-0.5e0) > 3.0e0*dpmpar(&K1))) goto S160; if(!(pq < 0.0e0)) goto S140; *bound = 0.0e0; goto S150; S140: *bound = 1.0e0; S150: *status = 3; return; S170: S160: if(!(*which == 1)) qporq = *p <= *q; // // Select the minimum of P or Q // Calculate ANSWERS // if(1 == *which) { // // Computing P and Q // cumt(t,df,p,q); *status = 0; } else if(2 == *which) { // // Computing T // .. Get initial approximation for T // *t = dt1(p,q,df); T2 = -inf; T3 = inf; T6 = atol; T7 = tol; dstinv(&T2,&T3,&K4,&K4,&K5,&T6,&T7); *status = 0; dinvr(status,t,&fx,&qleft,&qhi); S180: if(!(*status == 1)) goto S210; cumt(t,df,&cum,&ccum); if(!qporq) goto S190; fx = cum-*p; goto S200; S190: fx = ccum-*q; S200: dinvr(status,t,&fx,&qleft,&qhi); goto S180; S210: if(!(*status == -1)) goto S240; if(!qleft) goto S220; *status = 1; *bound = -inf; goto S230; S220: *status = 2; *bound = inf; S240: S230: ; } else if(3 == *which) { // // Computing DF // *df = 5.0e0; T8 = zero; T9 = maxdf; T10 = atol; T11 = tol; dstinv(&T8,&T9,&K4,&K4,&K5,&T10,&T11); *status = 0; dinvr(status,df,&fx,&qleft,&qhi); S250: if(!(*status == 1)) goto S280; cumt(t,df,&cum,&ccum); if(!qporq) goto S260; fx = cum-*p; goto S270; S260: fx = ccum-*q; S270: dinvr(status,df,&fx,&qleft,&qhi); goto S250; S280: if(!(*status == -1)) goto S310; if(!qleft) goto S290; *status = 1; *bound = zero; goto S300; S290: *status = 2; *bound = maxdf; S300: ; } S310: return; # undef tol # undef atol # undef zero # undef inf # undef maxdf } //****************************************************************************80 void chi_noncentral_cdf_values ( int *n_data, double *x, double *lambda, int *df, double *cdf ) //****************************************************************************80 // // Purpose: // // CHI_NONCENTRAL_CDF_VALUES returns values of the noncentral chi CDF. // // Discussion: // // The CDF of the noncentral chi square distribution can be evaluated // within Mathematica by commands such as: // // Needs["Statistics`ContinuousDistributions`"] // CDF [ NoncentralChiSquareDistribution [ DF, LAMBDA ], X ] // // Modified: // // 12 June 2004 // // Author: // // John Burkardt // // Reference: // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double *X, the argument of the function. // // Output, double *LAMBDA, the noncentrality parameter. // // Output, int *DF, the number of degrees of freedom. // // Output, double *CDF, the noncentral chi CDF. // { # define N_MAX 27 double cdf_vec[N_MAX] = { 0.839944E+00, 0.695906E+00, 0.535088E+00, 0.764784E+00, 0.620644E+00, 0.469167E+00, 0.307088E+00, 0.220382E+00, 0.150025E+00, 0.307116E-02, 0.176398E-02, 0.981679E-03, 0.165175E-01, 0.202342E-03, 0.498448E-06, 0.151325E-01, 0.209041E-02, 0.246502E-03, 0.263684E-01, 0.185798E-01, 0.130574E-01, 0.583804E-01, 0.424978E-01, 0.308214E-01, 0.105788E+00, 0.794084E-01, 0.593201E-01 }; int df_vec[N_MAX] = { 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 60, 80, 100, 1, 2, 3, 10, 10, 10, 10, 10, 10, 10, 10, 10 }; double lambda_vec[N_MAX] = { 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 1.0E+00, 1.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 20.0E+00, 20.0E+00, 20.0E+00, 30.0E+00, 30.0E+00, 30.0E+00, 5.0E+00, 5.0E+00, 5.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 2.0E+00, 3.0E+00, 4.0E+00, 2.0E+00, 3.0E+00, 4.0E+00 }; double x_vec[N_MAX] = { 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 3.000E+00, 60.000E+00, 60.000E+00, 60.000E+00, 0.050E+00, 0.050E+00, 0.050E+00, 4.000E+00, 4.000E+00, 4.000E+00, 5.000E+00, 5.000E+00, 5.000E+00, 6.000E+00, 6.000E+00, 6.000E+00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *x = 0.0E+00; *lambda = 0.0E+00; *df = 0; *cdf = 0.0E+00; } else { *x = x_vec[*n_data-1]; *lambda = lambda_vec[*n_data-1]; *df = df_vec[*n_data-1]; *cdf = cdf_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void chi_square_cdf_values ( int *n_data, int *a, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // CHI_SQUARE_CDF_VALUES returns some values of the Chi-Square CDF. // // Discussion: // // The value of CHI_CDF ( DF, X ) can be evaluated in Mathematica by // commands like: // // Needs["Statistics`ContinuousDistributions`"] // CDF[ChiSquareDistribution[DF], X ] // // Modified: // // 11 June 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int *A, the parameter of the function. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 21 int a_vec[N_MAX] = { 1, 2, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 3, 3, 3, 3, 3, 10, 10, 10 }; double fx_vec[N_MAX] = { 0.0796557E+00, 0.00498752E+00, 0.112463E+00, 0.00995017E+00, 0.472911E+00, 0.181269E+00, 0.0597575E+00, 0.0175231E+00, 0.682689E+00, 0.393469E+00, 0.198748E+00, 0.090204E+00, 0.0374342E+00, 0.427593E+00, 0.608375E+00, 0.738536E+00, 0.828203E+00, 0.88839E+00, 0.000172116E+00, 0.00365985E+00, 0.0185759E+00 }; double x_vec[N_MAX] = { 0.01E+00, 0.01E+00, 0.02E+00, 0.02E+00, 0.40E+00, 0.40E+00, 0.40E+00, 0.40E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 2.00E+00, 3.00E+00, 4.00E+00, 5.00E+00, 6.00E+00, 1.00E+00, 2.00E+00, 3.00E+00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0; *x = 0.0E+00; *fx = 0.0E+00; } else { *a = a_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void cumbet ( double *x, double *y, double *a, double *b, double *cum, double *ccum ) //****************************************************************************80 // // Purpose: // // CUMBET evaluates the cumulative incomplete beta distribution. // // Discussion: // // This routine calculates the CDF to X of the incomplete beta distribution // with parameters A and B. This is the integral from 0 to x // of (1/B(a,b))*f(t)) where f(t) = t**(a-1) * (1-t)**(b-1) // // Modified: // // 14 March 2006 // // Reference: // // A R Didonato and Alfred Morris, // Algorithm 708: // Significant Digit Computation of the Incomplete Beta Function Ratios. // ACM Transactions on Mathematical Software, // Volume 18, Number 3, September 1992, pages 360-373. // // Parameters: // // Input, double *X, the upper limit of integration. // // Input, double *Y, the value of 1-X. // // Input, double *A, *B, the parameters of the distribution. // // Output, double *CUM, *CCUM, the values of the cumulative // density function and complementary cumulative density function. // { static int ierr; if ( *x <= 0.0 ) { *cum = 0.0; *ccum = 1.0; } else if ( *y <= 0.0 ) { *cum = 1.0; *ccum = 0.0; } else { beta_inc ( a, b, x, y, cum, ccum, &ierr ); } return; } //****************************************************************************80 void cumbin ( double *s, double *xn, double *pr, double *ompr, double *cum, double *ccum ) //****************************************************************************80 // // Purpose: // // CUMBIN evaluates the cumulative binomial distribution. // // Discussion: // // This routine returns the probability of 0 to S successes in XN binomial // trials, each of which has a probability of success, PR. // // Modified: // // 14 March 2006 // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions // 1966, Formula 26.5.24. // // Parameters: // // Input, double *S, the upper limit of summation. // // Input, double *XN, the number of trials. // // Input, double *PR, the probability of success in one trial. // // Input, double *OMPR, equals ( 1 - PR ). // // Output, double *CUM, the cumulative binomial distribution. // // Output, double *CCUM, the complement of the cumulative // binomial distribution. // { static double T1,T2; if ( *s < *xn ) { T1 = *s + 1.0; T2 = *xn - *s; cumbet ( pr, ompr, &T1, &T2, ccum, cum ); } else { *cum = 1.0; *ccum = 0.0; } return; } //****************************************************************************80 void cumchi ( double *x, double *df, double *cum, double *ccum ) //****************************************************************************80 // // Purpose: // // CUMCHI evaluates the cumulative chi-square distribution. // // Parameters: // // Input, double *X, the upper limit of integration. // // Input, double *DF, the degrees of freedom of the // chi-square distribution. // // Output, double *CUM, the cumulative chi-square distribution. // // Output, double *CCUM, the complement of the cumulative // chi-square distribution. // { static double a; static double xx; a = *df * 0.5; xx = *x * 0.5; cumgam ( &xx, &a, cum, ccum ); return; } //****************************************************************************80 void cumchn ( double *x, double *df, double *pnonc, double *cum, double *ccum ) //****************************************************************************80 // // Purpose: // // CUMCHN evaluates the cumulative noncentral chi-square distribution. // // Discussion: // // Calculates the cumulative noncentral chi-square // distribution, i.e., the probability that a random variable // which follows the noncentral chi-square distribution, with // noncentrality parameter PNONC and continuous degrees of // freedom DF, is less than or equal to X. // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions // 1966, Formula 26.4.25. // // Parameters: // // Input, double *X, the upper limit of integration. // // Input, double *DF, the number of degrees of freedom. // // Input, double *PNONC, the noncentrality parameter of // the noncentral chi-square distribution. // // Output, double *CUM, *CCUM, the CDF and complementary // CDF of the noncentral chi-square distribution. // // Local Parameters: // // Local, double EPS, the convergence criterion. The sum // stops when a term is less than EPS*SUM. // // Local, int NTIRED, the maximum number of terms to be evaluated // in each sum. // // Local, bool QCONV, is TRUE if convergence was achieved, that is, // the program did not stop on NTIRED criterion. // { # define dg(i) (*df+2.0e0*(double)(i)) # define qsmall(xx) (int)(sum < 1.0e-20 || (xx) < eps*sum) # define qtired(i) (int)((i) > ntired) static double eps = 1.0e-5; static int ntired = 1000; static double adj,centaj,centwt,chid2,dfd2,lcntaj,lcntwt,lfact,pcent,pterm,sum, sumadj,term,wt,xnonc; static int i,icent,iterb,iterf; static double T1,T2,T3; if(!(*x <= 0.0e0)) goto S10; *cum = 0.0e0; *ccum = 1.0e0; return; S10: if(!(*pnonc <= 1.0e-10)) goto S20; // // When non-centrality parameter is (essentially) zero, // use cumulative chi-square distribution // cumchi(x,df,cum,ccum); return; S20: xnonc = *pnonc/2.0e0; // // The following code calculates the weight, chi-square, and // adjustment term for the central term in the infinite series. // The central term is the one in which the poisson weight is // greatest. The adjustment term is the amount that must // be subtracted from the chi-square to move up two degrees // of freedom. // icent = fifidint(xnonc); if(icent == 0) icent = 1; chid2 = *x/2.0e0; // // Calculate central weight term // T1 = (double)(icent+1); lfact = gamma_log ( &T1 ); lcntwt = -xnonc+(double)icent*log(xnonc)-lfact; centwt = exp(lcntwt); // // Calculate central chi-square // T2 = dg(icent); cumchi(x,&T2,&pcent,ccum); // // Calculate central adjustment term // dfd2 = dg(icent)/2.0e0; T3 = 1.0e0+dfd2; lfact = gamma_log ( &T3 ); lcntaj = dfd2*log(chid2)-chid2-lfact; centaj = exp(lcntaj); sum = centwt*pcent; // // Sum backwards from the central term towards zero. // Quit whenever either // (1) the zero term is reached, or // (2) the term gets small relative to the sum, or // (3) More than NTIRED terms are totaled. // iterb = 0; sumadj = 0.0e0; adj = centaj; wt = centwt; i = icent; goto S40; S30: if(qtired(iterb) || qsmall(term) || i == 0) goto S50; S40: dfd2 = dg(i)/2.0e0; // // Adjust chi-square for two fewer degrees of freedom. // The adjusted value ends up in PTERM. // adj = adj*dfd2/chid2; sumadj = sumadj + adj; pterm = pcent+sumadj; // // Adjust poisson weight for J decreased by one // wt *= ((double)i/xnonc); term = wt*pterm; sum = sum + term; i -= 1; iterb = iterb + 1; goto S30; S50: iterf = 0; // // Now sum forward from the central term towards infinity. // Quit when either // (1) the term gets small relative to the sum, or // (2) More than NTIRED terms are totaled. // sumadj = adj = centaj; wt = centwt; i = icent; goto S70; S60: if(qtired(iterf) || qsmall(term)) goto S80; S70: // // Update weights for next higher J // wt *= (xnonc/(double)(i+1)); // // Calculate PTERM and add term to sum // pterm = pcent-sumadj; term = wt*pterm; sum = sum + term; // // Update adjustment term for DF for next iteration // i = i + 1; dfd2 = dg(i)/2.0e0; adj = adj*chid2/dfd2; sumadj = sum + adj; iterf = iterf + 1; goto S60; S80: *cum = sum; *ccum = 0.5e0+(0.5e0-*cum); return; # undef dg # undef qsmall # undef qtired } //****************************************************************************80 void cumf ( double *f, double *dfn, double *dfd, double *cum, double *ccum ) //****************************************************************************80 // // Purpose: // // CUMF evaluates the cumulative F distribution. // // Discussion: // // CUMF computes the integral from 0 to F of the F density with DFN // numerator and DFD denominator degrees of freedom. // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions // 1966, Formula 26.5.28. // // Parameters: // // Input, double *F, the upper limit of integration. // // Input, double *DFN, *DFD, the number of degrees of // freedom for the numerator and denominator. // // Output, double *CUM, *CCUM, the value of the F CDF and // the complementary F CDF. // { # define half 0.5e0 # define done 1.0e0 static double dsum,prod,xx,yy; static int ierr; static double T1,T2; if(!(*f <= 0.0e0)) goto S10; *cum = 0.0e0; *ccum = 1.0e0; return; S10: prod = *dfn**f; // // XX is such that the incomplete beta with parameters // DFD/2 and DFN/2 evaluated at XX is 1 - CUM or CCUM // YY is 1 - XX // Calculate the smaller of XX and YY accurately // dsum = *dfd+prod; xx = *dfd/dsum; if ( xx > half ) { yy = prod/dsum; xx = done-yy; } else { yy = done-xx; } T1 = *dfd*half; T2 = *dfn*half; beta_inc ( &T1, &T2, &xx, &yy, ccum, cum, &ierr ); return; # undef half # undef done } //****************************************************************************80 void cumfnc ( double *f, double *dfn, double *dfd, double *pnonc, double *cum, double *ccum ) //****************************************************************************80 // // Purpose: // // CUMFNC evaluates the cumulative noncentral F distribution. // // Discussion: // // This routine computes the noncentral F distribution with DFN and DFD // degrees of freedom and noncentrality parameter PNONC. // // The series is calculated backward and forward from J = LAMBDA/2 // (this is the term with the largest Poisson weight) until // the convergence criterion is met. // // The sum continues until a succeeding term is less than EPS // times the sum (or the sum is less than 1.0e-20). EPS is // set to 1.0e-4 in a data statement which can be changed. // // // The original version of this routine allowed the input values // of DFN and DFD to be negative (nonsensical) or zero (which // caused numerical overflow.) I have forced both these values // to be at least 1. // // Modified: // // 15 June 2004 // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions // 1966, Formula 26.5.16, 26.6.17, 26.6.18, 26.6.20. // // Parameters: // // Input, double *F, the upper limit of integration. // // Input, double *DFN, *DFD, the number of degrees of freedom // in the numerator and denominator. Both DFN and DFD must be positive, // and normally would be integers. This routine requires that they // be no less than 1. // // Input, double *PNONC, the noncentrality parameter. // // Output, double *CUM, *CCUM, the noncentral F CDF and // complementary CDF. // { # define qsmall(x) (int)(sum < 1.0e-20 || (x) < eps*sum) # define half 0.5e0 # define done 1.0e0 static double eps = 1.0e-4; static double dsum,dummy,prod,xx,yy,adn,aup,b,betdn,betup,centwt,dnterm,sum, upterm,xmult,xnonc; static int i,icent,ierr; static double T1,T2,T3,T4,T5,T6; if(!(*f <= 0.0e0)) goto S10; *cum = 0.0e0; *ccum = 1.0e0; return; S10: if(!(*pnonc < 1.0e-10)) goto S20; // // Handle case in which the non-centrality parameter is // (essentially) zero. // cumf(f,dfn,dfd,cum,ccum); return; S20: xnonc = *pnonc/2.0e0; // // Calculate the central term of the poisson weighting factor. // icent = ( int ) xnonc; if(icent == 0) icent = 1; // // Compute central weight term // T1 = (double)(icent+1); centwt = exp(-xnonc+(double)icent*log(xnonc)- gamma_log ( &T1 ) ); // // Compute central incomplete beta term // Assure that minimum of arg to beta and 1 - arg is computed // accurately. // prod = *dfn**f; dsum = *dfd+prod; yy = *dfd/dsum; if(yy > half) { xx = prod/dsum; yy = done-xx; } else xx = done-yy; T2 = *dfn*half+(double)icent; T3 = *dfd*half; beta_inc ( &T2, &T3, &xx, &yy, &betdn, &dummy, &ierr ); adn = *dfn/2.0e0+(double)icent; aup = adn; b = *dfd/2.0e0; betup = betdn; sum = centwt*betdn; // // Now sum terms backward from icent until convergence or all done // xmult = centwt; i = icent; T4 = adn+b; T5 = adn+1.0e0; dnterm = exp( gamma_log ( &T4 ) - gamma_log ( &T5 ) - gamma_log ( &b ) + adn * log ( xx ) + b * log(yy)); S30: if(qsmall(xmult*betdn) || i <= 0) goto S40; xmult *= ((double)i/xnonc); i -= 1; adn -= 1.0; dnterm = (adn+1.0)/((adn+b)*xx)*dnterm; betdn += dnterm; sum += (xmult*betdn); goto S30; S40: i = icent+1; // // Now sum forwards until convergence // xmult = centwt; if(aup-1.0+b == 0) upterm = exp(-gamma_log ( &aup ) - gamma_log ( &b ) + (aup-1.0)*log(xx)+ b*log(yy)); else { T6 = aup-1.0+b; upterm = exp( gamma_log ( &T6 ) - gamma_log ( &aup ) - gamma_log ( &b ) + (aup-1.0)*log(xx)+b* log(yy)); } goto S60; S50: if(qsmall(xmult*betup)) goto S70; S60: xmult *= (xnonc/(double)i); i += 1; aup += 1.0; upterm = (aup+b-2.0e0)*xx/(aup-1.0)*upterm; betup -= upterm; sum += (xmult*betup); goto S50; S70: *cum = sum; *ccum = 0.5e0+(0.5e0-*cum); return; # undef qsmall # undef half # undef done } //****************************************************************************80 void cumgam ( double *x, double *a, double *cum, double *ccum ) //****************************************************************************80 // // Purpose: // // CUMGAM evaluates the cumulative incomplete gamma distribution. // // Discussion: // // This routine computes the cumulative distribution function of the // incomplete gamma distribution, i.e., the integral from 0 to X of // // (1/GAM(A))*EXP(-T)*T**(A-1) DT // // where GAM(A) is the complete gamma function of A, i.e., // // GAM(A) = integral from 0 to infinity of EXP(-T)*T**(A-1) DT // // Parameters: // // Input, double *X, the upper limit of integration. // // Input, double *A, the shape parameter of the incomplete // Gamma distribution. // // Output, double *CUM, *CCUM, the incomplete Gamma CDF and // complementary CDF. // { static int K1 = 0; if(!(*x <= 0.0e0)) goto S10; *cum = 0.0e0; *ccum = 1.0e0; return; S10: gamma_inc ( a, x, cum, ccum, &K1 ); // // Call gratio routine // return; } //****************************************************************************80 void cumnbn ( double *s, double *xn, double *pr, double *ompr, double *cum, double *ccum ) //****************************************************************************80 // // Purpose: // // CUMNBN evaluates the cumulative negative binomial distribution. // // Discussion: // // This routine returns the probability that there will be F or // fewer failures before there are S successes, with each binomial // trial having a probability of success PR. // // Prob(# failures = F | S successes, PR) = // ( S + F - 1 ) // ( ) * PR^S * (1-PR)^F // ( F ) // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions // 1966, Formula 26.5.26. // // Parameters: // // Input, double *F, the number of failures. // // Input, double *S, the number of successes. // // Input, double *PR, *OMPR, the probability of success on // each binomial trial, and the value of (1-PR). // // Output, double *CUM, *CCUM, the negative binomial CDF, // and the complementary CDF. // { static double T1; T1 = *s+1.e0; cumbet(pr,ompr,xn,&T1,cum,ccum); return; } //****************************************************************************80 void cumnor ( double *arg, double *result, double *ccum ) //****************************************************************************80 // // Purpose: // // CUMNOR computes the cumulative normal distribution. // // Discussion: // // This function evaluates the normal distribution function: // // / x // 1 | -t*t/2 // P(x) = ----------- | e dt // sqrt(2 pi) | // /-oo // // This transportable program uses rational functions that // theoretically approximate the normal distribution function to // at least 18 significant decimal digits. The accuracy achieved // depends on the arithmetic system, the compiler, the intrinsic // functions, and proper selection of the machine-dependent // constants. // // Author: // // William Cody // Mathematics and Computer Science Division // Argonne National Laboratory // Argonne, IL 60439 // // Reference: // // William Cody, // Rational Chebyshev approximations for the error function, // Mathematics of Computation, // 1969, pages 631-637. // // William Cody, // Algorithm 715: // SPECFUN - A Portable FORTRAN Package of Special Function Routines // and Test Drivers, // ACM Transactions on Mathematical Software, // Volume 19, 1993, pages 22-32. // // Parameters: // // Input, double *ARG, the upper limit of integration. // // Output, double *CUM, *CCUM, the Normal density CDF and // complementary CDF. // // Local Parameters: // // Local, double EPS, the argument below which anorm(x) // may be represented by 0.5D+00 and above which x*x will not underflow. // A conservative value is the largest machine number X // such that 1.0D+00 + X = 1.0D+00 to machine precision. // { static double a[5] = { 2.2352520354606839287e00,1.6102823106855587881e02,1.0676894854603709582e03, 1.8154981253343561249e04,6.5682337918207449113e-2 }; static double b[4] = { 4.7202581904688241870e01,9.7609855173777669322e02,1.0260932208618978205e04, 4.5507789335026729956e04 }; static double c[9] = { 3.9894151208813466764e-1,8.8831497943883759412e00,9.3506656132177855979e01, 5.9727027639480026226e02,2.4945375852903726711e03,6.8481904505362823326e03, 1.1602651437647350124e04,9.8427148383839780218e03,1.0765576773720192317e-8 }; static double d[8] = { 2.2266688044328115691e01,2.3538790178262499861e02,1.5193775994075548050e03, 6.4855582982667607550e03,1.8615571640885098091e04,3.4900952721145977266e04, 3.8912003286093271411e04,1.9685429676859990727e04 }; static double half = 0.5e0; static double p[6] = { 2.1589853405795699e-1,1.274011611602473639e-1,2.2235277870649807e-2, 1.421619193227893466e-3,2.9112874951168792e-5,2.307344176494017303e-2 }; static double one = 1.0e0; static double q[5] = { 1.28426009614491121e00,4.68238212480865118e-1,6.59881378689285515e-2, 3.78239633202758244e-3,7.29751555083966205e-5 }; static double sixten = 1.60e0; static double sqrpi = 3.9894228040143267794e-1; static double thrsh = 0.66291e0; static double root32 = 5.656854248e0; static double zero = 0.0e0; static int K1 = 1; static int K2 = 2; static int i; static double del,eps,temp,x,xden,xnum,y,xsq,min; // // Machine dependent constants // eps = dpmpar(&K1)*0.5e0; min = dpmpar(&K2); x = *arg; y = fabs(x); if(y <= thrsh) { // // Evaluate anorm for |X| <= 0.66291 // xsq = zero; if(y > eps) xsq = x*x; xnum = a[4]*xsq; xden = xsq; for ( i = 0; i < 3; i++ ) { xnum = (xnum+a[i])*xsq; xden = (xden+b[i])*xsq; } *result = x*(xnum+a[3])/(xden+b[3]); temp = *result; *result = half+temp; *ccum = half-temp; } // // Evaluate anorm for 0.66291 <= |X| <= sqrt(32) // else if(y <= root32) { xnum = c[8]*y; xden = y; for ( i = 0; i < 7; i++ ) { xnum = (xnum+c[i])*y; xden = (xden+d[i])*y; } *result = (xnum+c[7])/(xden+d[7]); xsq = fifdint(y*sixten)/sixten; del = (y-xsq)*(y+xsq); *result = exp(-(xsq*xsq*half))*exp(-(del*half))**result; *ccum = one-*result; if(x > zero) { temp = *result; *result = *ccum; *ccum = temp; } } // // Evaluate anorm for |X| > sqrt(32) // else { *result = zero; xsq = one/(x*x); xnum = p[5]*xsq; xden = xsq; for ( i = 0; i < 4; i++ ) { xnum = (xnum+p[i])*xsq; xden = (xden+q[i])*xsq; } *result = xsq*(xnum+p[4])/(xden+q[4]); *result = (sqrpi-*result)/y; xsq = fifdint(x*sixten)/sixten; del = (x-xsq)*(x+xsq); *result = exp(-(xsq*xsq*half))*exp(-(del*half))**result; *ccum = one-*result; if(x > zero) { temp = *result; *result = *ccum; *ccum = temp; } } if(*result < min) *result = 0.0e0; // // Fix up for negative argument, erf, etc. // if(*ccum < min) *ccum = 0.0e0; } //****************************************************************************80 void cumpoi ( double *s, double *xlam, double *cum, double *ccum ) //****************************************************************************80 // // Purpose: // // CUMPOI evaluates the cumulative Poisson distribution. // // Discussion: // // CUMPOI returns the probability of S or fewer events in a Poisson // distribution with mean XLAM. // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // Formula 26.4.21. // // Parameters: // // Input, double *S, the upper limit of cumulation of the // Poisson density function. // // Input, double *XLAM, the mean of the Poisson distribution. // // Output, double *CUM, *CCUM, the Poisson density CDF and // complementary CDF. // { static double chi,df; df = 2.0e0*(*s+1.0e0); chi = 2.0e0**xlam; cumchi(&chi,&df,ccum,cum); return; } //****************************************************************************80 void cumt ( double *t, double *df, double *cum, double *ccum ) //****************************************************************************80 // // Purpose: // // CUMT evaluates the cumulative T distribution. // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // Formula 26.5.27. // // Parameters: // // Input, double *T, the upper limit of integration. // // Input, double *DF, the number of degrees of freedom of // the T distribution. // // Output, double *CUM, *CCUM, the T distribution CDF and // complementary CDF. // { static double a; static double dfptt; static double K2 = 0.5e0; static double oma; static double T1; static double tt; static double xx; static double yy; tt = (*t) * (*t); dfptt = ( *df ) + tt; xx = *df / dfptt; yy = tt / dfptt; T1 = 0.5e0 * ( *df ); cumbet ( &xx, &yy, &T1, &K2, &a, &oma ); if ( *t <= 0.0e0 ) { *cum = 0.5e0 * a; *ccum = oma + ( *cum ); } else { *ccum = 0.5e0 * a; *cum = oma + ( *ccum ); } return; } //****************************************************************************80 double dbetrm ( double *a, double *b ) //****************************************************************************80 // // Purpose: // // DBETRM computes the Sterling remainder for the complete beta function. // // Discussion: // // Log(Beta(A,B)) = Lgamma(A) + Lgamma(B) - Lgamma(A+B) // where Lgamma is the log of the (complete) gamma function // // Let ZZ be approximation obtained if each log gamma is approximated // by Sterling's formula, i.e., // Sterling(Z) = LOG( SQRT( 2*PI ) ) + ( Z-0.5D+00 ) * LOG( Z ) - Z // // The Sterling remainder is Log(Beta(A,B)) - ZZ. // // Parameters: // // Input, double *A, *B, the parameters of the Beta function. // // Output, double DBETRM, the Sterling remainder. // { static double dbetrm,T1,T2,T3; // // Try to sum from smallest to largest // T1 = *a+*b; dbetrm = -dstrem(&T1); T2 = fifdmax1(*a,*b); dbetrm += dstrem(&T2); T3 = fifdmin1(*a,*b); dbetrm += dstrem(&T3); return dbetrm; } //****************************************************************************80 double dexpm1 ( double *x ) //****************************************************************************80 // // Purpose: // // DEXPM1 evaluates the function EXP(X) - 1. // // Reference: // // Armido DiDinato and Alfred Morris, // Algorithm 708: // Significant Digit Computation of the Incomplete Beta Function Ratios, // ACM Transactions on Mathematical Software, // Volume 18, 1993, pages 360-373. // // Parameters: // // Input, double *X, the value at which exp(X)-1 is desired. // // Output, double DEXPM1, the value of exp(X)-1. // { static double p1 = .914041914819518e-09; static double p2 = .238082361044469e-01; static double q1 = -.499999999085958e+00; static double q2 = .107141568980644e+00; static double q3 = -.119041179760821e-01; static double q4 = .595130811860248e-03; static double dexpm1; double w; if ( fabs(*x) <= 0.15e0 ) { dexpm1 = *x * ( ( ( p2 * *x + p1 ) * *x + 1.0e0 ) /(((( q4 * *x + q3 ) * *x + q2 ) * *x + q1 ) * *x + 1.0e0 ) ); } else if ( *x <= 0.0e0 ) { w = exp(*x); dexpm1 = w-0.5e0-0.5e0; } else { w = exp(*x); dexpm1 = w*(0.5e0+(0.5e0-1.0e0/w)); } return dexpm1; } //****************************************************************************80 double dinvnr ( double *p, double *q ) //****************************************************************************80 // // Purpose: // // DINVNR computes the inverse of the normal distribution. // // Discussion: // // Returns X such that CUMNOR(X) = P, i.e., the integral from - // infinity to X of (1/SQRT(2*PI)) EXP(-U*U/2) dU is P // // The rational function on page 95 of Kennedy and Gentle is used as a start // value for the Newton method of finding roots. // // Reference: // // Kennedy and Gentle, // Statistical Computing, // Marcel Dekker, NY, 1980, // QA276.4 K46 // // Parameters: // // Input, double *P, *Q, the probability, and the complementary // probability. // // Output, double DINVNR, the argument X for which the // Normal CDF has the value P. // { # define maxit 100 # define eps (1.0e-13) # define r2pi 0.3989422804014326e0 # define nhalf (-0.5e0) # define dennor(x) (r2pi*exp(nhalf*(x)*(x))) static double dinvnr,strtx,xcur,cum,ccum,pp,dx; static int i; static unsigned long qporq; // // FIND MINIMUM OF P AND Q // qporq = *p <= *q; if(!qporq) goto S10; pp = *p; goto S20; S10: pp = *q; S20: // // INITIALIZATION STEP // strtx = stvaln(&pp); xcur = strtx; // // NEWTON INTERATIONS // for ( i = 1; i <= maxit; i++ ) { cumnor(&xcur,&cum,&ccum); dx = (cum-pp)/dennor(xcur); xcur -= dx; if(fabs(dx/xcur) < eps) goto S40; } dinvnr = strtx; // // IF WE GET HERE, NEWTON HAS FAILED // if(!qporq) dinvnr = -dinvnr; return dinvnr; S40: // // IF WE GET HERE, NEWTON HAS SUCCEDED // dinvnr = xcur; if(!qporq) dinvnr = -dinvnr; return dinvnr; # undef maxit # undef eps # undef r2pi # undef nhalf # undef dennor } //****************************************************************************80 void dinvr ( int *status, double *x, double *fx, unsigned long *qleft, unsigned long *qhi ) //****************************************************************************80 // // Purpose: // // DINVR bounds the zero of the function and invokes DZROR. // // Discussion: // // This routine seeks to find bounds on a root of the function and // invokes ZROR to perform the zero finding. STINVR must have been // called before this routine in order to set its parameters. // // Reference: // // J C P Bus and T J Dekker, // Two Efficient Algorithms with Guaranteed Convergence for // Finding a Zero of a Function, // ACM Transactions on Mathematical Software, // Volume 1, Number 4, pages 330-345, 1975. // // Parameters: // // Input/output, integer STATUS. At the beginning of a zero finding // problem, STATUS should be set to 0 and INVR invoked. The value // of parameters other than X will be ignored on this call. // If INVR needs the function to be evaluated, it will set STATUS to 1 // and return. The value of the function should be set in FX and INVR // again called without changing any of its other parameters. // If INVR finishes without error, it returns with STATUS 0, and X an // approximate root of F(X). // If INVR cannot bound the function, it returns a negative STATUS and // sets QLEFT and QHI. // // Output, double precision X, the value at which F(X) is to be evaluated. // // Input, double precision FX, the value of F(X) calculated by the user // on the previous call, when INVR returned with STATUS = 1. // // Output, logical QLEFT, is defined only if QMFINV returns FALSE. In that // case, QLEFT is TRUE if the stepping search terminated unsucessfully // at SMALL, and FALSE if the search terminated unsucessfully at BIG. // // Output, logical QHI, is defined only if QMFINV returns FALSE. In that // case, it is TRUE if Y < F(X) at the termination of the search and FALSE // if F(X) < Y. // { E0000(0,status,x,fx,qleft,qhi,NULL,NULL,NULL,NULL,NULL,NULL,NULL); } //****************************************************************************80 double dlanor ( double *x ) //****************************************************************************80 // // Purpose: // // DLANOR evaluates the logarithm of the asymptotic Normal CDF. // // Discussion: // // This routine computes the logarithm of the cumulative normal distribution // from abs ( x ) to infinity for 5 <= abs ( X ). // // The relative error at X = 5 is about 0.5D-5. // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions // 1966, Formula 26.2.12. // // Parameters: // // Input, double *X, the value at which the Normal CDF is to be // evaluated. It is assumed that 5 <= abs ( X ). // // Output, double DLANOR, the logarithm of the asymptotic // Normal CDF. // { # define dlsqpi 0.91893853320467274177e0 static double coef[12] = { -1.0e0,3.0e0,-15.0e0,105.0e0,-945.0e0,10395.0e0,-135135.0e0,2027025.0e0, -34459425.0e0,654729075.0e0,-13749310575.e0,316234143225.0e0 }; static int K1 = 12; static double dlanor,approx,correc,xx,xx2,T2; xx = fabs(*x); if ( xx < 5.0e0 ) { ftnstop(" Argument too small in DLANOR"); } approx = -dlsqpi-0.5e0*xx*xx-log(xx); xx2 = xx*xx; T2 = 1.0e0/xx2; correc = eval_pol ( coef, &K1, &T2 ) / xx2; correc = alnrel ( &correc ); dlanor = approx+correc; return dlanor; # undef dlsqpi } //****************************************************************************80 double dpmpar ( int *i ) //****************************************************************************80 // // Purpose: // // DPMPAR provides machine constants for double precision arithmetic. // // Discussion: // // DPMPAR PROVIDES THE double PRECISION MACHINE CONSTANTS FOR // THE COMPUTER BEING USED. IT IS ASSUMED THAT THE ARGUMENT // I IS AN INTEGER HAVING ONE OF THE VALUES 1, 2, OR 3. IF THE // double PRECISION ARITHMETIC BEING USED HAS M BASE B DIGITS AND // ITS SMALLEST AND LARGEST EXPONENTS ARE EMIN AND EMAX, THEN // // DPMPAR(1) = B**(1 - M), THE MACHINE PRECISION, // // DPMPAR(2) = B**(EMIN - 1), THE SMALLEST MAGNITUDE, // // DPMPAR(3) = B**EMAX*(1 - B**(-M)), THE LARGEST MAGNITUDE. // // WRITTEN BY // ALFRED H. MORRIS, JR. // NAVAL SURFACE WARFARE CENTER // DAHLGREN VIRGINIA // // MODIFIED BY BARRY W. BROWN TO RETURN DOUBLE PRECISION MACHINE // CONSTANTS FOR THE COMPUTER BEING USED. THIS MODIFICATION WAS // MADE AS PART OF CONVERTING BRATIO TO DOUBLE PRECISION // { static int K1 = 4; static int K2 = 8; static int K3 = 9; static int K4 = 10; static double value,b,binv,bm1,one,w,z; static int emax,emin,ibeta,m; if(*i > 1) goto S10; b = ipmpar(&K1); m = ipmpar(&K2); value = pow(b,(double)(1-m)); return value; S10: if(*i > 2) goto S20; b = ipmpar(&K1); emin = ipmpar(&K3); one = 1.0; binv = one/b; w = pow(b,(double)(emin+2)); value = w*binv*binv*binv; return value; S20: ibeta = ipmpar(&K1); m = ipmpar(&K2); emax = ipmpar(&K4); b = ibeta; bm1 = ibeta-1; one = 1.0; z = pow(b,(double)(m-1)); w = ((z-one)*b+bm1)/(b*z); z = pow(b,(double)(emax-2)); value = w*z*b*b; return value; } //****************************************************************************80 void dstinv ( double *zsmall, double *zbig, double *zabsst, double *zrelst, double *zstpmu, double *zabsto, double *zrelto ) //****************************************************************************80 // // Purpose: // // DSTINV seeks a value X such that F(X) = Y. // // Discussion: // // Double Precision - SeT INverse finder - Reverse Communication // Function // Concise Description - Given a monotone function F finds X // such that F(X) = Y. Uses Reverse communication -- see invr. // This routine sets quantities needed by INVR. // More Precise Description of INVR - // F must be a monotone function, the results of QMFINV are // otherwise undefined. QINCR must be .TRUE. if F is non- // decreasing and .FALSE. if F is non-increasing. // QMFINV will return .TRUE. if and only if F(SMALL) and // F(BIG) bracket Y, i. e., // QINCR is .TRUE. and F(SMALL).LE.Y.LE.F(BIG) or // QINCR is .FALSE. and F(BIG).LE.Y.LE.F(SMALL) // if QMFINV returns .TRUE., then the X returned satisfies // the following condition. let // TOL(X) = MAX(ABSTOL,RELTOL*ABS(X)) // then if QINCR is .TRUE., // F(X-TOL(X)) .LE. Y .LE. F(X+TOL(X)) // and if QINCR is .FALSE. // F(X-TOL(X)) .GE. Y .GE. F(X+TOL(X)) // Arguments // SMALL --> The left endpoint of the interval to be // searched for a solution. // SMALL is DOUBLE PRECISION // BIG --> The right endpoint of the interval to be // searched for a solution. // BIG is DOUBLE PRECISION // ABSSTP, RELSTP --> The initial step size in the search // is MAX(ABSSTP,RELSTP*ABS(X)). See algorithm. // ABSSTP is DOUBLE PRECISION // RELSTP is DOUBLE PRECISION // STPMUL --> When a step doesn't bound the zero, the step // size is multiplied by STPMUL and another step // taken. A popular value is 2.0 // DOUBLE PRECISION STPMUL // ABSTOL, RELTOL --> Two numbers that determine the accuracy // of the solution. See function for a precise definition. // ABSTOL is DOUBLE PRECISION // RELTOL is DOUBLE PRECISION // Method // Compares F(X) with Y for the input value of X then uses QINCR // to determine whether to step left or right to bound the // desired x. the initial step size is // MAX(ABSSTP,RELSTP*ABS(S)) for the input value of X. // Iteratively steps right or left until it bounds X. // At each step which doesn't bound X, the step size is doubled. // The routine is careful never to step beyond SMALL or BIG. If // it hasn't bounded X at SMALL or BIG, QMFINV returns .FALSE. // after setting QLEFT and QHI. // If X is successfully bounded then Algorithm R of the paper // 'Two Efficient Algorithms with Guaranteed Convergence for // Finding a Zero of a Function' by J. C. P. Bus and // T. J. Dekker in ACM Transactions on Mathematical // Software, Volume 1, No. 4 page 330 (DEC. '75) is employed // to find the zero of the function F(X)-Y. This is routine // QRZERO. // { E0000(1,NULL,NULL,NULL,NULL,NULL,zabsst,zabsto,zbig,zrelst,zrelto,zsmall, zstpmu); } //****************************************************************************80 double dstrem ( double *z ) //****************************************************************************80 // // Purpose: // // DSTREM computes the Sterling remainder ln ( Gamma ( Z ) ) - Sterling ( Z ). // // Discussion: // // This routine returns // // ln ( Gamma ( Z ) ) - Sterling ( Z ) // // where Sterling(Z) is Sterling's approximation to ln ( Gamma ( Z ) ). // // Sterling(Z) = ln ( sqrt ( 2 * PI ) ) + ( Z - 0.5 ) * ln ( Z ) - Z // // If 6 <= Z, the routine uses 9 terms of a series in Bernoulli numbers, // with values calculated using Maple. // // Otherwise, the difference is computed explicitly. // // Modified: // // 14 June 2004 // // Parameters: // // Input, double *Z, the value at which the Sterling // remainder is to be calculated. Z must be positive. // // Output, double DSTREM, the Sterling remainder. // { # define hln2pi 0.91893853320467274178e0 # define ncoef 10 static double coef[ncoef] = { 0.0e0,0.0833333333333333333333333333333e0, -0.00277777777777777777777777777778e0,0.000793650793650793650793650793651e0, -0.000595238095238095238095238095238e0, 0.000841750841750841750841750841751e0,-0.00191752691752691752691752691753e0, 0.00641025641025641025641025641026e0,-0.0295506535947712418300653594771e0, 0.179644372368830573164938490016e0 }; static int K1 = 10; static double dstrem,sterl,T2; // // For information, here are the next 11 coefficients of the // remainder term in Sterling's formula // -1.39243221690590111642743221691 // 13.4028640441683919944789510007 // -156.848284626002017306365132452 // 2193.10333333333333333333333333 // -36108.7712537249893571732652192 // 691472.268851313067108395250776 // -0.152382215394074161922833649589D8 // 0.382900751391414141414141414141D9 // -0.108822660357843910890151491655D11 // 0.347320283765002252252252252252D12 // -0.123696021422692744542517103493D14 // if(*z <= 0.0e0) { ftnstop ( "Zero or negative argument in DSTREM" ); } if(!(*z > 6.0e0)) goto S10; T2 = 1.0e0/pow(*z,2.0); dstrem = eval_pol ( coef, &K1, &T2 )**z; goto S20; S10: sterl = hln2pi+(*z-0.5e0)*log(*z)-*z; dstrem = gamma_log ( z ) - sterl; S20: return dstrem; # undef hln2pi # undef ncoef } //****************************************************************************80 void dstzr ( double *zxlo, double *zxhi, double *zabstl, double *zreltl ) //****************************************************************************80 // // Purpose: // // DSTXR sets quantities needed by the zero finder. // // Discussion: // // Double precision SeT ZeRo finder - Reverse communication version // Function // Sets quantities needed by ZROR. The function of ZROR // and the quantities set is given here. // Concise Description - Given a function F // find XLO such that F(XLO) = 0. // More Precise Description - // Input condition. F is a double function of a single // double argument and XLO and XHI are such that // F(XLO)*F(XHI) .LE. 0.0 // If the input condition is met, QRZERO returns .TRUE. // and output values of XLO and XHI satisfy the following // F(XLO)*F(XHI) .LE. 0. // ABS(F(XLO) .LE. ABS(F(XHI) // ABS(XLO-XHI) .LE. TOL(X) // where // TOL(X) = MAX(ABSTOL,RELTOL*ABS(X)) // If this algorithm does not find XLO and XHI satisfying // these conditions then QRZERO returns .FALSE. This // implies that the input condition was not met. // Arguments // XLO --> The left endpoint of the interval to be // searched for a solution. // XLO is DOUBLE PRECISION // XHI --> The right endpoint of the interval to be // for a solution. // XHI is DOUBLE PRECISION // ABSTOL, RELTOL --> Two numbers that determine the accuracy // of the solution. See function for a // precise definition. // ABSTOL is DOUBLE PRECISION // RELTOL is DOUBLE PRECISION // Method // Algorithm R of the paper 'Two Efficient Algorithms with // Guaranteed Convergence for Finding a Zero of a Function' // by J. C. P. Bus and T. J. Dekker in ACM Transactions on // Mathematical Software, Volume 1, no. 4 page 330 // (Dec. '75) is employed to find the zero of F(X)-Y. // { E0001(1,NULL,NULL,NULL,NULL,NULL,NULL,NULL,zabstl,zreltl,zxhi,zxlo); } //****************************************************************************80 double dt1 ( double *p, double *q, double *df ) //****************************************************************************80 // // Purpose: // // DT1 computes an approximate inverse of the cumulative T distribution. // // Discussion: // // Returns the inverse of the T distribution function, i.e., // the integral from 0 to INVT of the T density is P. This is an // initial approximation. // // Parameters: // // Input, double *P, *Q, the value whose inverse from the // T distribution CDF is desired, and the value (1-P). // // Input, double *DF, the number of degrees of freedom of the // T distribution. // // Output, double DT1, the approximate value of X for which // the T density CDF with DF degrees of freedom has value P. // { static double coef[4][5] = { 1.0e0,1.0e0,0.0e0,0.0e0,0.0e0,3.0e0,16.0e0,5.0e0,0.0e0,0.0e0,-15.0e0,17.0e0, 19.0e0,3.0e0,0.0e0,-945.0e0,-1920.0e0,1482.0e0,776.0e0,79.0e0 }; static double denom[4] = { 4.0e0,96.0e0,384.0e0,92160.0e0 }; static int ideg[4] = { 2,3,4,5 }; static double dt1,denpow,sum,term,x,xp,xx; static int i; x = fabs(dinvnr(p,q)); xx = x*x; sum = x; denpow = 1.0e0; for ( i = 0; i < 4; i++ ) { term = eval_pol ( &coef[i][0], &ideg[i], &xx ) * x; denpow *= *df; sum += (term/(denpow*denom[i])); } if(!(*p >= 0.5e0)) goto S20; xp = sum; goto S30; S20: xp = -sum; S30: dt1 = xp; return dt1; } //****************************************************************************80 void dzror ( int *status, double *x, double *fx, double *xlo, double *xhi, unsigned long *qleft, unsigned long *qhi ) //****************************************************************************80 // // Purpose: // // DZROR seeks the zero of a function using reverse communication. // // Discussion: // // Performs the zero finding. STZROR must have been called before // this routine in order to set its parameters. // // // Arguments // // // STATUS <--> At the beginning of a zero finding problem, STATUS // should be set to 0 and ZROR invoked. (The value // of other parameters will be ignored on this call.) // // When ZROR needs the function evaluated, it will set // STATUS to 1 and return. The value of the function // should be set in FX and ZROR again called without // changing any of its other parameters. // // When ZROR has finished without error, it will return // with STATUS 0. In that case (XLO,XHI) bound the answe // // If ZROR finds an error (which implies that F(XLO)-Y an // F(XHI)-Y have the same sign, it returns STATUS -1. In // this case, XLO and XHI are undefined. // INTEGER STATUS // // X <-- The value of X at which F(X) is to be evaluated. // DOUBLE PRECISION X // // FX --> The value of F(X) calculated when ZROR returns with // STATUS = 1. // DOUBLE PRECISION FX // // XLO <-- When ZROR returns with STATUS = 0, XLO bounds the // inverval in X containing the solution below. // DOUBLE PRECISION XLO // // XHI <-- When ZROR returns with STATUS = 0, XHI bounds the // inverval in X containing the solution above. // DOUBLE PRECISION XHI // // QLEFT <-- .TRUE. if the stepping search terminated unsucessfully // at XLO. If it is .FALSE. the search terminated // unsucessfully at XHI. // QLEFT is LOGICAL // // QHI <-- .TRUE. if F(X) .GT. Y at the termination of the // search and .FALSE. if F(X) .LT. Y at the // termination of the search. // QHI is LOGICAL // // { E0001(0,status,x,fx,xlo,xhi,qleft,qhi,NULL,NULL,NULL,NULL); } //****************************************************************************80 static void E0000 ( int IENTRY, int *status, double *x, double *fx, unsigned long *qleft, unsigned long *qhi, double *zabsst, double *zabsto, double *zbig, double *zrelst, double *zrelto, double *zsmall, double *zstpmu ) //****************************************************************************80 // // Purpose: // // E0000 is a reverse-communication zero bounder. // { # define qxmon(zx,zy,zz) (int)((zx) <= (zy) && (zy) <= (zz)) static double absstp; static double abstol; static double big,fbig,fsmall,relstp,reltol,small,step,stpmul,xhi, xlb,xlo,xsave,xub,yy; static int i99999; static unsigned long qbdd,qcond,qdum1,qdum2,qincr,qlim,qok,qup; switch(IENTRY){case 0: goto DINVR; case 1: goto DSTINV;} DINVR: if(*status > 0) goto S310; qcond = !qxmon(small,*x,big); if(qcond) { ftnstop(" SMALL, X, BIG not monotone in INVR"); } xsave = *x; // // See that SMALL and BIG bound the zero and set QINCR // *x = small; // // GET-FUNCTION-VALUE // i99999 = 1; goto S300; S10: fsmall = *fx; *x = big; // // GET-FUNCTION-VALUE // i99999 = 2; goto S300; S20: fbig = *fx; qincr = fbig > fsmall; if(!qincr) goto S50; if(fsmall <= 0.0e0) goto S30; *status = -1; *qleft = *qhi = 1; return; S30: if(fbig >= 0.0e0) goto S40; *status = -1; *qleft = *qhi = 0; return; S40: goto S80; S50: if(fsmall >= 0.0e0) goto S60; *status = -1; *qleft = 1; *qhi = 0; return; S60: if(fbig <= 0.0e0) goto S70; *status = -1; *qleft = 0; *qhi = 1; return; S80: S70: *x = xsave; step = fifdmax1(absstp,relstp*fabs(*x)); // // YY = F(X) - Y // GET-FUNCTION-VALUE // i99999 = 3; goto S300; S90: yy = *fx; if(!(yy == 0.0e0)) goto S100; *status = 0; qok = 1; return; S100: qup = qincr && yy < 0.0e0 || !qincr && yy > 0.0e0; // // HANDLE CASE IN WHICH WE MUST STEP HIGHER // if(!qup) goto S170; xlb = xsave; xub = fifdmin1(xlb+step,big); goto S120; S110: if(qcond) goto S150; S120: // // YY = F(XUB) - Y // *x = xub; // // GET-FUNCTION-VALUE // i99999 = 4; goto S300; S130: yy = *fx; qbdd = qincr && yy >= 0.0e0 || !qincr && yy <= 0.0e0; qlim = xub >= big; qcond = qbdd || qlim; if(qcond) goto S140; step = stpmul*step; xlb = xub; xub = fifdmin1(xlb+step,big); S140: goto S110; S150: if(!(qlim && !qbdd)) goto S160; *status = -1; *qleft = 0; *qhi = !qincr; *x = big; return; S160: goto S240; S170: // // HANDLE CASE IN WHICH WE MUST STEP LOWER // xub = xsave; xlb = fifdmax1(xub-step,small); goto S190; S180: if(qcond) goto S220; S190: // // YY = F(XLB) - Y // *x = xlb; // // GET-FUNCTION-VALUE // i99999 = 5; goto S300; S200: yy = *fx; qbdd = qincr && yy <= 0.0e0 || !qincr && yy >= 0.0e0; qlim = xlb <= small; qcond = qbdd || qlim; if(qcond) goto S210; step = stpmul*step; xub = xlb; xlb = fifdmax1(xub-step,small); S210: goto S180; S220: if(!(qlim && !qbdd)) goto S230; *status = -1; *qleft = 1; *qhi = qincr; *x = small; return; S240: S230: dstzr(&xlb,&xub,&abstol,&reltol); // // IF WE REACH HERE, XLB AND XUB BOUND THE ZERO OF F. // *status = 0; goto S260; S250: if(!(*status == 1)) goto S290; S260: dzror ( status, x, fx, &xlo, &xhi, &qdum1, &qdum2 ); if(!(*status == 1)) goto S280; // // GET-FUNCTION-VALUE // i99999 = 6; goto S300; S280: S270: goto S250; S290: *x = xlo; *status = 0; return; DSTINV: small = *zsmall; big = *zbig; absstp = *zabsst; relstp = *zrelst; stpmul = *zstpmu; abstol = *zabsto; reltol = *zrelto; return; S300: // // TO GET-FUNCTION-VALUE // *status = 1; return; S310: switch((int)i99999){case 1: goto S10;case 2: goto S20;case 3: goto S90;case 4: goto S130;case 5: goto S200;case 6: goto S270;default: break;} # undef qxmon } //****************************************************************************80 static void E0001 ( int IENTRY, int *status, double *x, double *fx, double *xlo, double *xhi, unsigned long *qleft, unsigned long *qhi, double *zabstl, double *zreltl, double *zxhi, double *zxlo ) //****************************************************************************80 // // Purpose: // // E00001 is a reverse-communication zero finder. // { # define ftol(zx) (0.5e0*fifdmax1(abstol,reltol*fabs((zx)))) static double a,abstol,b,c,d,fa,fb,fc,fd,fda; static double fdb,m,mb,p,q,reltol,tol,w,xxhi,xxlo; static int ext,i99999; static unsigned long first,qrzero; switch(IENTRY){case 0: goto DZROR; case 1: goto DSTZR;} DZROR: if(*status > 0) goto S280; *xlo = xxlo; *xhi = xxhi; b = *x = *xlo; // // GET-FUNCTION-VALUE // i99999 = 1; goto S270; S10: fb = *fx; *xlo = *xhi; a = *x = *xlo; // // GET-FUNCTION-VALUE // i99999 = 2; goto S270; S20: // // Check that F(ZXLO) < 0 < F(ZXHI) or // F(ZXLO) > 0 > F(ZXHI) // if(!(fb < 0.0e0)) goto S40; if(!(*fx < 0.0e0)) goto S30; *status = -1; *qleft = *fx < fb; *qhi = 0; return; S40: S30: if(!(fb > 0.0e0)) goto S60; if(!(*fx > 0.0e0)) goto S50; *status = -1; *qleft = *fx > fb; *qhi = 1; return; S60: S50: fa = *fx; first = 1; S70: c = a; fc = fa; ext = 0; S80: if(!(fabs(fc) < fabs(fb))) goto S100; if(!(c != a)) goto S90; d = a; fd = fa; S90: a = b; fa = fb; *xlo = c; b = *xlo; fb = fc; c = a; fc = fa; S100: tol = ftol(*xlo); m = (c+b)*.5e0; mb = m-b; if(!(fabs(mb) > tol)) goto S240; if(!(ext > 3)) goto S110; w = mb; goto S190; S110: tol = fifdsign(tol,mb); p = (b-a)*fb; if(!first) goto S120; q = fa-fb; first = 0; goto S130; S120: fdb = (fd-fb)/(d-b); fda = (fd-fa)/(d-a); p = fda*p; q = fdb*fa-fda*fb; S130: if(!(p < 0.0e0)) goto S140; p = -p; q = -q; S140: if(ext == 3) p *= 2.0e0; if(!(p*1.0e0 == 0.0e0 || p <= q*tol)) goto S150; w = tol; goto S180; S150: if(!(p < mb*q)) goto S160; w = p/q; goto S170; S160: w = mb; S190: S180: S170: d = a; fd = fa; a = b; fa = fb; b += w; *xlo = b; *x = *xlo; // // GET-FUNCTION-VALUE // i99999 = 3; goto S270; S200: fb = *fx; if(!(fc*fb >= 0.0e0)) goto S210; goto S70; S210: if(!(w == mb)) goto S220; ext = 0; goto S230; S220: ext += 1; S230: goto S80; S240: *xhi = c; qrzero = fc >= 0.0e0 && fb <= 0.0e0 || fc < 0.0e0 && fb >= 0.0e0; if(!qrzero) goto S250; *status = 0; goto S260; S250: *status = -1; S260: return; DSTZR: xxlo = *zxlo; xxhi = *zxhi; abstol = *zabstl; reltol = *zreltl; return; S270: // // TO GET-FUNCTION-VALUE // *status = 1; return; S280: switch((int)i99999){case 1: goto S10;case 2: goto S20;case 3: goto S200; default: break;} # undef ftol } //****************************************************************************80 void erf_values ( int *n_data, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // ERF_VALUES returns some values of the ERF or "error" function. // // Definition: // // ERF(X) = ( 2 / sqrt ( PI ) * integral ( 0 <= T <= X ) exp ( - T^2 ) dT // // Modified: // // 31 May 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 21 double fx_vec[N_MAX] = { 0.0000000000E+00, 0.1124629160E+00, 0.2227025892E+00, 0.3286267595E+00, 0.4283923550E+00, 0.5204998778E+00, 0.6038560908E+00, 0.6778011938E+00, 0.7421009647E+00, 0.7969082124E+00, 0.8427007929E+00, 0.8802050696E+00, 0.9103139782E+00, 0.9340079449E+00, 0.9522851198E+00, 0.9661051465E+00, 0.9763483833E+00, 0.9837904586E+00, 0.9890905016E+00, 0.9927904292E+00, 0.9953222650E+00 }; double x_vec[N_MAX] = { 0.0E+00, 0.1E+00, 0.2E+00, 0.3E+00, 0.4E+00, 0.5E+00, 0.6E+00, 0.7E+00, 0.8E+00, 0.9E+00, 1.0E+00, 1.1E+00, 1.2E+00, 1.3E+00, 1.4E+00, 1.5E+00, 1.6E+00, 1.7E+00, 1.8E+00, 1.9E+00, 2.0E+00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *x = 0.0E+00; *fx = 0.0E+00; } else { *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double error_f ( double *x ) //****************************************************************************80 // // Purpose: // // ERROR_F evaluates the error function ERF. // // Parameters: // // Input, double *X, the argument. // // Output, double ERROR_F, the value of the error function at X. // { static double c = .564189583547756e0; static double a[5] = { .771058495001320e-04,-.133733772997339e-02,.323076579225834e-01, .479137145607681e-01,.128379167095513e+00 }; static double b[3] = { .301048631703895e-02,.538971687740286e-01,.375795757275549e+00 }; static double p[8] = { -1.36864857382717e-07,5.64195517478974e-01,7.21175825088309e+00, 4.31622272220567e+01,1.52989285046940e+02,3.39320816734344e+02, 4.51918953711873e+02,3.00459261020162e+02 }; static double q[8] = { 1.00000000000000e+00,1.27827273196294e+01,7.70001529352295e+01, 2.77585444743988e+02,6.38980264465631e+02,9.31354094850610e+02, 7.90950925327898e+02,3.00459260956983e+02 }; static double r[5] = { 2.10144126479064e+00,2.62370141675169e+01,2.13688200555087e+01, 4.65807828718470e+00,2.82094791773523e-01 }; static double s[4] = { 9.41537750555460e+01,1.87114811799590e+02,9.90191814623914e+01, 1.80124575948747e+01 }; static double erf1,ax,bot,t,top,x2; ax = fabs(*x); if(ax > 0.5e0) goto S10; t = *x**x; top = (((a[0]*t+a[1])*t+a[2])*t+a[3])*t+a[4]+1.0e0; bot = ((b[0]*t+b[1])*t+b[2])*t+1.0e0; erf1 = *x*(top/bot); return erf1; S10: if(ax > 4.0e0) goto S20; top = ((((((p[0]*ax+p[1])*ax+p[2])*ax+p[3])*ax+p[4])*ax+p[5])*ax+p[6])*ax+p[ 7]; bot = ((((((q[0]*ax+q[1])*ax+q[2])*ax+q[3])*ax+q[4])*ax+q[5])*ax+q[6])*ax+q[ 7]; erf1 = 0.5e0+(0.5e0-exp(-(*x**x))*top/bot); if(*x < 0.0e0) erf1 = -erf1; return erf1; S20: if(ax >= 5.8e0) goto S30; x2 = *x**x; t = 1.0e0/x2; top = (((r[0]*t+r[1])*t+r[2])*t+r[3])*t+r[4]; bot = (((s[0]*t+s[1])*t+s[2])*t+s[3])*t+1.0e0; erf1 = (c-top/(x2*bot))/ax; erf1 = 0.5e0+(0.5e0-exp(-x2)*erf1); if(*x < 0.0e0) erf1 = -erf1; return erf1; S30: erf1 = fifdsign(1.0e0,*x); return erf1; } //****************************************************************************80 double error_fc ( int *ind, double *x ) //****************************************************************************80 // // Purpose: // // ERROR_FC evaluates the complementary error function ERFC. // // Modified: // // 09 December 1999 // // Parameters: // // Input, int *IND, chooses the scaling. // If IND is nonzero, then the value returned has been multiplied by // EXP(X*X). // // Input, double *X, the argument of the function. // // Output, double ERROR_FC, the value of the complementary // error function. // { static double c = .564189583547756e0; static double a[5] = { .771058495001320e-04,-.133733772997339e-02,.323076579225834e-01, .479137145607681e-01,.128379167095513e+00 }; static double b[3] = { .301048631703895e-02,.538971687740286e-01,.375795757275549e+00 }; static double p[8] = { -1.36864857382717e-07,5.64195517478974e-01,7.21175825088309e+00, 4.31622272220567e+01,1.52989285046940e+02,3.39320816734344e+02, 4.51918953711873e+02,3.00459261020162e+02 }; static double q[8] = { 1.00000000000000e+00,1.27827273196294e+01,7.70001529352295e+01, 2.77585444743988e+02,6.38980264465631e+02,9.31354094850610e+02, 7.90950925327898e+02,3.00459260956983e+02 }; static double r[5] = { 2.10144126479064e+00,2.62370141675169e+01,2.13688200555087e+01, 4.65807828718470e+00,2.82094791773523e-01 }; static double s[4] = { 9.41537750555460e+01,1.87114811799590e+02,9.90191814623914e+01, 1.80124575948747e+01 }; static int K1 = 1; static double erfc1,ax,bot,e,t,top,w; // // ABS(X) .LE. 0.5 // ax = fabs(*x); if(ax > 0.5e0) goto S10; t = *x**x; top = (((a[0]*t+a[1])*t+a[2])*t+a[3])*t+a[4]+1.0e0; bot = ((b[0]*t+b[1])*t+b[2])*t+1.0e0; erfc1 = 0.5e0+(0.5e0-*x*(top/bot)); if(*ind != 0) erfc1 = exp(t)*erfc1; return erfc1; S10: // // 0.5 .LT. ABS(X) .LE. 4 // if(ax > 4.0e0) goto S20; top = ((((((p[0]*ax+p[1])*ax+p[2])*ax+p[3])*ax+p[4])*ax+p[5])*ax+p[6])*ax+p[ 7]; bot = ((((((q[0]*ax+q[1])*ax+q[2])*ax+q[3])*ax+q[4])*ax+q[5])*ax+q[6])*ax+q[ 7]; erfc1 = top/bot; goto S40; S20: // // ABS(X) .GT. 4 // if(*x <= -5.6e0) goto S60; if(*ind != 0) goto S30; if(*x > 100.0e0) goto S70; if(*x**x > -exparg(&K1)) goto S70; S30: t = pow(1.0e0/ *x,2.0); top = (((r[0]*t+r[1])*t+r[2])*t+r[3])*t+r[4]; bot = (((s[0]*t+s[1])*t+s[2])*t+s[3])*t+1.0e0; erfc1 = (c-t*top/bot)/ax; S40: // // FINAL ASSEMBLY // if(*ind == 0) goto S50; if(*x < 0.0e0) erfc1 = 2.0e0*exp(*x**x)-erfc1; return erfc1; S50: w = *x**x; t = w; e = w-t; erfc1 = (0.5e0+(0.5e0-e))*exp(-t)*erfc1; if(*x < 0.0e0) erfc1 = 2.0e0-erfc1; return erfc1; S60: // // LIMIT VALUE FOR LARGE NEGATIVE X // erfc1 = 2.0e0; if(*ind != 0) erfc1 = 2.0e0*exp(*x**x); return erfc1; S70: // // LIMIT VALUE FOR LARGE POSITIVE X // WHEN IND = 0 // erfc1 = 0.0e0; return erfc1; } //****************************************************************************80 double esum ( int *mu, double *x ) //****************************************************************************80 // // Purpose: // // ESUM evaluates exp ( MU + X ). // // Parameters: // // Input, int *MU, part of the argument. // // Input, double *X, part of the argument. // // Output, double ESUM, the value of exp ( MU + X ). // { static double esum,w; if(*x > 0.0e0) goto S10; if(*mu < 0) goto S20; w = (double)*mu+*x; if(w > 0.0e0) goto S20; esum = exp(w); return esum; S10: if(*mu > 0) goto S20; w = (double)*mu+*x; if(w < 0.0e0) goto S20; esum = exp(w); return esum; S20: w = *mu; esum = exp(w)*exp(*x); return esum; } //****************************************************************************80 double eval_pol ( double a[], int *n, double *x ) //****************************************************************************80 // // Purpose: // // EVAL_POL evaluates a polynomial at X. // // Discussion: // // EVAL_POL = A(0) + A(1)*X + ... + A(N)*X**N // // Modified: // // 15 December 1999 // // Parameters: // // Input, double precision A(0:N), coefficients of the polynomial. // // Input, int *N, length of A. // // Input, double *X, the point at which the polynomial // is to be evaluated. // // Output, double EVAL_POL, the value of the polynomial at X. // { static double devlpl,term; static int i; term = a[*n-1]; for ( i = *n-1-1; i >= 0; i-- ) { term = a[i]+term**x; } devlpl = term; return devlpl; } //****************************************************************************80 double exparg ( int *l ) //****************************************************************************80 // // Purpose: // // EXPARG returns the largest or smallest legal argument for EXP. // // Discussion: // // Only an approximate limit for the argument of EXP is desired. // // Modified: // // 09 December 1999 // // Parameters: // // Input, int *L, indicates which limit is desired. // If L = 0, then the largest positive argument for EXP is desired. // Otherwise, the largest negative argument for EXP for which the // result is nonzero is desired. // // Output, double EXPARG, the desired value. // { static int K1 = 4; static int K2 = 9; static int K3 = 10; static double exparg,lnb; static int b,m; b = ipmpar(&K1); if(b != 2) goto S10; lnb = .69314718055995e0; goto S40; S10: if(b != 8) goto S20; lnb = 2.0794415416798e0; goto S40; S20: if(b != 16) goto S30; lnb = 2.7725887222398e0; goto S40; S30: lnb = log((double)b); S40: if(*l == 0) goto S50; m = ipmpar(&K2)-1; exparg = 0.99999e0*((double)m*lnb); return exparg; S50: m = ipmpar(&K3); exparg = 0.99999e0*((double)m*lnb); return exparg; } //****************************************************************************80 void f_cdf_values ( int *n_data, int *a, int *b, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // F_CDF_VALUES returns some values of the F CDF test function. // // Discussion: // // The value of F_CDF ( DFN, DFD, X ) can be evaluated in Mathematica by // commands like: // // Needs["Statistics`ContinuousDistributions`"] // CDF[FRatioDistribution[ DFN, DFD ], X ] // // Modified: // // 11 June 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int *A, int *B, the parameters of the function. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 20 int a_vec[N_MAX] = { 1, 1, 5, 1, 2, 4, 1, 6, 8, 1, 3, 6, 1, 1, 1, 1, 2, 3, 4, 5 }; int b_vec[N_MAX] = { 1, 5, 1, 5, 10, 20, 5, 6, 16, 5, 10, 12, 5, 5, 5, 5, 5, 5, 5, 5 }; double fx_vec[N_MAX] = { 0.500000E+00, 0.499971E+00, 0.499603E+00, 0.749699E+00, 0.750466E+00, 0.751416E+00, 0.899987E+00, 0.899713E+00, 0.900285E+00, 0.950025E+00, 0.950057E+00, 0.950193E+00, 0.975013E+00, 0.990002E+00, 0.994998E+00, 0.999000E+00, 0.568799E+00, 0.535145E+00, 0.514343E+00, 0.500000E+00 }; double x_vec[N_MAX] = { 1.00E+00, 0.528E+00, 1.89E+00, 1.69E+00, 1.60E+00, 1.47E+00, 4.06E+00, 3.05E+00, 2.09E+00, 6.61E+00, 3.71E+00, 3.00E+00, 10.01E+00, 16.26E+00, 22.78E+00, 47.18E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0; *b = 0; *x = 0.0E+00; *fx = 0.0E+00; } else { *a = a_vec[*n_data-1]; *b = b_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void f_noncentral_cdf_values ( int *n_data, int *a, int *b, double *lambda, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // F_NONCENTRAL_CDF_VALUES returns some values of the F CDF test function. // // Discussion: // // The value of NONCENTRAL_F_CDF ( DFN, DFD, LAMDA, X ) can be evaluated // in Mathematica by commands like: // // Needs["Statistics`ContinuousDistributions`"] // CDF[NoncentralFRatioDistribution[ DFN, DFD, LAMBDA ], X ] // // Modified: // // 12 June 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Stephen Wolfram, // The Mathematica Book, // Fourth Edition, // Wolfram Media / Cambridge University Press, 1999. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int *A, int *B, double *LAMBDA, the // parameters of the function. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 22 int a_vec[N_MAX] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 16 }; int b_vec[N_MAX] = { 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10, 5, 5, 5, 5, 1, 5, 6, 12, 16, 8 }; double fx_vec[N_MAX] = { 0.500000E+00, 0.636783E+00, 0.584092E+00, 0.323443E+00, 0.450119E+00, 0.607888E+00, 0.705928E+00, 0.772178E+00, 0.819105E+00, 0.317035E+00, 0.432722E+00, 0.450270E+00, 0.426188E+00, 0.337744E+00, 0.422911E+00, 0.692767E+00, 0.363217E+00, 0.421005E+00, 0.426667E+00, 0.446402E+00, 0.844589E+00, 0.816368E+00 }; double lambda_vec[N_MAX] = { 0.00E+00, 0.000E+00, 0.25E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 2.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 2.00E+00, 1.00E+00, 1.00E+00, 0.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00 }; double x_vec[N_MAX] = { 1.00E+00, 1.00E+00, 1.00E+00, 0.50E+00, 1.00E+00, 2.00E+00, 3.00E+00, 4.00E+00, 5.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 2.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 2.00E+00, 2.00E+00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0; *b = 0; *lambda = 0.0E+00; *x = 0.0E+00; *fx = 0.0E+00; } else { *a = a_vec[*n_data-1]; *b = b_vec[*n_data-1]; *lambda = lambda_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double fifdint ( double a ) //****************************************************************************80 // // Purpose: // // FIFDINT truncates a double number to an integer. // // Parameters: // // a - number to be truncated { return (double) ((int) a); } //****************************************************************************80 double fifdmax1 ( double a, double b ) //****************************************************************************80 // // Purpose: // // FIFDMAX1 returns the maximum of two numbers a and b // // Parameters: // // a - first number // b - second number // { if ( a < b ) { return b; } else { return a; } } //****************************************************************************80 double fifdmin1 ( double a, double b ) //****************************************************************************80 // // Purpose: // // FIFDMIN1 returns the minimum of two numbers. // // Parameters: // // a - first number // b - second number // { if (a < b) return a; else return b; } //****************************************************************************80 double fifdsign ( double mag, double sign ) //****************************************************************************80 // // Purpose: // // FIFDSIGN transfers the sign of the variable "sign" to the variable "mag" // // Parameters: // // mag - magnitude // sign - sign to be transfered // { if (mag < 0) mag = -mag; if (sign < 0) mag = -mag; return mag; } //****************************************************************************80 long fifidint ( double a ) //****************************************************************************80 // // Purpose: // // FIFIDINT truncates a double number to a long integer // // Parameters: // // a - number to be truncated // { if ( a < 1.0 ) { return (long) 0; } else { return ( long ) a; } } //****************************************************************************80 long fifmod ( long a, long b ) //****************************************************************************80 // // Purpose: // // FIFMOD returns the modulo of a and b // // Parameters: // // a - numerator // b - denominator // { return ( a % b ); } //****************************************************************************80 double fpser ( double *a, double *b, double *x, double *eps ) //****************************************************************************80 // // Purpose: // // FPSER evaluates IX(A,B)(X) for very small B. // // Discussion: // // This routine is appropriate for use when // // B < min ( EPS, EPS * A ) // // and // // X <= 0.5. // // Parameters: // // Input, double *A, *B, parameters of the function. // // Input, double *X, the point at which the function is to // be evaluated. // // Input, double *EPS, a tolerance. // // Output, double FPSER, the value of IX(A,B)(X). // { static int K1 = 1; static double fpser,an,c,s,t,tol; fpser = 1.0e0; if(*a <= 1.e-3**eps) goto S10; fpser = 0.0e0; t = *a*log(*x); if(t < exparg(&K1)) return fpser; fpser = exp(t); S10: // // NOTE THAT 1/B(A,B) = B // fpser = *b/ *a*fpser; tol = *eps/ *a; an = *a+1.0e0; t = *x; s = t/an; S20: an += 1.0e0; t = *x*t; c = t/an; s += c; if(fabs(c) > tol) goto S20; fpser *= (1.0e0+*a*s); return fpser; } //****************************************************************************80 void ftnstop ( string msg ) //****************************************************************************80 // // Purpose: // // FTNSTOP prints a message to standard error and then exits. // // Parameters: // // Input, string MSG, the message to be printed. // { cerr << msg << "\n"; exit ( 0 ); } //****************************************************************************80 double gam1 ( double *a ) //****************************************************************************80 // // Purpose: // // GAM1 computes 1 / GAMMA(A+1) - 1 for -0.5D+00 <= A <= 1.5 // // Parameters: // // Input, double *A, forms the argument of the Gamma function. // // Output, double GAM1, the value of 1 / GAMMA ( A + 1 ) - 1. // { static double s1 = .273076135303957e+00; static double s2 = .559398236957378e-01; static double p[7] = { .577215664901533e+00,-.409078193005776e+00,-.230975380857675e+00, .597275330452234e-01,.766968181649490e-02,-.514889771323592e-02, .589597428611429e-03 }; static double q[5] = { .100000000000000e+01,.427569613095214e+00,.158451672430138e+00, .261132021441447e-01,.423244297896961e-02 }; static double r[9] = { -.422784335098468e+00,-.771330383816272e+00,-.244757765222226e+00, .118378989872749e+00,.930357293360349e-03,-.118290993445146e-01, .223047661158249e-02,.266505979058923e-03,-.132674909766242e-03 }; static double gam1,bot,d,t,top,w,T1; t = *a; d = *a-0.5e0; if(d > 0.0e0) t = d-0.5e0; T1 = t; if(T1 < 0) goto S40; else if(T1 == 0) goto S10; else goto S20; S10: gam1 = 0.0e0; return gam1; S20: top = (((((p[6]*t+p[5])*t+p[4])*t+p[3])*t+p[2])*t+p[1])*t+p[0]; bot = (((q[4]*t+q[3])*t+q[2])*t+q[1])*t+1.0e0; w = top/bot; if(d > 0.0e0) goto S30; gam1 = *a*w; return gam1; S30: gam1 = t/ *a*(w-0.5e0-0.5e0); return gam1; S40: top = (((((((r[8]*t+r[7])*t+r[6])*t+r[5])*t+r[4])*t+r[3])*t+r[2])*t+r[1])*t+ r[0]; bot = (s2*t+s1)*t+1.0e0; w = top/bot; if(d > 0.0e0) goto S50; gam1 = *a*(w+0.5e0+0.5e0); return gam1; S50: gam1 = t*w/ *a; return gam1; } //****************************************************************************80 void gamma_inc ( double *a, double *x, double *ans, double *qans, int *ind ) //****************************************************************************80 // // Purpose: // // GAMMA_INC evaluates the incomplete gamma ratio functions P(A,X) and Q(A,X). // // Discussion: // // This is certified spaghetti code. // // Author: // // Alfred H Morris, Jr, // Naval Surface Weapons Center, // Dahlgren, Virginia. // // Parameters: // // Input, double *A, *X, the arguments of the incomplete // gamma ratio. A and X must be nonnegative. A and X cannot // both be zero. // // Output, double *ANS, *QANS. On normal output, // ANS = P(A,X) and QANS = Q(A,X). However, ANS is set to 2 if // A or X is negative, or both are 0, or when the answer is // computationally indeterminate because A is extremely large // and X is very close to A. // // Input, int *IND, indicates the accuracy request: // 0, as much accuracy as possible. // 1, to within 1 unit of the 6-th significant digit, // otherwise, to within 1 unit of the 3rd significant digit. // { static double alog10 = 2.30258509299405e0; static double d10 = -.185185185185185e-02; static double d20 = .413359788359788e-02; static double d30 = .649434156378601e-03; static double d40 = -.861888290916712e-03; static double d50 = -.336798553366358e-03; static double d60 = .531307936463992e-03; static double d70 = .344367606892378e-03; static double rt2pin = .398942280401433e0; static double rtpi = 1.77245385090552e0; static double third = .333333333333333e0; static double acc0[3] = { 5.e-15,5.e-7,5.e-4 }; static double big[3] = { 20.0e0,14.0e0,10.0e0 }; static double d0[13] = { .833333333333333e-01,-.148148148148148e-01,.115740740740741e-02, .352733686067019e-03,-.178755144032922e-03,.391926317852244e-04, -.218544851067999e-05,-.185406221071516e-05,.829671134095309e-06, -.176659527368261e-06,.670785354340150e-08,.102618097842403e-07, -.438203601845335e-08 }; static double d1[12] = { -.347222222222222e-02,.264550264550265e-02,-.990226337448560e-03, .205761316872428e-03,-.401877572016461e-06,-.180985503344900e-04, .764916091608111e-05,-.161209008945634e-05,.464712780280743e-08, .137863344691572e-06,-.575254560351770e-07,.119516285997781e-07 }; static double d2[10] = { -.268132716049383e-02,.771604938271605e-03,.200938786008230e-05, -.107366532263652e-03,.529234488291201e-04,-.127606351886187e-04, .342357873409614e-07,.137219573090629e-05,-.629899213838006e-06, .142806142060642e-06 }; static double d3[8] = { .229472093621399e-03,-.469189494395256e-03,.267720632062839e-03, -.756180167188398e-04,-.239650511386730e-06,.110826541153473e-04, -.567495282699160e-05,.142309007324359e-05 }; static double d4[6] = { .784039221720067e-03,-.299072480303190e-03,-.146384525788434e-05, .664149821546512e-04,-.396836504717943e-04,.113757269706784e-04 }; static double d5[4] = { -.697281375836586e-04,.277275324495939e-03,-.199325705161888e-03, .679778047793721e-04 }; static double d6[2] = { -.592166437353694e-03,.270878209671804e-03 }; static double e00[3] = { .25e-3,.25e-1,.14e0 }; static double x00[3] = { 31.0e0,17.0e0,9.7e0 }; static int K1 = 1; static int K2 = 0; static double a2n,a2nm1,acc,am0,amn,an,an0,apn,b2n,b2nm1,c,c0,c1,c2,c3,c4,c5,c6, cma,e,e0,g,h,j,l,r,rta,rtx,s,sum,t,t1,tol,twoa,u,w,x0,y,z; static int i,iop,m,max,n; static double wk[20],T3; static int T4,T5; static double T6,T7; // // E IS A MACHINE DEPENDENT CONSTANT. E IS THE SMALLEST // NUMBER FOR WHICH 1.0 + E .GT. 1.0 . // e = dpmpar(&K1); if(*a < 0.0e0 || *x < 0.0e0) goto S430; if(*a == 0.0e0 && *x == 0.0e0) goto S430; if(*a**x == 0.0e0) goto S420; iop = *ind+1; if(iop != 1 && iop != 2) iop = 3; acc = fifdmax1(acc0[iop-1],e); e0 = e00[iop-1]; x0 = x00[iop-1]; // // SELECT THE APPROPRIATE ALGORITHM // if(*a >= 1.0e0) goto S10; if(*a == 0.5e0) goto S390; if(*x < 1.1e0) goto S160; t1 = *a*log(*x)-*x; u = *a*exp(t1); if(u == 0.0e0) goto S380; r = u*(1.0e0+gam1(a)); goto S250; S10: if(*a >= big[iop-1]) goto S30; if(*a > *x || *x >= x0) goto S20; twoa = *a+*a; m = fifidint(twoa); if(twoa != (double)m) goto S20; i = m/2; if(*a == (double)i) goto S210; goto S220; S20: t1 = *a*log(*x)-*x; r = exp(t1)/ gamma_x(a); goto S40; S30: l = *x/ *a; if(l == 0.0e0) goto S370; s = 0.5e0+(0.5e0-l); z = rlog(&l); if(z >= 700.0e0/ *a) goto S410; y = *a*z; rta = sqrt(*a); if(fabs(s) <= e0/rta) goto S330; if(fabs(s) <= 0.4e0) goto S270; t = pow(1.0e0/ *a,2.0); t1 = (((0.75e0*t-1.0e0)*t+3.5e0)*t-105.0e0)/(*a*1260.0e0); t1 -= y; r = rt2pin*rta*exp(t1); S40: if(r == 0.0e0) goto S420; if(*x <= fifdmax1(*a,alog10)) goto S50; if(*x < x0) goto S250; goto S100; S50: // // TAYLOR SERIES FOR P/R // apn = *a+1.0e0; t = *x/apn; wk[0] = t; for ( n = 2; n <= 20; n++ ) { apn += 1.0e0; t *= (*x/apn); if(t <= 1.e-3) goto S70; wk[n-1] = t; } n = 20; S70: sum = t; tol = 0.5e0*acc; S80: apn += 1.0e0; t *= (*x/apn); sum += t; if(t > tol) goto S80; max = n-1; for ( m = 1; m <= max; m++ ) { n -= 1; sum += wk[n-1]; } *ans = r/ *a*(1.0e0+sum); *qans = 0.5e0+(0.5e0-*ans); return; S100: // // ASYMPTOTIC EXPANSION // amn = *a-1.0e0; t = amn/ *x; wk[0] = t; for ( n = 2; n <= 20; n++ ) { amn -= 1.0e0; t *= (amn/ *x); if(fabs(t) <= 1.e-3) goto S120; wk[n-1] = t; } n = 20; S120: sum = t; S130: if(fabs(t) <= acc) goto S140; amn -= 1.0e0; t *= (amn/ *x); sum += t; goto S130; S140: max = n-1; for ( m = 1; m <= max; m++ ) { n -= 1; sum += wk[n-1]; } *qans = r/ *x*(1.0e0+sum); *ans = 0.5e0+(0.5e0-*qans); return; S160: // // TAYLOR SERIES FOR P(A,X)/X**A // an = 3.0e0; c = *x; sum = *x/(*a+3.0e0); tol = 3.0e0*acc/(*a+1.0e0); S170: an += 1.0e0; c = -(c*(*x/an)); t = c/(*a+an); sum += t; if(fabs(t) > tol) goto S170; j = *a**x*((sum/6.0e0-0.5e0/(*a+2.0e0))**x+1.0e0/(*a+1.0e0)); z = *a*log(*x); h = gam1(a); g = 1.0e0+h; if(*x < 0.25e0) goto S180; if(*a < *x/2.59e0) goto S200; goto S190; S180: if(z > -.13394e0) goto S200; S190: w = exp(z); *ans = w*g*(0.5e0+(0.5e0-j)); *qans = 0.5e0+(0.5e0-*ans); return; S200: l = rexp(&z); w = 0.5e0+(0.5e0+l); *qans = (w*j-l)*g-h; if(*qans < 0.0e0) goto S380; *ans = 0.5e0+(0.5e0-*qans); return; S210: // // FINITE SUMS FOR Q WHEN A .GE. 1 AND 2*A IS AN INTEGER // sum = exp(-*x); t = sum; n = 1; c = 0.0e0; goto S230; S220: rtx = sqrt(*x); sum = error_fc ( &K2, &rtx ); t = exp(-*x)/(rtpi*rtx); n = 0; c = -0.5e0; S230: if(n == i) goto S240; n += 1; c += 1.0e0; t = *x*t/c; sum += t; goto S230; S240: *qans = sum; *ans = 0.5e0+(0.5e0-*qans); return; S250: // // CONTINUED FRACTION EXPANSION // tol = fifdmax1(5.0e0*e,acc); a2nm1 = a2n = 1.0e0; b2nm1 = *x; b2n = *x+(1.0e0-*a); c = 1.0e0; S260: a2nm1 = *x*a2n+c*a2nm1; b2nm1 = *x*b2n+c*b2nm1; am0 = a2nm1/b2nm1; c += 1.0e0; cma = c-*a; a2n = a2nm1+cma*a2n; b2n = b2nm1+cma*b2n; an0 = a2n/b2n; if(fabs(an0-am0) >= tol*an0) goto S260; *qans = r*an0; *ans = 0.5e0+(0.5e0-*qans); return; S270: // // GENERAL TEMME EXPANSION // if(fabs(s) <= 2.0e0*e && *a*e*e > 3.28e-3) goto S430; c = exp(-y); T3 = sqrt(y); w = 0.5e0 * error_fc ( &K1, &T3 ); u = 1.0e0/ *a; z = sqrt(z+z); if(l < 1.0e0) z = -z; T4 = iop-2; if(T4 < 0) goto S280; else if(T4 == 0) goto S290; else goto S300; S280: if(fabs(s) <= 1.e-3) goto S340; c0 = ((((((((((((d0[12]*z+d0[11])*z+d0[10])*z+d0[9])*z+d0[8])*z+d0[7])*z+d0[ 6])*z+d0[5])*z+d0[4])*z+d0[3])*z+d0[2])*z+d0[1])*z+d0[0])*z-third; c1 = (((((((((((d1[11]*z+d1[10])*z+d1[9])*z+d1[8])*z+d1[7])*z+d1[6])*z+d1[5] )*z+d1[4])*z+d1[3])*z+d1[2])*z+d1[1])*z+d1[0])*z+d10; c2 = (((((((((d2[9]*z+d2[8])*z+d2[7])*z+d2[6])*z+d2[5])*z+d2[4])*z+d2[3])*z+ d2[2])*z+d2[1])*z+d2[0])*z+d20; c3 = (((((((d3[7]*z+d3[6])*z+d3[5])*z+d3[4])*z+d3[3])*z+d3[2])*z+d3[1])*z+ d3[0])*z+d30; c4 = (((((d4[5]*z+d4[4])*z+d4[3])*z+d4[2])*z+d4[1])*z+d4[0])*z+d40; c5 = (((d5[3]*z+d5[2])*z+d5[1])*z+d5[0])*z+d50; c6 = (d6[1]*z+d6[0])*z+d60; t = ((((((d70*u+c6)*u+c5)*u+c4)*u+c3)*u+c2)*u+c1)*u+c0; goto S310; S290: c0 = (((((d0[5]*z+d0[4])*z+d0[3])*z+d0[2])*z+d0[1])*z+d0[0])*z-third; c1 = (((d1[3]*z+d1[2])*z+d1[1])*z+d1[0])*z+d10; c2 = d2[0]*z+d20; t = (c2*u+c1)*u+c0; goto S310; S300: t = ((d0[2]*z+d0[1])*z+d0[0])*z-third; S310: if(l < 1.0e0) goto S320; *qans = c*(w+rt2pin*t/rta); *ans = 0.5e0+(0.5e0-*qans); return; S320: *ans = c*(w-rt2pin*t/rta); *qans = 0.5e0+(0.5e0-*ans); return; S330: // // TEMME EXPANSION FOR L = 1 // if(*a*e*e > 3.28e-3) goto S430; c = 0.5e0+(0.5e0-y); w = (0.5e0-sqrt(y)*(0.5e0+(0.5e0-y/3.0e0))/rtpi)/c; u = 1.0e0/ *a; z = sqrt(z+z); if(l < 1.0e0) z = -z; T5 = iop-2; if(T5 < 0) goto S340; else if(T5 == 0) goto S350; else goto S360; S340: c0 = ((((((d0[6]*z+d0[5])*z+d0[4])*z+d0[3])*z+d0[2])*z+d0[1])*z+d0[0])*z- third; c1 = (((((d1[5]*z+d1[4])*z+d1[3])*z+d1[2])*z+d1[1])*z+d1[0])*z+d10; c2 = ((((d2[4]*z+d2[3])*z+d2[2])*z+d2[1])*z+d2[0])*z+d20; c3 = (((d3[3]*z+d3[2])*z+d3[1])*z+d3[0])*z+d30; c4 = (d4[1]*z+d4[0])*z+d40; c5 = (d5[1]*z+d5[0])*z+d50; c6 = d6[0]*z+d60; t = ((((((d70*u+c6)*u+c5)*u+c4)*u+c3)*u+c2)*u+c1)*u+c0; goto S310; S350: c0 = (d0[1]*z+d0[0])*z-third; c1 = d1[0]*z+d10; t = (d20*u+c1)*u+c0; goto S310; S360: t = d0[0]*z-third; goto S310; S370: // // SPECIAL CASES // *ans = 0.0e0; *qans = 1.0e0; return; S380: *ans = 1.0e0; *qans = 0.0e0; return; S390: if(*x >= 0.25e0) goto S400; T6 = sqrt(*x); *ans = error_f ( &T6 ); *qans = 0.5e0+(0.5e0-*ans); return; S400: T7 = sqrt(*x); *qans = error_fc ( &K2, &T7 ); *ans = 0.5e0+(0.5e0-*qans); return; S410: if(fabs(s) <= 2.0e0*e) goto S430; S420: if(*x <= *a) goto S370; goto S380; S430: // // ERROR RETURN // *ans = 2.0e0; return; } //****************************************************************************80 void gamma_inc_inv ( double *a, double *x, double *x0, double *p, double *q, int *ierr ) //****************************************************************************80 // // Purpose: // // GAMMA_INC_INV computes the inverse incomplete gamma ratio function. // // Discussion: // // The routine is given positive A, and nonnegative P and Q where P + Q = 1. // The value X is computed with the property that P(A,X) = P and Q(A,X) = Q. // Schroder iteration is employed. The routine attempts to compute X // to 10 significant digits if this is possible for the particular computer // arithmetic being used. // // Author: // // Alfred H Morris, Jr, // Naval Surface Weapons Center, // Dahlgren, Virginia. // // Parameters: // // Input, double *A, the parameter in the incomplete gamma // ratio. A must be positive. // // Output, double *X, the computed point for which the // incomplete gamma functions have the values P and Q. // // Input, double *X0, an optional initial approximation // for the solution X. If the user does not want to supply an // initial approximation, then X0 should be set to 0, or a negative // value. // // Input, double *P, *Q, the values of the incomplete gamma // functions, for which the corresponding argument is desired. // // Output, int *IERR, error flag. // 0, the solution was obtained. Iteration was not used. // 0 < K, The solution was obtained. IERR iterations were performed. // -2, A <= 0 // -3, No solution was obtained. The ratio Q/A is too large. // -4, P + Q /= 1 // -6, 20 iterations were performed. The most recent value obtained // for X is given. This cannot occur if X0 <= 0. // -7, Iteration failed. No value is given for X. // This may occur when X is approximately 0. // -8, A value for X has been obtained, but the routine is not certain // of its accuracy. Iteration cannot be performed in this // case. If X0 <= 0, this can occur only when P or Q is // approximately 0. If X0 is positive then this can occur when A is // exceedingly close to X and A is extremely large (say A .GE. 1.E20). // { static double a0 = 3.31125922108741e0; static double a1 = 11.6616720288968e0; static double a2 = 4.28342155967104e0; static double a3 = .213623493715853e0; static double b1 = 6.61053765625462e0; static double b2 = 6.40691597760039e0; static double b3 = 1.27364489782223e0; static double b4 = .036117081018842e0; static double c = .577215664901533e0; static double ln10 = 2.302585e0; static double tol = 1.e-5; static double amin[2] = { 500.0e0,100.0e0 }; static double bmin[2] = { 1.e-28,1.e-13 }; static double dmin[2] = { 1.e-06,1.e-04 }; static double emin[2] = { 2.e-03,6.e-03 }; static double eps0[2] = { 1.e-10,1.e-08 }; static int K1 = 1; static int K2 = 2; static int K3 = 3; static int K8 = 0; static double am1,amax,ap1,ap2,ap3,apn,b,c1,c2,c3,c4,c5,d,e,e2,eps,g,h,pn,qg,qn, r,rta,s,s2,sum,t,u,w,xmax,xmin,xn,y,z; static int iop; static double T4,T5,T6,T7,T9; // // E, XMIN, AND XMAX ARE MACHINE DEPENDENT CONSTANTS. // E IS THE SMALLEST NUMBER FOR WHICH 1.0 + E .GT. 1.0. // XMIN IS THE SMALLEST POSITIVE NUMBER AND XMAX IS THE // LARGEST POSITIVE NUMBER. // e = dpmpar(&K1); xmin = dpmpar(&K2); xmax = dpmpar(&K3); *x = 0.0e0; if(*a <= 0.0e0) goto S300; t = *p+*q-1.e0; if(fabs(t) > e) goto S320; *ierr = 0; if(*p == 0.0e0) return; if(*q == 0.0e0) goto S270; if(*a == 1.0e0) goto S280; e2 = 2.0e0*e; amax = 0.4e-10/(e*e); iop = 1; if(e > 1.e-10) iop = 2; eps = eps0[iop-1]; xn = *x0; if(*x0 > 0.0e0) goto S160; // // SELECTION OF THE INITIAL APPROXIMATION XN OF X // WHEN A .LT. 1 // if(*a > 1.0e0) goto S80; T4 = *a+1.0e0; g = gamma_x(&T4); qg = *q*g; if(qg == 0.0e0) goto S360; b = qg/ *a; if(qg > 0.6e0**a) goto S40; if(*a >= 0.30e0 || b < 0.35e0) goto S10; t = exp(-(b+c)); u = t*exp(t); xn = t*exp(u); goto S160; S10: if(b >= 0.45e0) goto S40; if(b == 0.0e0) goto S360; y = -log(b); s = 0.5e0+(0.5e0-*a); z = log(y); t = y-s*z; if(b < 0.15e0) goto S20; xn = y-s*log(t)-log(1.0e0+s/(t+1.0e0)); goto S220; S20: if(b <= 0.01e0) goto S30; u = ((t+2.0e0*(3.0e0-*a))*t+(2.0e0-*a)*(3.0e0-*a))/((t+(5.0e0-*a))*t+2.0e0); xn = y-s*log(t)-log(u); goto S220; S30: c1 = -(s*z); c2 = -(s*(1.0e0+c1)); c3 = s*((0.5e0*c1+(2.0e0-*a))*c1+(2.5e0-1.5e0**a)); c4 = -(s*(((c1/3.0e0+(2.5e0-1.5e0**a))*c1+((*a-6.0e0)**a+7.0e0))*c1+( (11.0e0**a-46.0)**a+47.0e0)/6.0e0)); c5 = -(s*((((-(c1/4.0e0)+(11.0e0**a-17.0e0)/6.0e0)*c1+((-(3.0e0**a)+13.0e0)* *a-13.0e0))*c1+0.5e0*(((2.0e0**a-25.0e0)**a+72.0e0)**a-61.0e0))*c1+(( (25.0e0**a-195.0e0)**a+477.0e0)**a-379.0e0)/12.0e0)); xn = (((c5/y+c4)/y+c3)/y+c2)/y+c1+y; if(*a > 1.0e0) goto S220; if(b > bmin[iop-1]) goto S220; *x = xn; return; S40: if(b**q > 1.e-8) goto S50; xn = exp(-(*q/ *a+c)); goto S70; S50: if(*p <= 0.9e0) goto S60; T5 = -*q; xn = exp((alnrel(&T5)+ gamma_ln1 ( a ) ) / *a ); goto S70; S60: xn = exp(log(*p*g)/ *a); S70: if(xn == 0.0e0) goto S310; t = 0.5e0+(0.5e0-xn/(*a+1.0e0)); xn /= t; goto S160; S80: // // SELECTION OF THE INITIAL APPROXIMATION XN OF X // WHEN A .GT. 1 // if(*q <= 0.5e0) goto S90; w = log(*p); goto S100; S90: w = log(*q); S100: t = sqrt(-(2.0e0*w)); s = t-(((a3*t+a2)*t+a1)*t+a0)/((((b4*t+b3)*t+b2)*t+b1)*t+1.0e0); if(*q > 0.5e0) s = -s; rta = sqrt(*a); s2 = s*s; xn = *a+s*rta+(s2-1.0e0)/3.0e0+s*(s2-7.0e0)/(36.0e0*rta)-((3.0e0*s2+7.0e0)* s2-16.0e0)/(810.0e0**a)+s*((9.0e0*s2+256.0e0)*s2-433.0e0)/(38880.0e0**a* rta); xn = fifdmax1(xn,0.0e0); if(*a < amin[iop-1]) goto S110; *x = xn; d = 0.5e0+(0.5e0-*x/ *a); if(fabs(d) <= dmin[iop-1]) return; S110: if(*p <= 0.5e0) goto S130; if(xn < 3.0e0**a) goto S220; y = -(w+ gamma_log ( a ) ); d = fifdmax1(2.0e0,*a*(*a-1.0e0)); if(y < ln10*d) goto S120; s = 1.0e0-*a; z = log(y); goto S30; S120: t = *a-1.0e0; T6 = -(t/(xn+1.0e0)); xn = y+t*log(xn)-alnrel(&T6); T7 = -(t/(xn+1.0e0)); xn = y+t*log(xn)-alnrel(&T7); goto S220; S130: ap1 = *a+1.0e0; if(xn > 0.70e0*ap1) goto S170; w += gamma_log ( &ap1 ); if(xn > 0.15e0*ap1) goto S140; ap2 = *a+2.0e0; ap3 = *a+3.0e0; *x = exp((w+*x)/ *a); *x = exp((w+*x-log(1.0e0+*x/ap1*(1.0e0+*x/ap2)))/ *a); *x = exp((w+*x-log(1.0e0+*x/ap1*(1.0e0+*x/ap2)))/ *a); *x = exp((w+*x-log(1.0e0+*x/ap1*(1.0e0+*x/ap2*(1.0e0+*x/ap3))))/ *a); xn = *x; if(xn > 1.e-2*ap1) goto S140; if(xn <= emin[iop-1]*ap1) return; goto S170; S140: apn = ap1; t = xn/apn; sum = 1.0e0+t; S150: apn += 1.0e0; t *= (xn/apn); sum += t; if(t > 1.e-4) goto S150; t = w-log(sum); xn = exp((xn+t)/ *a); xn *= (1.0e0-(*a*log(xn)-xn-t)/(*a-xn)); goto S170; S160: // // SCHRODER ITERATION USING P // if(*p > 0.5e0) goto S220; S170: if(*p <= 1.e10*xmin) goto S350; am1 = *a-0.5e0-0.5e0; S180: if(*a <= amax) goto S190; d = 0.5e0+(0.5e0-xn/ *a); if(fabs(d) <= e2) goto S350; S190: if(*ierr >= 20) goto S330; *ierr += 1; gamma_inc ( a, &xn, &pn, &qn, &K8 ); if(pn == 0.0e0 || qn == 0.0e0) goto S350; r = rcomp(a,&xn); if(r == 0.0e0) goto S350; t = (pn-*p)/r; w = 0.5e0*(am1-xn); if(fabs(t) <= 0.1e0 && fabs(w*t) <= 0.1e0) goto S200; *x = xn*(1.0e0-t); if(*x <= 0.0e0) goto S340; d = fabs(t); goto S210; S200: h = t*(1.0e0+w*t); *x = xn*(1.0e0-h); if(*x <= 0.0e0) goto S340; if(fabs(w) >= 1.0e0 && fabs(w)*t*t <= eps) return; d = fabs(h); S210: xn = *x; if(d > tol) goto S180; if(d <= eps) return; if(fabs(*p-pn) <= tol**p) return; goto S180; S220: // // SCHRODER ITERATION USING Q // if(*q <= 1.e10*xmin) goto S350; am1 = *a-0.5e0-0.5e0; S230: if(*a <= amax) goto S240; d = 0.5e0+(0.5e0-xn/ *a); if(fabs(d) <= e2) goto S350; S240: if(*ierr >= 20) goto S330; *ierr += 1; gamma_inc ( a, &xn, &pn, &qn, &K8 ); if(pn == 0.0e0 || qn == 0.0e0) goto S350; r = rcomp(a,&xn); if(r == 0.0e0) goto S350; t = (*q-qn)/r; w = 0.5e0*(am1-xn); if(fabs(t) <= 0.1e0 && fabs(w*t) <= 0.1e0) goto S250; *x = xn*(1.0e0-t); if(*x <= 0.0e0) goto S340; d = fabs(t); goto S260; S250: h = t*(1.0e0+w*t); *x = xn*(1.0e0-h); if(*x <= 0.0e0) goto S340; if(fabs(w) >= 1.0e0 && fabs(w)*t*t <= eps) return; d = fabs(h); S260: xn = *x; if(d > tol) goto S230; if(d <= eps) return; if(fabs(*q-qn) <= tol**q) return; goto S230; S270: // // SPECIAL CASES // *x = xmax; return; S280: if(*q < 0.9e0) goto S290; T9 = -*p; *x = -alnrel(&T9); return; S290: *x = -log(*q); return; S300: // // ERROR RETURN // *ierr = -2; return; S310: *ierr = -3; return; S320: *ierr = -4; return; S330: *ierr = -6; return; S340: *ierr = -7; return; S350: *x = xn; *ierr = -8; return; S360: *x = xmax; *ierr = -8; return; } //****************************************************************************80 void gamma_inc_values ( int *n_data, double *a, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // GAMMA_INC_VALUES returns some values of the incomplete Gamma function. // // Discussion: // // The (normalized) incomplete Gamma function P(A,X) is defined as: // // PN(A,X) = 1/GAMMA(A) * Integral ( 0 <= T <= X ) T**(A-1) * exp(-T) dT. // // With this definition, for all A and X, // // 0 <= PN(A,X) <= 1 // // and // // PN(A,INFINITY) = 1.0 // // Mathematica can compute this value as // // 1 - GammaRegularized[A,X] // // Modified: // // 31 May 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double *A, the parameter of the function. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 20 double a_vec[N_MAX] = { 0.1E+00, 0.1E+00, 0.1E+00, 0.5E+00, 0.5E+00, 0.5E+00, 1.0E+00, 1.0E+00, 1.0E+00, 1.1E+00, 1.1E+00, 1.1E+00, 2.0E+00, 2.0E+00, 2.0E+00, 6.0E+00, 6.0E+00, 11.0E+00, 26.0E+00, 41.0E+00 }; double fx_vec[N_MAX] = { 0.7420263E+00, 0.9119753E+00, 0.9898955E+00, 0.2931279E+00, 0.7656418E+00, 0.9921661E+00, 0.0951626E+00, 0.6321206E+00, 0.9932621E+00, 0.0757471E+00, 0.6076457E+00, 0.9933425E+00, 0.0091054E+00, 0.4130643E+00, 0.9931450E+00, 0.0387318E+00, 0.9825937E+00, 0.9404267E+00, 0.4863866E+00, 0.7359709E+00 }; double x_vec[N_MAX] = { 3.1622777E-02, 3.1622777E-01, 1.5811388E+00, 7.0710678E-02, 7.0710678E-01, 3.5355339E+00, 0.1000000E+00, 1.0000000E+00, 5.0000000E+00, 1.0488088E-01, 1.0488088E+00, 5.2440442E+00, 1.4142136E-01, 1.4142136E+00, 7.0710678E+00, 2.4494897E+00, 1.2247449E+01, 1.6583124E+01, 2.5495098E+01, 4.4821870E+01 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0.0E+00; *x = 0.0E+00; *fx = 0.0E+00; } else { *a = a_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double gamma_ln1 ( double *a ) //****************************************************************************80 // // Purpose: // // GAMMA_LN1 evaluates ln ( Gamma ( 1 + A ) ), for -0.2 <= A <= 1.25. // // Parameters: // // Input, double *A, defines the argument of the function. // // Output, double GAMMA_LN1, the value of ln ( Gamma ( 1 + A ) ). // { static double p0 = .577215664901533e+00; static double p1 = .844203922187225e+00; static double p2 = -.168860593646662e+00; static double p3 = -.780427615533591e+00; static double p4 = -.402055799310489e+00; static double p5 = -.673562214325671e-01; static double p6 = -.271935708322958e-02; static double q1 = .288743195473681e+01; static double q2 = .312755088914843e+01; static double q3 = .156875193295039e+01; static double q4 = .361951990101499e+00; static double q5 = .325038868253937e-01; static double q6 = .667465618796164e-03; static double r0 = .422784335098467e+00; static double r1 = .848044614534529e+00; static double r2 = .565221050691933e+00; static double r3 = .156513060486551e+00; static double r4 = .170502484022650e-01; static double r5 = .497958207639485e-03; static double s1 = .124313399877507e+01; static double s2 = .548042109832463e+00; static double s3 = .101552187439830e+00; static double s4 = .713309612391000e-02; static double s5 = .116165475989616e-03; static double gamln1,w,x; if(*a >= 0.6e0) goto S10; w = ((((((p6**a+p5)**a+p4)**a+p3)**a+p2)**a+p1)**a+p0)/((((((q6**a+q5)**a+ q4)**a+q3)**a+q2)**a+q1)**a+1.0e0); gamln1 = -(*a*w); return gamln1; S10: x = *a-0.5e0-0.5e0; w = (((((r5*x+r4)*x+r3)*x+r2)*x+r1)*x+r0)/(((((s5*x+s4)*x+s3)*x+s2)*x+s1)*x +1.0e0); gamln1 = x*w; return gamln1; } //****************************************************************************80 double gamma_log ( double *a ) //****************************************************************************80 // // Purpose: // // GAMMA_LOG evaluates ln ( Gamma ( A ) ) for positive A. // // Author: // // Alfred H Morris, Jr, // Naval Surface Weapons Center, // Dahlgren, Virginia. // // Reference: // // Armido DiDinato and Alfred Morris, // Algorithm 708: // Significant Digit Computation of the Incomplete Beta Function Ratios, // ACM Transactions on Mathematical Software, // Volume 18, 1993, pages 360-373. // // Parameters: // // Input, double *A, the argument of the function. // A should be positive. // // Output, double GAMMA_LOG, the value of ln ( Gamma ( A ) ). // { static double c0 = .833333333333333e-01; static double c1 = -.277777777760991e-02; static double c2 = .793650666825390e-03; static double c3 = -.595202931351870e-03; static double c4 = .837308034031215e-03; static double c5 = -.165322962780713e-02; static double d = .418938533204673e0; static double gamln,t,w; static int i,n; static double T1; if(*a > 0.8e0) goto S10; gamln = gamma_ln1 ( a ) - log ( *a ); return gamln; S10: if(*a > 2.25e0) goto S20; t = *a-0.5e0-0.5e0; gamln = gamma_ln1 ( &t ); return gamln; S20: if(*a >= 10.0e0) goto S40; n = ( int ) ( *a - 1.25e0 ); t = *a; w = 1.0e0; for ( i = 1; i <= n; i++ ) { t -= 1.0e0; w = t*w; } T1 = t-1.0e0; gamln = gamma_ln1 ( &T1 ) + log ( w ); return gamln; S40: t = pow(1.0e0/ *a,2.0); w = (((((c5*t+c4)*t+c3)*t+c2)*t+c1)*t+c0)/ *a; gamln = d+w+(*a-0.5e0)*(log(*a)-1.0e0); return gamln; } //****************************************************************************80 void gamma_rat1 ( double *a, double *x, double *r, double *p, double *q, double *eps ) //****************************************************************************80 // // Purpose: // // GAMMA_RAT1 evaluates the incomplete gamma ratio functions P(A,X) and Q(A,X). // // Parameters: // // Input, double *A, *X, the parameters of the functions. // It is assumed that A <= 1. // // Input, double *R, the value exp(-X) * X**A / Gamma(A). // // Output, double *P, *Q, the values of P(A,X) and Q(A,X). // // Input, double *EPS, the tolerance. // { static int K2 = 0; static double a2n,a2nm1,am0,an,an0,b2n,b2nm1,c,cma,g,h,j,l,sum,t,tol,w,z,T1,T3; if(*a**x == 0.0e0) goto S120; if(*a == 0.5e0) goto S100; if(*x < 1.1e0) goto S10; goto S60; S10: // // TAYLOR SERIES FOR P(A,X)/X**A // an = 3.0e0; c = *x; sum = *x/(*a+3.0e0); tol = 0.1e0**eps/(*a+1.0e0); S20: an += 1.0e0; c = -(c*(*x/an)); t = c/(*a+an); sum += t; if(fabs(t) > tol) goto S20; j = *a**x*((sum/6.0e0-0.5e0/(*a+2.0e0))**x+1.0e0/(*a+1.0e0)); z = *a*log(*x); h = gam1(a); g = 1.0e0+h; if(*x < 0.25e0) goto S30; if(*a < *x/2.59e0) goto S50; goto S40; S30: if(z > -.13394e0) goto S50; S40: w = exp(z); *p = w*g*(0.5e0+(0.5e0-j)); *q = 0.5e0+(0.5e0-*p); return; S50: l = rexp(&z); w = 0.5e0+(0.5e0+l); *q = (w*j-l)*g-h; if(*q < 0.0e0) goto S90; *p = 0.5e0+(0.5e0-*q); return; S60: // // CONTINUED FRACTION EXPANSION // a2nm1 = a2n = 1.0e0; b2nm1 = *x; b2n = *x+(1.0e0-*a); c = 1.0e0; S70: a2nm1 = *x*a2n+c*a2nm1; b2nm1 = *x*b2n+c*b2nm1; am0 = a2nm1/b2nm1; c += 1.0e0; cma = c-*a; a2n = a2nm1+cma*a2n; b2n = b2nm1+cma*b2n; an0 = a2n/b2n; if(fabs(an0-am0) >= *eps*an0) goto S70; *q = *r*an0; *p = 0.5e0+(0.5e0-*q); return; S80: // // SPECIAL CASES // *p = 0.0e0; *q = 1.0e0; return; S90: *p = 1.0e0; *q = 0.0e0; return; S100: if(*x >= 0.25e0) goto S110; T1 = sqrt(*x); *p = error_f ( &T1 ); *q = 0.5e0+(0.5e0-*p); return; S110: T3 = sqrt(*x); *q = error_fc ( &K2, &T3 ); *p = 0.5e0+(0.5e0-*q); return; S120: if(*x <= *a) goto S80; goto S90; } //****************************************************************************80 void gamma_values ( int *n_data, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // GAMMA_VALUES returns some values of the Gamma function. // // Definition: // // GAMMA(Z) = Integral ( 0 <= T < Infinity) T**(Z-1) EXP(-T) dT // // Recursion: // // GAMMA(X+1) = X*GAMMA(X) // // Restrictions: // // 0 < X ( a software restriction). // // Special values: // // GAMMA(0.5) = sqrt(PI) // // For N a positive integer, GAMMA(N+1) = N!, the standard factorial. // // Modified: // // 31 May 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 18 double fx_vec[N_MAX] = { 4.590845E+00, 2.218160E+00, 1.489192E+00, 1.164230E+00, 1.0000000000E+00, 0.9513507699E+00, 0.9181687424E+00, 0.8974706963E+00, 0.8872638175E+00, 0.8862269255E+00, 0.8935153493E+00, 0.9086387329E+00, 0.9313837710E+00, 0.9617658319E+00, 1.0000000000E+00, 3.6288000E+05, 1.2164510E+17, 8.8417620E+30 }; double x_vec[N_MAX] = { 0.2E+00, 0.4E+00, 0.6E+00, 0.8E+00, 1.0E+00, 1.1E+00, 1.2E+00, 1.3E+00, 1.4E+00, 1.5E+00, 1.6E+00, 1.7E+00, 1.8E+00, 1.9E+00, 2.0E+00, 10.0E+00, 20.0E+00, 30.0E+00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *x = 0.0E+00; *fx = 0.0E+00; } else { *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double gamma_x ( double *a ) //****************************************************************************80 // // Purpose: // // GAMMA_X evaluates the gamma function. // // Discussion: // // This routine was renamed from "GAMMA" to avoid a conflict with the // C/C++ math library routine. // // Author: // // Alfred H Morris, Jr, // Naval Surface Weapons Center, // Dahlgren, Virginia. // // Parameters: // // Input, double *A, the argument of the Gamma function. // // Output, double GAMMA_X, the value of the Gamma function. // { static double d = .41893853320467274178e0; static double pi = 3.1415926535898e0; static double r1 = .820756370353826e-03; static double r2 = -.595156336428591e-03; static double r3 = .793650663183693e-03; static double r4 = -.277777777770481e-02; static double r5 = .833333333333333e-01; static double p[7] = { .539637273585445e-03,.261939260042690e-02,.204493667594920e-01, .730981088720487e-01,.279648642639792e+00,.553413866010467e+00,1.0e0 }; static double q[7] = { -.832979206704073e-03,.470059485860584e-02,.225211131035340e-01, -.170458969313360e+00,-.567902761974940e-01,.113062953091122e+01,1.0e0 }; static int K2 = 3; static int K3 = 0; static double Xgamm,bot,g,lnx,s,t,top,w,x,z; static int i,j,m,n,T1; Xgamm = 0.0e0; x = *a; if(fabs(*a) >= 15.0e0) goto S110; // // EVALUATION OF GAMMA(A) FOR ABS(A) .LT. 15 // t = 1.0e0; m = fifidint(*a)-1; // // LET T BE THE PRODUCT OF A-J WHEN A .GE. 2 // T1 = m; if(T1 < 0) goto S40; else if(T1 == 0) goto S30; else goto S10; S10: for ( j = 1; j <= m; j++ ) { x -= 1.0e0; t = x*t; } S30: x -= 1.0e0; goto S80; S40: // // LET T BE THE PRODUCT OF A+J WHEN A .LT. 1 // t = *a; if(*a > 0.0e0) goto S70; m = -m-1; if(m == 0) goto S60; for ( j = 1; j <= m; j++ ) { x += 1.0e0; t = x*t; } S60: x += (0.5e0+0.5e0); t = x*t; if(t == 0.0e0) return Xgamm; S70: // // THE FOLLOWING CODE CHECKS IF 1/T CAN OVERFLOW. THIS // CODE MAY BE OMITTED IF DESIRED. // if(fabs(t) >= 1.e-30) goto S80; if(fabs(t)*dpmpar(&K2) <= 1.0001e0) return Xgamm; Xgamm = 1.0e0/t; return Xgamm; S80: // // COMPUTE GAMMA(1 + X) FOR 0 .LE. X .LT. 1 // top = p[0]; bot = q[0]; for ( i = 1; i < 7; i++ ) { top = p[i]+x*top; bot = q[i]+x*bot; } Xgamm = top/bot; // // TERMINATION // if(*a < 1.0e0) goto S100; Xgamm *= t; return Xgamm; S100: Xgamm /= t; return Xgamm; S110: // // EVALUATION OF GAMMA(A) FOR ABS(A) .GE. 15 // if(fabs(*a) >= 1.e3) return Xgamm; if(*a > 0.0e0) goto S120; x = -*a; n = ( int ) x; t = x-(double)n; if(t > 0.9e0) t = 1.0e0-t; s = sin(pi*t)/pi; if(fifmod(n,2) == 0) s = -s; if(s == 0.0e0) return Xgamm; S120: // // COMPUTE THE MODIFIED ASYMPTOTIC SUM // t = 1.0e0/(x*x); g = ((((r1*t+r2)*t+r3)*t+r4)*t+r5)/x; // // ONE MAY REPLACE THE NEXT STATEMENT WITH LNX = ALOG(X) // BUT LESS ACCURACY WILL NORMALLY BE OBTAINED. // lnx = log(x); // // FINAL ASSEMBLY // z = x; g = d+g+(z-0.5e0)*(lnx-1.e0); w = g; t = g-w; if(w > 0.99999e0*exparg(&K3)) return Xgamm; Xgamm = exp(w)*(1.0e0+t); if(*a < 0.0e0) Xgamm = 1.0e0/(Xgamm*s)/x; return Xgamm; } //****************************************************************************80 double gsumln ( double *a, double *b ) //****************************************************************************80 // // Purpose: // // GSUMLN evaluates the function ln(Gamma(A + B)). // // Discussion: // // GSUMLN is used for 1 <= A <= 2 and 1 <= B <= 2 // // Parameters: // // Input, double *A, *B, values whose sum is the argument of // the Gamma function. // // Output, double GSUMLN, the value of ln(Gamma(A+B)). // { static double gsumln,x,T1,T2; x = *a+*b-2.e0; if(x > 0.25e0) goto S10; T1 = 1.0e0+x; gsumln = gamma_ln1 ( &T1 ); return gsumln; S10: if(x > 1.25e0) goto S20; gsumln = gamma_ln1 ( &x ) + alnrel ( &x ); return gsumln; S20: T2 = x-1.0e0; gsumln = gamma_ln1 ( &T2 ) + log ( x * ( 1.0e0 + x ) ); return gsumln; } //****************************************************************************80 int ipmpar ( int *i ) //****************************************************************************80 // // Purpose: // // IPMPAR returns integer machine constants. // // Discussion: // // Input arguments 1 through 3 are queries about integer arithmetic. // We assume integers are represented in the N-digit, base-A form // // sign * ( X(N-1)*A**(N-1) + ... + X(1)*A + X(0) ) // // where 0 <= X(0:N-1) < A. // // Then: // // IPMPAR(1) = A, the base of integer arithmetic; // IPMPAR(2) = N, the number of base A digits; // IPMPAR(3) = A**N - 1, the largest magnitude. // // It is assumed that the single and double precision floating // point arithmetics have the same base, say B, and that the // nonzero numbers are represented in the form // // sign * (B**E) * (X(1)/B + ... + X(M)/B**M) // // where X(1:M) is one of { 0, 1,..., B-1 }, and 1 <= X(1) and // EMIN <= E <= EMAX. // // Input argument 4 is a query about the base of real arithmetic: // // IPMPAR(4) = B, the base of single and double precision arithmetic. // // Input arguments 5 through 7 are queries about single precision // floating point arithmetic: // // IPMPAR(5) = M, the number of base B digits for single precision. // IPMPAR(6) = EMIN, the smallest exponent E for single precision. // IPMPAR(7) = EMAX, the largest exponent E for single precision. // // Input arguments 8 through 10 are queries about double precision // floating point arithmetic: // // IPMPAR(8) = M, the number of base B digits for double precision. // IPMPAR(9) = EMIN, the smallest exponent E for double precision. // IPMPAR(10) = EMAX, the largest exponent E for double precision. // // Reference: // // Phyllis Fox, Andrew Hall, and Norman Schryer, // Algorithm 528, // Framework for a Portable FORTRAN Subroutine Library, // ACM Transactions on Mathematical Software, // Volume 4, 1978, pages 176-188. // // Parameters: // // Input, int *I, the index of the desired constant. // // Output, int IPMPAR, the value of the desired constant. // { static int imach[11]; static int ipmpar; // MACHINE CONSTANTS FOR AMDAHL MACHINES. // // imach[1] = 2; // imach[2] = 31; // imach[3] = 2147483647; // imach[4] = 16; // imach[5] = 6; // imach[6] = -64; // imach[7] = 63; // imach[8] = 14; // imach[9] = -64; // imach[10] = 63; // // MACHINE CONSTANTS FOR THE AT&T 3B SERIES, AT&T // PC 7300, AND AT&T 6300. // // imach[1] = 2; // imach[2] = 31; // imach[3] = 2147483647; // imach[4] = 2; // imach[5] = 24; // imach[6] = -125; // imach[7] = 128; // imach[8] = 53; // imach[9] = -1021; // imach[10] = 1024; // // MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM. // // imach[1] = 2; // imach[2] = 33; // imach[3] = 8589934591; // imach[4] = 2; // imach[5] = 24; // imach[6] = -256; // imach[7] = 255; // imach[8] = 60; // imach[9] = -256; // imach[10] = 255; // // MACHINE CONSTANTS FOR THE BURROUGHS 5700 SYSTEM. // // imach[1] = 2; // imach[2] = 39; // imach[3] = 549755813887; // imach[4] = 8; // imach[5] = 13; // imach[6] = -50; // imach[7] = 76; // imach[8] = 26; // imach[9] = -50; // imach[10] = 76; // // MACHINE CONSTANTS FOR THE BURROUGHS 6700/7700 SYSTEMS. // // imach[1] = 2; // imach[2] = 39; // imach[3] = 549755813887; // imach[4] = 8; // imach[5] = 13; // imach[6] = -50; // imach[7] = 76; // imach[8] = 26; // imach[9] = -32754; // imach[10] = 32780; // // MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES // 60 BIT ARITHMETIC, AND THE CDC CYBER 995 64 BIT // ARITHMETIC (NOS OPERATING SYSTEM). // // imach[1] = 2; // imach[2] = 48; // imach[3] = 281474976710655; // imach[4] = 2; // imach[5] = 48; // imach[6] = -974; // imach[7] = 1070; // imach[8] = 95; // imach[9] = -926; // imach[10] = 1070; // // MACHINE CONSTANTS FOR THE CDC CYBER 995 64 BIT // ARITHMETIC (NOS/VE OPERATING SYSTEM). // // imach[1] = 2; // imach[2] = 63; // imach[3] = 9223372036854775807; // imach[4] = 2; // imach[5] = 48; // imach[6] = -4096; // imach[7] = 4095; // imach[8] = 96; // imach[9] = -4096; // imach[10] = 4095; // // MACHINE CONSTANTS FOR THE CRAY 1, XMP, 2, AND 3. // // imach[1] = 2; // imach[2] = 63; // imach[3] = 9223372036854775807; // imach[4] = 2; // imach[5] = 47; // imach[6] = -8189; // imach[7] = 8190; // imach[8] = 94; // imach[9] = -8099; // imach[10] = 8190; // // MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE S/200. // // imach[1] = 2; // imach[2] = 15; // imach[3] = 32767; // imach[4] = 16; // imach[5] = 6; // imach[6] = -64; // imach[7] = 63; // imach[8] = 14; // imach[9] = -64; // imach[10] = 63; // // MACHINE CONSTANTS FOR THE HARRIS 220. // // imach[1] = 2; // imach[2] = 23; // imach[3] = 8388607; // imach[4] = 2; // imach[5] = 23; // imach[6] = -127; // imach[7] = 127; // imach[8] = 38; // imach[9] = -127; // imach[10] = 127; // // MACHINE CONSTANTS FOR THE HONEYWELL 600/6000 // AND DPS 8/70 SERIES. // // imach[1] = 2; // imach[2] = 35; // imach[3] = 34359738367; // imach[4] = 2; // imach[5] = 27; // imach[6] = -127; // imach[7] = 127; // imach[8] = 63; // imach[9] = -127; // imach[10] = 127; // // MACHINE CONSTANTS FOR THE HP 2100 // 3 WORD DOUBLE PRECISION OPTION WITH FTN4 // // imach[1] = 2; // imach[2] = 15; // imach[3] = 32767; // imach[4] = 2; // imach[5] = 23; // imach[6] = -128; // imach[7] = 127; // imach[8] = 39; // imach[9] = -128; // imach[10] = 127; // // MACHINE CONSTANTS FOR THE HP 2100 // 4 WORD DOUBLE PRECISION OPTION WITH FTN4 // // imach[1] = 2; // imach[2] = 15; // imach[3] = 32767; // imach[4] = 2; // imach[5] = 23; // imach[6] = -128; // imach[7] = 127; // imach[8] = 55; // imach[9] = -128; // imach[10] = 127; // // MACHINE CONSTANTS FOR THE HP 9000. // // imach[1] = 2; // imach[2] = 31; // imach[3] = 2147483647; // imach[4] = 2; // imach[5] = 24; // imach[6] = -126; // imach[7] = 128; // imach[8] = 53; // imach[9] = -1021; // imach[10] = 1024; // // MACHINE CONSTANTS FOR THE IBM 360/370 SERIES, // THE ICL 2900, THE ITEL AS/6, THE XEROX SIGMA // 5/7/9 AND THE SEL SYSTEMS 85/86. // // imach[1] = 2; // imach[2] = 31; // imach[3] = 2147483647; // imach[4] = 16; // imach[5] = 6; // imach[6] = -64; // imach[7] = 63; // imach[8] = 14; // imach[9] = -64; // imach[10] = 63; // // MACHINE CONSTANTS FOR THE IBM PC. // // imach[1] = 2; // imach[2] = 31; // imach[3] = 2147483647; // imach[4] = 2; // imach[5] = 24; // imach[6] = -125; // imach[7] = 128; // imach[8] = 53; // imach[9] = -1021; // imach[10] = 1024; // // MACHINE CONSTANTS FOR THE MACINTOSH II - ABSOFT // MACFORTRAN II. // // imach[1] = 2; // imach[2] = 31; // imach[3] = 2147483647; // imach[4] = 2; // imach[5] = 24; // imach[6] = -125; // imach[7] = 128; // imach[8] = 53; // imach[9] = -1021; // imach[10] = 1024; // // MACHINE CONSTANTS FOR THE MICROVAX - VMS FORTRAN. // // imach[1] = 2; // imach[2] = 31; // imach[3] = 2147483647; // imach[4] = 2; // imach[5] = 24; // imach[6] = -127; // imach[7] = 127; // imach[8] = 56; // imach[9] = -127; // imach[10] = 127; // // MACHINE CONSTANTS FOR THE PDP-10 (KA PROCESSOR). // // imach[1] = 2; // imach[2] = 35; // imach[3] = 34359738367; // imach[4] = 2; // imach[5] = 27; // imach[6] = -128; // imach[7] = 127; // imach[8] = 54; // imach[9] = -101; // imach[10] = 127; // // MACHINE CONSTANTS FOR THE PDP-10 (KI PROCESSOR). // // imach[1] = 2; // imach[2] = 35; // imach[3] = 34359738367; // imach[4] = 2; // imach[5] = 27; // imach[6] = -128; // imach[7] = 127; // imach[8] = 62; // imach[9] = -128; // imach[10] = 127; // // MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING // 32-BIT INTEGER ARITHMETIC. // // imach[1] = 2; // imach[2] = 31; // imach[3] = 2147483647; // imach[4] = 2; // imach[5] = 24; // imach[6] = -127; // imach[7] = 127; // imach[8] = 56; // imach[9] = -127; // imach[10] = 127; // // MACHINE CONSTANTS FOR THE SEQUENT BALANCE 8000. // // imach[1] = 2; // imach[2] = 31; // imach[3] = 2147483647; // imach[4] = 2; // imach[5] = 24; // imach[6] = -125; // imach[7] = 128; // imach[8] = 53; // imach[9] = -1021; // imach[10] = 1024; // // MACHINE CONSTANTS FOR THE SILICON GRAPHICS IRIS-4D // SERIES (MIPS R3000 PROCESSOR). // // imach[1] = 2; // imach[2] = 31; // imach[3] = 2147483647; // imach[4] = 2; // imach[5] = 24; // imach[6] = -125; // imach[7] = 128; // imach[8] = 53; // imach[9] = -1021; // imach[10] = 1024; // // MACHINE CONSTANTS FOR IEEE ARITHMETIC MACHINES, SUCH AS THE AT&T // 3B SERIES, MOTOROLA 68000 BASED MACHINES (E.G. SUN 3 AND AT&T // PC 7300), AND 8087 BASED MICROS (E.G. IBM PC AND AT&T 6300). imach[1] = 2; imach[2] = 31; imach[3] = 2147483647; imach[4] = 2; imach[5] = 24; imach[6] = -125; imach[7] = 128; imach[8] = 53; imach[9] = -1021; imach[10] = 1024; // MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES. // // imach[1] = 2; // imach[2] = 35; // imach[3] = 34359738367; // imach[4] = 2; // imach[5] = 27; // imach[6] = -128; // imach[7] = 127; // imach[8] = 60; // imach[9] = -1024; // imach[10] = 1023; // // MACHINE CONSTANTS FOR THE VAX 11/780. // // imach[1] = 2; // imach[2] = 31; // imach[3] = 2147483647; // imach[4] = 2; // imach[5] = 24; // imach[6] = -127; // imach[7] = 127; // imach[8] = 56; // imach[9] = -127; // imach[10] = 127; // ipmpar = imach[*i]; return ipmpar; } //****************************************************************************80 void negative_binomial_cdf_values ( int *n_data, int *f, int *s, double *p, double *cdf ) //****************************************************************************80 // // Purpose: // // NEGATIVE_BINOMIAL_CDF_VALUES returns values of the negative binomial CDF. // // Discussion: // // Assume that a coin has a probability P of coming up heads on // any one trial. Suppose that we plan to flip the coin until we // achieve a total of S heads. If we let F represent the number of // tails that occur in this process, then the value of F satisfies // a negative binomial PDF: // // PDF(F,S,P) = Choose ( F from F+S-1 ) * P**S * (1-P)**F // // The negative binomial CDF is the probability that there are F or // fewer failures upon the attainment of the S-th success. Thus, // // CDF(F,S,P) = sum ( 0 <= G <= F ) PDF(G,S,P) // // Modified: // // 07 June 2004 // // Author: // // John Burkardt // // Reference: // // F C Powell, // Statistical Tables for Sociology, Biology and Physical Sciences, // Cambridge University Press, 1982. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int *F, the maximum number of failures. // // Output, int *S, the number of successes. // // Output, double *P, the probability of a success on one trial. // // Output, double *CDF, the probability of at most F failures before the // S-th success. // { # define N_MAX 27 double cdf_vec[N_MAX] = { 0.6367, 0.3633, 0.1445, 0.5000, 0.2266, 0.0625, 0.3438, 0.1094, 0.0156, 0.1792, 0.0410, 0.0041, 0.0705, 0.0109, 0.0007, 0.9862, 0.9150, 0.7472, 0.8499, 0.5497, 0.2662, 0.6513, 0.2639, 0.0702, 1.0000, 0.0199, 0.0001 }; int f_vec[N_MAX] = { 4, 3, 2, 3, 2, 1, 2, 1, 0, 2, 1, 0, 2, 1, 0, 11, 10, 9, 17, 16, 15, 9, 8, 7, 2, 1, 0 }; double p_vec[N_MAX] = { 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.50, 0.40, 0.40, 0.40, 0.30, 0.30, 0.30, 0.30, 0.30, 0.30, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.01, 0.01, 0.01 }; int s_vec[N_MAX] = { 4, 5, 6, 4, 5, 6, 4, 5, 6, 4, 5, 6, 4, 5, 6, 1, 2, 3, 1, 2, 3, 1, 2, 3, 0, 1, 2 }; if ( n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *f = 0; *s = 0; *p = 0.0E+00; *cdf = 0.0E+00; } else { *f = f_vec[*n_data-1]; *s = s_vec[*n_data-1]; *p = p_vec[*n_data-1]; *cdf = cdf_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void normal_cdf_values ( int *n_data, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // NORMAL_CDF_VALUES returns some values of the Normal CDF. // // Modified: // // 31 May 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double *X, the argument of the function. // // Output double *FX, the value of the function. // { # define N_MAX 13 double fx_vec[N_MAX] = { 0.500000000000000E+00, 0.539827837277029E+00, 0.579259709439103E+00, 0.617911422188953E+00, 0.655421741610324E+00, 0.691462461274013E+00, 0.725746882249927E+00, 0.758036347776927E+00, 0.788144601416604E+00, 0.815939874653241E+00, 0.841344746068543E+00, 0.933192798731142E+00, 0.977249868051821E+00 }; double x_vec[N_MAX] = { 0.00E+00, 0.10E+00, 0.20E+00, 0.30E+00, 0.40E+00, 0.50E+00, 0.60E+00, 0.70E+00, 0.80E+00, 0.90E+00, 1.00E+00, 1.50E+00, 2.00E+00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *x = 0.0E+00; *fx = 0.0E+00; } else { *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 void poisson_cdf_values ( int *n_data, double *a, int *x, double *fx ) //****************************************************************************80 // // Purpose: // // POISSON_CDF_VALUES returns some values of the Poisson CDF. // // Discussion: // // CDF(X)(A) is the probability of at most X successes in unit time, // given that the expected mean number of successes is A. // // Modified: // // 31 May 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, CRC Press, 1996, pages 653-658. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double *A, the parameter of the function. // // Output, int *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 21 double a_vec[N_MAX] = { 0.02E+00, 0.10E+00, 0.10E+00, 0.50E+00, 0.50E+00, 0.50E+00, 1.00E+00, 1.00E+00, 1.00E+00, 1.00E+00, 2.00E+00, 2.00E+00, 2.00E+00, 2.00E+00, 5.00E+00, 5.00E+00, 5.00E+00, 5.00E+00, 5.00E+00, 5.00E+00, 5.00E+00 }; double fx_vec[N_MAX] = { 0.980E+00, 0.905E+00, 0.995E+00, 0.607E+00, 0.910E+00, 0.986E+00, 0.368E+00, 0.736E+00, 0.920E+00, 0.981E+00, 0.135E+00, 0.406E+00, 0.677E+00, 0.857E+00, 0.007E+00, 0.040E+00, 0.125E+00, 0.265E+00, 0.441E+00, 0.616E+00, 0.762E+00 }; int x_vec[N_MAX] = { 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0.0E+00; *x = 0; *fx = 0.0E+00; } else { *a = a_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double psi ( double *xx ) //****************************************************************************80 // // Purpose: // // PSI evaluates the psi or digamma function, d/dx ln(gamma(x)). // // Discussion: // // The main computation involves evaluation of rational Chebyshev // approximations. PSI was written at Argonne National Laboratory // for FUNPACK, and subsequently modified by A. H. Morris of NSWC. // // Reference: // // William Cody, Strecok and Thacher, // Chebyshev Approximations for the Psi Function, // Mathematics of Computation, // Volume 27, 1973, pages 123-127. // // Parameters: // // Input, double *XX, the argument of the psi function. // // Output, double PSI, the value of the psi function. PSI // is assigned the value 0 when the psi function is undefined. // { static double dx0 = 1.461632144968362341262659542325721325e0; static double piov4 = .785398163397448e0; static double p1[7] = { .895385022981970e-02,.477762828042627e+01,.142441585084029e+03, .118645200713425e+04,.363351846806499e+04,.413810161269013e+04, .130560269827897e+04 }; static double p2[4] = { -.212940445131011e+01,-.701677227766759e+01,-.448616543918019e+01, -.648157123766197e+00 }; static double q1[6] = { .448452573429826e+02,.520752771467162e+03,.221000799247830e+04, .364127349079381e+04,.190831076596300e+04,.691091682714533e-05 }; static double q2[4] = { .322703493791143e+02,.892920700481861e+02,.546117738103215e+02, .777788548522962e+01 }; static int K1 = 3; static int K2 = 1; static double psi,aug,den,sgn,upper,w,x,xmax1,xmx0,xsmall,z; static int i,m,n,nq; // // MACHINE DEPENDENT CONSTANTS ... // XMAX1 = THE SMALLEST POSITIVE FLOATING POINT CONSTANT // WITH ENTIRELY INTEGER REPRESENTATION. ALSO USED // AS NEGATIVE OF LOWER BOUND ON ACCEPTABLE NEGATIVE // ARGUMENTS AND AS THE POSITIVE ARGUMENT BEYOND WHICH // PSI MAY BE REPRESENTED AS ALOG(X). // XSMALL = ABSOLUTE ARGUMENT BELOW WHICH PI*COTAN(PI*X) // MAY BE REPRESENTED BY 1/X. // xmax1 = ipmpar(&K1); xmax1 = fifdmin1(xmax1,1.0e0/dpmpar(&K2)); xsmall = 1.e-9; x = *xx; aug = 0.0e0; if(x >= 0.5e0) goto S50; // // X .LT. 0.5, USE REFLECTION FORMULA // PSI(1-X) = PSI(X) + PI * COTAN(PI*X) // if(fabs(x) > xsmall) goto S10; if(x == 0.0e0) goto S100; // // 0 .LT. ABS(X) .LE. XSMALL. USE 1/X AS A SUBSTITUTE // FOR PI*COTAN(PI*X) // aug = -(1.0e0/x); goto S40; S10: // // REDUCTION OF ARGUMENT FOR COTAN // w = -x; sgn = piov4; if(w > 0.0e0) goto S20; w = -w; sgn = -sgn; S20: // // MAKE AN ERROR EXIT IF X .LE. -XMAX1 // if(w >= xmax1) goto S100; nq = fifidint(w); w -= (double)nq; nq = fifidint(w*4.0e0); w = 4.0e0*(w-(double)nq*.25e0); // // W IS NOW RELATED TO THE FRACTIONAL PART OF 4.0 * X. // ADJUST ARGUMENT TO CORRESPOND TO VALUES IN FIRST // QUADRANT AND DETERMINE SIGN // n = nq/2; if(n+n != nq) w = 1.0e0-w; z = piov4*w; m = n/2; if(m+m != n) sgn = -sgn; // // DETERMINE FINAL VALUE FOR -PI*COTAN(PI*X) // n = (nq+1)/2; m = n/2; m += m; if(m != n) goto S30; // // CHECK FOR SINGULARITY // if(z == 0.0e0) goto S100; // // USE COS/SIN AS A SUBSTITUTE FOR COTAN, AND // SIN/COS AS A SUBSTITUTE FOR TAN // aug = sgn*(cos(z)/sin(z)*4.0e0); goto S40; S30: aug = sgn*(sin(z)/cos(z)*4.0e0); S40: x = 1.0e0-x; S50: if(x > 3.0e0) goto S70; // // 0.5 .LE. X .LE. 3.0 // den = x; upper = p1[0]*x; for ( i = 1; i <= 5; i++ ) { den = (den+q1[i-1])*x; upper = (upper+p1[i+1-1])*x; } den = (upper+p1[6])/(den+q1[5]); xmx0 = x-dx0; psi = den*xmx0+aug; return psi; S70: // // IF X .GE. XMAX1, PSI = LN(X) // if(x >= xmax1) goto S90; // // 3.0 .LT. X .LT. XMAX1 // w = 1.0e0/(x*x); den = w; upper = p2[0]*w; for ( i = 1; i <= 3; i++ ) { den = (den+q2[i-1])*w; upper = (upper+p2[i+1-1])*w; } aug = upper/(den+q2[3])-0.5e0/x+aug; S90: psi = aug+log(x); return psi; S100: // // ERROR RETURN // psi = 0.0e0; return psi; } //****************************************************************************80 void psi_values ( int *n_data, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // PSI_VALUES returns some values of the Psi or Digamma function. // // Discussion: // // PSI(X) = d LN ( Gamma ( X ) ) / d X = Gamma'(X) / Gamma(X) // // PSI(1) = - Euler's constant. // // PSI(X+1) = PSI(X) + 1 / X. // // Modified: // // 31 May 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 11 double fx_vec[N_MAX] = { -0.5772156649E+00, -0.4237549404E+00, -0.2890398966E+00, -0.1691908889E+00, -0.0613845446E+00, -0.0364899740E+00, 0.1260474528E+00, 0.2085478749E+00, 0.2849914333E+00, 0.3561841612E+00, 0.4227843351E+00 }; double x_vec[N_MAX] = { 1.0E+00, 1.1E+00, 1.2E+00, 1.3E+00, 1.4E+00, 1.5E+00, 1.6E+00, 1.7E+00, 1.8E+00, 1.9E+00, 2.0E+00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *x = 0.0E+00; *fx = 0.0E+00; } else { *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double rcomp ( double *a, double *x ) //****************************************************************************80 // // Purpose: // // RCOMP evaluates exp(-X) * X**A / Gamma(A). // // Parameters: // // Input, double *A, *X, arguments of the quantity to be computed. // // Output, double RCOMP, the value of exp(-X) * X**A / Gamma(A). // // Local parameters: // // RT2PIN = 1/SQRT(2*PI) // { static double rt2pin = .398942280401433e0; static double rcomp,t,t1,u; rcomp = 0.0e0; if(*a >= 20.0e0) goto S20; t = *a*log(*x)-*x; if(*a >= 1.0e0) goto S10; rcomp = *a*exp(t)*(1.0e0+gam1(a)); return rcomp; S10: rcomp = exp(t)/ gamma_x(a); return rcomp; S20: u = *x/ *a; if(u == 0.0e0) return rcomp; t = pow(1.0e0/ *a,2.0); t1 = (((0.75e0*t-1.0e0)*t+3.5e0)*t-105.0e0)/(*a*1260.0e0); t1 -= (*a*rlog(&u)); rcomp = rt2pin*sqrt(*a)*exp(t1); return rcomp; } //****************************************************************************80 double rexp ( double *x ) //****************************************************************************80 // // Purpose: // // REXP evaluates the function EXP(X) - 1. // // Modified: // // 09 December 1999 // // Parameters: // // Input, double *X, the argument of the function. // // Output, double REXP, the value of EXP(X)-1. // { static double p1 = .914041914819518e-09; static double p2 = .238082361044469e-01; static double q1 = -.499999999085958e+00; static double q2 = .107141568980644e+00; static double q3 = -.119041179760821e-01; static double q4 = .595130811860248e-03; static double rexp,w; if(fabs(*x) > 0.15e0) goto S10; rexp = *x*(((p2**x+p1)**x+1.0e0)/((((q4**x+q3)**x+q2)**x+q1)**x+1.0e0)); return rexp; S10: w = exp(*x); if(*x > 0.0e0) goto S20; rexp = w-0.5e0-0.5e0; return rexp; S20: rexp = w*(0.5e0+(0.5e0-1.0e0/w)); return rexp; } //****************************************************************************80 double rlog ( double *x ) //****************************************************************************80 // // Purpose: // // RLOG computes X - 1 - LN(X). // // Modified: // // 09 December 1999 // // Parameters: // // Input, double *X, the argument of the function. // // Output, double RLOG, the value of the function. // { static double a = .566749439387324e-01; static double b = .456512608815524e-01; static double p0 = .333333333333333e+00; static double p1 = -.224696413112536e+00; static double p2 = .620886815375787e-02; static double q1 = -.127408923933623e+01; static double q2 = .354508718369557e+00; static double rlog,r,t,u,w,w1; if(*x < 0.61e0 || *x > 1.57e0) goto S40; if(*x < 0.82e0) goto S10; if(*x > 1.18e0) goto S20; // // ARGUMENT REDUCTION // u = *x-0.5e0-0.5e0; w1 = 0.0e0; goto S30; S10: u = *x-0.7e0; u /= 0.7e0; w1 = a-u*0.3e0; goto S30; S20: u = 0.75e0**x-1.e0; w1 = b+u/3.0e0; S30: // // SERIES EXPANSION // r = u/(u+2.0e0); t = r*r; w = ((p2*t+p1)*t+p0)/((q2*t+q1)*t+1.0e0); rlog = 2.0e0*t*(1.0e0/(1.0e0-r)-r*w)+w1; return rlog; S40: r = *x-0.5e0-0.5e0; rlog = r-log(*x); return rlog; } //****************************************************************************80 double rlog1 ( double *x ) //****************************************************************************80 // // Purpose: // // RLOG1 evaluates the function X - ln ( 1 + X ). // // Parameters: // // Input, double *X, the argument. // // Output, double RLOG1, the value of X - ln ( 1 + X ). // { static double a = .566749439387324e-01; static double b = .456512608815524e-01; static double p0 = .333333333333333e+00; static double p1 = -.224696413112536e+00; static double p2 = .620886815375787e-02; static double q1 = -.127408923933623e+01; static double q2 = .354508718369557e+00; static double rlog1,h,r,t,w,w1; if(*x < -0.39e0 || *x > 0.57e0) goto S40; if(*x < -0.18e0) goto S10; if(*x > 0.18e0) goto S20; // // ARGUMENT REDUCTION // h = *x; w1 = 0.0e0; goto S30; S10: h = *x+0.3e0; h /= 0.7e0; w1 = a-h*0.3e0; goto S30; S20: h = 0.75e0**x-0.25e0; w1 = b+h/3.0e0; S30: // // SERIES EXPANSION // r = h/(h+2.0e0); t = r*r; w = ((p2*t+p1)*t+p0)/((q2*t+q1)*t+1.0e0); rlog1 = 2.0e0*t*(1.0e0/(1.0e0-r)-r*w)+w1; return rlog1; S40: w = *x+0.5e0+0.5e0; rlog1 = *x-log(w); return rlog1; } //****************************************************************************80 void student_cdf_values ( int *n_data, int *a, double *x, double *fx ) //****************************************************************************80 // // Purpose: // // STUDENT_CDF_VALUES returns some values of the Student CDF. // // Modified: // // 31 May 2004 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964. // // Parameters: // // Input/output, int *N_DATA. The user sets N_DATA to 0 before the // first call. On each call, the routine increments N_DATA by 1, and // returns the corresponding data; when there is no more data, the // output value of N_DATA will be 0 again. // // Output, int *A, the parameter of the function. // // Output, double *X, the argument of the function. // // Output, double *FX, the value of the function. // { # define N_MAX 13 int a_vec[N_MAX] = { 1, 2, 3, 4, 5, 2, 5, 2, 5, 2, 3, 4, 5 }; double fx_vec[N_MAX] = { 0.60E+00, 0.60E+00, 0.60E+00, 0.60E+00, 0.60E+00, 0.75E+00, 0.75E+00, 0.95E+00, 0.95E+00, 0.99E+00, 0.99E+00, 0.99E+00, 0.99E+00 }; double x_vec[N_MAX] = { 0.325E+00, 0.289E+00, 0.277E+00, 0.271E+00, 0.267E+00, 0.816E+00, 0.727E+00, 2.920E+00, 2.015E+00, 6.965E+00, 4.541E+00, 3.747E+00, 3.365E+00 }; if ( *n_data < 0 ) { *n_data = 0; } *n_data = *n_data + 1; if ( N_MAX < *n_data ) { *n_data = 0; *a = 0; *x = 0.0E+00; *fx = 0.0E+00; } else { *a = a_vec[*n_data-1]; *x = x_vec[*n_data-1]; *fx = fx_vec[*n_data-1]; } return; # undef N_MAX } //****************************************************************************80 double stvaln ( double *p ) //****************************************************************************80 // // Purpose: // // STVALN provides starting values for the inverse of the normal distribution. // // Discussion: // // The routine returns X such that // P = CUMNOR(X), // that is, // P = Integral from -infinity to X of (1/SQRT(2*PI)) EXP(-U*U/2) dU. // // Reference: // // Kennedy and Gentle, // Statistical Computing, // Marcel Dekker, NY, 1980, page 95, // QA276.4 K46 // // Parameters: // // Input, double *P, the probability whose normal deviate // is sought. // // Output, double STVALN, the normal deviate whose probability // is P. // { static double xden[5] = { 0.993484626060e-1,0.588581570495e0,0.531103462366e0,0.103537752850e0, 0.38560700634e-2 }; static double xnum[5] = { -0.322232431088e0,-1.000000000000e0,-0.342242088547e0,-0.204231210245e-1, -0.453642210148e-4 }; static int K1 = 5; static double stvaln,sign,y,z; if(!(*p <= 0.5e0)) goto S10; sign = -1.0e0; z = *p; goto S20; S10: sign = 1.0e0; z = 1.0e0-*p; S20: y = sqrt(-(2.0e0*log(z))); stvaln = y+ eval_pol ( xnum, &K1, &y ) / eval_pol ( xden, &K1, &y ); stvaln = sign*stvaln; return stvaln; } //**************************************************************************80 void timestamp ( ) //**************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE }