# include # include # include # include # include # include using namespace std; # include "cg.hpp" //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 double *orth_random ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // ORTH_RANDOM returns the ORTH_RANDOM matrix. // // Discussion: // // The matrix is a random orthogonal matrix. // // Properties: // // The inverse of A is equal to A'. // A is orthogonal: A * A' = A' * A = I. // Because A is orthogonal, it is normal: A' * A = A * A'. // Columns and rows of A have unit Euclidean norm. // Distinct pairs of columns of A are orthogonal. // Distinct pairs of rows of A are orthogonal. // The L2 vector norm of A*x = the L2 vector norm of x for any vector x. // The L2 matrix norm of A*B = the L2 matrix norm of B for any matrix B. // det ( A ) = +1 or -1. // A is unimodular. // All the eigenvalues of A have modulus 1. // All singular values of A are 1. // All entries of A are between -1 and 1. // // Discussion: // // Thanks to Eugene Petrov, B I Stepanov Institute of Physics, // National Academy of Sciences of Belarus, for convincingly // pointing out the severe deficiencies of an earlier version of // this routine. // // Essentially, the computation involves saving the Q factor of the // QR factorization of a matrix whose entries are normally distributed. // However, it is only necessary to generate this matrix a column at // a time, since it can be shown that when it comes time to annihilate // the subdiagonal elements of column K, these (transformed) elements of // column K are still normally distributed random values. Hence, there // is no need to generate them at the beginning of the process and // transform them K-1 times. // // For computational efficiency, the individual Householder transformations // could be saved, as recommended in the reference, instead of being // accumulated into an explicit matrix format. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 July 2008 // // Author: // // John Burkardt // // Reference: // // Pete Stewart, // Efficient Generation of Random Orthogonal Matrices With an Application // to Condition Estimators, // SIAM Journal on Numerical Analysis, // Volume 17, Number 3, June 1980, pages 403-409. // // Parameters: // // Input, int N, the order of the matrix. // // Input/output, int &SEED, a seed for the random number // generator. // // Output, double ORTH_RANDOM[N*N] the matrix. // { double *a; int i; int j; double *v; double *x; // // Start with A = the identity matrix. // a = r8mat_zero_new ( n, n ); for ( i = 0; i < n; i++ ) { a[i+i*n] = 1.0; } // // Now behave as though we were computing the QR factorization of // some other random matrix. Generate the N elements of the first column, // compute the Householder matrix H1 that annihilates the subdiagonal elements, // and set A := A * H1' = A * H. // // On the second step, generate the lower N-1 elements of the second column, // compute the Householder matrix H2 that annihilates them, // and set A := A * H2' = A * H2 = H1 * H2. // // On the N-1 step, generate the lower 2 elements of column N-1, // compute the Householder matrix HN-1 that annihilates them, and // and set A := A * H(N-1)' = A * H(N-1) = H1 * H2 * ... * H(N-1). // This is our random orthogonal matrix. // x = new double[n]; for ( j = 0; j < n - 1; j++ ) { // // Set the vector that represents the J-th column to be annihilated. // for ( i = 0; i < j; i++ ) { x[i] = 0.0; } for ( i = j; i < n; i++ ) { x[i] = r8_normal_01 ( seed ); } // // Compute the vector V that defines a Householder transformation matrix // H(V) that annihilates the subdiagonal elements of X. // // The COLUMN argument here is 1-based. // v = r8vec_house_column ( n, x, j+1 ); // // Postmultiply the matrix A by H'(V) = H(V). // r8mat_house_axh ( n, a, v ); delete [] v; } delete [] x; return a; } //****************************************************************************80 double *pds_random ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // PDS_RANDOM returns the PDS_RANDOM matrix. // // Discussion: // // The matrix is a "random" positive definite symmetric matrix. // // The matrix returned will have eigenvalues in the range [0,1]. // // Properties: // // A is symmetric: A' = A. // // A is positive definite: 0 < x'*A*x for nonzero x. // // The eigenvalues of A will be real. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input/output, int &SEED, a seed for the random // number generator. // // Output, double PDS_RANDOM[N*N], the matrix. // { double *a; int i; int j; int k; double *lambda; double *q; a = new double[n*n]; // // Get a random set of eigenvalues. // lambda = r8vec_uniform_01_new ( n, seed ); // // Get a random orthogonal matrix Q. // q = orth_random ( n, seed ); // // Set A = Q * Lambda * Q'. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; for ( k = 0; k < n; k++ ) { a[i+j*n] = a[i+j*n] + q[i+k*n] * lambda[k] * q[j+k*n]; } } } delete [] lambda; delete [] q; return a; } //****************************************************************************80 double r8_normal_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_NORMAL_01 samples the standard normal probability distribution. // // Discussion: // // The standard normal probability distribution function (PDF) has // mean 0 and standard deviation 1. // // The Box-Muller method is used. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 August 2013 // // Author: // // John Burkardt // // Parameters: // // Input/output, int SEED, a seed for the random number generator. // // Output, double R8_NORMAL_01, a normally distributed random value. // { double r1; double r2; const double r8_pi = 3.141592653589793; double x; r1 = r8_uniform_01 ( seed ); r2 = r8_uniform_01 ( seed ); x = sqrt ( -2.0 * log ( r1 ) ) * cos ( 2.0 * r8_pi * r2 ); return x; } //****************************************************************************80 double r8_sign ( double x ) //****************************************************************************80 // // Purpose: // // R8_SIGN returns the sign of an R8. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, double X, the number whose sign is desired. // // Output, double R8_SIGN, the sign of X. // { double value; if ( x < 0.0 ) { value = -1.0; } else { value = 1.0; } return value; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { const int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 void r83_cg ( int n, double a[], double b[], double x[] ) //****************************************************************************80 // // Purpose: // // R83_CG uses the conjugate gradient method on an R83 system. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:N), the diagonal in // entries (2,1:N), and the subdiagonal in (3,1:N-1). Thus, the // original matrix is "collapsed" vertically into the array. // // The matrix A must be a positive definite symmetric band matrix. // // The method is designed to reach the solution after N computational // steps. However, roundoff may introduce unacceptably large errors for // some problems. In such a case, calling the routine again, using // the computed solution as the new starting estimate, should improve // the results. // // Example: // // Here is how an R83 matrix of order 5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 June 2014 // // Author: // // John Burkardt // // Reference: // // Frank Beckman, // The Solution of Linear Equations by the Conjugate Gradient Method, // in Mathematical Methods for Digital Computers, // edited by John Ralston, Herbert Wilf, // Wiley, 1967, // ISBN: 0471706892, // LC: QA76.5.R3. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A[3*N], the matrix. // // Input, double B[N], the right hand side vector. // // Input/output, double X[N]. // On input, an estimate for the solution, which may be 0. // On output, the approximate solution vector. // { double alpha; double *ap; double beta; int i; int it; double *p; double pap; double pr; double *r; double rap; // // Initialize // AP = A * x, // R = b - A * x, // P = b - A * x. // ap = r83_mv ( n, n, a, x ); r = new double[n]; for ( i = 0; i < n; i++ ) { r[i] = b[i] - ap[i]; } p = new double[n]; for ( i = 0; i < n; i++ ) { p[i] = b[i] - ap[i]; } // // Do the N steps of the conjugate gradient method. // for ( it = 1; it <= n; it++ ) { // // Compute the matrix*vector product AP=A*P. // delete [] ap; ap = r83_mv ( n, n, a, p ); // // Compute the dot products // PAP = P*AP, // PR = P*R // Set // ALPHA = PR / PAP. // pap = r8vec_dot_product ( n, p, ap ); pr = r8vec_dot_product ( n, p, r ); if ( pap == 0.0 ) { delete [] ap; break; } alpha = pr / pap; // // Set // X = X + ALPHA * P // R = R - ALPHA * AP. // for ( i = 0; i < n; i++ ) { x[i] = x[i] + alpha * p[i]; } for ( i = 0; i < n; i++ ) { r[i] = r[i] - alpha * ap[i]; } // // Compute the vector dot product // RAP = R*AP // Set // BETA = - RAP / PAP. // rap = r8vec_dot_product ( n, r, ap ); beta = - rap / pap; // // Update the perturbation vector // P = R + BETA * P. // for ( i = 0; i < n; i++ ) { p[i] = r[i] + beta * p[i]; } } // // Free memory. // delete [] p; delete [] r; return; } //****************************************************************************80 double *r83_dif2 ( int m, int n ) //****************************************************************************80 // // Purpose: // // R83_DIF2 returns the DIF2 matrix in R83 format. // // Example: // // N = 5 // // 2 -1 . . . // -1 2 -1 . . // . -1 2 -1 . // . . -1 2 -1 // . . . -1 2 // // Properties: // // A is banded, with bandwidth 3. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is a special case of the TRIS or tridiagonal scalar matrix. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is Toeplitz: constant along diagonals. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is positive definite. // // A is an M matrix. // // A is weakly diagonally dominant, but not strictly diagonally dominant. // // A has an LU factorization A = L * U, without pivoting. // // The matrix L is lower bidiagonal with subdiagonal elements: // // L(I+1,I) = -I/(I+1) // // The matrix U is upper bidiagonal, with diagonal elements // // U(I,I) = (I+1)/I // // and superdiagonal elements which are all -1. // // A has a Cholesky factorization A = L * L', with L lower bidiagonal. // // L(I,I) = sqrt ( (I+1) / I ) // L(I,I-1) = -sqrt ( (I-1) / I ) // // The eigenvalues are // // LAMBDA(I) = 2 + 2 * COS(I*PI/(N+1)) // = 4 SIN^2(I*PI/(2*N+2)) // // The corresponding eigenvector X(I) has entries // // X(I)(J) = sqrt(2/(N+1)) * sin ( I*J*PI/(N+1) ). // // Simple linear systems: // // x = (1,1,1,...,1,1), A*x=(1,0,0,...,0,1) // // x = (1,2,3,...,n-1,n), A*x=(0,0,0,...,0,n+1) // // det ( A ) = N + 1. // // The value of the determinant can be seen by induction, // and expanding the determinant across the first row: // // det ( A(N) ) = 2 * det ( A(N-1) ) - (-1) * (-1) * det ( A(N-2) ) // = 2 * N - (N-1) // = N + 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 June 2014 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Morris Newman, John Todd, // Example A8, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double A[3*N], the matrix. // { double *a; int i; int j; int mn; a = new double[3*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < 3; i++ ) { a[i+j*3] = 0.0; } } mn = i4_min ( m, n ); for ( j = 1; j < mn; j++ ) { a[0+j*3] = -1.0; } for ( j = 0; j < mn; j++ ) { a[1+j*3] = 2.0; } for ( j = 0; j < mn -1; j++ ) { a[2+j*3] = -1.0; } if ( n < m ) { a[2+(mn-1)*3] = -1.0; } return a; } //****************************************************************************80 double *r83_mv ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R83_MV multiplies a R83 matrix times a vector. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:N), the diagonal in // entries (2,1:N), and the subdiagonal in (3,1:N-1). Thus, the // original matrix is "collapsed" vertically into the array. // // Example: // // Here is how a R83 matrix of order 5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 June 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[3*N], the R83 matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R83_MV[M], the product A * x. // { double *b; int i; int mn; b = new double[m]; for ( i = 0; i < m; i++ ) { b[i] = 0.0; } mn = i4_min ( m, n ); for ( i = 0; i < mn; i++ ) { b[i] = b[i] + a[1+i*3] * x[i]; } for ( i = 0; i < mn - 1; i++ ) { b[i] = b[i] + a[0+(i+1)*3] * x[i+1]; } for ( i = 1; i < mn; i++ ) { b[i] = b[i] + a[2+(i-1)*3] * x[i-1]; } if ( n < m ) { b[n] = b[n] + a[2+(n-1)*3] * x[n-1]; } else if ( m < n ) { b[m-1] = b[m-1] + a[0+m*3] * x[m]; } return b; } //****************************************************************************80 double *r83_resid ( int m, int n, double a[], double x[], double b[] ) //****************************************************************************80 // // Purpose: // // R83_RESID computes the residual R = B-A*X for R83 matrices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 June 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[3*N], the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Input, double B[M], the desired result A * x. // // Output, double R83_RESID[M], the residual R = B - A * X. // { int i; double *r; r = r83_mv ( m, n, a, x ); for ( i = 0; i < m; i++ ) { r[i] = b[i] - r[i]; } return r; } //****************************************************************************80 void r83s_cg ( int n, double a[], double b[], double x[] ) //****************************************************************************80 // // Purpose: // // R83S_CG uses the conjugate gradient method on an R83S system. // // Discussion: // // The R83S storage format is used for a tridiagonal scalar matrix. // The vector A(3) contains the subdiagonal, diagonal, and superdiagonal // values that occur on every row. // // The matrix A must be a positive definite symmetric band matrix. // // The method is designed to reach the solution after N computational // steps. However, roundoff may introduce unacceptably large errors for // some problems. In such a case, calling the routine again, using // the computed solution as the new starting estimate, should improve // the results. // // Example: // // Here is how an R83S matrix of order 5, stored as (A1,A2,A3), would // be interpreted: // // A2 A3 0 0 0 // A1 A2 A3 0 0 // 0 A1 A2 A3 0 // 0 0 A1 A2 A3 // 0 0 0 A1 A2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 July 2014 // // Author: // // John Burkardt // // Reference: // // Frank Beckman, // The Solution of Linear Equations by the Conjugate Gradient Method, // in Mathematical Methods for Digital Computers, // edited by John Ralston, Herbert Wilf, // Wiley, 1967, // ISBN: 0471706892, // LC: QA76.5.R3. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A[3], the matrix. // // Input, double B[N], the right hand side vector. // // Input/output, double X[N]. // On input, an estimate for the solution, which may be 0. // On output, the approximate solution vector. // { double alpha; double *ap; double beta; int i; int it; double *p; double pap; double pr; double *r; double rap; // // Initialize // AP = A * x, // R = b - A * x, // P = b - A * x. // ap = r83s_mv ( n, n, a, x ); r = new double[n]; for ( i = 0; i < n; i++ ) { r[i] = b[i] - ap[i]; } p = new double[n]; for ( i = 0; i < n; i++ ) { p[i] = b[i] - ap[i]; } // // Do the N steps of the conjugate gradient method. // for ( it = 1; it <= n; it++ ) { // // Compute the matrix*vector product AP=A*P. // delete [] ap; ap = r83s_mv ( n, n, a, p ); // // Compute the dot products // PAP = P*AP, // PR = P*R // Set // ALPHA = PR / PAP. // pap = r8vec_dot_product ( n, p, ap ); pr = r8vec_dot_product ( n, p, r ); if ( pap == 0.0 ) { delete [] ap; break; } alpha = pr / pap; // // Set // X = X + ALPHA * P // R = R - ALPHA * AP. // for ( i = 0; i < n; i++ ) { x[i] = x[i] + alpha * p[i]; } for ( i = 0; i < n; i++ ) { r[i] = r[i] - alpha * ap[i]; } // // Compute the vector dot product // RAP = R*AP // Set // BETA = - RAP / PAP. // rap = r8vec_dot_product ( n, r, ap ); beta = - rap / pap; // // Update the perturbation vector // P = R + BETA * P. // for ( i = 0; i < n; i++ ) { p[i] = r[i] + beta * p[i]; } } // // Free memory. // delete [] p; delete [] r; return; } //****************************************************************************80 double *r83s_dif2 ( int m, int n ) //****************************************************************************80 // // Purpose: // // R83S_DIF2 returns the DIF2 matrix in R83S format. // // Example: // // N = 5 // // 2 -1 . . . // -1 2 -1 . . // . -1 2 -1 . // . . -1 2 -1 // . . . -1 2 // // Properties: // // A is banded, with bandwidth 3. // A is tridiagonal. // Because A is tridiagonal, it has property A (bipartite). // A is a special case of the TRIS or tridiagonal scalar matrix. // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // A is Toeplitz: constant along diagonals. // A is symmetric: A' = A. // Because A is symmetric, it is normal. // Because A is normal, it is diagonalizable. // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // A is positive definite. // A is an M matrix. // A is weakly diagonally dominant, but not strictly diagonally dominant. // A has an LU factorization A = L * U, without pivoting. // The matrix L is lower bidiagonal with subdiagonal elements: // L(I+1,I) = -I/(I+1) // The matrix U is upper bidiagonal, with diagonal elements // U(I,I) = (I+1)/I // and superdiagonal elements which are all -1. // A has a Cholesky factorization A = L * L', with L lower bidiagonal. // L(I,I) = sqrt ( (I+1) / I ) // L(I,I-1) = -sqrt ( (I-1) / I ) // The eigenvalues are // LAMBDA(I) = 2 + 2 * COS(I*PI/(N+1)) // = 4 SIN^2(I*PI/(2*N+2)) // The corresponding eigenvector X(I) has entries // X(I)(J) = sqrt(2/(N+1)) * sin ( I*J*PI/(N+1) ). // Simple linear systems: // x = (1,1,1,...,1,1), A*x=(1,0,0,...,0,1) // x = (1,2,3,...,n-1,n), A*x=(0,0,0,...,0,n+1) // det ( A ) = N + 1. // The value of the determinant can be seen by induction, // and expanding the determinant across the first row: // det ( A(N) ) = 2 * det ( A(N-1) ) - (-1) * (-1) * det ( A(N-2) ) // = 2 * N - (N-1) // = N + 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 July 2014 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Morris Newman, John Todd, // Example A8, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double A[3], the matrix. // { double *a; a = new double[3]; a[0] = -1.0; a[1] = 2.0; a[2] = -1.0; return a; } //****************************************************************************80 double *r83s_mv ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R83S_MV multiplies a R83S matrix times a vector. // // Discussion: // // The R83S storage format is used for a tridiagonal scalar matrix. // The vector A(3) contains the subdiagonal, diagonal, and superdiagonal // values that occur on every row. // // Example: // // Here is how an R83S matrix of order 5, stored as (A1,A2,A3), would // be interpreted: // // A2 A3 0 0 0 // A1 A2 A3 0 0 // 0 A1 A2 A3 0 // 0 0 A1 A2 A3 // 0 0 0 A1 A2 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 July 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[3], the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R83S_MV[M], the product A * x. // { double *b; int i; int ihi; b = new double[m]; for ( i = 0; i < m; i++ ) { b[i] = 0.0; } ihi = i4_min ( m, n + 1 ); for ( i = 1; i < ihi; i++ ) { b[i] = b[i] + a[0] * x[i-1]; } ihi = i4_min ( m, n ); for ( i = 0; i < ihi; i++ ) { b[i] = b[i] + a[1] * x[i]; } ihi = i4_min ( m, n - 1 ); for ( i = 0; i < ihi; i++ ) { b[i] = b[i] + a[2] * x[i+1]; } return b; } //****************************************************************************80 double *r83s_resid ( int m, int n, double a[], double x[], double b[] ) //****************************************************************************80 // // Purpose: // // R83S_RESID computes the residual R = B-A*X for R83S matrices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 July 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[3], the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Input, double B[M], the desired result A * x. // // Output, double R83S_RESID[M], the residual R = B - A * X. // { int i; double *r; r = r83s_mv ( m, n, a, x ); for ( i = 0; i < m; i++ ) { r[i] = b[i] - r[i]; } return r; } //****************************************************************************80 void r83t_cg ( int n, double a[], double b[], double x[] ) //****************************************************************************80 // // Purpose: // // R83T_CG uses the conjugate gradient method on an R83T system. // // Discussion: // // The R83T storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1:N-1,3), the diagonal in // entries (1:N,2), and the subdiagonal in (2:N,1). Thus, the // original matrix is "collapsed" horizontally into the array. // // The matrix A must be a positive definite symmetric band matrix. // // The method is designed to reach the solution after N computational // steps. However, roundoff may introduce unacceptably large errors for // some problems. In such a case, calling the routine again, using // the computed solution as the new starting estimate, should improve // the results. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 June 2014 // // Author: // // John Burkardt // // Reference: // // Frank Beckman, // The Solution of Linear Equations by the Conjugate Gradient Method, // in Mathematical Methods for Digital Computers, // edited by John Ralston, Herbert Wilf, // Wiley, 1967, // ISBN: 0471706892, // LC: QA76.5.R3. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A[N*3], the matrix. // // Input, double B[N], the right hand side vector. // // Input/output, double X[N]. // On input, an estimate for the solution, which may be 0. // On output, the approximate solution vector. // { double alpha; double *ap; double beta; int i; int it; double *p; double pap; double pr; double *r; double rap; // // Initialize // AP = A * x, // R = b - A * x, // P = b - A * x. // ap = r83t_mv ( n, n, a, x ); r = new double[n]; for ( i = 0; i < n; i++ ) { r[i] = b[i] - ap[i]; } p = new double[n]; for ( i = 0; i < n; i++ ) { p[i] = b[i] - ap[i]; } // // Do the N steps of the conjugate gradient method. // for ( it = 1; it <= n; it++ ) { // // Compute the matrix*vector product AP=A*P. // delete [] ap; ap = r83t_mv ( n, n, a, p ); // // Compute the dot products // PAP = P*AP, // PR = P*R // Set // ALPHA = PR / PAP. // pap = r8vec_dot_product ( n, p, ap ); pr = r8vec_dot_product ( n, p, r ); if ( pap == 0.0 ) { delete [] ap; break; } alpha = pr / pap; // // Set // X = X + ALPHA * P // R = R - ALPHA * AP. // for ( i = 0; i < n; i++ ) { x[i] = x[i] + alpha * p[i]; } for ( i = 0; i < n; i++ ) { r[i] = r[i] - alpha * ap[i]; } // // Compute the vector dot product // RAP = R*AP // Set // BETA = - RAP / PAP. // rap = r8vec_dot_product ( n, r, ap ); beta = - rap / pap; // // Update the perturbation vector // P = R + BETA * P. // for ( i = 0; i < n; i++ ) { p[i] = r[i] + beta * p[i]; } } // // Free memory. // delete [] p; delete [] r; return; } //****************************************************************************80 double *r83t_dif2 ( int m, int n ) //****************************************************************************80 // // Purpose: // // R83T_DIF2 returns the DIF2 matrix in R83T format. // // Example: // // N = 5 // // 2 -1 . . . // -1 2 -1 . . // . -1 2 -1 . // . . -1 2 -1 // . . . -1 2 // // Properties: // // A is banded, with bandwidth 3. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is a special case of the TRIS or tridiagonal scalar matrix. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is Toeplitz: constant along diagonals. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is positive definite. // // A is an M matrix. // // A is weakly diagonally dominant, but not strictly diagonally dominant. // // A has an LU factorization A = L * U, without pivoting. // // The matrix L is lower bidiagonal with subdiagonal elements: // // L(I+1,I) = -I/(I+1) // // The matrix U is upper bidiagonal, with diagonal elements // // U(I,I) = (I+1)/I // // and superdiagonal elements which are all -1. // // A has a Cholesky factorization A = L * L', with L lower bidiagonal. // // L(I,I) = sqrt ( (I+1) / I ) // L(I,I-1) = -sqrt ( (I-1) / I ) // // The eigenvalues are // // LAMBDA(I) = 2 + 2 * COS(I*PI/(N+1)) // = 4 SIN^2(I*PI/(2*N+2)) // // The corresponding eigenvector X(I) has entries // // X(I)(J) = sqrt(2/(N+1)) * sin ( I*J*PI/(N+1) ). // // Simple linear systems: // // x = (1,1,1,...,1,1), A*x=(1,0,0,...,0,1) // // x = (1,2,3,...,n-1,n), A*x=(0,0,0,...,0,n+1) // // det ( A ) = N + 1. // // The value of the determinant can be seen by induction, // and expanding the determinant across the first row: // // det ( A(N) ) = 2 * det ( A(N-1) ) - (-1) * (-1) * det ( A(N-2) ) // = 2 * N - (N-1) // = N + 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 June 2014 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Morris Newman, John Todd, // Example A8, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double A[M*3], the matrix. // { double *a; int i; int j; int mn; a = new double[m*3]; for ( j = 0; j < 3; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 0.0; } } mn = i4_min ( m, n ); j = 0; for ( i = 1; i < mn; i++ ) { a[i+j*m] = -1.0; } j = 1; for ( i = 0; i < mn; i++ ) { a[i+j*m] = 2.0; } j = 2; for ( i = 0; i < mn -1; i++ ) { a[i+j*m] = -1.0; } if ( m < n ) { i = mn - 1; j = 2; a[i+j*m] = -1.0; } else if ( n < m ) { i = mn; j = 0; a[i+j*m] = -1.0; } return a; } //****************************************************************************80 double *r83t_mv ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R83T_MV multiplies a R83T matrix times a vector. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 June 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*3], the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R83T_MV[M], the product A * x. // { double *b; int i; int j; int mn; b = new double[m]; for ( i = 0; i < m; i++ ) { b[i] = 0.0; } if ( n == 1 ) { i = 0; j = 1; b[0] = a[i+j*m] * x[0]; if ( 1 < m ) { i = 1; j = 0; b[1] = a[i+j*m] * x[0]; } return b; } mn = i4_min ( m, n ); b[0] = a[0+1*m] * x[0] + a[0+2*m] * x[1]; for ( i = 1; i < mn - 1; i++ ) { b[i] = a[i+0*m] * x[i-1] + a[i+1*m] * x[i] + a[i+2*m] * x[i+1]; } b[mn-1] = a[mn-1+0*m] * x[mn-2] + a[mn-1+1*m] * x[mn-1]; if ( n < m ) { b[mn] = b[mn] + a[mn+0*m] * x[mn-1]; } else if ( m < n ) { b[mn-1] = b[mn-1] + a[mn-1+2*m] * x[mn]; } return b; } //****************************************************************************80 double *r83t_resid ( int m, int n, double a[], double x[], double b[] ) //****************************************************************************80 // // Purpose: // // R83T_RESID computes the residual R = B-A*X for R83T matrices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 June 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*3], the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Input, double B[M], the desired result A * x. // // Output, double R83T_RESID[M], the residual R = B - A * X. // { int i; double *r; r = r83t_mv ( m, n, a, x ); for ( i = 0; i < m; i++ ) { r[i] = b[i] - r[i]; } return r; } //****************************************************************************80 void r8ge_cg ( int n, double a[], double b[], double x[] ) //****************************************************************************80 // // Purpose: // // R8GE_CG uses the conjugate gradient method on an R8GE system. // // Discussion: // // The R8GE storage format is used for a general M by N matrix. A storage // space is made for each entry. The two dimensional logical // array can be thought of as a vector of M*N entries, starting with // the M entries in the column 1, then the M entries in column 2 // and so on. Considered as a vector, the entry A(I,J) is then stored // in vector location I+(J-1)*M. // // The matrix A must be a positive definite symmetric band matrix. // // The method is designed to reach the solution after N computational // steps. However, roundoff may introduce unacceptably large errors for // some problems. In such a case, calling the routine again, using // the computed solution as the new starting estimate, should improve // the results. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2014 // // Author: // // John Burkardt // // Reference: // // Frank Beckman, // The Solution of Linear Equations by the Conjugate Gradient Method, // in Mathematical Methods for Digital Computers, // edited by John Ralston, Herbert Wilf, // Wiley, 1967, // ISBN: 0471706892, // LC: QA76.5.R3. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A[N*N], the matrix. // // Input, double B[N], the right hand side vector. // // Input/output, double X[N]. // On input, an estimate for the solution, which may be 0. // On output, the approximate solution vector. // { double alpha; double *ap; double beta; int i; int it; double *p; double pap; double pr; double *r; double rap; // // Initialize // AP = A * x, // R = b - A * x, // P = b - A * x. // ap = r8ge_mv ( n, n, a, x ); r = new double[n]; for ( i = 0; i < n; i++ ) { r[i] = b[i] - ap[i]; } p = new double[n]; for ( i = 0; i < n; i++ ) { p[i] = b[i] - ap[i]; } // // Do the N steps of the conjugate gradient method. // for ( it = 1; it <= n; it++ ) { // // Compute the matrix*vector product AP=A*P. // delete [] ap; ap = r8ge_mv ( n, n, a, p ); // // Compute the dot products // PAP = P*AP, // PR = P*R // Set // ALPHA = PR / PAP. // pap = r8vec_dot_product ( n, p, ap ); pr = r8vec_dot_product ( n, p, r ); if ( pap == 0.0 ) { delete [] ap; break; } alpha = pr / pap; // // Set // X = X + ALPHA * P // R = R - ALPHA * AP. // for ( i = 0; i < n; i++ ) { x[i] = x[i] + alpha * p[i]; } for ( i = 0; i < n; i++ ) { r[i] = r[i] - alpha * ap[i]; } // // Compute the vector dot product // RAP = R*AP // Set // BETA = - RAP / PAP. // rap = r8vec_dot_product ( n, r, ap ); beta = - rap / pap; // // Update the perturbation vector // P = R + BETA * P. // for ( i = 0; i < n; i++ ) { p[i] = r[i] + beta * p[i]; } } delete [] p; delete [] r; return; } //****************************************************************************80 double *r8ge_dif2 ( int m, int n ) //****************************************************************************80 // // Purpose: // // R8GE_DIF2 returns the DIF2 matrix in R8GE format. // // Example: // // N = 5 // // 2 -1 . . . // -1 2 -1 . . // . -1 2 -1 . // . . -1 2 -1 // . . . -1 2 // // Properties: // // A is banded, with bandwidth 3. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is a special case of the TRIS or tridiagonal scalar matrix. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is Toeplitz: constant along diagonals. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is positive definite. // // A is an M matrix. // // A is weakly diagonally dominant, but not strictly diagonally dominant. // // A has an LU factorization A = L * U, without pivoting. // // The matrix L is lower bidiagonal with subdiagonal elements: // // L(I+1,I) = -I/(I+1) // // The matrix U is upper bidiagonal, with diagonal elements // // U(I,I) = (I+1)/I // // and superdiagonal elements which are all -1. // // A has a Cholesky factorization A = L * L', with L lower bidiagonal. // // L(I,I) = sqrt ( (I+1) / I ) // L(I,I-1) = -sqrt ( (I-1) / I ) // // The eigenvalues are // // LAMBDA(I) = 2 + 2 * COS(I*PI/(N+1)) // = 4 SIN^2(I*PI/(2*N+2)) // // The corresponding eigenvector X(I) has entries // // X(I)(J) = sqrt(2/(N+1)) * sin ( I*J*PI/(N+1) ). // // Simple linear systems: // // x = (1,1,1,...,1,1), A*x=(1,0,0,...,0,1) // // x = (1,2,3,...,n-1,n), A*x=(0,0,0,...,0,n+1) // // det ( A ) = N + 1. // // The value of the determinant can be seen by induction, // and expanding the determinant across the first row: // // det ( A(N) ) = 2 * det ( A(N-1) ) - (-1) * (-1) * det ( A(N-2) ) // = 2 * N - (N-1) // = N + 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2000 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Morris Newman, John Todd, // Example A8, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double R8VEC_DIF2[M*N], the matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( j == i - 1 ) { a[i+j*m] = -1.0; } else if ( j == i ) { a[i*j*m] = 2.0; } else if ( j == i + 1 ) { a[i+j*m] = -1.0; } else { a[i+j*m] = 0.0; } } } return a; } //****************************************************************************80 double *r8ge_mv ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8GE_MV multiplies an R8GE matrix by an R8VEC. // // Discussion: // // The R8GE storage format is used for a general M by N matrix. A storage // space is made for each entry. The two dimensional logical // array can be thought of as a vector of M*N entries, starting with // the M entries in the column 1, then the M entries in column 2 // and so on. Considered as a vector, the entry A(I,J) is then stored // in vector location I+(J-1)*M. // // R8GE storage is used by LINPACK and LAPACK. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 July 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8GE_MV[M], the product A * x. // { int i; int j; double *b; b = new double[m]; for ( i = 0; i < m; i++ ) { b[i] = 0.0; for ( j = 0; j < n; j++ ) { b[i] = b[i] + a[i+j*m] * x[j]; } } return b; } //****************************************************************************80 double *r8ge_resid ( int m, int n, double a[], double x[], double b[] ) //****************************************************************************80 // // Purpose: // // R8GE_RESID computes the residual R = B-A*X for R8GE matrices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Input, double B[M], the desired result A * x. // // Output, double R8GE_RESID[M], the residual R = B - A * X. // { int i; double *r; r = r8ge_mv ( m, n, a, x ); for ( i = 0; i < m; i++ ) { r[i] = b[i] - r[i]; } return r; } //****************************************************************************80 void r8mat_copy ( int m, int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8MAT_COPY copies one R8MAT to another. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A1[M*N], the matrix to be copied. // // Output, double A2[M*N], the copy of A1. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a2[i+j*m] = a1[i+j*m]; } } return; } //****************************************************************************80 void r8mat_house_axh ( int n, double a[], double v[] ) //****************************************************************************80 // // Purpose: // // R8MAT_HOUSE_AXH computes A*H where H is a compact Householder matrix. // // Discussion: // // An R8MAT is a doubly dimensioned array of double precision values, which // may be stored as a vector in column-major order. // // The Householder matrix H(V) is defined by // // H(V) = I - 2 * v * v' / ( v' * v ) // // This routine is not particularly efficient. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 July 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of A. // // Input/output, double A[N*N], on input, the matrix to be postmultiplied. // On output, A has been replaced by A*H. // // Input, double V[N], a vector defining a Householder matrix. // { double *ah; int i; int j; int k; double v_normsq; v_normsq = 0.0; for ( i = 0; i < n; i++ ) { v_normsq = v_normsq + v[i] * v[i]; } // // Compute A*H' = A*H // ah = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { ah[i+j*n] = a[i+j*n]; for ( k = 0; k < n; k++ ) { ah[i+j*n] = ah[i+j*n] - 2.0 * a[i+k*n] * v[k] * v[j] / v_normsq; } } } // // Copy A = AH; // for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = ah[i+j*n]; } } delete [] ah; return; } //****************************************************************************80 double *r8mat_identity_new ( int n ) //****************************************************************************80 // // Purpose: // // R8MAT_IDENTITY_NEW returns an identity matrix. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of A. // // Output, double R8MAT_IDENTITY_NEW[N*N], the N by N identity matrix. // { double *a; int i; int j; int k; a = new double[n*n]; k = 0; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( i == j ) { a[k] = 1.0; } else { a[k] = 0.0; } k = k + 1; } } return a; } //****************************************************************************80 void r8mat_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT prints an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Entry A(I,J) is stored as A[I+J*M] // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 September 2009 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows in A. // // Input, int N, the number of columns in A. // // Input, double A[M*N], the M by N matrix. // // Input, string TITLE, a title. // { r8mat_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8MAT_PRINT_SOME prints some of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 June 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; if ( m <= 0 || n <= 0 ) { cout << "\n"; cout << " (None)\n"; return; } // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; if ( n < j2hi ) { j2hi = n; } if ( jhi < j2hi ) { j2hi = jhi; } cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j - 1 << " "; } cout << "\n"; cout << " Row\n"; cout << "\n"; // // Determine the range of the rows in this strip. // if ( 1 < ilo ) { i2lo = ilo; } else { i2lo = 1; } if ( ihi < m ) { i2hi = ihi; } else { i2hi = m; } for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i - 1 << ": "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8mat_zero_new ( int m, int n ) //****************************************************************************80 // // Purpose: // // R8MAT_ZERO_NEW returns a new zeroed R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Output, double R8MAT_ZERO_NEW[M*N], the new zeroed matrix. // { double *a; int i; int j; a = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 0.0; } } return a; } //****************************************************************************80 void r8pbu_cg ( int n, int mu, double a[], double b[], double x[] ) //****************************************************************************80 // // Purpose: // // R8PBU_CG uses the conjugate gradient method on a R8PBU system. // // Discussion: // // The R8PBU storage format is used for a symmetric positive definite band matrix. // // To save storage, only the diagonal and upper triangle of A is stored, // in a compact diagonal format that preserves columns. // // The diagonal is stored in row MU+1 of the array. // The first superdiagonal in row MU, columns 2 through N. // The second superdiagonal in row MU-1, columns 3 through N. // The MU-th superdiagonal in row 1, columns MU+1 through N. // // The matrix A must be a positive definite symmetric band matrix. // // The method is designed to reach the solution after N computational // steps. However, roundoff may introduce unacceptably large errors for // some problems. In such a case, calling the routine again, using // the computed solution as the new starting estimate, should improve // the results. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 February 2013 // // Author: // // John Burkardt // // Reference: // // Frank Beckman, // The Solution of Linear Equations by the Conjugate Gradient Method, // in Mathematical Methods for Digital Computers, // edited by John Ralston, Herbert Wilf, // Wiley, 1967, // ISBN: 0471706892, // LC: QA76.5.R3. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int MU, the number of superdiagonals. // MU must be at least 0, and no more than N-1. // // Input, double A[(MU+1)*N], the R8PBU matrix. // // Input, double B[N], the right hand side vector. // // Input/output, double X[N]. // On input, an estimate for the solution. // On output, the approximate solution vector. // { double alpha; double *ap; double beta; int i; int it; double *p; double pap; double pr; double *r; double rap; // // Initialize // AP = A * x, // R = b - A * x, // P = b - A * x. // ap = r8pbu_mv ( n, n, mu, a, x ); r = new double[n]; for ( i = 0; i < n; i++ ) { r[i] = b[i] - ap[i]; } p = new double[n]; for ( i = 0; i < n; i++ ) { p[i] = b[i] - ap[i]; } // // Do the N steps of the conjugate gradient method. // for ( it = 1; it <= n; it++ ) { // // Compute the matrix*vector product AP=A*P. // delete [] ap; ap = r8pbu_mv ( n, n, mu, a, p ); // // Compute the dot products // PAP = P*AP, // PR = P*R // Set // ALPHA = PR / PAP. // pap = 0.0; for ( i = 0; i < n; i++ ) { pap = pap + p[i] * ap[i]; } if ( pap == 0.0 ) { delete [] ap; break; } pr = 0.0; for ( i = 0; i < n; i++ ) { pr = pr + p[i] * r[i]; } alpha = pr / pap; // // Set // X = X + ALPHA * P // R = R - ALPHA * AP. // for ( i = 0; i < n; i++ ) { x[i] = x[i] + alpha * p[i]; } for ( i = 0; i < n; i++ ) { r[i] = r[i] - alpha * ap[i]; } // // Compute the vector dot product // RAP = R*AP // Set // BETA = - RAP / PAP. // rap = 0.0; for ( i = 0; i < n; i++ ) { rap = rap + r[i] * ap[i]; } beta = - rap / pap; // // Update the perturbation vector // P = R + BETA * P. // for ( i = 0; i < n; i++ ) { p[i] = r[i] + beta * p[i]; } } delete [] p; delete [] r; return; } //****************************************************************************80 double *r8pbu_dif2 ( int m, int n, int mu ) //****************************************************************************80 // // Purpose: // // R8PBU_DIF2 returns the DIF2 matrix in R8PBU format. // // Example: // // N = 5 // // 2 -1 . . . // -1 2 -1 . . // . -1 2 -1 . // . . -1 2 -1 // . . . -1 2 // // Properties: // // A is banded, with bandwidth 3. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is a special case of the TRIS or tridiagonal scalar matrix. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is Toeplitz: constant along diagonals. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I. // // A is positive definite. // // A is an M matrix. // // A is weakly diagonally dominant, but not strictly diagonally dominant. // // A has an LU factorization A = L * U, without pivoting. // // The matrix L is lower bidiagonal with subdiagonal elements: // // L(I+1,I) = -I/(I+1) // // The matrix U is upper bidiagonal, with diagonal elements // // U(I,I) = (I+1)/I // // and superdiagonal elements which are all -1. // // A has a Cholesky factorization A = L * L', with L lower bidiagonal. // // L(I,I) = sqrt ( (I+1) / I ) // L(I,I-1) = -sqrt ( (I-1) / I ) // // The eigenvalues are // // LAMBDA(I) = 2 + 2 * COS(I*PI/(N+1)) // = 4 SIN^2(I*PI/(2*N+2)) // // The corresponding eigenvector X(I) has entries // // X(I)(J) = sqrt(2/(N+1)) * sin ( I*J*PI/(N+1) ). // // Simple linear systems: // // x = (1,1,1,...,1,1), A*x=(1,0,0,...,0,1) // // x = (1,2,3,...,n-1,n), A*x=(0,0,0,...,0,n+1) // // det ( A ) = N + 1. // // The value of the determinant can be seen by induction, // and expanding the determinant across the first row: // // det ( A(N) ) = 2 * det ( A(N-1) ) - (-1) * (-1) * det ( A(N-2) ) // = 2 * N - (N-1) // = N + 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2014 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Morris Newman, John Todd, // Example A8, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int MU, the number of superdiagonals. // MU must be at least 0, and no more than N-1. // // Output, double R8PBU_DIF2[(MU+1)*N], the matrix. // { double *a; int i; int j; a = new double[(mu+1)*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < mu + 1; i++ ) { a[i+j*(mu+1)] = 0.0; } } for ( j = 1; j < n; j++ ) { i = mu - 1; a[i+j*(mu+1)] = -1.0; } for ( j = 0; j < n; j++ ) { i = mu; a[i+j*(mu+1)] = 2.0; } return a; } //****************************************************************************80 double *r8pbu_mv ( int m, int n, int mu, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8PBU_MV multiplies a R8PBU matrix times a vector. // // Discussion: // // The R8PBU storage format is used for a symmetric positive definite band matrix. // // To save storage, only the diagonal and upper triangle of A is stored, // in a compact diagonal format that preserves columns. // // The diagonal is stored in row MU+1 of the array. // The first superdiagonal in row MU, columns 2 through N. // The second superdiagonal in row MU-1, columns 3 through N. // The MU-th superdiagonal in row 1, columns MU+1 through N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 February 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int MU, the number of superdiagonals in the matrix. // MU must be at least 0 and no more than N-1. // // Input, double A[(MU+1)*N], the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8PBU_MV[M], the result vector A * x. // { double *b; int i; int ieqn; int j; b = new double[m]; // // Multiply X by the diagonal of the matrix. // for ( j = 0; j < n; j++ ) { b[j] = a[mu+j*(mu+1)] * x[j]; } // // Multiply X by the superdiagonals of the matrix. // for ( i = mu; 1 <= i; i-- ) { for ( j = mu+2-i; j <= n; j++ ) { ieqn = i + j - mu - 1; b[ieqn-1] = b[ieqn-1] + a[i-1+(j-1)*(mu+1)] * x[j-1]; b[j-1] = b[j-1] + a[i-1+(j-1)*(mu+1)] * x[ieqn-1]; } } return b; } //****************************************************************************80 double *r8pbu_resid ( int m, int n, int mu, double a[], double x[], double b[] ) //****************************************************************************80 // // Purpose: // // R8PBU_RESID computes the residual R = B-A*X for R8PBU matrices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int MU, the number of superdiagonals in the matrix. // MU must be at least 0 and no more than N-1. // // Input, double A[(MU+1)*N], the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Input, double B[M], the desired result A * x. // // Output, double R8PBU_RESID[M], the residual R = B - A * X. // { int i; double *r; r = r8pbu_mv ( m, n, mu, a, x ); for ( i = 0; i < m; i++ ) { r[i] = b[i] - r[i]; } return r; } //****************************************************************************80 void r8sd_cg ( int n, int ndiag, int offset[], double a[], double b[], double x[] ) //****************************************************************************80 // // Purpose: // // R8SD_CG uses the conjugate gradient method on a R8SD linear system. // // Discussion: // // The R8SD storage format is used for symmetric matrices whose only nonzero entries // occur along a few diagonals, but for which these diagonals are not all // close enough to the main diagonal for band storage to be efficient. // // In that case, we assign the main diagonal the offset value 0, and // each successive superdiagonal gets an offset value 1 higher, until // the highest superdiagonal (the A(1,N) entry) is assigned the offset N-1. // // Assuming there are NDIAG nonzero diagonals (ignoring subdiagonals!), // we then create an array B that has N rows and NDIAG columns, and simply // "collapse" the matrix A to the left: // // For the conjugate gradient method to be applicable, the matrix A must // be a positive definite symmetric matrix. // // The method is designed to reach the solution to the linear system // A * x = b // after N computational steps. However, roundoff may introduce // unacceptably large errors for some problems. In such a case, // calling the routine a second time, using the current solution estimate // as the new starting guess, should result in improved results. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 February 2013 // // Author: // // John Burkardt // // Reference: // // Frank Beckman, // The Solution of Linear Equations by the Conjugate Gradient Method, // in Mathematical Methods for Digital Computers, // edited by John Ralston, Herbert Wilf, // Wiley, 1967, // ISBN: 0471706892, // LC: QA76.5.R3. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int NDIAG, the number of diagonals that are stored. // NDIAG must be at least 1 and no more than N. // // Input, int OFFSET[NDIAG], the offsets for the diagonal storage. // // Input, double A[N*NDIAG], the matrix. // // Input, double B[N], the right hand side vector. // // Input/output, double X[N]. // On input, an estimate for the solution, which may be 0. // On output, the approximate solution vector. // { double alpha; double *ap; double beta; int i; int it; double *p; double pap; double pr; double *r; double rap; // // Initialize // AP = A * x, // R = b - A * x, // P = b - A * x. // ap = r8sd_mv ( n, n, ndiag, offset, a, x ); r = new double[n]; for ( i = 0; i < n; i++ ) { r[i] = b[i] - ap[i]; } p = new double[n]; for ( i = 0; i < n; i++ ) { p[i] = b[i] - ap[i]; } // // Do the N steps of the conjugate gradient method. // for ( it = 1; it < n; it++ ) { // // Compute the matrix*vector product AP = A*P. // delete [] ap; ap = r8sd_mv ( n, n, ndiag, offset, a, p ); // // Compute the dot products // PAP = P*AP, // PR = P*R // Set // ALPHA = PR / PAP. // pap = r8vec_dot_product ( n, p, ap ); if ( pap == 0.0 ) { delete [] ap; break; } pr = r8vec_dot_product ( n, p, r ); alpha = pr / pap; // // Set // X = X + ALPHA * P // R = R - ALPHA * AP. // for ( i = 0; i < n; i++ ) { x[i] = x[i] + alpha * p[i]; } for ( i = 0; i < n; i++ ) { r[i] = r[i] - alpha * ap[i]; } // // Compute the vector dot product // RAP = R*AP // Set // BETA = - RAP / PAP. // rap = r8vec_dot_product ( n, r, ap ); beta = -rap / pap; // // Update the perturbation vector // P = R + BETA * P. // for ( i = 0; i < n; i++ ) { p[i] = r[i] + beta * p[i]; } } delete [] p; delete [] r; return; } //****************************************************************************80 double *r8sd_dif2 ( int m, int n, int ndiag, int offset[] ) //****************************************************************************80 // // Purpose: // // R8SD_DIF2 returns the DIF2 matrix in R8SD format. // // Example: // // N = 5 // // 2 -1 . . . // -1 2 -1 . . // . -1 2 -1 . // . . -1 2 -1 // . . . -1 2 // // Properties: // // A is banded, with bandwidth 3. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is a special case of the TRIS or tridiagonal scalar matrix. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is Toeplitz: constant along diagonals. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I. // // A is positive definite. // // A is an M matrix. // // A is weakly diagonally dominant, but not strictly diagonally dominant. // // A has an LU factorization A = L * U, without pivoting. // // The matrix L is lower bidiagonal with subdiagonal elements: // // L(I+1,I) = -I/(I+1) // // The matrix U is upper bidiagonal, with diagonal elements // // U(I,I) = (I+1)/I // // and superdiagonal elements which are all -1. // // A has a Cholesky factorization A = L * L', with L lower bidiagonal. // // L(I,I) = sqrt ( (I+1) / I ) // L(I,I-1) = -sqrt ( (I-1) / I ) // // The eigenvalues are // // LAMBDA(I) = 2 + 2 * COS(I*PI/(N+1)) // = 4 SIN^2(I*PI/(2*N+2)) // // The corresponding eigenvector X(I) has entries // // X(I)(J) = sqrt(2/(N+1)) * sin ( I*J*PI/(N+1) ). // // Simple linear systems: // // x = (1,1,1,...,1,1), A*x=(1,0,0,...,0,1) // // x = (1,2,3,...,n-1,n), A*x=(0,0,0,...,0,n+1) // // det ( A ) = N + 1. // // The value of the determinant can be seen by induction, // and expanding the determinant across the first row: // // det ( A(N) ) = 2 * det ( A(N-1) ) - (-1) * (-1) * det ( A(N-2) ) // = 2 * N - (N-1) // = N + 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2014 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Morris Newman, John Todd, // Example A8, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int NDIAG, the number of diagonals available for storage. // // Input, int OFFSET[NDIAG], the indices of the diagonals. It is // presumed that OFFSET[0] = 0 and OFFSET[1] = 1. // // Output, double R8SD_DIF2[N*NDIAG], the matrix. // { double *a; int i; int j; a = new double[n*ndiag]; for ( j = 0; j < ndiag; j++ ) { for ( i = 0; i < n; i++ ) { a[i+j*n] = 0.0; } } for ( i = 0; i < n; i++ ) { j = 0; a[i+j*ndiag] = 2.0; } for ( i = 0; i < n - 1; i++ ) { j = 1; a[i+j*ndiag] = -1.0; } return a; } //****************************************************************************80 double *r8sd_mv ( int m, int n, int ndiag, int offset[], double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8SD_MV multiplies a R8SD matrix times a vector. // // Discussion: // // The R8SD storage format is used for symmetric matrices whose only nonzero entries // occur along a few diagonals, but for which these diagonals are not all // close enough to the main diagonal for band storage to be efficient. // // In that case, we assign the main diagonal the offset value 0, and // each successive superdiagonal gets an offset value 1 higher, until // the highest superdiagonal (the A(1,N) entry) is assigned the offset N-1. // // Assuming there are NDIAG nonzero diagonals (ignoring subdiagonals!), // we then create an array B that has N rows and NDIAG columns, and simply // "collapse" the matrix A to the left. // // Example: // // The "offset" value is printed above each column. // // Original matrix New Matrix // // 0 1 2 3 4 5 0 1 3 5 // // 11 12 0 14 0 16 11 12 14 16 // 21 22 23 0 25 0 22 23 25 -- // 0 32 33 34 0 36 33 34 36 -- // 41 0 43 44 45 0 44 45 -- -- // 0 52 0 54 55 56 55 56 -- -- // 61 0 63 0 65 66 66 -- -- -- // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 February 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int NDIAG, the number of diagonals that are stored. // NDIAG must be at least 1 and no more than N. // // Input, int OFFSET[NDIAG], the offsets for the diagonal storage. // // Input, double A[N*NDIAG], the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8SD_MV[N], the product A * x. // { double *b; int i; int j; int jdiag; b = new double[m]; for ( i = 0; i < m; i++ ) { b[i] = 0.0; } for ( i = 0; i < n; i++ ) { for ( jdiag = 0; jdiag < ndiag; jdiag++ ) { j = i + offset[jdiag]; if ( 0 <= j && j < n ) { b[i] = b[i] + a[i+jdiag*n] * x[j]; if ( offset[jdiag] != 0 ) { b[j] = b[j] + a[i+jdiag*n] * x[i]; } } } } return b; } //****************************************************************************80 double *r8sd_resid ( int m, int n, int ndiag, int offset[], double a[], double x[], double b[] ) //****************************************************************************80 // // Purpose: // // R8SD_RESID computes the residual R = B-A*X for R8SD matrices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int NDIAG, the number of diagonals that are stored. // NDIAG must be at least 1 and no more than N. // // Input, int OFFSET[NDIAG], the offsets for the diagonal storage. // // Input, double A[N*NDIAG], the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Input, double B[M], the desired result A * x. // // Output, double R8SD_RESID[M], the residual R = B - A * X. // { int i; double *r; r = r8sd_mv ( m, n, ndiag, offset, a, x ); for ( i = 0; i < m; i++ ) { r[i] = b[i] - r[i]; } return r; } //****************************************************************************80 void r8sp_cg ( int n, int nz_num, int row[], int col[], double a[], double b[], double x[] ) //****************************************************************************80 // // Purpose: // // R8SP_CG uses the conjugate gradient method on a R8SP linear system. // // Discussion: // // The R8SP storage format stores the row, column and value of each nonzero // // It is possible that a pair of indices (I,J) may occur more than // once. Presumably, in this case, the intent is that the actual value // of A(I,J) is the sum of all such entries. This is not a good thing // to do, but I seem to have come across this in MATLAB. // // The R8SP format is used by CSPARSE ("sparse triplet"), DLAP/SLAP // (nonsymmetric case), by MATLAB, and by SPARSEKIT ("COO" format). // // For the conjugate gradient method to be applicable, the matrix A must // be a positive definite symmetric matrix. // // The method is designed to reach the solution to the linear system // A * x = b // after N computational steps. However, roundoff may introduce // unacceptably large errors for some problems. In such a case, // calling the routine a second time, using the current solution estimate // as the new starting guess, should result in improved results. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2014 // // Author: // // John Burkardt // // Reference: // // Frank Beckman, // The Solution of Linear Equations by the Conjugate Gradient Method, // in Mathematical Methods for Digital Computers, // edited by John Ralston, Herbert Wilf, // Wiley, 1967, // ISBN: 0471706892, // LC: QA76.5.R3. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Input, double B[N], the right hand side vector. // // Input/output, double X[N]. // On input, an estimate for the solution, which may be 0. // On output, the approximate solution vector. // { double alpha; double *ap; double beta; int i; int it; double *p; double pap; double pr; double *r; double rap; // // Initialize // AP = A * x, // R = b - A * x, // P = b - A * x. // ap = r8sp_mv ( n, n, nz_num, row, col, a, x ); r = new double[n]; for ( i = 0; i < n; i++ ) { r[i] = b[i] - ap[i]; } p = new double[n]; for ( i = 0; i < n; i++ ) { p[i] = b[i] - ap[i]; } // // Do the N steps of the conjugate gradient method. // for ( it = 1; it <= n; it++ ) { // // Compute the matrix*vector product AP = A*P. // delete [] ap; ap = r8sp_mv ( n, n, nz_num, row, col, a, p ); // // Compute the dot products // PAP = P*AP, // PR = P*R // Set // ALPHA = PR / PAP. // pap = r8vec_dot_product ( n, p, ap ); if ( pap == 0.0 ) { delete [] ap; break; } pr = r8vec_dot_product ( n, p, r ); alpha = pr / pap; // // Set // X = X + ALPHA * P // R = R - ALPHA * AP. // for ( i = 0; i < n; i++ ) { x[i] = x[i] + alpha * p[i]; } for ( i = 0; i < n; i++ ) { r[i] = r[i] - alpha * ap[i]; } // // Compute the vector dot product // RAP = R*AP // Set // BETA = - RAP / PAP. // rap = r8vec_dot_product ( n, r, ap ); beta = -rap / pap; // // Update the perturbation vector // P = R + BETA * P. // for ( i = 0; i < n; i++ ) { p[i] = r[i] + beta * p[i]; } } delete [] p; delete [] r; return; } //****************************************************************************80 double *r8sp_dif2 ( int m, int n, int nz_num, int row[], int col[] ) //****************************************************************************80 // // Purpose: // // R8SP_DIF2 returns the DIF2 matrix in R8SP format. // // Example: // // N = 5 // // 2 -1 . . . // -1 2 -1 . . // . -1 2 -1 . // . . -1 2 -1 // . . . -1 2 // // Properties: // // A is banded, with bandwidth 3. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is a special case of the TRIS or tridiagonal scalar matrix. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is Toeplitz: constant along diagonals. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I. // // A is positive definite. // // A is an M matrix. // // A is weakly diagonally dominant, but not strictly diagonally dominant. // // A has an LU factorization A = L * U, without pivoting. // // The matrix L is lower bidiagonal with subdiagonal elements: // // L(I+1,I) = -I/(I+1) // // The matrix U is upper bidiagonal, with diagonal elements // // U(I,I) = (I+1)/I // // and superdiagonal elements which are all -1. // // A has a Cholesky factorization A = L * L', with L lower bidiagonal. // // L(I,I) = sqrt ( (I+1) / I ) // L(I,I-1) = -sqrt ( (I-1) / I ) // // The eigenvalues are // // LAMBDA(I) = 2 + 2 * COS(I*PI/(N+1)) // = 4 SIN^2(I*PI/(2*N+2)) // // The corresponding eigenvector X(I) has entries // // X(I)(J) = sqrt(2/(N+1)) * sin ( I*J*PI/(N+1) ). // // Simple linear systems: // // x = (1,1,1,...,1,1), A*x=(1,0,0,...,0,1) // // x = (1,2,3,...,n-1,n), A*x=(0,0,0,...,0,n+1) // // det ( A ) = N + 1. // // The value of the determinant can be seen by induction, // and expanding the determinant across the first row: // // det ( A(N) ) = 2 * det ( A(N-1) ) - (-1) * (-1) * det ( A(N-2) ) // = 2 * N - (N-1) // = N + 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2014 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Morris Newman, John Todd, // Example A8, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int NZ_NUM, the number of nonzeros. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], space in which the rows and columns // of nonzero entries will be stored. // // Output, double R8SP_DIF2[NZ_NUM], the matrix. // { double *a; int i; int j; int k; int mn; a = new double[nz_num]; for ( k = 0; k < nz_num; k++ ) { row[k] = 0; col[k] = 0; a[k] = 0.0; } mn = i4_min ( m, n ); k = 0; for ( i = 0; i < mn; i++ ) { if ( 0 < i ) { row[k] = i; col[k] = i - 1; a[k] = -1.0; k = k + 1; } row[k] = i; col[k] = i; a[k] = 2.0; k = k + 1; if ( i < n - 1 ) { row[k] = i; col[k] = i + 1; a[k] = -1.0; k = k + 1; } } return a; } //****************************************************************************80 double *r8sp_mv ( int m, int n, int nz_num, int row[], int col[], double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8SP_MV multiplies a R8SP matrix times a vector. // // Discussion: // // The R8SP storage format stores the row, column and value of each nonzero // // It is possible that a pair of indices (I,J) may occur more than // once. Presumably, in this case, the intent is that the actual value // of A(I,J) is the sum of all such entries. This is not a good thing // to do, but I seem to have come across this in MATLAB. // // The R8SP format is used by CSPARSE ("sparse triplet"), DLAP/SLAP // (nonsymmetric case), by MATLAB, and by SPARSEKIT ("COO" format). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8SP_MV[M], the product vector A*X. // { double *b; int i; int j; int k; b = new double[m]; for ( i = 0; i < m; i++ ) { b[i] = 0.0; } for ( k = 0; k < nz_num; k++ ) { i = row[k]; j = col[k]; b[i] = b[i] + a[k] * x[j]; } return b; } //****************************************************************************80 double *r8sp_resid ( int m, int n, int nz_num, int row[], int col[], double a[], double x[], double b[] ) //****************************************************************************80 // // Purpose: // // R8SP_RESID computes the residual R = B-A*X for R8SP matrices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int NZ_NUM, the number of nonzeros. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices. // // Input, double A[NZ_NUM], the values. // // Input, double X[N], the vector to be multiplied by A. // // Input, double B[M], the desired result A * x. // // Output, double R8SP_RESID[M], the residual R = B - A * X. // { int i; double *r; r = r8sp_mv ( m, n, nz_num, row, col, a, x ); for ( i = 0; i < m; i++ ) { r[i] = b[i] - r[i]; } return r; } //****************************************************************************80 void r8vec_copy ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_COPY copies an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], the vector to be copied. // // Output, double A2[N], the copy of A1. // { int i; for ( i = 0; i < n; i++ ) { a2[i] = a1[i]; } return; } //****************************************************************************80 double r8vec_diff_norm ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DIFF_NORM returns the L2 norm of the difference of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // The vector L2 norm is defined as: // // R8VEC_NORM_L2 = sqrt ( sum ( 1 <= I <= N ) A(I)^2 ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in A. // // Input, double A[N], B[N], the vectors. // // Output, double R8VEC_DIFF_NORM, the L2 norm of A - B. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + ( a[i] - b[i] ) * ( a[i] - b[i] ); } value = sqrt ( value ); return value; } //****************************************************************************80 double r8vec_dot_product ( int n, double a1[], double a2[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of a pair of R8VEC's. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vectors. // // Input, double A1[N], A2[N], the two vectors to be considered. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + a1[i] * a2[i]; } return value; } //****************************************************************************80 double *r8vec_house_column ( int n, double a[], int k ) //****************************************************************************80 // // Purpose: // // R8VEC_HOUSE_COLUMN defines a Householder premultiplier that "packs" a column. // // Discussion: // // An R8VEC is a vector of R8's. // // The routine returns a vector V that defines a Householder // premultiplier matrix H(V) that zeros out the subdiagonal entries of // column K of the matrix A. // // H(V) = I - 2 * v * v' // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix A. // // Input, double A[N], column K of the matrix A. // // Input, int K, the column of the matrix to be modified. // // Output, double R8VEC_HOUSE_COLUMN[N], a vector of unit L2 norm which // defines an orthogonal Householder premultiplier matrix H with the property // that the K-th column of H*A is zero below the diagonal. // { int i; double s; double *v; v = r8vec_zero_new ( n ); if ( k < 1 || n <= k ) { return v; } s = r8vec_norm ( n+1-k, a+k-1 ); if ( s == 0.0 ) { return v; } v[k-1] = a[k-1] + fabs ( s ) * r8_sign ( a[k-1] ); r8vec_copy ( n-k, a+k, v+k ); s = r8vec_norm ( n-k+1, v+k-1 ); for ( i = k-1; i < n; i++ ) { v[i] = v[i] / s; } return v; } //****************************************************************************80 double r8vec_norm ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_NORM returns the L2 norm of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // The vector L2 norm is defined as: // // R8VEC_NORM = sqrt ( sum ( 1 <= I <= N ) A(I)^2 ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 March 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in A. // // Input, double A[N], the vector whose L2 norm is desired. // // Output, double R8VEC_NORM, the L2 norm of A. // { int i; double v; v = 0.0; for ( i = 0; i < n; i++ ) { v = v + a[i] * a[i]; } v = sqrt ( v ); return v; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 double *r8vec_zero_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZERO_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZERO_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; size_t len; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); len = std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }