# include # include # include # include using namespace std; // // Delaunay-tree // // Copyright (c) 1993 by INRIA Prisme Project // 2004 route des Lucioles, // BP 93 06902 Sophia Antipolis Cedex // All rights reserved. // Olivier.Devillers@sophia.inria.fr // (33) 93 65 77 63 // Fax (33) 93 65 76 43 // http://www.inria.fr:/prisme/personnel/devillers/devillers.html // // // GEOMETRIC OBJECT : // // The Delaunay tree is a randomized geometric data structure computing the // Delaunay triangulation // This structure holds insertion and queries. Deletions are not supported // in this version. // // Reference: // // Jean-Daniel Boissonnat, Monique Teillaud, // On the randomized construction of the Delaunay tree, // Theoretetical Computer Science, // Volume 112, pages339-354, 1993. // // Olivier Devillers, Stefan Meiser, Monique Teillaud, // Fully dynamic Delaunay triangulation in logarithmic expected // time per operation, // Computational Geometry: Theory and Applications, // Volume 2, Number 2, pages 55-80, 1992. // // Olivier Devillers, // Robust and efficient implementation of the Delaunay tree, // INRIA Research Report 1619, 1992. // class Delaunay_tree; class DT_node; class DT_list; class point; typedef unsigned char ind; // used for flag and ind in array class Delaunay_tree { private : // number of the current operation int nb; // the root of the delaunay_tree DT_node* root; public : Delaunay_tree ( void ); // initialization as empty ~Delaunay_tree ( void ); // destructor Delaunay_tree& operator+=(point*); // insertion void output ( void ); // the Delaunay triangulation void output2 ( void ); }; class point { private : double x; double y; public : point ( double xx, double yy ) { x=xx; y=yy; } double X ( void ) {return x;} double Y ( void ) {return y;} void lineto ( point *p ); friend point operator + ( point, point ); friend point operator - ( point, point ); friend double operator * ( point, point ); friend double operator ^ ( point, point ); }; class DT_flag { private : ind f; DT_flag ( void ) { f = (ind) 0 ; } void infinite ( int i ) { f |= (ind) i ; } void last_finite ( void ) { f |= 8;} void kill ( void ) { f |= 16;} ind is_infinite ( void ) { return f & 7;} ind is_last_finite ( void ) { return f & 8;} ind is_dead ( void ) { return f & 16;} ind is_degenerate ( void ) { return f & 32;} public : friend class DT_node; friend class Delaunay_tree; }; class DT_list { private : DT_list *next; DT_node *key; DT_list ( DT_list* l, DT_node* k ) {next=l; key=k;} ~DT_list ( void ); public : friend class DT_node; friend class Delaunay_tree; }; class DT_node { private : // the first vertex is the creator, that is finite // except for the root and its neighbors DT_flag flag; unsigned int nb; point* vertices[3]; DT_node* neighbors[3]; DT_list* sons; DT_node ( void ); // initialize the root DT_node(DT_node*, ind); // initialize nowhere DT_node(DT_node*, point*, ind); // father, creator, direction of stepfather ind conflict(point *); DT_node* find_conflict(point* p); void output ( void ); void output2 ( void ); ind cw_neighbor_ind(point *p) { return ((p==vertices[0]) ? 2 : ((p==vertices[1]) ? 0 : 1)); } ind neighbor_ind(DT_node *n) { return ( (neighbors[0]==n)?0:((neighbors[1]==n)?1:2) );} public : friend class Delaunay_tree; }; // // Declaration of routines: // int main ( void ); void timestamp ( void ); //****************************************************************************80 int main ( void ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for the Delaunay tree program. // // Modified: // // 15 November 2004 // // Author: // // Olivier Devillers // { Delaunay_tree DT; int i = 0; double x; double y; timestamp ( ); cerr << "\n"; cerr << "DELAUNAY_TREE_2D:\n"; cerr << " Data points are read from stdin;\n"; cerr << " Triangulation is written to stdout in Postscript format.\n"; while ( cin >> x >> y ) { DT += new point ( x, y ); i++; if ( i < 60000 ) { if ( ( i % 100 ) == 0 ) { cerr << "\b\b\b\b\b\b" << i ; } } else { if ( ( i % 10 ) == 0 ) { cerr << "\b\b\b\b\b\b" << i ; } } } cerr << "\n"; cerr << "\n"; cerr << " " << i << " points read and inserted.\n"; DT.output ( ); cerr << "\n"; cerr << "DELAUNAY_TREE_2D:\n"; cerr << " Delaunay triangulation written\n"; cerr << " Normal end of execution.\n"; cerr << "\n"; timestamp ( ); exit ( 0 ); } //****************************************************************************80 inline point operator + ( point a, point b ) //****************************************************************************80 // // Purpose: // // "+" is an overloading of the + operator to points. // // Author: // // Olivier Devillers // { return point ( a.x+b.x, a.y+b.y ); } //****************************************************************************80 inline point operator - ( point a, point b ) //****************************************************************************80 // // Purpose: // // "-" is an overloading of the - operator to points. // // Author: // // Olivier Devillers // { return point ( a.x-b.x, a.y-b.y ); } //****************************************************************************80 inline double operator * ( point a, point b ) //****************************************************************************80 // // Purpose: // // "*" is an overloading of the * operator to points. // // Author: // // Olivier Devillers // { return a.x*b.x + a.y*b.y; } //****************************************************************************80 inline double operator ^ ( point a, point b ) //****************************************************************************80 // // Purpose: // // "^" is an overloading of the ^ operator to points. // // Author: // // Olivier Devillers // { return a.x*b.y - a.y*b.x; } //****************************************************************************80 DT_list::~DT_list ( void ) //****************************************************************************80 // // Purpose: // // DT_list::~DT_list is the annihilator for class DT_list. // // Author: // // Olivier Devillers // { DT_list *p,*q; if (!next) return; for ( p = this, q = this->next; q ; ) { p->next = NULL; delete p; p = q; q = q->next ; } } //****************************************************************************80 ind DT_node::conflict ( point *p ) //****************************************************************************80 // // Purpose: // // DT_node::conflict is true if the point P is inside the closed circumdisk. // // Author: // // Olivier Devillers // // Parameters: // // Input, point *P, the point to be checked. // // Output, ind DT_node::conflict, is true if the point is inside the closed circumdisk. // { switch ( flag.is_infinite() ) { case 4: return 0; case 3: return 1; case 2: return ( ( *p - *vertices[0] ) * ( *vertices[1] + *vertices[2] ) >= 0 ); case 1: return ( ( flag.is_last_finite() ) ?( (( *p - *vertices[2] ) ^ ( *vertices[2] - *vertices[0] )) >= 0 ) :( (( *p - *vertices[0] ) ^ ( *vertices[0] - *vertices[1] )) >= 0 )); case 0: // // compute the det 4*4 column: x,y,x**2+y**2,1 for p and vertices [0,1,2] // double x,y; double x0,y0; double x1,y1; double x2,y2; double z1,z2; double alpha,beta,gamma; x = p->X(); y = p->Y(); x0 = vertices[0]->X(); y0 = vertices[0]->Y(); x1 = vertices[1]->X(); y1 = vertices[1]->Y(); x2 = vertices[2]->X(); y2 = vertices[2]->Y(); x1-=x0; y1-=y0; x2-=x0; y2-=y0; x-=x0; y-=y0; z1=(x1*x1)+(y1*y1); z2=(x2*x2)+(y2*y2); alpha=(y1*z2)-(z1*y2); beta=(x2*z1)-(x1*z2); gamma=(x1*y2)-(y1*x2); return ((alpha*x)+(beta*y)+gamma*((x*x)+(y*y)) <= 0 ); } return 0; } //****************************************************************************80 void point::lineto ( point *p ) //****************************************************************************80 // // Purpose: // // point::lineto writes information about a line to the PostScript file. // // Author: // // Olivier Devillers // { cout << this->x << " " << this->y << " moveto " << p->x << " " << p->y << " lineto stroke\n"; } //****************************************************************************80 DT_node::DT_node ( void ) //****************************************************************************80 // // Purpose: // // DT_node::DT_node ( void ) is a creation routine for class DT_node. // // Author: // // Olivier Devillers // { vertices[0] = new point ( 1.0, 0.0 ); vertices[1] = new point ( -0.5, 0.8660254 ); vertices[2] = new point ( -0.5, -0.8660254 ); flag.infinite ( 3 ); nb = 0; sons = NULL; } //****************************************************************************80 DT_node::DT_node ( DT_node *root, ind i ) //****************************************************************************80 // // Purpose: // // DT_node::DT_node ( DT_node* root, ind i ) is a creation routine for class DT_node. // // Author: // // Olivier Devillers // { vertices[0] = root->vertices[0] ; vertices[1] = root->vertices[1] ; vertices[2] = root->vertices[2] ; flag.infinite ( 4 ); nb = 0; sons = NULL; neighbors[i] = root ; root->neighbors[i] = this ; } //****************************************************************************80 DT_node::DT_node ( DT_node *f, point *c, ind i ) //****************************************************************************80 // // Purpose: // // DT_node::DT_node ( DT_node* f, point *c, ind i ) is a creation routine for class DT_node. // // Discussion: // // The triangle is created in ccw order. // The circumdisk and flatness are not computed. // // Author: // // Olivier Devillers // { switch ( f->flag.is_infinite() ) { case 0: flag.infinite ( 0 ); break; case 1: if (f->flag.is_last_finite() ) flag.infinite ( (i==1) ? 0 : 1 ); else flag.infinite ( (i==2) ? 0 : 1 ); if ( flag.is_infinite() ) if ( f->flag.is_last_finite() ) { if ( i==0 ) flag.last_finite(); } else { if ( i==1 ) flag.last_finite(); } break; case 2: flag.infinite ( (i==0) ? 2 : 1 ); if (i==1) flag.last_finite(); break; case 3: flag.infinite ( 2 ); break; } nb = 0; sons = NULL; f->sons = new DT_list(f->sons, this); f->neighbors[i]->sons = new DT_list(f->neighbors[i]->sons, this); f->neighbors[i]->neighbors[ f->neighbors[i]->neighbor_ind(f) ] = this ; vertices[0] = c; neighbors[0] = f->neighbors[i]; switch (i) { case 0: vertices[1] = f->vertices[1]; vertices[2] = f->vertices[2]; break; case 1: vertices[1] = f->vertices[2]; vertices[2] = f->vertices[0]; break; case 2: vertices[1] = f->vertices[0]; vertices[2] = f->vertices[1]; break; } } //****************************************************************************80 DT_node* DT_node::find_conflict ( point *p ) //****************************************************************************80 // // Purpose: // // DT_node::find_conflict returns an alive node in conflict. // // Author: // // Olivier Devillers // { DT_list* l; DT_node* n; if ( !conflict ( p ) ) { return NULL; } if ( ! flag.is_dead() ) { return this; } for ( l = sons; l; l = l->next ) { if ( l->key->nb != nb ) { l->key->nb = nb; n=l->key->find_conflict(p); if ( n ) { return n; } } } return NULL; } //****************************************************************************80 void DT_node::output ( void ) //****************************************************************************80 // // Purpose: // // DT_node:output ? // // Author: // // Olivier Devillers // { DT_list* l; if ( flag.is_dead() ) { for ( l=sons; l; l = l->next ) if ( l->key->nb != nb ) { l->key->nb = nb; l->key->output(); } return; } if (neighbors[0]->nb != nb) if ( ! flag.is_infinite() ) vertices[1]->lineto(vertices[2]); if (neighbors[1]->nb != nb) if ( ! flag.is_infinite() ) vertices[2]->lineto(vertices[0]); else if ( ( flag.is_infinite() == 1) &&( flag.is_last_finite()))vertices[2]->lineto(vertices[0]); if (neighbors[2]->nb != nb) if ( ! flag.is_infinite() )vertices[0]->lineto(vertices[1]); else if ( ( flag.is_infinite() == 1) &&(!flag.is_last_finite()))vertices[0]->lineto(vertices[1]); } //****************************************************************************80 void Delaunay_tree::output ( void ) //****************************************************************************80 // // Purpose: // // Delaunay_tree::output outputs the Delaunay triangulation. // // Author: // // Olivier Devillers // { cout << "%!\n"; root->nb = ++nb; root->output(); cout << "showpage\n"; } //****************************************************************************80 void DT_node::output2 ( void ) //****************************************************************************80 // // Purpose: // // DT_node::output2 ? // // Author: // // Olivier Devillers // { if (neighbors[0]->nb != nb) if ( ! flag.is_infinite() ) vertices[1]->lineto(vertices[2]); if (neighbors[1]->nb != nb) if ( ! flag.is_infinite() ) vertices[2]->lineto(vertices[0]); else if ( ( flag.is_infinite() == 1) &&( flag.is_last_finite()))vertices[2]->lineto(vertices[0]); if (neighbors[2]->nb != nb) if ( ! flag.is_infinite() )vertices[0]->lineto(vertices[1]); else if ( ( flag.is_infinite() == 1) &&(!flag.is_last_finite()))vertices[0]->lineto(vertices[1]); if (neighbors[0]->nb != nb) { neighbors[0]->nb = nb; neighbors[0]->output(); } if (neighbors[1]->nb != nb) { neighbors[1]->nb = nb; neighbors[1]->output(); } if (neighbors[2]->nb != nb) { neighbors[2]->nb = nb; neighbors[2]->output(); } } //****************************************************************************80 void Delaunay_tree::output2 ( void ) //****************************************************************************80 // // Purpose: // // Delaunay_tree::output2 outputs the Delaunay triangulation. // // Author: // // Olivier Devillers // { cout << "%!\n"; root->neighbors[0]->nb = ++nb; root->neighbors[0]->output(); cout << "showpage\n"; } //****************************************************************************80 Delaunay_tree::Delaunay_tree ( void ) //****************************************************************************80 // // Purpose: // // Delaunay_tree::Delaunay_tree ( void ) initializes the Delaunay tree. // // Author: // // Olivier Devillers // { nb = 0; root = new DT_node(); new DT_node(root, 0); new DT_node(root, 1); new DT_node(root, 2); root->neighbors[0]->neighbors[1] = root->neighbors[1]; root->neighbors[0]->neighbors[2] = root->neighbors[2]; root->neighbors[1]->neighbors[0] = root->neighbors[0]; root->neighbors[1]->neighbors[2] = root->neighbors[2]; root->neighbors[2]->neighbors[0] = root->neighbors[0]; root->neighbors[2]->neighbors[1] = root->neighbors[1]; } //****************************************************************************80 Delaunay_tree::~Delaunay_tree ( void ) //****************************************************************************80 // // Purpose: // // Delaunay_tree::~Delaunay_tree is the destructor for class Delaunay_tree. // // Author: // // Olivier Devillers // { nb++; } //****************************************************************************80 Delaunay_tree &Delaunay_tree::operator += ( point *p ) //****************************************************************************80 // // Purpose: // // Delaunay_tree::operator=+ is the insertion operator for class Delaunay_tree. // // Author: // // Olivier Devillers // { DT_node* n; DT_node* created; DT_node* last; DT_node* first; point* q; point* r; ind i; root->nb = ++nb; if ( ! ( n = root->find_conflict(p) ) ) { return *this ; } // // test if p is already inserted // for ( i=0; (int) i < 3- (int) n->flag.is_infinite(); i++ ) if ( ( p->X()==n->vertices[i]->X() )&&( p->Y()==n->vertices[i]->Y() ) ) return *this; n->flag.kill(); // we will turn cw around first vertex of n, till next triangle // is not in conflict q = n->vertices[0]; while( n->neighbors[ i=n->cw_neighbor_ind(q) ]->conflict(p) ) {n = n->neighbors[i];n->flag.kill();} first = last = new DT_node(n,p,i); // we will turn cw around r, till next triangle is not in conflict r = n->vertices[(((int) i)+2)%3]; while( 1){ i = n->cw_neighbor_ind(r); if (n->neighbors[i]->flag.is_dead()){ n = n->neighbors[i]; continue; } if (n->neighbors[i]->conflict(p) ){ n = n->neighbors[i]; n->flag.kill(); continue; } break; } // n is killed by p // n->neighbors[i] is not in conflict with p // r is vertex i+1 of n while ( 1 ) { created = new DT_node(n,p,i); created->neighbors[2]=last; last->neighbors[1]=created; last=created; r = n->vertices[(((int) i)+2)%3]; // r turn in n ccw if (r==q) break; // we will turn cw around r, till next triangle is not in conflict while( 1){ i = n->cw_neighbor_ind(r); if (n->neighbors[i]->flag.is_dead()){ n = n->neighbors[i]; continue; } if (n->neighbors[i]->conflict(p) ){ n = n->neighbors[i]; n->flag.kill(); continue; } break; } } first->neighbors[2]=last; last->neighbors[1]=first; return *this; } //****************************************************************************80 void timestamp ( void ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // May 31 2001 09:45:54 AM // // Modified: // // 24 September 2003 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; size_t len; time_t now; now = time ( NULL ); tm = localtime ( &now ); len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); cerr << time_buffer << "\n"; return; # undef TIME_SIZE }