# include # include # include # include # include # include # include using namespace std; # include "cvt.hpp" //****************************************************************************80 char ch_cap ( char c ) //****************************************************************************80 // // Purpose: // // CH_CAP capitalizes a single character. // // Discussion: // // This routine should be equivalent to the library "toupper" function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 July 1998 // // Author: // // John Burkardt // // Parameters: // // Input, char C, the character to capitalize. // // Output, char CH_CAP, the capitalized character. // { if ( 97 <= c && c <= 122 ) { c = c - 32; } return c; } //****************************************************************************80 bool ch_eqi ( char c1, char c2 ) //****************************************************************************80 // // Purpose: // // CH_EQI is true if two characters are equal, disregarding case. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char C1, char C2, the characters to compare. // // Output, bool CH_EQI, is true if the two characters are equal, // disregarding case. // { if ( 97 <= c1 && c1 <= 122 ) { c1 = c1 - 32; } if ( 97 <= c2 && c2 <= 122 ) { c2 = c2 - 32; } return ( c1 == c2 ); } //****************************************************************************80 int ch_to_digit ( char c ) //****************************************************************************80 // // Purpose: // // CH_TO_DIGIT returns the integer value of a base 10 digit. // // Example: // // C DIGIT // --- ----- // '0' 0 // '1' 1 // ... ... // '9' 9 // ' ' 0 // 'X' -1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char C, the decimal digit, '0' through '9' or blank are legal. // // Output, int CH_TO_DIGIT, the corresponding integer value. If C was // 'illegal', then DIGIT is -1. // { int digit; if ( '0' <= c && c <= '9' ) { digit = c - '0'; } else if ( c == ' ' ) { digit = 0; } else { digit = -1; } return digit; } //****************************************************************************80 void cvt ( int dim_num, int n, int batch, int init, int sample, int sample_num, int it_max, int it_fixed, int *seed, double r[],int *it_num, double *it_diff, double *energy ) //****************************************************************************80 // // Purpose: // // CVT computes a Centroidal Voronoi Tessellation. // // Discussion: // // This routine initializes the data, and carries out the // CVT iteration. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 June 2005 // // Author: // // John Burkardt // // Reference: // // Qiang Du, Vance Faber, and Max Gunzburger, // Centroidal Voronoi Tessellations: Applications and Algorithms, // SIAM Review, Volume 41, 1999, pages 637-676. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of Voronoi cells. // // Input, int BATCH, sets the maximum number of sample points // generated at one time. It is inefficient to generate the sample // points 1 at a time, but memory intensive to generate them all // at once. You might set BATCH to min ( SAMPLE_NUM, 10000 ), for instance. // BATCH must be at least 1. // // Input, int INIT, specifies how the points are to be initialized. // -1, 'RANDOM', using C++ RANDOM function; // 0, 'UNIFORM', using a simple uniform RNG; // 1, 'HALTON', from a Halton sequence; // 2, 'GRID', points from a grid; // 3, 'USER', call "user" routine; // 4, points are already initialized on input. // // Input, int SAMPLE, specifies how the sampling is done. // -1, 'RANDOM', using C++ RANDOM function; // 0, 'UNIFORM', using a simple uniform RNG; // 1, 'HALTON', from a Halton sequence; // 2, 'GRID', points from a grid; // 3, 'USER', call "user" routine. // // Input, int SAMPLE_NUM, the number of sample points. // // Input, int IT_MAX, the maximum number of iterations. // // Input, int IT_FIXED, the maximum number of iterations to take // with a fixed set of sample points. // // Input/output, int *SEED, the random number seed. // // Input/output, double R[DIM_NUM*N], the approximate CVT points. // If INIT = 4 on input, then it is assumed that these values have been // initialized. On output, the CVT iteration has been applied to improve // the value of the points. // // Output, int *IT_NUM, the number of iterations taken. Generally, // this will be equal to IT_MAX, unless the iteration tolerance was // satisfied early. // // Output, double *IT_DIFF, the L2 norm of the difference // between the iterates. // // Output, double *ENERGY, the discrete "energy", divided // by the number of sample points. // { bool DEBUG = true; int i; bool initialize; int seed_base; int seed_init; if ( batch < 1 ) { cout << "\n"; cout << "CVT - Fatal error!\n"; cout << " The input value BATCH < 1.\n"; exit ( 1 ); } if ( seed <= 0 ) { cout << "\n"; cout << "CVT - Fatal error!\n"; cout << " The input value SEED <= 0.\n"; exit ( 1 ); } if ( DEBUG ) { cout << "\n"; cout << " Step SEED L2-Change Energy\n"; cout << "\n"; } *it_num = 0; *it_diff = 0.0; *energy = 0.0; seed_init = *seed; // // Initialize the data, unless the user has already done that. // if ( init != 4 ) { initialize = true; cvt_sample ( dim_num, n, n, init, initialize, seed, r ); } if ( DEBUG ) { cout << " " << setw(4) << *it_num << " " << setw(12) << seed_init << "\n"; } // // If the initialization and sampling steps use the same random number // scheme, then the sampling scheme does not have to be initialized. // if ( init == sample ) { initialize = false; } else { initialize = true; } // // Carry out the iteration. // while ( *it_num < it_max ) { // // If it's time to update the seed, save its current value // as the starting value for all iterations in this cycle. // If it's not time to update the seed, restore it to its initial // value for this cycle. // if ( ( (*it_num) % it_fixed ) == 0 ) { seed_base = *seed; } else { *seed = seed_base; } *it_num = *it_num + 1; seed_init = *seed; cvt_iterate ( dim_num, n, batch, sample, initialize, sample_num, seed, r, it_diff, energy ); initialize = false; if ( DEBUG ) { cout << " " << setw(4) << *it_num << " " << setw(12) << seed_init << " " << setw(14) << *it_diff << " " << setw(14) << *energy << "\n"; } } return; } //****************************************************************************80 double cvt_energy ( int dim_num, int n, int batch, int sample, bool initialize, int sample_num, int *seed, double r[] ) //****************************************************************************80 // // Purpose: // // CVT_ENERGY computes the CVT energy of a dataset. // // Discussion: // // For a given number of generators, a CVT is a minimizer (or at least // a local minimizer) of the CVT energy. During a CVT iteration, // it should generally be the case that the CVT energy decreases from // step to step, and that perturbations or adjustments of an // approximate CVT will almost always have higher CVT energy. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 December 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of generators. // // Input, int BATCH, the maximum number of sample points to generate // at one time. // // Input, int SAMPLE, specifies how the sampling is done. // -1, 'RANDOM', using C++ RANDOM function; // 0, 'UNIFORM', using a simple uniform RNG; // 1, 'HALTON', from a Halton sequence; // 2, 'GRID', points from a grid; // 3, 'USER', call "user" routine. // // Input, bool INITIALIZE, is TRUE if the pseudorandom process // should be reinitialized. // // Input, int SAMPLE_NUM, the number of sample points to use. // // Input/output, int *SEED, a seed for the random number generator. // // Input, double R[DIM_NUM*N], the coordinates of the points. // // Output, double CVT_ENERGY, the estimated CVT energy. // { double energy; int get; int have; int i; int j; int *nearest; double *s; nearest = new int[batch]; s = new double [dim_num*batch]; have = 0; energy = 0.0; while ( have < sample_num ) { get = i4_min ( sample_num - have, batch ); cvt_sample ( dim_num, sample_num, get, sample, initialize, seed, s ); have = have + get; find_closest ( dim_num, n, get, s, r, nearest ); for ( j = 0; j < get; j++ ) { for ( i = 0; i < dim_num; i++ ) { energy = energy + ( s[i+j*dim_num] - r[i+nearest[j]*dim_num] ) * ( s[i+j*dim_num] - r[i+nearest[j]*dim_num] ); } } } energy = energy / ( double ) ( sample_num ); delete [] nearest; delete [] s; return energy; } //****************************************************************************80 void cvt_iterate ( int dim_num, int n, int batch, int sample, bool initialize, int sample_num, int *seed, double r[], double *it_diff, double *energy ) //****************************************************************************80 // // Purpose: // // CVT_ITERATE takes one step of the CVT iteration. // // Discussion: // // The routine is given a set of points, called "generators", which // define a tessellation of the region into Voronoi cells. Each point // defines a cell. Each cell, in turn, has a centroid, but it is // unlikely that the centroid and the generator coincide. // // Each time this CVT iteration is carried out, an attempt is made // to modify the generators in such a way that they are closer and // closer to being the centroids of the Voronoi cells they generate. // // A large number of sample points are generated, and the nearest generator // is determined. A count is kept of how many points were nearest to each // generator. Once the sampling is completed, the location of all the // generators is adjusted. This step should decrease the discrepancy // between the generators and the centroids. // // The centroidal Voronoi tessellation minimizes the "energy", // defined to be the integral, over the region, of the square of // the distance between each point in the region and its nearest generator. // The sampling technique supplies a discrete estimate of this // energy. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 September 2004 // // Author: // // John Burkardt // // Reference: // // Qiang Du, Vance Faber, and Max Gunzburger, // Centroidal Voronoi Tessellations: Applications and Algorithms, // SIAM Review, Volume 41, 1999, pages 637-676. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of Voronoi cells. // // Input, int BATCH, sets the maximum number of sample points // generated at one time. It is inefficient to generate the sample // points 1 at a time, but memory intensive to generate them all // at once. You might set BATCH to min ( SAMPLE_NUM, 10000 ), for instance. // BATCH must be at least 1. // // Input, int SAMPLE, specifies how the sampling is done. // -1, 'RANDOM', using C++ RANDOM function; // 0, 'UNIFORM', using a simple uniform RNG; // 1, 'HALTON', from a Halton sequence; // 2, 'GRID', points from a grid; // 3, 'USER', call "user" routine. // // Input, bool INITIALIZE, is TRUE if the SEED must be reset to SEED_INIT // before computation. Also, the pseudorandom process may need to be // reinitialized. // // Input, int SAMPLE_NUM, the number of sample points. // // Input/output, int *SEED, the random number seed. // // Input/output, double R[DIM_NUM*N], the Voronoi // cell generators. On output, these have been modified // // Output, double *IT_DIFF, the L2 norm of the difference // between the iterates. // // Output, double *ENERGY, the discrete "energy", divided // by the number of sample points. // { int *count; int get; int have; int i; int j; int j2; int *nearest; double *r2; double *s; bool success; double term; // // Take each generator as the first sample point for its region. // This can slightly slow the convergence, but it simplifies the // algorithm by guaranteeing that no region is completely missed // by the sampling. // *energy = 0.0; r2 = new double[dim_num*n]; count = new int[n]; nearest = new int[sample_num]; s = new double[dim_num*sample_num]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < dim_num; i++ ) { r2[i+j*dim_num] = r[i+j*dim_num]; } } for ( j = 0; j < n; j++ ) { count[j] = 1; } // // Generate the sampling points S. // have = 0; while ( have < sample_num ) { get = i4_min ( sample_num - have, batch ); cvt_sample ( dim_num, sample_num, get, sample, initialize, seed, s ); initialize = false; have = have + get; // // Find the index N of the nearest cell generator to each sample point S. // find_closest ( dim_num, n, get, s, r, nearest ); // // Add S to the centroid associated with generator N. // for ( j = 0; j < get; j++ ) { j2 = nearest[j]; for ( i = 0; i < dim_num; i++ ) { r2[i+j2*dim_num] = r2[i+j2*dim_num] + s[i+j*dim_num]; } for ( i = 0; i < dim_num; i++ ) { *energy = *energy + pow ( r[i+j2*dim_num] - s[i+j*dim_num], 2 ); } count[j2] = count[j2] + 1; } } // // Estimate the centroids. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < dim_num; i++ ) { r2[i+j*dim_num] = r2[i+j*dim_num] / ( double ) ( count[j] ); } } // // Determine the sum of the distances between generators and centroids. // *it_diff = 0.0; for ( j = 0; j < n; j++ ) { term = 0.0; for ( i = 0; i < dim_num; i++ ) { term = term + ( r2[i+j*dim_num] - r[i+j*dim_num] ) * ( r2[i+j*dim_num] - r[i+j*dim_num] ); } *it_diff = *it_diff + sqrt ( term ); } // // Replace the generators by the centroids. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < dim_num; i++ ) { r[i+j*dim_num] = r2[i+j*dim_num]; } } // // Normalize the discrete energy estimate. // *energy = *energy / sample_num; delete [] count; delete [] nearest; delete [] r2; delete [] s; return; } //****************************************************************************80 void cvt_sample ( int dim_num, int n, int n_now, int sample, bool initialize, int *seed, double r[] ) //****************************************************************************80 // // Purpose: // // CVT_SAMPLE returns sample points. // // Discussion: // // N sample points are to be taken from the unit box of dimension DIM_NUM. // // These sample points are usually created by a pseudorandom process // for which the points are essentially indexed by a quantity called // SEED. To get N sample points, we generate values with indices // SEED through SEED+N-1. // // It may not be practical to generate all the sample points in a // single call. For that reason, the routine allows the user to // request a total of N points, but to require that only N_NOW be // generated now (on this call). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of Voronoi cells. // // Input, int N_NOW, the number of sample points to be generated // on this call. N_NOW must be at least 1. // // Input, int SAMPLE, specifies how the sampling is done. // -1, 'RANDOM', using C++ RANDOM function; // 0, 'UNIFORM', using a simple uniform RNG; // 1, 'HALTON', from a Halton sequence; // 2, 'GRID', points from a grid; // 3, 'USER', call "user" routine. // // Input, bool INITIALIZE, is TRUE if the pseudorandom process should be // reinitialized. // // Input/output, int *SEED, the random number seed. // // Output, double R[DIM_NUM*N_NOW], the sample points. // { double exponent; static int *halton_base = NULL; static int *halton_leap = NULL; static int *halton_seed = NULL; int halton_step; int i; int j; int k; static int ngrid; static int rank; int rank_max; static int *tuple = NULL; if ( n_now < 1 ) { cout << "\n"; cout << "CVT_SAMPLE - Fatal error!\n"; cout << " N_NOW < 1.\n"; exit ( 1 ); } if ( sample == -1 ) { if ( initialize ) { random_initialize ( *seed ); } for ( j = 0; j < n_now; j++ ) { for ( i = 0; i < dim_num; i++ ) { r[i+j*dim_num] = ( double ) random ( ) / ( double ) RAND_MAX; } } *seed = ( *seed ) + n_now * dim_num; } else if ( sample == 0 ) { r8mat_uniform_01 ( dim_num, n_now, seed, r ); } else if ( sample == 1 ) { halton_seed = new int[dim_num]; halton_leap = new int[dim_num]; halton_base = new int[dim_num]; halton_step = *seed; for ( i = 0; i < dim_num; i++ ) { halton_seed[i] = 0; } for ( i = 0; i < dim_num; i++ ) { halton_leap[i] = 1; } for ( i = 0; i < dim_num; i++ ) { halton_base[i] = prime ( i + 1 ); } i4_to_halton_sequence ( dim_num, n_now, halton_step, halton_seed, halton_leap, halton_base, r ); delete [] halton_seed; delete [] halton_leap; delete [] halton_base; *seed = *seed + n_now; } else if ( sample == 2 ) { exponent = 1.0 / ( double ) ( dim_num ); ngrid = ( int ) pow ( ( double ) n, exponent ); rank_max = ( int ) pow ( ( double ) ngrid, ( double ) dim_num ); tuple = new int[dim_num]; if ( rank_max < n ) { ngrid = ngrid + 1; rank_max = ( int ) pow ( ( double ) ngrid, ( double ) dim_num ); } if ( initialize ) { rank = -1; tuple_next_fast ( ngrid, dim_num, rank, tuple ); } rank = ( *seed ) % rank_max; for ( j = 0; j < n_now; j++ ) { tuple_next_fast ( ngrid, dim_num, rank, tuple ); rank = rank + 1; rank = rank % rank_max; for ( i = 0; i < dim_num; i++ ) { r[i+j*dim_num] = double ( 2 * tuple[i] - 1 ) / double ( 2 * ngrid ); } } delete [] tuple; *seed = *seed + n_now; } else if ( sample == 3 ) { user ( dim_num, n_now, seed, r ); } else { cout << "\n"; cout << "CVT_SAMPLE - Fatal error!\n"; cout << " The value of SAMPLE = " << sample << " is illegal.\n"; exit ( 1 ); } return; } //****************************************************************************80 void data_read ( char *file_in_name, int dim_num, int n, double r[] ) //****************************************************************************80 // // Purpose: // // DATA_READ reads generator coordinate data from a file. // // Discussion: // // The file is assumed to contain one record per line. // // Records beginning with the '#' character are comments, and are ignored. // Blank lines are also ignored. // // Each line that is not ignored is assumed to contain exactly (or at least) // M real numbers, representing the coordinates of a point. // // There are assumed to be exactly (or at least) N such records. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, char *FILE_IN_NAME, the name of the input file. // // Input, int DIM_NUM, the number of spatial dimensions. // // Input, int N, the number of points. The program // will stop reading data once N values have been read. // // Output, double R[DIM_NUM*N], the point coordinates. // { bool error; ifstream file_in; int i; int j; char line[255]; double *x; file_in.open ( file_in_name ); if ( !file_in ) { cout << "\n"; cout << "DATA_READ - Fatal error!\n"; cout << " Could not open the input file: \"" << file_in_name << "\"\n"; exit ( 1 ); } x = new double[dim_num]; j = 0; while ( j < n ) { file_in.getline ( line, sizeof ( line ) ); if ( file_in.eof ( ) ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, dim_num, x ); if ( error ) { continue; } for ( i = 0; i < dim_num; i++ ) { r[i+j*dim_num] = x[i]; } j = j + 1; } file_in.close ( ); delete [] x; cout << "\n"; cout << "DATA_READ:\n"; cout << " Read coordinate data from file.\n"; return; } //****************************************************************************80 char digit_to_ch ( int i ) //****************************************************************************80 // // Purpose: // // DIGIT_TO_CH returns the base 10 digit character corresponding to a digit. // // Example: // // I C // ----- --- // 0 '0' // 1 '1' // ... ... // 9 '9' // 10 '*' // -83 '*' // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the digit, which should be between 0 and 9. // // Output, char DIGIT_TO_CH, the appropriate character '0' through '9' or '*'. // { char c; if ( 0 <= i && i <= 9 ) { c = '0' + i; } else { c = '*'; } return c; } //****************************************************************************80 void find_closest ( int dim_num, int n, int sample_num, double s[], double r[], int nearest[] ) //****************************************************************************80 // // Purpose: // // FIND_CLOSEST finds the nearest R point to each S point. // // Discussion: // // This routine finds the closest Voronoi cell generator by checking every // one. For problems with many cells, this process can take the bulk // of the CPU time. Other approaches, which group the cell generators into // bins, can run faster by a large factor. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 October 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of cell generators. // // Input, int SAMPLE_NUM, the number of sample points. // // Input, double S[DIM_NUM*SAMPLE_NUM], the points to be checked. // // Input, double R[DIM_NUM*N], the cell generators. // // Output, int NEAREST[SAMPLE_NUM], the (0-based) index of the nearest // cell generator. // { double dist_sq_min; double dist_sq; int i; int jr; int js; for ( js = 0; js < sample_num; js++ ) { dist_sq_min = r8_huge ( ); nearest[js] = -1; for ( jr = 0; jr < n; jr++ ) { dist_sq = 0.0; for ( i = 0; i < dim_num; i++ ) { dist_sq = dist_sq + ( s[i+js*dim_num] - r[i+jr*dim_num] ) * ( s[i+js*dim_num] - r[i+jr*dim_num] ); } if ( jr == 0 || dist_sq < dist_sq_min ) { dist_sq_min = dist_sq; nearest[js] = jr; } } } return; } //****************************************************************************80 int get_seed ( void ) //****************************************************************************80 // // Purpose: // // GET_SEED returns a random seed for the random number generator. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 September 2003 // // Author: // // John Burkardt // // Parameters: // // Output, int GET_SEED, a random seed value. // { # define I_MAX 2147483647 time_t clock; int i; int ihour; int imin; int isec; int seed; struct tm *lt; time_t tloc; // // If the internal seed is 0, generate a value based on the time. // clock = time ( &tloc ); lt = localtime ( &clock ); // // Hours is 1, 2, ..., 12. // ihour = lt->tm_hour; if ( 12 < ihour ) { ihour = ihour - 12; } // // Move Hours to 0, 1, ..., 11 // ihour = ihour - 1; imin = lt->tm_min; isec = lt->tm_sec; seed = isec + 60 * ( imin + 60 * ihour ); // // We want values in [1,43200], not [0,43199]. // seed = seed + 1; // // Remap ISEED from [1,43200] to [1,IMAX]. // seed = ( int ) ( ( ( double ) seed ) * ( ( double ) I_MAX ) / ( 60.0 * 60.0 * 12.0 ) ); // // Never use a seed of 0. // if ( seed == 0 ) { seed = 1; } return seed; # undef I_MAX } //****************************************************************************80 bool halham_leap_check ( int dim_num, int leap[] ) //****************************************************************************80 // // Purpose: // // HALHAM_LEAP_CHECK checks LEAP for a Halton or Hammersley sequence. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 September 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int LEAP[DIM_NUM], the successive jumps in the sequence. // Each entry must be greater than 0. // // Output, bool HALHAM_LEAP_CHECK, is true if LEAP is legal. // { int i; bool value; value = true; for ( i = 0; i < dim_num; i++ ) { if ( leap[i] < 1 ) { cout << "\n"; cout << "HALHAM_LEAP_CHECK - Fatal error!\n"; cout << " Leap entries must be greater than 0.\n"; cout << " leap[" << i << "] = " << leap[i] << "\n"; value = false; break; } } return value; } //****************************************************************************80 bool halham_n_check ( int n ) //****************************************************************************80 // // Purpose: // // HALHAM_N_CHECK checks N for a Halton or Hammersley sequence. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 September 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of the subsequence. // N must be positive. // // Output, bool HALHAM_N_CHECK, is true if N is legal. // { bool value; if ( n < 1 ) { cout << "\n"; cout << "HALHAM_N_CHECK - Fatal error!\n"; cout << " N < 0."; cout << " N = " << n << "\n"; value = false; } else { value = true; } return value; } //****************************************************************************80 bool halham_dim_num_check ( int dim_num ) //****************************************************************************80 // // Purpose: // // HALHAM_DIM_NUM_CHECK checks DIM_NUM for a Halton or Hammersley sequence. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 September 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // DIM_NUM must be positive. // // Output, bool HALHAM_DIM_NUM_CHECK, is true if DIM_NUM is legal. // { bool value; if ( dim_num < 1 ) { cout << "\n"; cout << "HALHAM_DIM_NUM_CHECK - Fatal error!\n"; cout << " DIM_NUM < 0."; cout << " DIM_NUM = " << dim_num << "\n"; value = false; } else { value = true; } return value; } //****************************************************************************80 bool halham_seed_check ( int dim_num, int seed[] ) //****************************************************************************80 // // Purpose: // // HALHAM_SEED_CHECK checks SEED for a Halton or Hammersley sequence. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 September 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int SEED[DIM_NUM], the sequence index // corresponding to STEP = 0. Each entry must be 0 or greater. // // Output, bool HALHAM_SEED_CHECK, is true if SEED is legal. // { int i; bool value; value = true; for ( i = 0; i < dim_num; i++ ) { if ( seed[i] < 0 ) { cout << "\n"; cout << "HALHAM_SEED_CHECK - Fatal error!\n"; cout << " SEED entries must be nonnegative.\n"; cout << " seed[" << i << "] = " << seed[i] << "\n"; value = false; break; } } return value; } //****************************************************************************80 bool halham_step_check ( int step ) //****************************************************************************80 // // Purpose: // // HALHAM_STEP_CHECK checks STEP for a Halton or Hammersley sequence. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 September 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int STEP, the index of the subsequence element. // STEP must be 1 or greater. // // Output, bool HALHAM_STEP_CHECK, is true if STEP is legal. // { int i; bool value; if ( step < 0 ) { cout << "\n"; cout << "HALHAM_STEP_CHECK - Fatal error!\n"; cout << " STEP < 0."; cout << " STEP = " << step << "\n"; value = false; } else { value = true; } return value; } //****************************************************************************80 bool halton_base_check ( int dim_num, int base[] ) //****************************************************************************80 // // Purpose: // // HALTON_BASE_CHECK checks BASE for a Halton sequence. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 21 September 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int BASE[DIM_NUM], the bases. // // Output, bool HALTON_BASE_CHECK, is true if BASE is legal. // { int i; bool value; value = true; for ( i = 0; i < dim_num; i++ ) { if ( base[i] <= 1 ) { cout << "\n"; cout << "HALTON_BASE_CHECK - Fatal error!\n"; cout << " Bases must be greater than 1.\n"; cout << " base[" << i << "] = " << base[i] << "\n"; value = false; break; } } return value; } //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the whole part of the logarithm base 10 of an I4. // // Discussion: // // It should be the case that 10^I4_LOG_10(I) <= |I| < 10^(I4_LOG_10(I)+1). // (except for I = 0). // // The number of decimal digits in I is I4_LOG_10(I) + 1. // // Example: // // I I4_LOG_10(I) // // 0 0 // 1 0 // 2 0 // // 9 0 // 10 1 // 11 1 // // 99 1 // 100 2 // 101 2 // // 999 2 // 1000 3 // 1001 3 // // 9999 3 // 10000 4 // 10001 4 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 June 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the integer. // // Output, int I4_LOG_10, the whole part of the logarithm of abs ( I ). // { int ten_pow; int value; i = abs ( i ); ten_pow = 10; value = 0; while ( ten_pow <= i ) { ten_pow = ten_pow * 10; value = value + 1; } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // // { if ( i2 < i1 ) { return i1; } else { return i2; } } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the smaller of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1 and I2, two integers to be compared. // // Output, int I4_MIN, the smaller of i1 and i2. // { if ( i1 < i2 ) { return i1; } else { return i2; } } //********************************************************************** void i4_to_halton_sequence ( int dim_num, int n, int step, int seed[], int leap[], int base[], double r[] ) //****************************************************************************80 // // Purpose: // // I4_TO_HALTON_SEQUENCE computes N elements of a leaped Halton subsequence. // // Discussion: // // The DIM_NUM-dimensional Halton sequence is really DIM_NUM separate // sequences, each generated by a particular base. // // This routine selects elements of a "leaped" subsequence of the // Halton sequence. The subsequence elements are indexed by a // quantity called STEP, which starts at 0. The STEP-th subsequence // element is simply element // // SEED(1:DIM_NUM) + STEP * LEAP(1:DIM_NUM) // // of the original Halton sequence. // // // The data to be computed has two dimensions. // // The number of data items is DIM_NUM * N, where DIM_NUM is the spatial dimension // of each element of the sequence, and N is the number of elements of the sequence. // // The data is stored in a one dimensional array R. The first element of the // sequence is stored in the first DIM_NUM entries of R, followed by the DIM_NUM entries // of the second element, and so on. // // In particular, the J-th element of the sequence is stored in entries // 0+(J-1)*DIM_NUM through (DIM_NUM-1) + (J-1)*DIM_NUM. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 July 2004 // // Author: // // John Burkardt // // Reference: // // J H Halton, // On the efficiency of certain quasi-random sequences of points // in evaluating multi-dimensional integrals, // Numerische Mathematik, // Volume 2, 1960, pages 84-90. // // J H Halton and G B Smith, // Algorithm 247: Radical-Inverse Quasi-Random Point Sequence, // Communications of the ACM, // Volume 7, 1964, pages 701-702. // // Ladislav Kocis and William Whiten, // Computational Investigations of Low-Discrepancy Sequences, // ACM Transactions on Mathematical Software, // Volume 23, Number 2, 1997, pages 266-294. // // Parameters: // // Input, int DIM_NUM, the spatial dimension. // // Input, int N, the number of elements of the sequence. // // Input, int STEP, the index of the subsequence element. // 0 <= STEP is required // // Input, int SEED[DIM_NUM], the Halton sequence index corresponding // to STEP = 0. // // Input, int LEAP[DIM_NUM], the succesive jumps in the Halton sequence. // // Input, int BASE[DIM_NUM], the Halton bases. // // Output, double R[DIM_NUM*N], the next N elements of the // leaped Halton subsequence, beginning with element STEP. // { double base_inv; int digit; int i; int j; int *seed2; // // Check the input. // if ( !halham_dim_num_check ( dim_num ) ) { exit ( 1 ); } if ( !halham_n_check ( n ) ) { exit ( 1 ); } if ( !halham_step_check ( step ) ) { exit ( 1 ); } if ( !halham_seed_check ( dim_num, seed ) ) { exit ( 1 ); } if ( !halham_leap_check ( dim_num, leap ) ) { exit ( 1 ); } if ( !halton_base_check ( dim_num, base ) ) { exit ( 1 ); } // // Calculate the data. // seed2 = new int[n]; for ( i = 0; i < dim_num; i++ ) { for ( j = 0; j < n; j++ ) { seed2[j] = seed[i] + ( step + j ) * leap[i]; } for ( j = 0; j < n; j++ ) { r[i+j*dim_num] = 0.0; } for ( j = 0; j < n; j++ ) { base_inv = 1.0 / ( ( double ) base[i] ); while ( seed2[j] != 0 ) { digit = seed2[j] % base[i]; r[i+j*dim_num] = r[i+j*dim_num] + ( ( double ) digit ) * base_inv; base_inv = base_inv / ( ( double ) base[i] ); seed2[j] = seed2[j] / base[i]; } } } delete [] seed2; return; } //****************************************************************************80 char *i4_to_s ( int i ) //****************************************************************************80 // // Purpose: // // I4_TO_S converts an I4 to a string. // // Example: // // INTVAL S // // 1 1 // -1 -1 // 0 0 // 1952 1952 // 123456 123456 // 1234567 1234567 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, an integer to be converted. // // Output, char *I4_TO_S, the representation of the integer. // { int digit; int j; int length; int ten_power; char *s; length = i4_log_10 ( i ); ten_power = ( int ) pow ( ( double ) 10, ( double ) length ); if ( i < 0 ) { length = length + 1; } // // Add one position for the trailing null. // length = length + 1; s = new char[length]; if ( i == 0 ) { s[0] = '0'; s[1] = '\0'; return s; } // // Now take care of the sign. // j = 0; if ( i < 0 ) { s[j] = '-'; j = j + 1; i = abs ( i ); } // // Find the leading digit of I, strip it off, and stick it into the string. // while ( 0 < ten_power ) { digit = i / ten_power; s[j] = digit_to_ch ( digit ); j = j + 1; i = i - digit * ten_power; ten_power = ten_power / 10; } // // Tack on the trailing NULL. // s[j] = '\0'; j = j + 1; return s; } //****************************************************************************80 int prime ( int n ) //****************************************************************************80 // // Purpose: // // PRIME returns any of the first PRIME_MAX prime numbers. // // Discussion: // // PRIME_MAX is 1600, and the largest prime stored is 13499. // // Thanks to Bart Vandewoestyne for pointing out a typo, 18 February 2005. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 February 2005 // // Author: // // John Burkardt // // Reference: // // Milton Abramowitz and Irene Stegun, // Handbook of Mathematical Functions, // US Department of Commerce, 1964, pages 870-873. // // Daniel Zwillinger, // CRC Standard Mathematical Tables and Formulae, // 30th Edition, // CRC Press, 1996, pages 95-98. // // Parameters: // // Input, int N, the index of the desired prime number. // In general, is should be true that 0 <= N <= PRIME_MAX. // N = -1 returns PRIME_MAX, the index of the largest prime available. // N = 0 is legal, returning PRIME = 1. // // Output, int PRIME, the N-th prime. If N is out of range, PRIME // is returned as -1. // { # define PRIME_MAX 1600 int npvec[PRIME_MAX] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, 9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, 9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973,10007, 10009,10037,10039,10061,10067,10069,10079,10091,10093,10099, 10103,10111,10133,10139,10141,10151,10159,10163,10169,10177, 10181,10193,10211,10223,10243,10247,10253,10259,10267,10271, 10273,10289,10301,10303,10313,10321,10331,10333,10337,10343, 10357,10369,10391,10399,10427,10429,10433,10453,10457,10459, 10463,10477,10487,10499,10501,10513,10529,10531,10559,10567, 10589,10597,10601,10607,10613,10627,10631,10639,10651,10657, 10663,10667,10687,10691,10709,10711,10723,10729,10733,10739, 10753,10771,10781,10789,10799,10831,10837,10847,10853,10859, 10861,10867,10883,10889,10891,10903,10909,10937,10939,10949, 10957,10973,10979,10987,10993,11003,11027,11047,11057,11059, 11069,11071,11083,11087,11093,11113,11117,11119,11131,11149, 11159,11161,11171,11173,11177,11197,11213,11239,11243,11251, 11257,11261,11273,11279,11287,11299,11311,11317,11321,11329, 11351,11353,11369,11383,11393,11399,11411,11423,11437,11443, 11447,11467,11471,11483,11489,11491,11497,11503,11519,11527, 11549,11551,11579,11587,11593,11597,11617,11621,11633,11657, 11677,11681,11689,11699,11701,11717,11719,11731,11743,11777, 11779,11783,11789,11801,11807,11813,11821,11827,11831,11833, 11839,11863,11867,11887,11897,11903,11909,11923,11927,11933, 11939,11941,11953,11959,11969,11971,11981,11987,12007,12011, 12037,12041,12043,12049,12071,12073,12097,12101,12107,12109, 12113,12119,12143,12149,12157,12161,12163,12197,12203,12211, 12227,12239,12241,12251,12253,12263,12269,12277,12281,12289, 12301,12323,12329,12343,12347,12373,12377,12379,12391,12401, 12409,12413,12421,12433,12437,12451,12457,12473,12479,12487, 12491,12497,12503,12511,12517,12527,12539,12541,12547,12553, 12569,12577,12583,12589,12601,12611,12613,12619,12637,12641, 12647,12653,12659,12671,12689,12697,12703,12713,12721,12739, 12743,12757,12763,12781,12791,12799,12809,12821,12823,12829, 12841,12853,12889,12893,12899,12907,12911,12917,12919,12923, 12941,12953,12959,12967,12973,12979,12983,13001,13003,13007, 13009,13033,13037,13043,13049,13063,13093,13099,13103,13109, 13121,13127,13147,13151,13159,13163,13171,13177,13183,13187, 13217,13219,13229,13241,13249,13259,13267,13291,13297,13309, 13313,13327,13331,13337,13339,13367,13381,13397,13399,13411, 13417,13421,13441,13451,13457,13463,13469,13477,13487,13499 }; if ( n == -1 ) { return PRIME_MAX; } else if ( n == 0 ) { return 1; } else if ( n <= PRIME_MAX ) { return npvec[n-1]; } else { cout << "\n"; cout << "PRIME - Fatal error!\n"; cout << " Unexpected input value of n = " << n << "\n"; exit ( 1 ); } return 0; # undef PRIME_MAX } //****************************************************************************80 double r8_epsilon ( ) //****************************************************************************80 // // Purpose: // // R8_EPSILON returns the R8 roundoff unit. // // Discussion: // // The roundoff unit is a number R which is a power of 2 with the // property that, to the precision of the computer's arithmetic, // 1 < 1 + R // but // 1 = ( 1 + R / 2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 September 2012 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_EPSILON, the R8 round-off unit. // { const double value = 2.220446049250313E-016; return value; } //****************************************************************************80 double r8_huge ( ) //****************************************************************************80 // // Purpose: // // R8_HUGE returns a "huge" R8. // // Discussion: // // HUGE_VAL is the largest representable legal real number, and is usually // defined in math.h, or sometimes in stdlib.h. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 May 2003 // // Author: // // John Burkardt // // Parameters: // // Output, double R8_HUGE, a "huge" R8. // { return HUGE_VAL; } //****************************************************************************80 void r8mat_transpose_print ( int m, int n, double a[], char *title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, char *TITLE, an optional title. // { r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8mat_transpose_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, char *title ) //****************************************************************************80 // // Purpose: // // R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT, transposed. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A[M*N], an M by N matrix to be printed. // // Input, int ILO, JLO, the first row and column to print. // // Input, int IHI, JHI, the last row and column to print. // // Input, char *TITLE, an optional title. // { # define INCX 5 int i; int i2; int i2hi; int i2lo; int inc; int j; int j2hi; int j2lo; if ( 0 < s_len_trim ( title ) ) { cout << "\n"; cout << title << "\n"; } for ( i2lo = i4_max ( ilo, 1 ); i2lo <= i4_min ( ihi, m ); i2lo = i2lo + INCX ) { i2hi = i2lo + INCX - 1; i2hi = i4_min ( i2hi, m ); i2hi = i4_min ( i2hi, ihi ); inc = i2hi + 1 - i2lo; cout << "\n"; cout << " Row: "; for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(7) << i << " "; } cout << "\n"; cout << " Col\n"; j2lo = i4_max ( jlo, 1 ); j2hi = i4_min ( jhi, n ); for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(5) << j << " "; for ( i2 = 1; i2 <= inc; i2++ ) { i = i2lo - 1 + i2; cout << setw(14) << a[(i-1)+(j-1)*m]; } cout << "\n"; } } cout << "\n"; return; # undef INCX } //****************************************************************************80 void r8mat_uniform_01 ( int m, int n, int *seed, double r[] ) //****************************************************************************80 // // Purpose: // // R8MAT_UNIFORM_01 returns a unit pseudorandom R8MAT. // // Discussion: // // This routine implements the recursion // // seed = 16807 * seed mod ( 2**31 - 1 ) // unif = seed / ( 2**31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, L E Schrage, // A Guide to Simulation, // Springer Verlag, pages 201-202, 1983. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, pages 362-376, 1986. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input/output, int *SEED, the "seed" value. On output, SEED has // been updated. // // Output, double R[M*N], a matrix of pseudorandom values. // { int i; int j; int k; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = *seed / 127773; *seed = 16807 * ( *seed - k * 127773 ) - k * 2836; if ( *seed < 0 ) { *seed = *seed + 2147483647; } r[i+j*m] = ( double ) ( *seed ) * 4.656612875E-10; } } return; } //****************************************************************************80 void r8mat_write ( string output_filename, int m, int n, double table[] ) //****************************************************************************80 // // Purpose: // // R8MAT_WRITE writes an R8MAT file. // // Discussion: // // An R8MAT is an array of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 June 2009 // // Author: // // John Burkardt // // Parameters: // // Input, string OUTPUT_FILENAME, the output filename. // // Input, int M, the spatial dimension. // // Input, int N, the number of points. // // Input, double TABLE[M*N], the table data. // { int i; int j; ofstream output; // // Open the file. // output.open ( output_filename.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8MAT_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; return; } // // Write the data. // for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { output << " " << setw(24) << setprecision(16) << table[i+j*m]; } output << "\n"; } // // Close the file. // output.close ( ); return; } //****************************************************************************80 unsigned long random_initialize ( int seed ) //****************************************************************************80 // // Purpose: // // RANDOM_INITIALIZE initializes the RANDOM random number generator. // // Discussion: // // If you don't initialize RANDOM, the random number generator, // it will behave as though it were seeded with value 1. // This routine will either take a user-specified seed, or // (if the user passes a 0) make up a "random" one. In either // case, the seed is passed to SRAND (the appropriate routine // to call when setting the seed for RANDOM). The seed is also // returned to the user as the value of the function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 December 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int SEED, is either 0, which means that the user // wants this routine to come up with a seed, or nonzero, in which // case the user has supplied the seed. // // Output, unsigned long RANDOM_INITIALIZE, is the value of the seed // passed to SRAND, which is either the user's input value, or if // that was zero, the value selected by this routine. // { # define DEBUG 0 unsigned long ul_seed; if ( seed != 0 ) { if ( DEBUG ) { cout << "\n"; cout << "RANDOM_INITIALIZE\n"; cout << " Initialize RANDOM with user SEED = " << seed << "\n"; } } else { seed = get_seed ( ); if ( DEBUG ) { cout << "\n"; cout << "RANDOM_INITIALIZE\n"; cout << " Initialize RAND with arbitrary SEED = " << seed << "\n"; } } // // Now set the seed. // ul_seed = ( unsigned long ) seed; srand ( ul_seed ); return ul_seed; # undef DEBUG } //****************************************************************************80 bool s_eqi ( char *s1, char *s2 ) //****************************************************************************80 // // Purpose: // // S_EQI reports whether two strings are equal, ignoring case. // // Modified: // // 05 May 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S1, char *S2, pointers to two strings. // // Output, bool S_EQI, is true if the strings are equal. // { int i; int nchar; int nchar1; int nchar2; nchar1 = strlen ( s1 ); nchar2 = strlen ( s2 ); nchar = i4_min ( nchar1, nchar2 ); // // The strings are not equal if they differ over their common length. // for ( i = 0; i < nchar; i++ ) { if ( ch_cap ( s1[i] ) != ch_cap ( s2[i] ) ) { return false; } } // // The strings are not equal if the longer one includes nonblanks // in the tail. // if ( nchar < nchar1 ) { for ( i = nchar; i < nchar1; i++ ) { if ( s1[i] != ' ' ) { return false; } } } else if ( nchar < nchar2 ) { for ( i = nchar; i < nchar2; i++ ) { if ( s2[i] != ' ' ) { return false; } } } return true; } //****************************************************************************80 int s_len_trim ( char* s ) //****************************************************************************80 // // Purpose: // // S_LEN_TRIM returns the length of a string to the last nonblank. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 April 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, a pointer to a string. // // Output, int S_LEN_TRIM, the length of the string to the last nonblank. // If S_LEN_TRIM is 0, then the string is entirely blank. // { int n; char* t; n = strlen ( s ); t = s + strlen ( s ) - 1; while ( 0 < n ) { if ( *t != ' ' ) { return n; } t--; n--; } return n; } //****************************************************************************80 double s_to_r8 ( char *s, int *lchar, bool *error ) //****************************************************************************80 // // Purpose: // // S_TO_R8 reads an R8 from a string. // // Discussion: // // This routine will read as many characters as possible until it reaches // the end of the string, or encounters a character which cannot be // part of the real number. // // Legal input is: // // 1 blanks, // 2 '+' or '-' sign, // 2.5 spaces // 3 integer part, // 4 decimal point, // 5 fraction part, // 6 'E' or 'e' or 'D' or 'd', exponent marker, // 7 exponent sign, // 8 exponent integer part, // 9 exponent decimal point, // 10 exponent fraction part, // 11 blanks, // 12 final comma or semicolon. // // with most quantities optional. // // Example: // // S R // // '1' 1.0 // ' 1 ' 1.0 // '1A' 1.0 // '12,34,56' 12.0 // ' 34 7' 34.0 // '-1E2ABCD' -100.0 // '-1X2ABCD' -1.0 // ' 2E-1' 0.2 // '23.45' 23.45 // '-4.2E+2' -420.0 // '17d2' 1700.0 // '-14e-2' -0.14 // 'e2' 100.0 // '-12.73e-9.23' -12.73 * 10.0**(-9.23) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 August 2003 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, the string containing the // data to be read. Reading will begin at position 1 and // terminate at the end of the string, or when no more // characters can be read to form a legal real. Blanks, // commas, or other nonnumeric data will, in particular, // cause the conversion to halt. // // Output, int *LCHAR, the number of characters read from // the string to form the number, including any terminating // characters such as a trailing comma or blanks. // // Output, bool *ERROR, is true if an error occurred. // // Output, double S_TO_R8, the real value that was read from the string. // { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = false; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; // // Blank or TAB character. // if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } // // Comma. // else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } // // Minus sign. // else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } // // Plus sign. // else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } // // Decimal point. // else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } // // Exponent marker. // else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } // // Digit. // else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } // // Anything else is regarded as a terminator. // else { iterm = 1; } // // If we haven't seen a terminator, and we haven't examined the // entire string, go get the next character. // if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } // // If we haven't seen a terminator, and we have examined the // entire string, then we're done, and LCHAR is equal to NCHAR. // if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } // // Number seems to have terminated. Have we got a legal number? // Not if we terminated in states 1, 2, 6 or 7! // if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = true; return r; } // // Number seems OK. Form it. // if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { rexp = pow ( 10.0, jsgn * jtop ); } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( 10.0, rexp ); } } r = isgn * rexp * rtop / rbot; return r; } //****************************************************************************80 bool s_to_r8vec ( char *s, int n, double rvec[] ) //****************************************************************************80 // // Purpose: // // S_TO_R8VEC reads an R8VEC from a string. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 February 2001 // // Author: // // John Burkardt // // Parameters: // // Input, char *S, the string to be read. // // Input, int N, the number of values expected. // // Output, double RVEC[N], the values read from the string. // // Output, bool S_TO_R8VEC, is true if an error occurred. // { bool error; int i; int lchar; double x; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s, &lchar, &error ); if ( error ) { return error; } s = s + lchar; } return error; } //****************************************************************************80 void timestamp ( void ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 October 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cout << time_buffer << "\n"; return; # undef TIME_SIZE } //****************************************************************************80 void tuple_next_fast ( int m, int n, int rank, int x[] ) //****************************************************************************80 // // Purpose: // // TUPLE_NEXT_FAST computes the next element of a tuple space, "fast". // // Discussion: // // The elements are N vectors. Each entry is constrained to lie // between 1 and M. The elements are produced one at a time. // The first element is // (1,1,...,1) // and the last element is // (M,M,...,M) // Intermediate elements are produced in lexicographic order. // // Example: // // N = 2, // M = 3 // // INPUT OUTPUT // ------- ------- // Rank X // ---- ---- // -1 -1 -1 // // 0 1 1 // 1 1 2 // 2 1 3 // 3 2 1 // 4 2 2 // 5 2 3 // 6 3 1 // 7 3 2 // 8 3 3 // 9 1 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the maximum entry in each component. // M must be greater than 0. // // Input, int N, the number of components. // N must be greater than 0. // // Input, integer RANK, indicates the rank of the tuples. // Typically, 0 <= RANK < N**M; values larger than this are legal // and meaningful, and are equivalent to the corresponding value // MOD N**M. If RANK < 0, this indicates that this is the first // call for the given values of (M,N). Initialization is done, // and X is set to a dummy value. // // Output, int X[N], the next tuple, or a dummy value if initialization // is being done. // { static int *base = NULL; int i; // if ( rank < 0 ) { if ( m <= 0 ) { cout << "\n"; cout << "TUPLE_NEXT_FAST - Fatal error!\n"; cout << " The value M <= 0 is not legal.\n"; cout << " M = " << m << "\n"; exit ( 1 ); } if ( n <= 0 ) { cout << "\n"; cout << "TUPLE_NEXT_FAST - Fatal error!\n"; cout << " The value N <= 0 is not legal.\n"; cout << " N = " << n << "\n"; exit ( 1 ); } if ( base ) { delete [] base; } base = new int[n]; base[n-1] = 1; for ( i = n-2; 0 <= i; i-- ) { base[i] = base[i+1] * m; } for ( i = 0; i < n; i++ ) { x[i] = -1; } } else { for ( i = 0; i < n; i++ ) { x[i] = ( ( rank / base[i] ) % m ) + 1; } } return; } //****************************************************************************80 void user ( int dim_num, int n, int *seed, double r[] ) //****************************************************************************80 // // Purpose: // // USER samples points in a user-specified region with given density. // // Discussion: // // This routine can be used to // // * specify an interesting initial configuration for the data, // by specifing that USER be used for initialization (INIT = 3); // // * specify the shape of the computational region, by specifying // that sample points are to be generated by this routine, // (SAMPLE = 3) and then returning sample points uniformly at random. // // * specify the distribution or density function, by specifying // that sample points are to be generated by this routine, // (SAMPLE = 3 ) and then returning sample points according to a // given probability density function. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 June 2005 // // Author: // // John Burkardt // // Parameters: // // Input, integer DIM_NUM, the spatial dimension. // // Input, integer N, the number of sample points desired. // // Input/output, int *SEED, the "seed" value. On output, SEED has // been updated. // // Output, double R[DIM_NUM*N], the sample values. // { # define PI 3.141592653589793 double angle; int j; double radius; for ( j = 0; j < n; j++ ) { angle = 2.0 * PI * ( double ) random ( ) / ( double ) RAND_MAX; radius = sqrt ( ( double ) random ( ) / ( double ) RAND_MAX ); r[0+j*2] = radius * cos ( angle ); r[1+j*2] = radius * sin ( angle ); } return; # undef PI }